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Abstract—Polyp segmentation is of great importance for the
diagnosis and treatment of colorectal cancer. However, it is diffi-
cult to segment polyps accurately due to a large number of tiny
polyps and the low contrast between polyps and the surrounding
mucosa. To address this issue, we design an Adaptive Tiny-
object Enhanced Network (ATENet) for tiny polyp segmentation.
The proposed ATENet has two advantages: First, we design an
adaptive tiny-object encoder containing three parallel branches,
which can effectively extract the shape and position features
of tiny polyps and thus improve the segmentation accuracy
of tiny polyps. Second, we design a simple enhanced feature
decoder, which can not only suppress the background noise
of feature maps, but also supplement the detail information
to improve further the polyp segmentation accuracy. Extensive
experiments on three benchmark datasets demonstrate that the
proposed ATENet can achieve the state-of-the-art performance
while maintaining low computational complexity.

Index Terms—Deep learning, Convolutional neural network,
Multi-scale features, Polyp segmenation, Colonoscopy

I. INTRODUCTION

Intestinal polyps usually cause colorectal cancer, which has

a high fatality rate. Thus, it is of great significance to find and

resect polyps for preventing colorectal cancer [1]. However,

it is difficult for clinical doctors to extract polyps due to

the largely varied sizes and blurred boundaries of polyps.

Automatic and effective polyp segmentation is still a very
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challenging task in the field of medical image analysis [2]

[3].

With the continuous development of deep learning tech-

niques, more and more segmentation methods have been

proposed in recent years. For example, UNet [4] and its

variants (UNet++ [5], U2Net [6], nnUnet [7], and DefED-

Net [8] etc.) employ symmetric encoder-decoder structure and

reduce information loss by skip connections for improving the

segmentation accuracy. These methods show high performance

in cell and organ segmentation tasks. However, they have poor

performance in polyp segmentation tasks. To improve polyp

segmentation accuracy, PraNet [9] first uses a global map to

detect the polyps location roughly, then designs the reverse

attention modules to extract detail features to improve the

segmentation effect on the polyp boundary areas. SFA [10]

designs a two-branches network to extract features of the polyp

boundaries and areas, respectively, and designs a boundary

information-sensitive loss function to improve the segmenta-

tion accuracy. To improve the segmentation accuracy of small

polyps, AcsNet [11] designs the global context module and the

local context attention to extract global and local information.

Although the above methods have made some progress in

the polyp segmentation tasks, the segmentation effect of tiny

polyps is still poor.

To address this drawback, we propose an Adaptive Tiny-

object Enhanced Network, called ATENet for short. The main

contributions of this paper are summarized as follows:
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(1) We design an Adaptive Tiny-object Encoder (ATE)

module. The ATE module can extract and fuse the fine-grained

features, which improves the segmentation accuracy of tiny

polyps effectively.

(2) We design an Enhanced Feature Decoder (EFD) module

with a simple structure. The EFD module can enhance the

feature maps passed by the shortcut connections and integrate

the tiny-object prediction maps generated by ATE to reduce

the information loss of the network effectively.

(3) Extensive experiments are carried out on three public

available datasets and the experimental results demonstrate

that ATENet achieves the better segmentation accuracy and

the lower computational cost than other popular networks.

II. RELATED WORK

Scholars have proposed a variety of polyp segmentation

methods in recent years. These methods can be divided into

three categories roughly according to the implementation

ideas.

(1) Improving the backbone network. There are three popu-

lar ways to improve the backbone network: optimizing CNN

networks [12], introducing Transformers [13] [14], and com-

bining CNNs with Transformers [15]. To improve the polyp

segmentation accuracy on the basis of CNN further, Huang

et al. [12] reduced the number of shortcut connections and

increased feature map channels to reduce information loss

of DenseNet, then designed the HardNet-MSEG using the

improved DenseNet. Ding et al. [13] and Wang et al. [14]

respectively proposed Polyp-PVT and SSFormer to improve

the segmentation accuracy and generalization ability by in-

troducing pyramid vision transformer as backbone. Zhang et

al. [15] proposed Transfuse by meriting both Transformer and

CNN, which can extract low-level spatial features and high-

level semantic features effectively and improve the accuracy of

polyp segmentation. Although introducing Transformers can

enhance the generalization and feature extraction capability

of the network, it also significantly increases the number of

parameters and computational complexity.

(2) Introducing feature enhancement strategies. By intro-

ducing feature enhancement strategies, scholars have proposed

many polyp segmentation networks, such as SANet [16],

HRENet [17], LDNet [18], and LODNet [19]. SANet [16]

designs a shallow attention to strengthen the feature maps,

which improves the segmentation accuracy. HRENet [17]

introduces the informative context enhancement module to ex-

tract fine-grained feature maps and improves the segmentation

performance of the hard regions. LDNet [18] designs lesion-

aware cross-attention to enhance the contrast of the lesion

and the background regions, so as to improve the segmen-

tation accuracy. However, LDNet has a high computational

complexity due to the employment of many self-attentions.

According to the theory that the oriented derivatives of pixels

in boundary regions are larger, LODNet [19] captures and

fuses the polyp boundary features with the high-level semantic

features by designing the oriented-derivative network, which

improves the segmentation accuracy on the boundary regions.

However, LODNet can not effectively segment tiny polyps due

to the lack of multi-scale features.

(3) Utilizing multi-scale information. MSNet [20] uses

multi-stage cascaded subtraction to extract complementary

information from low-level to high-level feature maps and

improves the polyp segmentation accuracy comprehensively.

BDGNet [21] introduces the receptive filed block to extract

and fuse deep multi-scale feature maps in the encoder to

generate a boundary distribution map, which guides the de-

coding operations and improves the segmentation accuracy of

polyp boundaries. TGANet [22] employs convolutions with

different dilated rates to extract multi-scale feature maps, and

further strengthens the channel connections of feature maps by

using the channel attention module, which improves the final

segmentation accuracy. However, information loss may arise

due to the fusion of features generated by textual attention and

the semantic features of images through simple multiplication

operations.

III. METHOD

A. Overall structure

We design ATENet based on feature enhancement and

multi-scale information for tiny polyps segmentation. The

overall structure of ATENet is illustrated in Figure 1. ATENet

includes three key modules: backbone, the ATE module and

the EFD module. ATENet employs the EfficientNet-B5 [23]

as the backbone, which can extract effectively features while

maintaining low computational complexity. Moreover, since

shallow features cause high computational costs with limited

performance gains [24], the ATE and EFD module do not

use the shallow features extracted from encoder. In the ATE

module, we first use Adaptive Tiny-object Detector(ATD) to

extract the polyp boundary features and the position and

shape features of tiny polyps. Then, we employ the dense

aggregation to fuse feature maps of different scales to generate

a Tiny-object Prediction Map(TPM), and pass TPM to the

EFD module to further supplement detail information. TPM

with rich details can not only improve the segmentation

accuracy of tiny polyps, but also effectively improve the

segmentation performance of polyp boundaries. In the EFD

module, Enhancement module(EM) firstly enhances and fuses

the feature maps passed by the skip connection. Then, the

Fusion Decoder(FD) fuses the enhanced feature maps with

the TPM. Finally, the segmentation result is obtained by the

segmentation head.

ATENet has three advantages: First, the proposed ATE

module can effectively extract the polyp boundary informa-

tion and detail information, which improves the segmentation

accuracy of polyp boundaries and tiny polyps. Second, the

proposed EFD module is simple in structure, yet effective

for improving the segmentation performance of ATENet by

supplementing rich detail features. Third, ATENet adopts

lightweight backbone, ATE, and EFD module, which can

maintain low computational complexity while outperforming

state-of-the-art models remarkably.
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Fig. 1. The overall structure of the proposed ATENet.

B. Adaptive Tiny-object Encoder

We design the ATE module to extract and fuse features of

polyp boundaries and tiny polyps. In Figure 1, the ATE module

is composed of the ATD and dense aggregation.

1) Adaptive Tiny-object Detector: we design the ATD mod-

ule to extract effectively features of polyp boundaries and

tiny polyps. The structure of the ATD module is illustrated in

Figure 2. Firstly, the ATD module reduces the input channels

by a 1×1 convolution and passes the feature maps after

dimension reduction into four parallel branches. Secondly,

three different-sized convolutional kernels are used in three

parallel branches, which can not only effectively extract local

information such as polyp boundaries and tiny polyps, but also

effectively adapt to polyps with different shapes. Then, three

dilated convolutions with different dilation rates are used in

the last branch to extract global information. Finally, three

feature maps containing detail information, a feature map

containing global information, and the feature map passed

through the residual connection are fused. The ATD module

is implementated in (1)-(6):

f = Conv1×1(input) (1)

f1 = DConv3,3(DConv3,2(DConv3,1(f))) (2)

f2 = DConv3,3(Conv3×1(Conv1×3(f))) (3)

f3 = DConv3,5(Conv5×1(Conv1×5(f))) (4)

f4 = DConv3,7(Conv7×1(Conv1×7(f))) (5)

MSi = Concat(f, f1, f2, f3, f4) (6)

Where Convn×n represents the convolution with the size

n×n. DConvn,r denotes the dilated convolution with the

kernel size n×n and the dilation rate r. f indicates the

feature map after dimension reduction. f1, f2, f3, and f4 are

the feature maps extracted by the four parallel branches,

respectively. MSi represents the output of ATE module, i is

the number of encoder layers.

2) Dense aggregation: The ATE module employs the dense

aggregation [9] to effectively fuse the multi-scale feature maps

containing polyp boundaries and tiny polyps information. The

dense aggregation is illustrated in Figure 3. In Figure 3, the

original image resolution is h× w, then the input size of the

dense aggregation is h
2i−1 × w

2i−1 , where i is the number of

encoder layers, and i = 3, 4, 5. The dense aggregation fuses

the feature maps with different sizes by multiplication and

concatenation to generate TPM. The dense aggregation can

be defined as (7):

TPM = Agg(MS3,MS4,MS5) (7)
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Fig. 2. Adaptive tiny-object detector.

Where MSi represents the multi-scale information extracted

on the i-th layer feature of the encoder.

Aggregation Aggregation

Upsample

Aggregation Aggregation

Aggregation

3MS

4MS

5MS

Fig. 3. Dense aggregation.

C. Enhanced Feature Decoder

We design the EFD module to enhance the feature maps

and supplement the detail information. In Figure 1, the EFD

consists of the EM and FD module.

Since the shallow feature maps usually contain strong

background noise which decreases the segmentation accuracy,

while the deep feature maps contain weak background noise.

Therefore, in EM module, the shallow feature maps are mul-

tiplied with the deep feature maps to suppress the background

noise. The EM can be denoted as (8)-(9):

fEi = Ei × UP2(Ei+1) (8)

fE = Concat(fE2, UP2(fE3), UP4(fE4), UP8(E5)) (9)

Where fEi represents the enhanced feature map of the i-th
layer, Ei indicates the feature map of the i-th layer, i = 4, 3, 2,

UP2, UP4, and UP8 denote 2×, 4×, and 8× upsampling. fE
indicates the enhanced feature map.

The FD is used to fuse the enhanced feature map fE with the

TPM to supplement the detail information. The structure of the

FD is shown in Figure 4. Firstly, the TPM is upsampled to the

size of fE . Secondly, fE and TPM are fused using element-

wise multiplication. Then, fE and the feature map obtained

by multiplication are fused to generate the final feature map

containing rich detail information. Finally, the final feature

map is processed by using 1×1 convolution to obtain the

segmentation result. The EFD is implementated as (10):

output = UP4(Conv1×1(fE × outATE + fE)) (10)

Where outATE represents the TPM.

Conv
1x1

Element-wise Multiply Element-wise Add

Ef

ATEout

Fig. 4. Fusion decoder.

IV. EXPERIMENTS

A. Datasets
In our experiments, we refer to the training settings in [9]

[21]. The training dataset contains 1450 images. 900 and 550

images are randomly selected from Kvasir [25] and CVC-

ClinicDB [26], respectively. To evaluate the performance of

ATENet for tiny polyp segmentation, we conducted exper-

iments on three public available datasets ETIS [27], CVC-

ColonDB [28] and CVC-T [29]. These datasets have many

tiny polyps and low contrast with surrounding mucosa, which

are of great segmentation challenge. ETIS, CVC-ColonDB,

and CVC-T include 198, 380, and 60 images, respectively.

B. Experimental setup
Experiments are performed on a workstation with Intel(R)

Xeon(R) Gold 6326 CPU @ 2.90GHz, 50GB RAM, single

NVIDIA GeForce RTX 3090 GPU with graphic memory

24GB, Ubuntu 16.04.3, and PyTorch. We set the values of

hyper-parameters to train the proposed ATENet. The batch

size is set to 20. The initial learning rate is 0.0001. ATENet

employs the AdamW optimizer for network training. The

maximum epoch is set to 100.

C. Evaluation criteria
Our experiments employs commonly used evaluation cri-

teria to evaluate quantitatively the segmentation effect of

the model, including mean Dice(mDice), mean IoU(mIoU ),

mean F-measure (avgF ), the weighted F-measure (Fω
β ), the

recently released S-measure (Sα), and E-measure (Emax
ϕ ). The

higher the value of the six evaluation criteria, the better the

segmentation effect.
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D. Accuracy

We compare the proposed ATENet with current popular

networks, such as PraNet [9], HardNet-MSEG [12], MSNet

[20], SANet [16], BDGNet [21], CaraNet [30], LDNet [18],

and TGANet [22]. The experimental results on the CVC-

ColonDB dataset are shown in Table 1.

TABLE I
QUANTITATIVE EVALUATIONS ON THE CVC-COLONDB DATASET. ↑

INDICATES THAT THE LARGER SCORES ARE BETTER.

Models mDice↑ mIoU↑ Fω
β ↑ Sα ↑ Emax

ϕ ↑ avgF↑
PraNet [9] 0.7045 0.6305 0.6840 0.8147 0.8465 0.7072

HardNet-MSEG [12] 0.7395 0.6672 0.7210 0.8314 0.8702 0.7486
MSNet [20] 0.7549 0.6782 0.7360 0.8364 0.8825 0.7360
SANet [16] 0.7712 0.6922 0.7544 0.8437 0.8852 0.7360

BDGNet [21] 0.7827 0.7121 0.7643 0.8601 0.8899 0.7759
CaraNet [30] 0.6988 0.6317 0.6864 0.8059 0.8562 0.7382
LDNet [18] 0.7787 0.7005 0.7582 0.8463 0.9003 0.7744

TGANet [22] 0.7068 0.6334 0.6912 0.8149 0.8303 0.7254
ATENet 0.8111 0.7392 0.7942 0.8712 0.9087 0.8041

In Table 1, the mean Dice and IoU score of ATENet are

0.8111 and 0.7392, respectively. Besides, the Fω
β , Sα, Emax

ϕ

and avgF of ATENet on the CVC-ColonDB dataset are 0.7942,

0.8712, 0.9087 and 0.08041, respectively. Therefore, in terms

of the segmenation accuracy, ATENet is superior to other

popular models on the CVC-ColonDB dataset.

To verify the effectiveness of ATENet, we also conducted

comparative experiments on the ETIS and CVC-T datasets,

and the experimental results are shown in Tables 2 and 3,

respectively. It can be seen from the Tables 2 and 3 that

ATENet also outperformed other methods in term of segmen-

tation accuracy on the ETIS and CVC-T datasets.

TABLE II
QUANTITATIVE EVALUATIONS ON THE ETIS DATASET. ↑ INDICATES THAT

THE LARGER SCORES ARE BETTER.

Models mDice↑ mIoU↑ Fω
β ↑ Sα ↑ Emax

ϕ ↑ avgF↑
PraNet [9] 0.6517 0.5880 0.6213 0.7961 0.8208 0.6301

HardNet-MSEG [12] 0.7098 0.6420 0.6713 0.8226 0.8440 0.6709
MSNet [20] 0.7185 0.6655 0.6767 0.8404 0.8276 0.6532
SANet [16] 0.7595 0.6807 0.7086 0.8448 0.8561 0.6954

BDGNet [21] 0.7614 0.6835 0.7139 0.8539 0.8829 0.7032
CaraNet [30] 0.6352 0.5742 0.6093 0.7537 0.8197 0.6093
LDNet [18] 0.6979 0.6245 0.6615 0.8142 0.8695 0.6702

TGANet [22] 0.6528 0.5779 0.6286 0.6113 0.8455 0.6286
ATENet 0.7723 0.6989 0.7316 0.8613 0.8868 0.7256

TABLE III
QUANTITATIVE EVALUATIONS ON THE CVC-T DATASET. ↑ INDICATES

THAT THE LARGER SCORES ARE BETTER.

Models mDice↑ mIoU↑ Fω
β ↑ Sα ↑ Emax

ϕ ↑ avgF↑
PraNet [9] 0.8875 0.8189 0.8612 0.9306 0.9488 0.8385

HardNet-MSEG [12] 0.8875 0.8211 0.8617 0.9291 0.9450 0.8445
MSNet [20] 0.8690 0.8078 0.8480 0.9255 0.9416 0.8291
SANet [16] 0.8976 0.8344 0.8715 0.9264 0.9587 0.8485

BDGNet [21] 0.8952 0.8278 0.8707 0.9335 0.9567 0.8643
CaraNet [30] 0.9113 0.8457 0.8892 0.9390 0.9747 0.8625
LDNet [18] 0.8743 0.8056 0.8471 0.9234 0.9471 0.8387

TGANet [22] 0.8860 0.8289 0.8678 0.9292 0.9558 0.8685
ATENet 0.9105 0.8486 0.8927 0.9418 0.9006 0.8792

E. Ablation study

To prove the effectiveness of the proposed ATE and EFD,

we conducted ablation study on the ETIS dataset. Firstly,

EfficientNet-b5 is chosen as the baseline. Secondly, the ATE

and EFD are added to baseline, respectively. Finally, we add

the two modules to baseline for performance testing. The

experimental results are shown in Table 4. As can be seen

from Table 4, both ATE and EFD can effectively improve the

segmentation accuracy.

TABLE IV
ABLATION STUDY ON THE ETIS DATASET. ↑ INDICATES THAT THE

LARGER SCORES ARE BETTER.

Settings mDice↑ mIoU↑ Fω
β ↑ Sα ↑ Emax

ϕ ↑ avgF↑
Baseline 0.6771 0.5888 0.6226 0.8092 0.8331 0.6218

Baseline+ATE 0.7069 0.6166 0.6487 0.8255 0.8357 0.6386
Baseline+EFD 0.6383 0.6619 0.6817 0.8408 0.8459 0.6524

Baseline+ATE+EFD 0.7723 0.6989 0.7316 0.8613 0.8868 0.7256

F. Complexity

To demonstrate the computional complexity of ATENet, we

count the number of parameters and floating point operators

(GFLOPs) of the above models, as shown in Table 5. In Table

5, the computational cost of ATENet is only 14.489 GFLOPs,

which is superior to the other models. Meanwhile, ATENet

increases only a small amount of parameters to achieve the

trade-off between segmentation accuracy and computational

costs.

TABLE V
COMPARISON OF THE PARAMETERS AND COMPUTATIONAL COST OF

DIFFERENT MODELS.

Models GFLOPs Params(M)
PraNet [9] 21.185 30.498

HardNet-MSEG [12] 18.427 17.424
MSNet [20] 27.427 27.692
SANet [16] 18.262 23.899

BDGNet [21] 17,572 32.729
CaraNet [30] 35.074 44.593
LDNet [18] 184.121 40.311

TGANet [22] 128.519 19.937
ATENet 14.489 29.816

V. CONCLUSION

In this work, we have mainly investigated the deep neural

network for tiny polyps segmentation. We proposed an Adap-

tive Tiny-object Enhanced Network, which includes two im-

portant modules: ATE and EFD. The ATE module extracts and

fuses multi-scale features, which can improve the segmentation

accuracy of tiny polyps and polyp boundaries. The EFD mod-

ule enhances the feature maps by suppressing the background

noise and supplement rich details. The experimental results

demonstrate that the proposed ATENet can accurately segment

tiny polyps while maintaining low computational complexity.

Therefore, the proposed ATENet is more suitable for clinical

practice.

In the future, we will reduce the parameters of ATENet

while maintaining the segmentation accuracy. Besides, we will

refer to Transformer to redesign the backbone of ATENet to

further improve the segmentation accuracy.
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