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Abstract—This study aims to improve the accuracy and
interpretability of traffic accident severity nowcasting by in-
troducing a stacked Recurrent Neural Network (RNN) deep
learning model. Accurately predicting traffic accident severity
is crucial for enhancing traffic management and reducing the
impact of accidents. We employed a stacked Bidirectional Gated
Recurrent Unit (GRU) - Long Short Term Memory (LSTM)
model with an attention mechanism, integrating multivariate
accident data to capture complex temporal dynamics. The use
of SHapley Additive exPlanations (SHAP) values enhances the
interpretability of the model. The model demonstrates high
reliability and effectiveness, achieving an accuracy of 88.06%
and an F1-score of 0.867 in real-time applications. It provides
valuable insights into the factors influencing predictions, making
the decision-making process transparent. This framework not
only advances predictive performance but also aligns with ethical
AI deployment, making it a valuable tool for traffic management
and policy formulation.

Index Terms—Traffic Accident Severity, Deep Learning, Bi-
GRU-LSTM, Attention Mechanism

I. INTRODUCTION

Traffic accidents pose a significant threat to public safety
and urban development, resulting in substantial economic
losses, injuries, and fatalities worldwide. Effective predic-
tion and mitigation of these accidents are crucial for the
advancement of smarter and safer cities. Traditional accident
prediction methods primarily rely on historical data and static
models, which often fail to capture the dynamic and complex
nature of traffic systems [1]. This shortfall underscores the
necessity for more sophisticated approaches that can integrate
diverse real-time data sources and adapt to the ever-changing
traffic environment.

Recent advancements in machine learning, particularly deep
learning, offer promising solutions to these challenges. Re-
current neural networks (RNNs), including Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks,
excel in modeling time series data due to their capability to
capture temporal dependencies and sequential patterns [2].
These models can leverage multivariate data, encompassing
various traffic-related factors, to enhance the accuracy and
reliability of accident risk predictions. However, the applica-
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tion of such models in traffic accident nowcasting to fore-
cast accidents shortly remains underexplored. In addition to
prediction accuracy, the interpretability of these models is
critically important, especially in high-stakes domains such
as traffic management [3]. Understanding the factors driving
model predictions can lead to actionable insights and informed
interventions. Therefore, integrating explainability frameworks
with deep learning models is essential to bridge the gap
between model performance and practical applicability.

This study proposes a framework for nowcasting traffic
accident severity using stacked Bidirectional GRU and LSTM
networks enhanced with an attention mechanism. The model
improves prediction accuracy by capturing temporal depen-
dencies in both forward and backward directions while also
enhancing interpretability through SHAP values. The atten-
tion mechanism helps the model focus on key features or
time intervals, providing insights into the factors influencing
accident severity, such as vehicle speed or road conditions,
and making the decision-making process more transparent for
stakeholders. Overall, this hybrid architecture enhances pre-
dictive performance by effectively capturing complex temporal
dependencies and interactions in the data and facilitates better
interpretability, making it easier to understand the underlying
reasons for predictions. Specifically, the main contributions of
this research are:

• Development of a Stacked Bidirectional GRU-LSTM
Model: We propose a stacked recurrent neural network
architecture combining bidirectional GRU and LSTM
units with an attention mechanism to capture the temporal
dynamics of multivariate traffic accident data effectively.

• Application of Bidirectional GRU-LSTM with Attention:
We propose a novel use of Bidirectional GRU-LSTM
layers with an attention mechanism to capture both short-
term and long-term dependencies in traffic accident data,
improving the model’s ability to predict accident severity
accurately.

• Integration of Explainability Techniques: By incorporat-
ing SHAP values, we provide an interpretable framework
that reveals the key features influencing accident risk
severity predictions, facilitating better traffic management
and policy formulation decision-making.
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The remainder of this paper is structured as follows: Section
2 reviews related work, Section 3 describes the nowcasting
model development, Section 4 discusses model evaluation, and
Section 5 concludes the paper.

II. RELATED WORKS

Accurate nowcasting of traffic accident risk levels is cru-
cial for enhancing traffic safety and management. This task
involves leveraging real-time data sources such as traffic flow,
weather conditions, and historical accident records. In recent
years, deep learning techniques have made significant strides
in improving traffic accident risk assessment. For instance,
[4] introduced the BCDU-Net framework, and [5] proposed
the GSNet framework, both emphasizing the need for accurate
predictions to support public safety and urban planning. These
studies highlight the effectiveness of integrating multiple data
sources to improve prediction accuracy and help prevent
accidents.

Deep learning has become transformative in time-series pre-
diction, particularly within traffic accident analysis, due to its
ability to uncover complex dependencies over time [6]. Models
such as Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM) networks, and Gated Recurrent Units
(GRUs) have consistently achieved state-of-the-art results in
traffic-related forecasting tasks [7]. Moreover, innovations
like attention-based LSTMs and Transformer models have
enhanced performance by allowing the model to focus on the
most relevant data points and overcome limitations in handling
long-term dependencies [8] [9].

Explainability in machine learning has emerged as a critical
area, particularly in domains such as traffic accident sever-
ity prediction where understanding model decisions is vital.
Techniques like SHAP values and attention mechanisms have
been successfully employed to increase the interpretability of
these models by emphasizing the contributions of individual
features and focusing on key parts of the input sequence [10].
This improves transparency, making predictions more under-
standable and actionable, thereby supporting more informed
decision-making in traffic management [8].

Recent works in traffic accident severity prediction have
further contributed to the integration of real-time data and
advanced machine-learning models. For example, studies by
Zhang et al. [1] and Li et al. [11] explored the application of
Transformer architectures to predict accidents, highlighting the
importance of capturing both temporal patterns and contextual
data. Our study builds upon these advancements by incorporat-
ing multivariate data sources and attention mechanisms, with
a focus on interpretability through SHAP values. Unlike previ-
ous studies, our approach prioritizes not only high prediction
accuracy but also insights into the underlying factors that drive
these predictions.

In summary, advancements in deep learning and explain-
ability techniques have significantly improved traffic accident
risk assessment and prediction, enabling more effective and
safer traffic management strategies.

III. METHODOLOGY

In this section, we detail the processes and techniques used
to develop our traffic accident severity nowcasting model. Our
methodology includes data preprocessing, feature extraction,
and model training using a stacked Bidirectional GRU-LSTM
with an attention mechanism, alongside explainability tech-
niques as illustrated in Figure 1. These steps are essential for
ensuring the accuracy and interpretability of the predictions.
Each phase is described in the following subsections.

A. Data Preprocessing

In the first phase, we meticulously prepare the dataset for
modeling by performing several crucial steps. The raw traffic
accident multivariate time-series dataset underwent extensive
preprocessing, including cleaning, normalization, and feature
extraction, to ensure its suitability for model training. To
ensure consistency and improve the model’s performance,
we standardize the features using the StandardScaler. This
transformation scales the features such that they have a mean
of 0 and a standard deviation of 1, which can be represented
mathematically as

X ′ =
X − µ

σ
(1)

where X is the original feature, µ is the mean, and σ is the
standard deviation. After standardization, we adjust the target
variable y by decrementing it by 1 to start the class labels from
0. Subsequently, we split the dataset into training and testing
sets using a 70/30 split ratio. We employed SMOTEENN to ad-
dress the class imbalance inherent in traffic accident datasets.
This hybrid approach first generates synthetic samples for the
minority class using SMOTE, followed by ENN, which re-
moves misclassified samples. This dual approach improves the
model’s ability to generalize from imbalanced data, ensuring
more robust predictions. SMOTE generates synthetic samples
for the minority class, mathematically described by

xnew = xi + λ · (xj − xi) for λ ∈ [0, 1] (2)

where xi and xj are minority class samples. ENN then
removes samples that are misclassified by their nearest neigh-
bors, balancing the dataset effectively. Furthermore, we com-
pute class weights to mitigate the impact of class imbalance
during model training. These weights are calculated using the
formula:

wi =
N

k · ni
(3)

where N is the total number of samples, k is the number of
classes, and ni is the number of samples in class i. Combining
both methods can provide a more robust solution to class
imbalance, as it tackles the problem from two angles: data-
level (SMOTE) and algorithm-level (class weights).

B. Feature Extraction

We employ Sequential Forward Selection (SFS) to select
the top features for training the logistic regression model.
SFS was chosen for feature selection due to its efficiency
in selecting the most relevant features without introducing
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Fig. 1. Framework Overview

redundancy, optimizing the model’s performance in terms of
both accuracy and interpretability. The SFS process begins
by initializing an empty set of selected features, S0 = ∅.
For each iteration k from 0 to 9, the algorithm evaluates the
performanceM(Sk∪{f}) of the logistic regression model for
each feature f not already in Sk. It selects the feature fk that
maximizes this performance and updates the set of selected
features to Sk+1 = Sk ∪ {fk}. This process repeats until 10
features are selected.

Algorithm 1: Feature Selection using SFS
Data: Feature set F , Performance metric M, Number

of features to select n = 10
Result: Selected feature set S10

1 Initialization: S0 ← ∅;
2 for k ← 0 to n− 1 do
3 fk ← argmaxf∈F\Sk

M(Sk ∪ {f})
4 Sk+1 ← Sk ∪ {fk}
5 end
6 Return S10

This comprehensive preprocessing phase ensures that the
raw traffic accident and sensor data are cleaned, integrated,
and transformed to extract useful features and handle class
imbalance, thereby providing a solid foundation for developing
robust deep learning models.

C. Nowcasting Model Development

This phase involves developing advanced deep learning
models to forecast future accident severity levels using his-
torical preprocessed data. We constructed a stacked recurrent
neural network architecture to capture temporal dependencies
in the accident data, integrating Bidirectional GRU and LSTM
layers enhanced with an Attention mechanism for improved
focus on relevant input sequence parts.

1) Model Architecture: The architecture of our stacked
recurrent neural network (RNN) model is meticulously de-
signed to capture complex temporal dependencies and patterns

within traffic accident data. We employ a combination of
Bidirectional GRU, LSTM layers, and an Attention mechanism
to leverage their unique advantages in handling sequential data
as illustrated in Figure 2.

• Bidirectional GRU Layer: The model begins with a
Bidirectional GRU layer comprising 128 units. The return
sequences parameter enables the GRU layer to output the
full sequence of predictions to the next layer, allowing for
further stacking of RNN layers. A GRU unit is composed
of a reset gate rt and an update gate zt. The output ht is
determined by the current input xt and the previous state
ht−1, under the control of these two gates. The equations
for the GRU unit are as follows:

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(4)

Where Wr, Ur, Wz , Uz , Wh, and Uh are the weight
matrices, br, bz , bh are the bias vectors, σ is the lo-
gistic sigmoid function, tanh is the hyperbolic tangent
activation function, and ⊙ denotes the Hadamard product
(element-wise multiplication).
In a Bidirectional GRU, there are two GRUs: one moving
forward (from the start of the sequence) and the other
moving backward (from the end of the sequence). The
hidden state ht at each time step is a concatenation of
the forward and backward hidden states

−→
ht and

←−
ht .

−→
ht = GRUfwd(xt,

−−→
ht−1)

←−
ht = GRUbwd(xt,

←−−
ht+1)

ht =
−→
ht ⊕

←−
ht

(5)

Where
−→
ht is the hidden state from the forward GRU,

←−
ht is

the hidden state from the backward GRU, and ⊕ denotes
the concatenation of the two hidden states.
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Fig. 2. Stacked Model Architecture

• Dropout Layer: A Dropout layer with a dropout rate of
0.2 follows, helping to regularize the model and prevent
overfitting by randomly setting a fraction of input units
to zero during training.

• LSTM Layer: The next layer is the LSTM layer with
64 unit which are particularly effective in learning long-
term dependencies due to their gating mechanisms, which
control the flow of information.

rt = σ(Wr · (xt ⊕ S(t−1)) + br);

zt = σ(Wz · (xt ⊕ S(t− 1)) + bz);

St = tanh(Ws · (xt ⊕ S(t−1) · rt) + bs);

St = (1− Zt) · S(t−1) + Zt · St; and

yt = σ(Wy · St + by),

(6)

where xt ∈ Rm is the input vector of m input features
at time t; Wr,Wz,WS ∈ R(n×(m+n)) and Wy ∈ R(n×n)

are parameter matrices; n is the number of neurons in
the GRU layer; br, bz, bS , by ∈ Rn are bias vectors;
σ is the sigmoid activation function, and St is the

internal (hidden) state. The functions Zt, rt and (St) are
implemented by the update gate, reset gate, and the third
gate, respectively [12].

• Second Dropout Layer: Another Dropout layer with
the same dropout rate is applied to reduce the risk of
overfitting further.

• Attention Layer: The Attention mechanism is employed
next to enable the model to focus on relevant parts of
the input sequence, improving interpretability and perfor-
mance. The Attention mechanism can be mathematically
represented as follows:

et = tanh(Wa · ht + ba)

at =
exp(et)∑T

k=1 exp(ek)

c =
T∑

t=1

at · ht

(7)

where Wa and ba are the trainable weight and bias param-
eters, respectively. The attention scores at are computed
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using a softmax activation, and the context vector c is
obtained by a weighted sum of the hidden states.

• Dense Layer: A Dense layer with 50 units and ReLU
activation with L2 Regularization is included to introduce
non-linearity, address overfitting and capture complex
patterns in the data.

• Output Layer: Finally, a Dense output layer with 3
units and a softmax activation function is used for multi-
class classification. The softmax function ensures that
the output probabilities sum to 1, suitable for categorical
classification tasks.

ŷi =
ezi∑K
j=1 e

zj
(8)

where ŷi is the predicted probability for class i.
The model is compiled with the Adam optimizer, known for

its efficient handling of sparse gradients and adaptive learning
rate. The loss function used is sparse categorical cross-entropy,
appropriate for multi-class classification problems with integer
labels defined as:

loss = −
N∑
i=1

yi log(ŷi) (9)

where yi is the true label and ŷi is the predicted probability
for class i. The training process is monitored using early
stopping with a patience of 5 epochs to prevent overfitting
by stopping training when the validation loss stops improving.
This architecture effectively combines the strengths of Bidirec-
tional GRU and LSTM layers with the Attention mechanism
to learn hierarchical temporal representations, ensuring robust
performance in classifying traffic accident severity.

D. Nowcasting Explainability

In the final phase, we focus on evaluating the model’s
performance and interpreting its predictions to ensure trans-
parency and trustworthiness. We begin by predicting the
probabilities for the test set and computing the accuracy, classi-
fication report, and various metrics such as ROC-AUC and F1
scores for each class. Additionally, we utilize SHAP (SHapley
Additive exPlanations) to interpret the model’s predictions.
SHAP values are derived from Shapley values, a concept from
cooperative game theory that fairly allocates the contribution
of each feature to the prediction [13]. The Shapley value for
a feature i is given by:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)]

(10)
where N is the set of all features, S is a subset of N

excluding feature i, f(S) is the prediction for subset S, and
|S| is the number of features in subset S.

SHAP summary plots are generated to display feature
importance, dependence plots to examine the relationship
between features and predictions, and force plots to illustrate

individual prediction explanations. These visualizations will
provide insights into how the model makes decisions, high-
lighting key features and their influence.

IV. EVALUATION

A. Dataset Description

The dataset is obtained from the UK Department of Trans-
port, which provides a detailed road accident record collected
between 2005 and 2015 [14]. The dataset consists of 1,22,636
instances and 32 attributes with Table 1 below presents some
of the main attributes and their description.

TABLE I
BRIEF DESCRIPTION OF THE UK ROAD ACCIDENT DATASET

SN Attribute Description
1 Index Index of the traffic accident.
2 Longitude Longitude of the location of an accident scene.
3 Latitude Latitude of the location of an accident scene.
4 Accident

Severity
Severity of the accident: fatal, serious or slight.

5 Vehicles Number of vehicles involved in the accident.
6 Casualties The number of persons injured in the accident.
7 Date Date of the accident.
8 Time Timestamp of the accident.
9 Week Day Day of the week that accident occurred.
10 Road Type The type of road where the accident occurred.
11 Speed Limit Speed limit of road where accident occurred.
12 Weather Weather condition at the time of the accident.
13 Light

Conditions
Light conditions at the time of the accident.

14 Rural / Urban
Area

Area where the accident occurred.

B. Evaluation Metrics

A set of classification metrics was employed to evaluate
the performance of the nowcasting model in predicting traffic
accident severity. These metrics provide a comprehensive
assessment of the model’s accuracy, precision, recall, and
overall effectiveness in handling the imbalanced nature of the
dataset. The following metrics are particularly relevant for this
classification problem:

• Accuracy: Accuracy is calculated as the ratio of correctly
predicted instances to the total number of instances.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(11)

• Precision, Recall, and F1-Score: These metrics are
crucial for imbalanced datasets where certain classes may
be underrepresented.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1-Score = 2 · Precision · Recall
Precision + Recall

(14)

• ROC-AUC: The ROC curve illustrates the trade-off be-
tween true positive rate (sensitivity) and false positive
rate (1-specificity) across different threshold settings.
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The AUC provides a single measure of overall model
performance, with higher values indicating better discrim-
inatory ability.

AUC =

∫ 1

0

TPR(FPR) d(FPR) (15)

By utilizing these metrics, the evaluation comprehensively
assesses the model’s ability to accurately predict traffic ac-
cident severity levels, handle imbalanced data, and provide
reliable forecasts. This thorough evaluation ensures that the
model’s predictions are robust, interpretable, and actionable
for traffic safety analysis and intervention planning.

C. Model Performance

1) Experiment Settings: All experiments were conducted
on a Windows platform with an Intel(R) Core(TM) i7-8700K
CPU at 3.70 GHz and an NVIDIA A40 GPU, ensuring robust
computational power for model training and evaluation. The
implementation of neural network-based models, including the
stacked Bidirectional GRU-LSTM architecture, was carried
out using TensorFlow, benefiting from its extensive library
support and GPU acceleration.

We conducted extensive hyperparameter tuning using the
RandomizedSearchCV technique from scikit-learn. This pro-
cess explored various configurations, including GRU units (64
to 256), LSTM units (32 to 128), dropout rates (0.2 to 0.4),
batch sizes (16, 32, 64), learning rates (0.001 to 0.00001),
and training epochs (50 to 150). Through a randomized search
with 20 iterations and 3-fold cross-validation, we identified the
optimal hyperparameters that maximized model accuracy and
mitigated overfitting.

To evaluate the performance of our proposed model, we
conducted extensive experiments with the optimal hyperpa-
rameters using a comprehensive multivariate dataset of traf-
fic accident records. We divided the dataset into training
(70%) and testing (30%) sets to ensure the robustness of
our evaluation. We trained the stacked Bidirectional GRU-
LSTM model with an attention mechanism using the training
set and evaluated its performance on the testing set. The
model training was monitored using early stopping to prevent
overfitting, with a patience of 10 epochs.

Figure 3 illustrates the training and validation loss curves,
showing the model’s convergence during training. Figure 4
presents the ROC curves for all classes, providing a graphical
representation of the model’s ability to distinguish between
different severity levels of traffic accidents. The area under
the ROC curve (AUC) was calculated for each class, offering
a quantitative measure of the model’s discriminatory power.

2) Evaluation Results: Table 2 presents the evaluation
results of our model which was evaluated using accuracy,
precision, recall, F1-score, and ROC-AUC metrics.

3) Ablation Study: To understand the contributions of indi-
vidual components in our Bidirectional GRU-LSTM model,
we conducted an ablation study examining the effects of
bidirectional layers, attention mechanisms, and the combi-
nation of GRU and LSTM layers on model performance.

Fig. 3. Training and validation loss

Fig. 4. ROC Curves for all classes

We tested various configurations, including GRU, LSTM,
Bi GRU, Bi LSTM, and their attention-enhanced versions.
The addition of bidirectional layers resulted in modest im-
provements in accuracy and F1-score, indicating better cap-
ture of temporal dependencies, while attention mechanisms
provided slight gains by focusing on key input features.
However, combining GRU and LSTM layers alone did not sub-
stantially improve performance. The proposed Bidirectional
GRU-LSTM with attention mechanism achieved the highest
accuracy (88.06%) and F1-score (0.867), demonstrating its
effectiveness in capturing complex temporal patterns and mak-
ing it the best model for predicting traffic accident severity.
This study highlights the importance of integrating attention
with bidirectional layers and combining GRU and LSTM for
optimal performance.

D. Explainability Results

To ensure the transparency and interpretability of our traffic
accident severity prediction model, we employed SHapley
Additive exPlanations (SHAP) to analyze feature importance
and individual prediction explanations. SHAP values provide

6. 

This article has been accepted for publication in a future proceedings  of this conference, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI: 10.1109/SWC62898.2024.00174, 2024 IEEE Smart World Congress (SWC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ 



Fig. 5. SHAP Force Plot

TABLE II
EVALUATION RESULT

Severity ROC-AUC Precision Recall F1-Score
Level 1 1.00 1.00 0.99 0.99
Level 2 0.94 0.84 0.71 0.77
Level 3 0.94 0.75 0.87 0.84

TABLE III
ABLATION STUDY RESULT

Model Accuracy F1-Score
Bi GRU 85.98 0.859

Bi LSTM 86.24 0.862
Bi GRU Attention 85.98 0.860

Bi LSTM Attention 86.02 0.860
Bi GRU Bi LSTM 85.88 0.859

Bi GRU LSTM Attention 88.06 0.867

a unified measure of feature importance, enabling us to under-
stand the impact of each feature on the model’s predictions.

Figure 6 presents the SHAP summary plot, which illustrates
the distribution of SHAP values for each feature across all
predictions. This plot highlights the most influential features
contributing to the model’s predictions. Notably, ’Weather
Conditions: Raining without high winds’, ’Longitude’, and
’Number of Casualties’ emerged as key features affecting the
prediction outcomes.

To gain insights into individual predictions, we generated
SHAP force plots. Figure 5 shows a SHAP force plot for
a specific prediction, depicting how each feature contributes
to the final prediction of traffic accident severity. For this
particular instance, ’Latitude’ has a negative impact, while
’Day of Week’ and ’Longitude’ have positive impacts on the
prediction.

Additionally, we analyzed the overall feature importance
using a feature importance chart, as shown in Figure 7. This
chart ranks the features based on their average impact on
the model’s predictions. ’Weather Conditions: Raining without
high winds’ is identified as the most critical feature, followed

by ’Longitude’ and ’Number of Casualties’.
These visualizations and analyses using SHAP enhance the

explainability of our model, ensuring that stakeholders can
trust and comprehend the factors influencing the predictions.

Fig. 6. SHAP summary plot

E. Discussion

The proposed Bidirectional GRU-LSTM model, enhanced
with an attention mechanism and SHAP values for inter-
pretability, significantly improves traffic accident severity pre-
diction. Through our ablation study, we examined the indi-
vidual contributions of bidirectional layers, attention mech-
anisms, and the combination of GRU and LSTM layers to
understand their impact on model performance. The study re-
vealed that while bidirectional layers (Bi GRU and Bi LSTM)
offered modest improvements in accuracy and F1-score, they
helped the model capture both forward and backward tem-
poral dependencies more effectively than traditional GRU or
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Fig. 7. Feature Importance Chart

LSTM models. The addition of attention mechanisms further
enhanced the model’s ability to focus on critical features
of the input sequence, leading to slight improvements in
performance metrics. However, combining GRU and LSTM
layers alone did not result in substantial gains, indicating
that the complementary strengths of these recurrent units are
best realized when integrated with bidirectional and attention
components. Our final model, the Bidirectional GRU-LSTM
with Attention, achieved the highest performance across all
configurations, with an accuracy of 88.06% and an F1-score of
0.867. This demonstrates that the combination of GRU, LSTM,
attention, and bidirectional layers provides the most robust
framework for accurately predicting traffic accident severity, as
it effectively captures both short- and long-term dependencies
while maintaining interpretability through SHAP values.

While the model performs well, several limitations must be
acknowledged. The model’s reliance on historical data may
reduce its accuracy in predicting rare or unforeseen events,
such as extreme weather conditions or sudden road closures.
Additionally, the scalability of the model for real-time, large-
scale traffic systems has not been fully tested. The model may
also struggle with rare but severe accidents, despite the use
of class imbalance techniques like SMOTEENN. Lastly, the
current feature set could benefit from the inclusion of real-
time driver behavior and road condition data, which could
further enhance the model’s adaptability to dynamic traffic
environments.

Future work will focus on addressing these limitations by
integrating additional data sources, improving scalability for
real-time applications, and exploring alternative architectures
such as Transformer models or ensemble learning techniques.
This would further strengthen the model’s applicability to real-
world traffic management systems and its ability to predict
traffic accident severity in more complex scenarios.

V. CONCLUSION

This study presents a novel framework for nowcasting traffic
accident severity using a stacked Bidirectional GRU-LSTM
model with an attention mechanism. The proposed model
effectively integrates multivariate accident data, capturing the
complex temporal dynamics and improving prediction accu-
racy. The incorporation of SHAP values enhances the model’s
interpretability, providing valuable insights into the factors
influencing accident severity predictions. The results demon-
strate the model’s potential to significantly improve traffic
management and policy formulation significantly, contributing
to safer urban environments.

Future work will further refine the model by incorporating
additional data sources and exploring advanced deep learning
techniques. The integration of external factors such as road
conditions, traffic regulations, and driver behavior can further
enhance the model’s predictive capabilities. Additionally, the
deployment of the model in real-time traffic management
systems will be explored to evaluate its practical applicability
and impact on traffic safety.
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