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ABSTRACT

The popular networks for change detection (CD) in very-
high-resolution (VHR) remote sensing (RS) images usually
suffer from two problems. First, it is difficult for these net-
works to model simultaneously the local and global features
of changed targets, which leads to the limited feature rep-
resentation ability of popular CD networks. Second, these
networks often have a large number of parameters and high
computational costs due to complex network architecture. To
address the above issues, we propose a local-global siamese
network (LGS-Net) for CD in VHR RS images. First, we
design an encoder with a parallel dual-branch structure con-
sisting of convolutional neural networks (CNNs) and Trans-
former to extract rich features from bi-temporal images.
Furthermore, we design a local-global feature enhancement
(LGFE) module to help our encoder improve its feature rep-
resentation ability. Second, we design a compact and efficient
convolution module called inter-scale separable convolution
(ISSConv). This module first divides feature maps into mul-
tiple groups, and then performs depthwise separable convo-
lution in each group using atrous convolution with different
dilation rates, which can not only capture changed targets
across scales but also effectively reduce the number of model
parameters. Experiments demonstrate that the proposed LGS-
Net is superior to the state-of-the-art CD networks in terms
of parameters, computational costs, and detection accuracy.

Index Terms— deep learning, change detection, local-
global siamese network, feature enhancement, lightweight
network

1. INTRODUCTION

Change detection (CD) in remote sensing (RS) images aims
to identify the difference between two images from differ-
ent periods but in the same area [1], it is of great signifi-
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cance in many fields, including disaster monitoring [2] and
urban expansion [3]. The early methods for CD in VHR
RS images mainly rely on manual feature extraction, these
methods are usually sensitive to noise and therefore have low
recognition accuracy and poor robustness. In recent years,
with the rapid development of deep learning technology, a
large amount of CD in VHR RS images methods based on
deep learning have been proposed. These methods can be
roughly divided into three categories: convolutional neural
networks (CNNs)-based methods, Transformer-based meth-
ods, and methods based on the hybrid architecture of CNNs
and Transformer.

CNNs have been widely used in various computer vision
tasks due to their powerful feature extraction ability [4], but
these methods still have some limitations. VHR RS images
are usually very complex, and the changed targets with the
same semantic information may be far away from each other.
Due to the characteristics of the local receptive field of con-
volution kernels, it is difficult to employ CNNs to establish
long-range dependency on different targets, which leads to
the lack of long-range correlation information in feature maps
and greatly limits the detection performance of networks. Re-
cently, the transformer has been widely used in image classi-
fication and other tasks because it can effectively capture the
long-range dependency of different targets [5] [6]. However,
the output of the transformer at different stages is uniform
and globally consistent, resulting in poor local-information
extraction and high feature redundancy between shallow and
deep layers. Therefore, the hybrid architecture based on
CNNs and Transformer is proposed [7] [8]. Though the hy-
brid architecture is better than CNNs and Transformer, most
of these hybrid architectures just sequentially combine CNNs
and Transformer, or simply introduce the Transformer into
CNNs, resulting in a lack of sufficient information interaction
between CNNs and Transformer, which limits the feature
representation ability of hybrid architecture networks. Be-
sides, the existing hybrid architecture networks for CD tasks
often employ vanilla convolution to extract image features,

This article has been accepted for publication in a future proceedings  of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/ICASSP49357.2023.10095819, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ 



which leads to a large number of parameters and computa-
tional costs [9]. Therefore, it is difficult to deploy a hybrid
architecture network for CD tasks on low-resource devices.

To address the above problems, we design a local-global
siamese network (LGS-Net) for CD tasks in VHR RS images.
The main contributions of this work can be summarized as
follows:

(1) we design a siamese encoder with a parallel dual-
branch structure consisting of CNNs and Transformer, it
can extract and interact with local-global information for
bi-temporal images at the same time. Furthermore, we use
an local-global feature enhancement (LGFE) module to en-
hance feature information and improve the feature expression
ability. The encoder can fully integrate the local modeling
advantages of CNNs and the global modeling advantages of
Transformer, compared with mainstream CNNs and Trans-
former, hybrid structure have obvious advantages.

(2) We design an inter-scale separable convolution (ISS-
Conv) module by utilizing the advantages of depthwise sepa-
rable convolution, grouping convolution, and atrous convolu-
tion. It performs cross-scale feature extraction for bi-temporal
images by grouping and introducing atrous convolution with
a variable dilation rate, which minimizes feature redundancy
and reduces computational costs.

(3) We design an LGS-Net for CD in VHR RS images.
The experimental results show that the proposed network not
only provides higher detection accuracy, but also requires less
storage and computational costs compared with state-of-the-
art networks.

2. THE PROPOSED NETWORK

2.1. Overall network structure

Different from normal image segmentation tasks, the input of
CD is a pair of bi-temporal images. As shown in Fig.1, to
fuse effectively bi-temporal image features, we build a local-
global siamese network (LGS-Net) for CD tasks in VHR RS
images. LGS-Net consists of an encoder and a decoder, and
the encoder adopts a parallel dual-branch structure composed
of CNNs and Transformer. It aims to extract local and global
features of bi-temporal image simultaneously. In the CNNs
branch, we replace the vanilla convolution with inter-scale
separable convolution (ISSConv). In the Transformer branch,
we employ PVT-v2-B1 [10] with a pyramid structure to cap-
ture multi-scale features with long-distance dependency.

Specifically, first, a pair of bi-temporal images are sent
to the siamese encoder composed of Transformer block and
ISSConv for local-global information extraction. Then the
outputs from the Transformer block and ISSConv are ef-
ficiently integrated by a local-global feature enhancement
(LGFE) module. The decoder consists of a deconvolution
upsampling layer and ISSConv. At each stage of the encoder,
we acquire a different image and connect it to the correspond-
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Fig. 1. The overall structure of LGS-Net.

ing position of the decoder to obtain richer feature maps of
changed targets. Finally, the network performs dimension-
ality reduction and normalization operations by using point
convolution to output the final CD results.

According to Fig. 1, we can see that our proposed LGS-
Net differs from other popular CD networks in two aspects.
First, our proposed LGS-Net adopts the latest hybrid archi-
tecture of CNNs and Transformer. It fuses the local features
from CNNs branch and the global features from Transformer
branch at each layer. Furthermore, it uses a feature enhance-
ment module to improve feature representation. Thus, our en-
coder achieves better feature representation than popular net-
work architecture for CD in VHR RS images. Second, we
employ a novel ISSConv that is superior to vanilla convolu-
tion and improved convolutions such as depthwise separable
convolution and its variants. Thus, our proposed LGS-Net
requires fewer parameters and computational costs than the
popular hybrid architecture of CNNs and Transformer.

2.2. Local and global feature representation

In CD of VHR RS images, as the receptive field of the convo-
lution kernel is usually limited, the CNNs are unable to obtain
the global feature of bi-temporal images efficiently. Although
Transformer has a strong ability to capture global informa-
tion [11], it is weak at obtaining local information. To effec-
tively correlate local and global features simultaneously, we
design a local-global siamese encoder for VHR RS images
feature extraction. At the same time, in the encoder, we also
design an LGFE module, which aims to efficiently integrate
the output of ISSConv and Transformer. The specific struc-
ture of LGFE module is shown in Fig.2.

Channel attention operation is performed on the obtained
local and global feature maps [12]. Let Ti and Ci+1 be the
output of the i-th layer of Transformer branch and CNNs
branch respectively, where i = 1, 2, 3, 4. We first aggregate
spatial information of a feature map by using average-pooling
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Fig. 2. The structure of LGFE module.

and max-pooling operations, then we use multi-layer percep-
tron (MLP) to obtain attention weights, and finally, use the
element-wise summation to merge the output feature vectors.
The specific channel attention operation is defined as:

NT = δ (MLP (AvgPool (Ti)) +MLP (MaxPool (Ti))) ,
(1)

NC = δ (MLP (AvgPool (Ci+1)) +MLP (MaxPool (Ci+1))) ,
(2)

where NT and NC denote the obtained attention map after
channel attention operation, MLP represents the multi-layer
perceptron network, AvgPool and MaxPool denote the
average-pooling and max-pooling operations, respectively,
and δ stands for the Sigmoid function.

To obtain the enhanced feature map Tout and Cout, the
attention map is multiplied to the original feature map and
then the obtained results is added to the original feature map.
The specific operation is defined as:

Tout = NT × Ti + Ti, (3)

Cout = NC × Ci+1 + Ci+1. (4)

Finally, the enhanced maps obtained from the two branches
are concatenated to get the final feature map as follows:

out = Concat (Tout, Cout) , (5)

where Concat represents the splicing of feature maps in the
channel dimension.

Different from most of encoders used for CD in VHR
RS images, our encoder does not simply connect CNNs
and Transformer in series or parallel, but fully fuses the lo-
cal features from CNNs branch and the global features from
Transformer in each stage to realize feature complementation.
Therefore, our encoder can achieve better feature representa-
tion than other encoders for CD in VHR RS images.

2.3. ISSConv for efficient feature learning

The existing CD methods usually have complex network
structures leading to massive parameters and excessive com-

putational costs. To solve this problem, we design a compact
and efficient convolution module called ISSConv. Based
on the depthwise separable convolution [13], ISSConv real-
izes the cross-scale feature expression for changed targets in
the bi-temporal images. The ISSConv has lower computa-
tional costs and fewer parameters than vanilla convolution
and improved convolutions because it groups the depthwise
convolution and employs atrous convolution with variable
dilation rates. The structure of ISSConv is shown in Fig. 3.
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Fig. 3. The structure of ISSConv.

Specifically, first, the input feature map X ∈ RC×H×W

is divided into g groups. Second, the depthwise convolution
is performed on feature maps at each group, where the con-
volutional kernels are 3 × 3 with different dilation rates at
each group. Third, feature maps at each group are concate-
nated to output a completed feature map. Finally, the point
convolution is performed on the feature map to achieve cross-
scale channel information exchange. Compared to other con-
volution operations used for CD of VHR RS images, such
as depthwise separable convolution, atrous convolution, and
grouping convolution, ISSConv not only realizes the cross-
scale feature extraction but also enhances the compactness of
feature maps.

Let X ∈ RC×H×W be an input feature map, where C,H
and W are the number of channels, the height, and width of
the feature map, and C

′
is the number of channels of the out-

put feature map. For vanilla convolution, the number of pa-
rameters is denoted by P and the computational cost is de-
noted by Q, then

P = K ×K × C × C
′
, (6)

Q = K ×K × C × C
′
×H ×W. (7)

For ISSConv, the number of parameters is denoted by Pm

and the computational cost is denoted by Qm, then

Pm = K ×K × C + C × C
′
, (8)

Qm = K ×K × C ×H ×W + C × C
′
×H ×W. (9)

Compared with the vanilla convolution, the proposed ISS-
Conv can effectively reduce the number of parameters and
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computational cost as follows:

r =
K ×K × C + C × C ′

K ×K × C × C ′ =
1

K2
+

1

C ′ . (10)

From (10), the parameters and computations of the pro-
posed ISSConv are only

(
1/K2 + 1/C

′
)

of vanilla convolu-
tion. Meanwhile, the ISSConv enables the exchange of cross-
scale features between different targets while effectively re-
duces the number of network parameters and computational
costs.

3. EXPERIMENTS

To evaluate the performance of LGS-Net for CD task in VHR
RS images, we select the LEVIR-CD dataset [14] and the
CDD dataset [15] as experimental data. The LEVIR-CD
dataset contains 637 VHR Google Earth image pairs with a
resolution of 0.5m and a size of 1024 × 1024 pixels. In our
experiments, we used 70% of the data as the training set, 10%
as the validation set, and 20% as the testing set. They are
cropped into 256×256 image pairs by random cropping. The
CDD dataset includes RS images with seasonal changes in
the same region obtained by Google Earth. A total of 16,000
image pairs of size 256 × 256 are obtained through random
cropping and data enhancement, where 10,000 pairs are used
for training, 3,000 pairs are for verifying, and the rest 3,000
pairs are for testing.

3.1. Training details

Experiments were performed on a server with NVIDIA
GeForce RTX 3090 24GB and PyTorch 1.7. The number
of training epoch is set to 200, and the Adam optimizer is
used to optimize the model. In the training process, the
learning rate is set to 0.0001, and the batch size is set to 32.
We used binary cross-entropy loss to optimize the network
weights.

3.2. Evaluation and results

In this experiment, we used Precision (Pre), Recall (Rec), and
F1-Score (F1) to evaluate the experimental results. Table 1
shows the quantitative analysis of the results of our proposed
method and other methods [2] [8] [9] [16] [17] [18] on the
test set. It can be seen that our method performs better than
other popular methods and F1 achieves 90.36% and 90.25%.
In particular, compared with BIT that directly uses CNNs and
Transformer in series, our method is more excellent, and F1
is improved by about 1% on both datasets.

To verify the effectiveness of different modules in our
network, we conducted a series of ablation experiments on
the LEVIR-CD dataset, as shown in Table 2, where we used
Siam-UNet as our baseline network, and Transformer means
that we introduced the local-global siamese encoder built by

Table 1. Quantitative analysis of different networks on the
LEVIR-CD and the CDD, The best values are in bold.

Methods
LEVIR-CD CDD

Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

FC-Siam-diff [16] 84.44 86.38 85.40 61.85 76.69 68.48

FCN-PP [2] 82.09 84.48 83.27 88.14 84.22 86.14

DSIFN [9] 86.00 89.73 87.03 90.72 86.50 88.56

FDCNN [17] 83.87 87.56 85.68 87.90 86.99 87.44

MSTDSNet [18] 85.52 90.84 88.10 86.95 89.54 88.23

BIT [8] 89.24 89.37 89.31 88.91 89.68 89.29

LGS-Net(ours) 89.41 91.32 90.36 90.73 89.78 90.25

Transformer Block. In Table 2, it can be seen that the intro-
duction of Transformer, LGFE, and ISSConv have improved
the detection accuracy to a certain extent, and the combina-
tion of them can achieve higher detection accuracy with lower
parameters.

Table 2. Ablation experiments.
Backbone Transformer LGFE ISSConv Params(M) F1(%)

Base(Siam-UNet)+ 31.07 87.11

Base+ X 51.62 89.51

Base+ X X 51.84 89.91

Base+ X X X 21.94 90.36

4. CONCLUTION

In this work, we propose an LGS-Net for CD in VHR RS
images. First, LGS-Net uses a parallel dual-branch struc-
ture consisting of ISSConv and Transformer to extract rich
features from bi-temporal images, and afterward, it uses the
LGFE module to enhance the local-global feature informa-
tion, fully integrate the advantages of CNNs and Transformer,
and enhance the network feature expression ability. Second,
ISSConv is proposed to extract cross-scale features of targets
with low memory usage and computational costs. The exper-
iments are performed on two popular CD datasets, including
LEVIR-CD and CDD, and the results show that our proposed
LGS-Net is superior to the current popular CD networks.

At present, industrial deployments have become an impor-
tant challenge for the practical applications of deep learning
models. Therefore, in the subsequent research, we will fur-
ther improve the detection accuracy of LGS-Net and continue
to simplify it. We hope that in the future, LGS-Net can effec-
tively address the challenge of deployment for CD in VHR
RS images on low-resource devices. In addition, we will fur-
ther explore the application of LGS-Net in multi-modal for
CD tasks in VHR RS images, such as the application of CD
in synthetic aperture radar and optical images.
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