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As a helicopter descends towards a bed of sand, a high velocity particle laden cloud can
form around the helicopter body, a phenomenon known as “brownout”, and a consequence of
which can potentially be a significant deterioration in visibility for the helicopter pilot. Here we
consider a recently developed physically based rational mathematical model for the generation
of wind-driven particle flow fields from otherwise static particle beds, one application of which
is the scenario considered here. We introduce a directional opacity measure, defined for each
observation angle from the helicopter cockpit, and show how visibility may vary in the model
as certain parameters are varied. In particular, we demonstrate a counterintuitive result
suggesting that, with specific yet potentially realistic parameter choices, pilot visibility may be
improved in some viewing directions if the helicopter were hovering at a lower altitude.

I. Nomenclature

𝑧 = dimensionless distance measured vertically upwards, with 𝑧 = 0 the undisturbed level of the particle bed
𝑅 = dimensionless distance measured horizontally, with 𝑅 = 0 the horizontal location of the helicopter
𝜗 = azimuthal angle, with radial symmetry in 𝜗 assumed
𝐸 = voidage field (representing the volume of fluid per unit spatial volume)
𝐸𝑠 = dimensionless parameter, packing voidage of the sand particles
𝜔 = domain on which the boundary value problem is posed
𝑧𝑑 = dimensionless parameter, ratio of the hovering height of the helicopter rotor to the rotor blade radius
Δ = dimensionless parameter measuring the ratio of the helicopter rotor core radius to the rotor blade radius
𝑧+
𝑑
, 𝑧−

𝑑
= upper and lower vertical boundaries of cylindrical shell with dipole at its centre

𝑔 = boundary data
𝛼 = dimensionless parameter, ratio of the particle collisional pressure to the drag force in the particle flow phase
𝛾 = dimensionless parameter, ratio of lift force per unit volume to gravity force per unit volume in interfacial layer
Ω = dimensionless parameter, ratio of hovering helicopter induced swirl velocity to induced downwash velocity
𝜃 = observation angle
𝑂𝑝(𝜃) = directional opacity measure
C(𝜃) = integration contour for directional opacity measure
B = brownout set, consisting of those angles where total brownout is recorded

II. Introduction

In this paper, we consider the scenario in which a helicopter is descending towards a bed of sand. The local interaction
between the down-draft and swirling flow, generated by the helicopter rotor, and the upper surface of the otherwise

static sand bed, entrains sand particles from a thin interfacial layer into the air, which we consider as a fluidized region
in which the particles lifted from the surface of the static particle bed are in suspension in the fluid, forming a fully
developed two-phase flow. These sand particles then flow in the form of a high velocity particle laden cloud around
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the helicopter body, which we refer to as the helicopter cloud, and a consequence of which is generally a significant
deterioration in visibility for the helicopter pilot - when this becomes too severe, it is referred to as brownout.

This problem has received much attention in the aero-engineering literature. A common approach (see, e.g.,
Govindarajan et al. [1], Porcù et al. [2], Tan et al. [3, 4, 5], Li et al. [6], Lin et al. [7]) is to treat each particle within
the fluid flow as an individual entity, with each particle tracked as it moves within the fluid flow according to its own
dynamical equation of motion under the action of the locally induced fluid interaction forces and gravity, but with no
consideration of the entrainment or detrainment of particles into the particle laden flow via local interaction of the flow
with the upper surface of the otherwise static particle bed. This is a severe drawback for this modelling approach, as it is
this interaction process that is the fundamental and key process in initiating and driving the whole phenomenon of the
particle cloud. Moreover, given that particle clouds in the fluidized region generally have a high particle concentration,
the approach of treating each particle in the fluidized region as an individual entity may be computationally inefficient in
comparison to a more natural two-phase flow approach.

An alternative approach is to introduce a continuum particle density field, measuring particle volume per unit spatial
volume of the two-phase flow and satisfying an suitable advection-diffusion partial differential equation (PDE) in the
fluidized region. This approach was developed by Phillips et al. [8], who addressed the entrainment and detrainment of
particles from the static particle bed via the introduction of a particle mass source term into the advection-diffusion PDE,
localised in space, so as to act only in a thin neighbourhood of the interface between the fluidized region and the static
particle bed, and designed to represent the localised input/output of particles from the static bed into the fluidized region.
However, the nature of the source term in [8] is purely phenomenological, empirically based on the very particular
situation under immediate consideration, and must be recalibrated in every specific example. This limits the ability of
this approach to capture, in general, a decent representation of the key rational mechanism of entrainment/detrainment at
the interface of the fluidized region and the static bed, a point fully addressed in [8]. This specific issue was considered
in [9], where the authors developed from fundamental first principles a physically based rational (consistent with the
fundamental Newtonian laws of mechanics) mathematical model for the generation of wind-driven particle flow fields
from otherwise static particle beds, leading to a natural macroscopic boundary condition on void fraction to be applied
at the interface of the fluidized region and the static bed, and hence closing the continuum scale problem two-phase flow
in the fluidized region.

Results in [9] demonstrated how the voidage field, representing the volume of fluid per unit spatial volume, could
be computed through solution of a nonlinear elliptic boundary value problem. We begin here, in §III by stating the
boundary value problem and summarising its key features. We then proceed, in §IV, by introducing a new “opacity”
function, that measures the visibility from the helicopter in all radial directions, and show how this can be easily
computed from the solution of the nonlinear boundary value problem (equations (1)–(5) below). We present results
in §IV demonstrating how the opacity, and hence the visibility, vary with key parameter choices, and present a set
of results, most of which align well with our intuition, but some of which demonstrate potentially counterintuitive
phenomena, such as that the visibility can improve if the helicopter is hovering closer to the particle bed, under certain
parameter choices. In §V, we present some conclusions. Finally, we note that the issues described in this paper are
discussed in more detail in [10], where it is also demonstrated that a “surface deformation” function, measuring how the
initially flat surface of the particle bed is deformed by the hovering helicopter, can be easily extracted from the model
presented here with very little extra work.

III. The nonlinear elliptic boundary value problem
For a helicopter hovering steadily, with rotor blades rotating in a horizontal plane, in otherwise still air above a sand

bed, which has undisturbed level at 𝑧 = 0, the steady problem for the associated voidage field in the fluid flow region can
be stated in cylindrical polar coordinates (𝑅, 𝜗, 𝑧) (with 𝑧 measuring dimensionless distance vertically upwards), with
radial symmetry in 𝜗, as the elliptic boundary value problem:

𝐸

(
𝐸𝑅𝑅 + 1

𝑅
𝐸𝑅 + 𝐸𝑧𝑧

)
− �̄�(𝑅, 𝑧)𝐸𝑅 − �̄�(𝑅, 𝑧)𝐸𝑧 = 0, (𝑅, 𝑧) ∈ 𝜔, (1)

𝐸 = 𝑔(𝑅) on 𝑧 = 0, 𝑅 ≥ 0, (2)

𝐸𝑅 = 0 on

{
𝑅 = 0, 𝑧 ∈ (0, 𝑧−

𝑑
) ∪ (𝑧+

𝑑
,∞)

𝑅 = Δ, 𝑧 ∈ [𝑧−
𝑑
, 𝑧+

𝑑
],

(3)

𝐸𝑧 = 0 on 𝑧 = 𝑧+
𝑑
, 𝑧−

𝑑
, 𝑅 ∈ (0,Δ), (4)

𝐸 → 1 as (𝑅2 + 𝑧2) → ∞ uniformly in 𝜔. (5)
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Here, using the same notation as in [9], 𝐸 = 𝐸 (𝑅, 𝑧) ∈ [𝐸𝑠 , 1] is the voidage field (representing the volume of fluid per
unit spatial volume), with 0 < 𝐸𝑠 ≪ 1 being the packing voidage of the particles, and the domain 𝜔 is defined by

𝜔 = {(𝑅, 𝑧) : 𝑧 > 0, 𝑅 > 0}\{(𝑅, 𝑧) : 𝑧−𝑑 ≤ 𝑧 ≤ 𝑧+𝑑 , 0 < 𝑅 ≤ Δ}.

The effect of the helicopter is modelled as generating an incompressible, inviscid fluid flow field represented by a
half-space fluid dipole located at 𝑅 = 0, 𝑧 = 𝑧𝑑 > 0 (in dimensionless variables, with 𝑧𝑑 measuring the ratio of the
hovering height of the helicopter rotor to the rotor blade radius), and a uniform fluid line vortex aligned along the
positive z-axis. The flow takes place in the half-space region 𝑧 > 0 and exterior to a small cylindrical shell, where
Δ > 0 represents the dimensionless length and radius of the cylindrical shell which is aligned with the 𝑧-axis and with
the dipole at its centre, and measures the ratio of the helicopter rotor core radius to the rotor blade radius. In addition,

𝑧+𝑑 = 𝑧𝑑 + Δ

2
, 𝑧−𝑑 = 𝑧𝑑 − Δ

2
,

and the boundary data is given in terms of the continuous and piecewise smooth function 𝑔 : [0,∞) → R, defined by,

𝑔(𝑅) =


𝐸𝑠 , for |∇ℎ𝜙(𝑅, 0) |2 > (𝛾𝐸𝑠)−1,

𝛾−1

(
9𝑧2

𝑑
𝑅2

4𝜋2 (𝑅2 + 𝑧2
𝑑
)5

+ Ω2

4𝜋2𝑅2

)−1

, for 𝛾−1 ≤ |∇ℎ𝜙(𝑅, 0) |2 ≤ (𝛾𝐸𝑠)−1,

1, for |∇ℎ𝜙(𝑅, 0) |2 < 𝛾−1.

(6)

Here, again using the notation of [9],

|∇ℎ𝜙(𝑅, 0) |2 =
9𝑧2

𝑑
𝑅2

4𝜋2 (𝑅2 + 𝑧2
𝑑
)5

+ Ω2

4𝜋2𝑅2 , (7)

�̄�(𝑅, 𝑧) = 9
2𝛼

𝑎(𝑅, 𝑧), �̄�(𝑅, 𝑧) = 9
2𝛼

𝑏(𝑅, 𝑧),

for (𝑅, 𝑧) ∈ 𝜔, where

𝑎(𝑅, 𝑧) =
3𝑅
4𝜋

[
(𝑧 + 𝑧𝑑)

(𝑅2 + (𝑧 + 𝑧𝑑)2)5/2 − (𝑧 − 𝑧𝑑)
(𝑅2 + (𝑧 − 𝑧𝑑)2)5/2

]
, (8)

𝑏(𝑅, 𝑧) =
3

4𝜋

[
(𝑧 + 𝑧𝑑)2

(𝑅2 + (𝑧 + 𝑧𝑑)2)5/2 − (𝑧 − 𝑧𝑑)2

(𝑅2 + (𝑧 − 𝑧𝑑)2)5/2

]
+ 1

4𝜋

[
1

(𝑅2 + (𝑧 − 𝑧𝑑)2)3/2 − 1
(𝑅2 + (𝑧 + 𝑧𝑑)2)3/2

]
. (9)

The full derivation of this boundary value problem, from fundamental first principles, is described in [9], together
with a complete discussion of the physical relevance of each of the six dimensionless parameters appearing in this
boundary value problem, namely, 𝐸𝑠 , 𝛼, 𝛾, Ω, 𝑧𝑑 and Δ. As discussed in [9, §6], these parameters typically take values
as follows: the parameter Δ (measuring the ratio of the helicopter rotor core radius to the rotor blade radius) typically
satisfies Δ ≈ 10−2 (in §IV we take Δ = 0.04 throughout); the parameter 𝑧𝑑 (measuring the ratio of the hovering height
of the helicopter rotor to the rotor blade radius) typically satisfies 𝑧𝑑 ≈ 10−1–101; for the fluid flow the ratio of the
hovering helicopter induced swirl velocity to the induced downwash velocity is measured by Ω, and typically we have
Ω ≈ 10−1–100; the parameter 𝐸𝑠 is the particle packing voidage, and for sand in air this is typically of magnitude 10−2

(and we will take this value throughout); the ratio of the lift force per unit volume to the gravity force per unit volume on
particles in the interfacial layer is given by 𝛾, and we typically have 𝛾 ≈ 102–103; finally, 𝛼 measures the ratio of the
particle collisional pressure to the drag force in the particle flow phase and we tentatively estimate, for sand fluidized in
air, that 𝛼 ≈ 10−1 (and we will take this value throughout). These values are derived using typical helicopter parameters
as recorded, for example, in [1–7, 11], together with the standard properties of air and sand. For further details of the
modelling, we refer to [9].
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IV. Opacity measure
In relation to the helicopter cloud problem, formulated and analysed in [9], and reviewed in the last section, we

introduce what we will refer to as the directional opacity measure,

𝑂𝑝(𝜃) = min
{∫

C(𝜃 )
(1 − 𝐸 (𝑅(𝑠), 𝑧(𝑠))) d𝑠, 1

}
∈ [0, 1], (10)

for each observation angle 𝜃 ∈ [0, 𝜋]. Here 𝑠 represents arc length from the point at the effective centre of the helicopter,
with coordinates (𝑅, 𝑧) = (0, 𝑧𝑑), along the integration contour C(𝜃), which is illustrated in figure 1 (with the voidage
field 𝐸 as shown in the central plot of [9, figure 10]), for the two cases 0 ≤ 𝜃 ≤ 𝜋/2 (upper plot) and 𝜋/2 < 𝜃 ≤ 𝜋 (lower
plot). Note that a smaller value of 𝐸 represents a higher concentration of sand in the air. This provides a reasonable and
normalised measure of the light transmission defect from the far field to the helicopter cab, in each direction 𝜃, due to
the presence of the particle cloud. In the context of this measure, 𝑂𝑝(𝜃) = 0 implies perfect visibility, corresponding to
𝐸 = 1 everywhere along the contour, whilst 𝑂𝑝(𝜃) = 1 implies very poor visibility (high opacity and total brownout),
corresponding to 𝐸𝑠 < 𝐸 ≪ 1 on significant parts of the contour. In terms of this measure, we can introduce what we
will refer to as the brownout set, with definition,

B = {𝜆 ∈ [0, 1] : 𝑂𝑝(𝜆𝜋) = 1}

which consists of those angles where total brownout is recorded.
To determine 𝑂𝑝(𝜃) for a given set of model parameters, we first calculate the voidage field 𝐸 from the boundary

value problem (1)–(5) using the numerical method described in [9, Appendix B]. For each chosen 𝜃 ∈ [0, 𝜋], we then
evaluate the line integral in (10) using standard quadrature, taking care to ensure we have taken enough quadrature
points to guarantee several decimal places of accuracy.

Opacity results, for each combination of 𝛾 = 1000, 500, 100, Ω = 1, 0.5, 0.1 and 𝑧𝑑 = 1.3, 0.9, 0.5, (corresponding
to the plots of voidage field 𝐸 in [9, figures 9–11], each of which is qualitatively (though not quantitatively) comparable
to that shown in figure 1 are shown in figures 2–10, with the corresponding brownout set for each value of 𝑧𝑑 recorded
in the respective caption. For the example shown in figure 1, we might expect that 𝑂𝑝(𝜃) will be small when 𝜃 ≪ 𝜋/2,
with the value then increasing as 𝜃 grows, up to a maximum as the line of integration passes through the blue part of the
figure (where 𝐸𝑠 < 𝐸 ≪ 1), before decreasing again as 𝜃 becomes closer to 𝜋. This is seen on the red line in figure 6,
which corresponds to the voidage field shown in figure 1, and from which we can estimate the corresponding brownout
set as B = [0.68, 0.84].

For each plot, we see the expected behaviour when considered in light of the results in [9, figures 9–11]. As
explained in [9, §7], we generally see more sand particles being entrained into the fluidized region (i.e., increased
opacity and lower visibility) when 𝛾 and Ω are larger, since large 𝛾 means that lift dominates gravity in the transition
layer, and larger Ω means a higher ratio of swirl velocity to downdraft velocity (recall the definition of 𝑔, (6)).

When both 𝛾 and Ω are large, in particular as seen in figures 2, 3 and 5, we have high opacity (low visibility) for all
𝜃 sufficiently large, with zero visibility for a larger range of values of 𝜃 the lower the value of 𝑧𝑑 (i.e., the closer the
helicopter is to the ground).

For figures 4, 6 (corresponding to the voidage field seen in figure 1), 7 and 8 we see a broadly similar pattern in each
case, with 𝑂𝑝(𝜃) small when 0 ≤ 𝜃 ≪ 𝜋/2, then generally (though not uniformly) increasing as 𝜃 grows, with a region
of zero visibility (maximum opacity) when 𝑧𝑑 is sufficiently small, and 𝑂𝑝(𝜃) then decreasing again as 𝜃 increases
further towards 𝜋. In each case, opacity is generally greater when 𝑧𝑑 is smaller, though in figures 6 and 8 (and also in
figure 9) there is a small range of values of 𝜃 where 𝑂𝑝(𝜃) is greater for 𝑧𝑑 = 1.3 than it is for 𝑧𝑑 = 0.9. In each case,
particularly noticeable when 𝑧𝑑 is smaller, we see a small drop in opacity when 𝜃 ≈ 𝜋; this is because as 𝜃 approaches 𝜋,
the line of integration passes back through the cylindrical shell with height and radius Δ and with 𝑧𝑑 at its centre (the
small black box that can be seen in figure 1), with no contribution to the integral in (10) from the section of the line
within the shell.

In figures 9 and 10 (corresponding to smaller values of 𝛾 and Ω) we see qualitatively comparable behaviour to that
described above, but with no region of maximum opacity (zero visibility) - in these cases, and noting the discussion
above, there are fewer sand particles entrained into the fluidized region than in the other examples (as seen in [9,
figure 11]).

A final interesting, and somewhat unanticipated, feature of the opacity graphs is the non-monotonic nature of a
significant number of the curves within a range of observation angles of practical interest for pilot vision purposes, say
𝜃 ∈ [𝜋/3, 2𝜋/3]. It might have been expected that the curves would simply have increasing opacity with increasing
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Fig. 1 Voidage field 𝐸 , plotted for 𝛾 = 500, Ω = 0.5, 𝑧𝑑 = 0.9, 𝑅 ∈ [0, 5], 𝑧 ∈ [0, 4], showing the line of integration
with 𝜃 measured from the downward vertical, for 0 ≤ 𝜃 ≤ 𝜋/2 (upper plot) and 𝜋/2 < 𝜃 ≤ 𝜋 (lower plot).
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Fig. 2 Directional Opacity Measure, plotted for 𝛾 = 1000, Ω = 1.0, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B = [0, 1],
for 𝑧𝑑 = 0.5, B = [0.16, 1] for 𝑧𝑑 = 0.9, and B = [0.25, 1], for 𝑧𝑑 = 1.3.

Fig. 3 Directional Opacity Measure, plotted for 𝛾 = 1000, Ω = 0.5, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B = [0.25, 1],
for 𝑧𝑑 = 0.5, B = [0.59], 0.95], for 𝑧𝑑 = 0.9, and B = [0.66, 0.93], for 𝑧𝑑 = 1.3.
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Fig. 4 Directional Opacity Measure, plotted for 𝛾 = 1000, Ω = 0.1, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B =

[0.62, 0.82], for 𝑧𝑑 = 0.5, B = [0.70, 0.82], for 𝑧𝑑 = 0.9, and B empty for 𝑧𝑑 = 1.3.

Fig. 5 Directional Opacity Measure, plotted for 𝛾 = 500, Ω = 1.0, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B = [0.14, 1],
for 𝑧𝑑 = 0.5, B = [0.29, 1], for 𝑧𝑑 = 0.9, and B = [0.43, 1], for 𝑧𝑑 = 1.3.
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Fig. 6 Directional Opacity Measure, plotted for 𝛾 = 500, Ω = 0.5, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B =

[0.60, 0.86], for 𝑧𝑑 = 0.5, B = [0.68, 0.84], for 𝑧𝑑 = 0.9, and B = [0.76, 0.85], for 𝑧𝑑 = 1.3, with the slightly
counter-intuitive implication that there is a small range of radial directions where visibility is better when the
helicopter is hovering at a lower height.

Fig. 7 Directional Opacity Measure, plotted for 𝛾 = 500,Ω = 0.1, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we haveB = [0.65, 0.77]
for 𝑧𝑑 = 0.5, and B empty for both 𝑧𝑑 = 0.9 and 𝑧𝑑 = 1.3.
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Fig. 8 Directional Opacity Measure, plotted for 𝛾 = 100,Ω = 1.0, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we haveB = [0.65, 0.77]
for 𝑧𝑑 = 0.5, and B empty for both 𝑧𝑑 = 0.9 and 𝑧𝑑 = 1.3.

Fig. 9 Directional Opacity Measure, plotted for 𝛾 = 100, Ω = 0.5, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B empty for
each value of 𝑧𝑑 .

9



Fig. 10 Directional Opacity Measure, plotted for 𝛾 = 100, Ω = 0.1, 𝑧𝑑 = 0.5, 0.9, 1.3. Here we have B empty for
each value of 𝑧𝑑 .

observation angle. However, at a given value of 𝛾, when Ω becomes sufficiently small (but without being extreme) then
for 𝑧𝑑 = 0.5 or below, we see a weak maximum, followed by a stronger minimum, and thereafter an expected increase
followed by a second stronger maximum and a final decrease, with the two maxima and the intervening minimum all in
the range of observation angles of practical interest. We will refer to the local maxima as representing corridors of
lower vision (CLV) and the corresponding deeper local minimum as representing a corridor of higher vision (CHV).
The strength of both the (CLV) and (CHV) increase with decreasing Ω and/or 𝛾, and decreasing 𝑧𝑑 . Referring back to
the voidage field contour plots, an example of which is shown in figure 1, this phenomenon can be seen to be due to
the subtle nonlinear balance between the low voidage values in the curved ‘horn-like’ region, and the associated local
thickness of this region, as it is traversed by the opacity contour C(𝜃). Small, but nontrivial, gain or loss of vision is
achieved along these respective corridors.

To explore this a little further, in figures 11–17 we plot the lower and upper bounds of the brownout set against
𝑧𝑑 , for those values of 𝑧𝑑 at which the brownout set is not empty (note that for 𝛾 = 100 and for Ω = 0.5 and Ω = 0.1,
corresponding to figures 9 and 10, B is empty for all values of 𝑧𝑑). In most cases considered (figures 11, 13, 14, 17
in particular), the lower bound increases and the upper bound either remains approximately constant or decreases, as 𝑧𝑑
increases, as we might expect (i.e., better visibility when 𝑧𝑑 is greater). Note that in a number of cases the brownout set
disappears: for 𝑧𝑑 ∈ [1.10, 1.11] in figure 13, for 𝑧𝑑 ∈ [0.82, 0.83] in figure 16, and for 𝑧𝑑 ∈ [0.76, 0.77] in figure 17.
In figure 16, the upper bound increases very marginally as 𝑧𝑑 increases, before decreasing. However, in figures 12
and 15 we see somewhat different behaviour.

In figure 15, we see that the upper bound initially decreases as 𝑧𝑑 increases, before then growing again for 𝑧𝑑 greater
than 𝑧𝑑 ≈ 0.8. To explore this further, we plot the directional opacity measure in this case (𝛾 = 500, Ω = 0.5) for a range
of values of 𝑧𝑑 in figure 18 (compare to figure 6, where the directional opacity measure is plotted for 𝑧𝑑 = 0.5, 0.9, 1.3).
Looking at the range 𝜃/𝜋 > 0.8, it is clear that there are a range of values of 𝜃 for which visibility can deteriorate as 𝑧𝑑
increases.

Finally, in figure 12, we see a rather unusual pattern of behaviour, for the lower bound in particular (with the upper
bound behaving in a manner broadly comparable to that seen in figure 15). Here, the lower bound increases very sharply
around 𝑧𝑑 ≈ 0.85, before flattening off. To explore this further, we plot the directional opacity measure in this case
(𝛾 = 1000, Ω = 0.5) over a critical range of values of 𝑧𝑑 in figure 19 (compare to figure 3), with the changing nature of
the directional opacity measure as 𝑧𝑑 increases from 𝑧𝑑 = 0.85 to 𝑧𝑑 = 0.8625 clearly visible.
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Fig. 11 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 1000, Ω = 1.0.

Fig. 12 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 1000, Ω = 0.5.
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Fig. 13 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 1000, Ω = 0.1.

Fig. 14 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 500, Ω = 1.0.

12



Fig. 15 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 500, Ω = 0.5.

Fig. 16 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 500, Ω = 0.1.
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Fig. 17 Lower and upper bounds for B, plotted against 𝑧𝑑 , for 𝛾 = 100, Ω = 1.0.

Fig. 18 Directional Opacity Measure, plotted for 𝛾 = 500, Ω = 0.5, 𝑧𝑑 ∈ [0.5, 1.5].
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Fig. 19 Directional Opacity Measure, plotted for 𝛾 = 1000, Ω = 0.5, 𝑧𝑑 = 0.8375, 0.85, 0.8625, 0.875.

V. Conclusion
In this paper, we have described the application of a recently derived mathematical model for wind-generated particle

fluid flow fields to the helicopter cloud problem. We have introduced a measure for the light transmission defect from
the far field to the helicopter cab, as a function of the observation angle, and have demonstrated how visibility depends
on the relationship between the height of the helicopter, the ratio of swirl velocity to downdraft velocity, and the balance
between lift and gravity in the interfacial layer between the sand bed and the fluidized region. In particular, for certain
parameter choices we see a potentially counterintuitive result suggesting that pilot visibility may be improved in some
viewing directions if the helicopter were hovering at a lower altitude.

References
[1] Govindarajan, B., Leishman, J. G., and Gumerov, N. A., “Particle-clustering algorithms for the prediction of brownout dust

clouds,” AIAA J., Vol. 51, No. 5, 2013, pp. 1080–1094. https://doi.org/10.2514/1.J051907.

[2] Porcù, R., Miglio, E., Parolini, N., Penati, M., and Vergopolan, N., “HPC simulations of brownout: A noninteracting
particles dynamic model,” Int. J. High Perform. Comput. Appl., Vol. 34, No. 3, 2020, pp. 267–281. https://doi.org/10.1177/
1094342020905971.

[3] Tan, J. F., Gao, J., Barakos, G. N., Lin, C. L., Zhang, W. G., and Huang, M. Q., “Novel approach to helicopter brownout based on
vortex and discrete element methods,” Aerosp. Sci. Technol., Vol. 116, 2021, p. 106839. https://doi.org/10.1016/j.ast.2021.106839.

[4] Tan, J. F., Ge, Y. Y., Zhang, W. G., Cui, Z., and Wang, H. W., “Numerical study on helicopter brownout with crosswind,”
Aerosp. Sci. Technol., Vol. 131, 2022, p. 107965. https://doi.org/10.1016/j.ast.2022.107965.

[5] Tan, J. F., Yon, T., He, L., Yu, L. J., and Wang, C., “Accelerated method of helicopter brownout with particle-particle collisions,”
Aerosp. Sci. Technol., Vol. 124, 2022, p. 107511. https://doi.org/10.1016/j.ast.2022.107511.

[6] Li, Q., Shi, Y., Xu, G., and Wu, L., “Research on brownout characteristics of helicopter approach flight based on the
unsteady momentum source model coupled with DEM,” Int. J. Aeronaut. Space, Vol. 24, 2023, pp. 366–380. https:
//doi.org/10.1007/s42405-022-00534-8.

[7] Lin, H., Xu, C., Jiang, C., Hu, S., and Lee, C.-H., “Finite particle approach for high-fidelity simulation on helicopter brownout,”
AIAA J., Vol. 62, No. 1, 2024, pp. 193–208. https://doi.org/10.2514/1.J063230.

15

https://doi.org/10.2514/1.J051907
https://doi.org/10.1177/1094342020905971
https://doi.org/10.1177/1094342020905971
https://doi.org/10.1016/j.ast.2021.106839
https://doi.org/10.1016/j.ast.2022.107965
https://doi.org/10.1016/j.ast.2022.107511
https://doi.org/10.1007/s42405-022-00534-8
https://doi.org/10.1007/s42405-022-00534-8
https://doi.org/10.2514/1.J063230


[8] Phillips, C., Kim, H. W., and Brown, R. E., “Helicopter brownout – Can it be modelled?” Aeronaut. J., Vol. 115, No. 1164,
2011, pp. 123–133. https://doi.org/10.1017/S0001924000005510.

[9] Needham, D. J., and Langdon, S., “A mathematical model for wind-generated particle-fluid flow fields with an application to
the helicopter cloud problem,” J. Fluid Mech., Vol. 998, 2024, p. A61. https://doi.org/10.1017/jfm.2024.740.

[10] Langdon, S., and Needham, D. J., “Modelling visibility and surface deformation in helicopter rotor generated particle-fluid flow
fields,” AIAA J. (to appear), 2025.

[11] Wachspress, D. A., Whitehouse, G. R., Keller, J. D., McClure, K., Gilmore, P. J., and Dorsett, M. J., “Physics
Based Modeling of Helicopter Brownout for Piloted Simulation Applications,” , July 2008. Technical Report,
https://apps.dtic.mil/sti/tr/pdf/ADA501594.pdf.

16

https://doi.org/10.1017/S0001924000005510
https://doi.org/10.1017/jfm.2024.740

	Nomenclature
	Introduction
	The nonlinear elliptic boundary value problem
	Opacity measure
	Conclusion

