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ABSTRACT

We consider evolution (nonstationary) space-periodic solutions to the n-dimensional nonlinear Navier-Stokes equations of

anisotropic fluids with the viscosity coefficient tensor variable in space and time and satisfying the relaxed ellipticity condition.

Employing the Galerkin algorithm, we prove the existence of Serrin-type solutions, that is, the weak solutions with velocity in the

periodic space L, <0, T H;éz

1 | Introduction

Analysis of Stokes and Navier - Stokes equations is an established
and active field of research in applied mathematical analysis;
see, for example, [1-11] and many other publications. These
works were mainly devoted to the flows of isotropic fluids with
constant-viscosity coefficient, and some of the employed methods
were heavily based on these properties.

On the other hand, in many cases, the fluid viscosity can vary in
time and spatial coordinates, for example, due to variable ambi-
ent temperature. Moreover, from the point of view of rational
mechanics of continuum, fluids can be anisotropic, and this fea-
ture is indeed observed in liquid crystals, electromagnetic fluids,
and so forth; see, for example, [12] and references therein. In
[13-18], the classical Navier-Stokes equations analysis has been
extended to the transmission and boundary-value problems for

), n > 2. The solution uniqueness and regularity results are also discussed.
MSC2020 Classification: 35A1, 35B10, 35K45, 35Q30, 76D05

stationary Stokes and Navier -Stokes equations of anisotropic flu-
ids, particularly with relaxed ellipticity condition on the viscosity
tensor.

In Part I, [19], we considered evolution (nonstationary) spa-
tially periodic solutions in R”, n>2, to the Navier-Stokes
equations of an anisotropic fluid with the viscosity coefficient
tensor variable in spatial coordinates and time and satisfying
the relaxed ellipticity condition. We implemented the Galerkin
algorithm but unlike the traditional approach, for example, in
[10, 11], where the Galerkin basis consisted of the eigenfunc-
tions of the corresponding isotropic constant-coefficient Stokes
operator, we employed the basis constituted by the eigenfunc-
tions of the periodic Bessel-potential operator having an advan-
tage that it is universal, that is, independent of the analyzed
anisotropic variable-coefficient Navier-Stokes operator. To ana-
lyze the solution in higher dimensions, the definition of the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.

Mathematical Methods in the Applied Sciences, 2025; 0:1-28
https://doi.org/10.1002/mma.10921

1 of 28


https://doi.org/10.1002/mma.10921
https://orcid.org/0000-0002-3268-9290
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mma.10921
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.10921&domain=pdf&date_stamp=2025-06-04

weak solution was generalized to some extent. Then, the peri-
odic weak solution existence was considered in the spaces of
Banach-valued functions mapping a finite-time interval to peri-
odic Sobolev (Bessel-potential) spaces on n-dimensional flat
torus, L, <O,T;ch) NnL, <O,T;H;6). The periodic setting is
interesting on its own, modeling fluid flow in periodic composite
structures, and is also a common element of homogenization the-
ories for inhomogeneous fluids and in the large eddy simulation.

In this paper, Part II, we prove the existence, uniqueness,
and regularity of the weak solutions that belongs to the space

L, (0,T;H;(/; ’ (we call them Serrin-type solutions). It is well

known that the regularity results available at the moment for evo-
lution Navier-Stokes equations are rather different for dimen-
sions n =2 and n = 3, even for isotropic constant-viscosity flu-
ids. The weak solution global regularity under arbitrarily large
smooth input data for n = 2 is proved and can be found, for
example, in [1-4, 6-11]. However, for n = 3, it is still an open
question and constitutes one of the Clay Institute famous Millen-
nium problems. Our motivation for considering arbitrary n > 2 is
particularly to place the cases n = 2 and n = 3 in a more general
set and to see which of them is an exception.

The paper material is presented as follows. In Section 1.1,
we provide essentials on anisotropic Stokes and Navier-Stokes
equations. Section 1.2 gives an introduction to the periodic
Sobolev (Bessel-potential) functions spaces in spatial coordi-
nates on n-dimensional flat torus and to the corresponding
Banach-valued functions mapping a finite-time interval to these
periodic Sobolev spaces. In Section 2, we describe the existence
results for evolution spatially periodic anisotropic Navier-Stokes
problem available from Part I, [19]. Sections 3-5 contain the
main results of the paper. In Section 3, we define the Serrin-type
solutions and prove the energy equality for them and also their
uniqueness, for the n-dimensional periodic setting, n > 2. We also
remark on their relations with the strong solutions and show that
for n = 2, any weak solution is a Serrin-type solution. In Section 4,
we analyze the Serrin-type solution existence and regularity for
constant anisotropic viscosity coefficients, while in Section 5, we
generalize these results to variable anisotropic viscosity coeffi-
cients. In Section 6, we collect some technical results used in the
main text of the paper, several of which might be new.

1.1 | Anisotropic Stokes and Navier-Stokes
PDE Systems

Let n > 2 be an integer, x € R” denote the space coordinate vec-
tor, and 7 € R be time. Let & denote the second-order differential
operator represented in the component-wise divergence form as

(2w, =0, (¢ Eyw), k=1, ... 1)

where u=(uy, ... ,u,)", Ej ) := %(ajuﬂ +0yu;) are the
entries of the symmetric part, E(u), of the gradient, Vu, in space
coordinates, and aZf (x, 1) are variable components of the tensor

viscosity coefficient, A(x,7) = {aZ’.’(x, t)} , depending
J 1<i,j,a,p<n
on the space coordinate vector x and on time ¢, cf. [12]. We

also denoted 9, = %, 0, = %. Here and further on, the Einstein
J

convention on summation in repeated indices from 1 to » is used
unless stated otherwise.

The following symmetry conditions are assumed (see [20, (3.1)
and (3.3)]), a‘Zf (x,1) = al’;f x,1) = azj (x,1). In addition, we require
that the tensor A satisfies the relaxed ellipticity condition in terms
of all symmetric matrices in R™" with zero matrix trace; see [14,
15]. Thus, we assume that there exists a constant C,, > 0such that

Caay) (%,0¢4,8,5 2 €17, forae x.1,
n

V¢ = {Ciathat,.. o € R™" such that £ = ¢ and 2 & =0,
k=1
(1.2)

where || = |¢| 5 1= (i) /? is the Frobenius matrix norm and
the superscript T denotes the transpose of a matrix. Note that in
the more common, strong ellipticity condition (called S-ellipticity
condition in [21, Definition 4.1]), inequality (1.2) should be satis-
fied for all matrices (not only symmetric with zero trace), which
makes it much more restrictive (cf. also E-class in [20, Section
3.1], where condition (1.2) is assumed for all symmetric matri-
ces).

We assume that af}ﬁ € L (R" X [0,T]),where [0, T]is some finite
time interval, and the tensor A is endowed with the norm

< o0,

F
(1.3)

n
. e ap
AN 2= WAl sy 2= | (B e oom |,

ﬂ n
where {b‘,”A }

V) apij=1
a fourth-order tensor.

= (b2 p*F 72 he Frobeni £
= ij Oij 1s the Frobenius norm o

F

Let u(x,t) be an unknown vector velocity field, p(x,t) be an
unknown (scalar) pressure field, and f(x, t) be a given vector field
R", where ¢ € R is the time variable. The nonlinear system

ou—u+Vp+@m-Viu=£f, divu=0

is the evolution anisotropic incompressible Navier—Stokes system,
the main object of the analysis in this paper. Here, we use the
notation (u - V) :=u;0;.

1.2 | Periodic Function Spaces

Let us introduce some function spaces on torus, that is, periodic
function spaces (see, e.g., [22, p. 26], [23, 24], [25, Chapter 3],
[7, Section 1.7.1], [10, Chapter 2] for more details).

Letn > 1 be an integer and T be the n-dimensional flat torus that
can be parametrized as the semiopen cube T = T" = [0,1)" C R";
compare [26, p. 312]. In what follows, D(T) = C*(T) denotes the
(test) space of infinitely smooth real or complex functions on the
torus. As usual, N denotes the set of natural numbers, N, the set
of natural numbers augmented by 0, and Z the set of integers.

Let £ € Z" denote the n-dimensional vector with integer compo-
nents. We will further need also the set 2" := z" \ {0}. Extend-
ing the torus parametrization to R”, it is often useful to identify
T with the quotient space R” \ Z". Then, the space of functions
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C*(T) on the torus can be identified with the space of T-periodic
(1-periodic) functions C* = C°(R") that consists of functions
¢ € C*(R") such that

px+&=¢px) VE€Z 14

Similarly, the Lebesgue space on the torus L »(1), 1 < p < oo, can
be identified with the periodic Lebesgue space L, = L,,(R") that
consists of functions ¢ € L, ,,.(R"), which satisfy the periodicity
condition (1.4) for a.e. x.

p.lo

The space dual to D(T), that is, the space of linear bounded func-
tionals on D(T), called the space of torus distributions, is denoted
by D’'(T) and can be identified with the space of periodic distri-
butions Dj, acting on C°.

The toroidal/periodic Fourier transform mapping a function g €
C° to a set of its Fourier coefficients § is defined as (see, e.g., [25,
Definition 3.1.8])

80 =[Frglé) := / e g(x)dx, &€ 7",
T

and can be generalized to the Fourier transform acting on a dis-

tribution g € Dj,.

1/2
Forany & € 7", let || := ( Zf:1§f> be the Euclidean norm in
Z" and let us denote o(€) := 27z(1 + |£|?)'/2. Evidently, %0(5)2 <
278> <0(&) VEEZ

Similar to [25, Definition 3.2.2], for s € R we define the peri-
odic/toroidal Sobolev (Bessel-potential) spaces H, := H;(R") :=
H*(T) that consist of the torus distributions g € D'(T), for which
the norm

1/2
lelln; = lo°glle,zn = <2 0(5)25|§(§)|2> (1.5)

Eezn

isfinite, that is, the series in (1.5) converges. Here, || - lle,zn is the
standard norm in the space of square summable sequences with
indices in Z". Evidently, H;’ = L,y

For g € H;, s € R, we can write g(X) = Y. §(£)e*™™¢, where
the Fourier series converges in the sense of norm (1.5). Moreover,
because g is an arbitrary distribution from H,, this also implies
that the space C;° is dense in Hj; for any s € R (cf. [25, Exercise
3.2.9)).

There holds the compact embedding H. ; < H;if t > s, embed-
dings H; C €' if m € Ny, s > m + 7, and moreover, [, H; =
Cp (cf. [25, Exercises 3.2.10 and 3.2.10, Corollary 3.2.11]). Note
that the periodic norms on H,; are equivalent to the correspond-
ing standard (nonperiodic) Bessel-potential norms on T as an

n-cubic domain; see, for example, [23, Section 13.8.1].

Let

(A @) = ) o(&Y (&)™ VgeHy  (16)
Eezn

denote the periodic Bessel-potential operator of the order r € R.
For any s € R, the operator

Ay s Hy - HY 1.7)

is continuous; see, for example, [23, Section 13.8.1].

By (1.5), llgll;, = I8O)I* + |gl3,,, where

~ ~ 1/2
gl =108l = ( Xy @8O

is the seminorm in H 4. For any s € R, let us also introduce
the space H; :={g € H; : (g, 1)y = 0}. The definition implies
that if g€ F}, then 2(0)=0 and [lglly: = llglly: = gl =
llo*2ll¢, 2" The dual product between g, € H, and f, € (H,)",
s € R, isrepresentedas (g, /o)1 1= Teep £1(6)/2(=).1f8(0) =

—

0, then (1.6) implies that A}, g(0) = 0, and thus, the operator
AL H, - H, ' (1.8)

is continuous as well. Due to the Riesz representation theorem,
(H,)* = H,’, as shown in [19, Section 2].

Denoting C;; :={g € CZ : (g.1); =0}, then [,z Hy =C;.
The corresponding spaces of n-component vector func-
tions/distributions are denoted as L, := (L))", Hy 1= (H,)",
and so forth.

Note that the norm ||V(~)||H:;1 is an equivalent norm in H;.
Indeed,

Vex) = 27i Y EFNEg(E), V(&) = 2ik2(€) Vg € H,

ee"

and then,

A

1 2 2 2 s
= <
Slel, <11Vl <lgly, Vg e H;

1 2 1 2 1 2 2 2
— . — L= = s < < s 1,9
2|Ig||H; ZIIgIIH” zlng‘.‘ < IIVgIIH.F < IgIH* 1.9)

2 _ 2 S
llglly, = llglly, Vg€ H,.

The vector counterpart of (1.9) takes form

1 2 2
=Ivll%: < ||Vv
SIVIE, < 1vv]

1 2 2
EHV“H; (H;—l)ml < ”V”H;

(1.10)

Ivll}, VveH,.
#

Note that the second inequalities in (1.9) and (1.10) are valid also
in wider spaces, that is, for g € H; and v € Hj, respectively.

Let us also define the Sobolev spaces of divergence-free functions
and distributions,

H, ={weH, :divw=0}, seR,

endowed with the same norm (1.5). Similarly, C;> and L,
denote the subspaces of divergence-free vector functions from C;°
and L, respectively.

In addition, see [19, Section 2], (H, )* = H,, . Note that for any
r,s € R, the operator

. xS yS—F

AL H, - H (1.11)

defined as in (1.6) is continuous. Let us also introduce the space

H;g = {w =Vq, g€ H’;H } s € R, endowed with the norm

(1.5).
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The following assertion is produced in [19, Theorem 1].

Theorem 1.1. Lets € Randn > 2.

a. The space H;, has the Helmholiz-Weyl decomposition, H,, =
H;g @®H, , that is, any F € Hi can be uniq.uely represented
asF=F, +F,, whereF, € H;g andF, € H, .

b. The spaces H, and H,_ are orthogonal subspaces of H, in
g o
the sense of inner product, that is, (W, V) = 0 forany w €
s s
H, andveH, .
c. The spaces Hi and H;S are orthogonal in the sense of dual
& o . o —
product, that is, (w,v) = 0 for any w € H;g andv e H#;.

d. There exist the bounded orthogonal projector operators P, :
H, - Hig and P, : H, — I{I;g (the Leray projector), while
F=P,F+P,FforanyF € H,.

For the evolution problems, we will systematically use the spaces
L,0,T;Hy), s€ER, 1<g< 00, 0<T < oo, which consist of
functions that map ¢ € (0, T') to a function or distributions from
H. For 1 <gq < oo, the space L,(0,T;H;) is endowed with
the norm

T 1/q
”h”Lq(O,T;H;) = </ lAC, D14 ,sdt)
0 #
1/q

T q/2
/ [Zo(é)zﬂh(é,mz] dt| <o,
0

cezn

and for ¢ = co with the norm

2l L o.:m5) = €88 SUPe(o.) 1A Dl i

1/2
= €55 SUP,c) [2 (&) (€, r)P} < co.

cezn
For a function (or distribution) A(x, t), we will use the notation
/ . ._ 9
h(x,1) :=0,h(x,1) := Eh(x, 1),
hx,1) := 0 h(x,1) 1= a—jh(x )
T T gy
for the partial derivatives in the time variable 7.

Let X and Y be some Hilbert spaces. We will further need the
space

WO, T; X,Y) :={u€ L,(0,T; X) : u' € L,(0,T;Y)}

endowed with the norm lullwrorxy) =
(”L‘HZLZ(O,T;X) + ||u’||2LZ(0’T;Y))1/2. Spaces of such type are con-
sidered in [27, Chapter 1, Section 2.2]. We will particularly need

the spaces W(0,T; H, H ;') and their vector counterparts.

We will also employ the following spaces for k € N; compare, for
example, [27, Chapter 1, Section 1.3, Remark 1.5],

WHO,T; X) := {u€ Ly0,T;X) : due X, j=1, ... .k},

, 1/2
. _ kopaion2
endowed with the norm Jlullyy« o 7., = ( > llo] u||L2(0’T;X)> .
Unless stated otherwise, we will assume in this paper that
all vector and scalar variables are real valued (however, with
complex-valued Fourier coefficients).

2 | Existence Results Available for Evolution
Spatially Periodic Anisotropic Navier-Stokes
Problem

Let us consider the following Navier-Stokes problem for the
real-valued unknowns (u, p),

u-2u+Vp+@m-Viu=f inTx(0,7T), (2.1)
divu=0 inTx(0,T), (2.2)
u-,0)=u’in T, (2.3)

with given data fe& L,(0,T; H;l), u e Hga. Note that the
time-trace u(-, 0) for u solving the weak form of (2.1-2.2) is well
defined; see Definition 2.1 and Remark 2.3.

Let us introduce the bilinear form

4y, v) = ag(;w,v) o= (aj;ﬁ(.,t)Ejﬂ(u), Em(v)>T Vu,veH,

(2.4)
By the boundedness condition (1.3) and inequality (1.10),
we have

lar (6w V)] < HANIE@] o [E@)]
< ANVl e VY] 25)

ol
< lAllIllg Vil ¥ v e H,

If the relaxed ellipticity condition (1.2) holds, taking into account
the relation Y7 E;(w) = divw = 0forw € Hio, equivalence of
the norm [[V(-)[[ . to the norm || - ”Hla in Hia, see (1.10), and the
first Korn inequality (6.19), we obtain

ar(t:w.w) = (@ (D E (W), Ey(w))
-1 2
> CHEW)IE,.

1 . 2 1. 2 ol
> ECA ||Vw||L;:n > ZCA\ ||w||Hl VweH, .

(2.6)

#o

Then, (2.5) and (2.6) give

1 .- -1
ZCHIWIE, <arwow) <[AJIWIE,  VweH,. (27)
H#o

#o

Let us denote
F:=f+8%u-(u-V)u (2.8)

Letu e H;G. Acting on (2.1) by the Leray projector P, and taking
into account that P,u’ = u’ and P, Vp = 0, we obtain

u=P,F=P,[f+8u—-(u-V)u] inTx(,T). (2.9)
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On the other hand, acting on (2.1) by the projector P, and taking
into account that P,u’ = 0 and P, Vp = Vp, we obtain

Vp=P,F=P,[f+8u—(u-Vyu] inTx(,T). (2.10)

We use the following definition of weak solution given in [19,
Definition 1].

Definition 2.1. Letn>2,T >0,f€ L,0,T;H,"),andu’ €
H, . A function ue L, <O,T;ch) nL, (0,T;H;6) is called
a weak solution of the evolution space-periodic anisotropic
Navier-Stokes initial value problem (2.1-2.3) if it solves the
initial-variational problem

(W' 0+ P[0 - Vyu, nl,w), +ag(a(, 1), w)

1
#o

] (2.11)
= (f(-,1),w), forae. 1 € (0,7), VwWeH

(u(-,0,w); = (’,w);, Vwe H, . (2.12)

The associated pressure p is a distribution on T X (0, T') satisfying
(2.1) in the sense of distributions, that is,

(WE D+ @G0 Vut,n,w)y +apl, 1), w) + (Vp(-, 1), W)y
= (f(,1),w)y, forae. 1 €(0,T), VweC.

The following assertion is proved in [19, Lemma 1].

Lemma22. Let n>2 T>0, a7l eL,0T;Ly),

fe L,O.T:H,") and weH,. Lt uel (0.T:H, )n
L, (0, T; H;r) solve Equation (2.11).

i. Then,

Du:=u' +P,[(u-V)ul € L,(0,T;H,,) and
= (2.13)
Du(.,r) e H, forae t€[0,T],

while

n/2

(u-Vyue L,0,T:H,"") and

(u-Vyu(,n e H,"”? foraerelo,T],

n/2 —n/2

u € L,0,T;H,"") and u'(.1)eH,

(o

forae. t €[0,T],

1 x—1/2
#o”H#o‘ )

2
ollul?

and hence,u € W'(H

In addition, /2

=2(A,""0 Ayu)y =

~(n-2)/4

#o
2(u’,A;_"/2u)v = 2(/\;_"/2u’,u)T for ae. t€(0,T) and

also in the distribution sense on (0, T).

ii. Moreover, u is almost everywhere on [0, T] equal to a func-
tionu € C°([0, T1; H;i"_z) / *), and i is also Hgg—weakly con-
tinuous in time on [0,T], that is, lim,_, (U(-,1), W)y =
@G, 1), wyy YweHY, Vi, €[0,T]

iii. There exists the associated pressure p € L,(0,T; H;"/ZH)

that for the given u is the unique solution of Equation (2.1)
in this space.

Remark 2.3. The initial condition (2.12) should be understood
for the function u redefined as the function u that was introduced
in Lemma 2.2(ii) and is H)-weakly continuous in time.

The following existence theorem was proved in [19, Theorem 2].

Theorem 2.4. (Existence). Letn>2and T > 0. Let a} €
L_(0,T; L) and the relaxed ellipticity condition (1.2) hold. Let
fe L,0,T:H,), u’ € H, .

i. Then, there exists a weak solution u € L, (0, T, Hi’) N

LZ(O,T;H;‘G) of the anisotropic Navier-Stokes initial
value problem (2.1-2.3) in the sense of Definition 2.1.
Particularly, lim,_, (u(-,1),v); = (W, v)y VveH, .
There exists also the unique pressure p € L,(0,T; H ;"/ 2+1)
associated with the obtained w, that is the solution of
Equation (2.1) in L,(0,T; H,"*™").

ii. Moreover, u satisfies the following (strong) energy inequal-

ity,
%”u("t)||i2#+/QT(H("T)vu(.’T))dT

<

N[ =

gl + [ (8 o.uC.0)

for any [t,,t] C [0, T]. It particularly implies the standard
energy inequality,

%”u(',t)||iz#+/0a‘[[(u(',T),u(',T))dT

t
S%I|u0||i2#+/(f(-,r),u(-,r))T dr V1e€[0,T]
0
(2.14)
3 | Serrin-Type Solutions and Their Properties
For the isotropic constant-coefficient = homogeneous

Navier-Stokes equations, it is well known that the weak
solution satisfying the famous Ladyzhenskaya-Prodi-Serrin
condition (accommodated here for the periodic setting)

ue L;0,T:Ly) 3.1)
for some g and g such that

n<gq< oo, (3.2)

is unique in the class of weak solutions satisfying the energy
inequality, for n < 4; the energy equality and the regularity
results are also proved under the Prodi-Serrin conditions; see, for
example, [28], [29], [6, Chapter 1, Theorem 6.9, and Remark 6.8],
[4, Section 14], [7, Section 8.5], [8, Theorem 7.17], [9, Section 1.5].

In this paper, we limit ourself to the L,-based Sobolev spaces with
respect to the spatial variables and hence introduce a correspond-
ing particular counterpart of the class of solutions satisfying the
conditions close to (3.1) and (3.2) and leading to the Serrin-type
results.
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3.1 | Serrin-Type Solutions and Their
Properties for n > 2

Definition3.1. Let n>2, T >0, fe L,0,T;H,), and
u’ e ch. If a solution u of the initial-variational problem
(2.11)-(2.12) belongs to L,(0, T H;f), we will call it a Serrin-type
solution.

The inclusion u € LZ(O,T;H;(/I ?) can be considered as coun-
terpart of the Prodi-Serrin condition (3.1) in L,-based
Sobolev spaces. Indeed, by the Sobolev embedding theorem,
Theorem 6.6, we obtain that the following continuous embed-

dings hold, H;éz c Hz/z c Ly, for any g € (2,0). Hence, if

u e L,(0, T;H;f), then for any e > 0, there exists ¢, € (2, )
such thatu € L;(0,T; Ly,) for gy =2and
2.7 Cqte (3.3)
q 4.
Condition (3.3) is weaker than condition (3.2) by the arbitrarily
small e > 0, but in spite of this, we will be able to show that the
inclusion u € L,(0,T; H;;(/7 2) for the weak solution is sufficient
to prove for it the Serrin-type results about the energy equality,
uniqueness, and regularity, which justifies the chosen Serrin-type
solution name. We will also prove the existence of such solutions,

under appropriate conditions.

Definition 3.2. Letn>2,T >0,f€ L,(0,T; H;l), andu’ €
Hga. If a solution u of the initial-variational problem (2.11) and
(2.12) belongs to L,(0,T; Hia), we will call it a a strong solution.

The above definition of the strong solution is a bit weaker than,
for example, in [7, Definition 6.1] or [6, Chapter 1, Section 6.7],
because it does not explicitly require the additional inclusion u €

L. (0.7:1,, orw’ e L (0.7:1, ).

Remark 3.3. Definitions 3.1 and 3.2 imply that the strong solu-
tions are also Serrin-type solutions if n € {2, 3,4}.

The Serrin-type solutions are also strong solutions if n > 4. Some
sufficient conditions for the Serrin-type solution existence are
provided in Section 5.2 further on in the paper.

If n € {2, 3}, then for a Serrin-type solution to be also a strong
solution, the Serrin-type solution should have an additional reg-
ularity and the sufficient conditions for this are provided by the
regularity theorems and corollaries in Sections 4 and 5, with the
parameter r > 1 there.

Lemma3.4. Let n>2 T3>0, a;’jﬁ € L (0,T; L),
fe L,0,T; H;l), and u’ € Hga. Let u be a Serrin-type solu-
tion. Then, (u-Vyu€ L,(0,T;H;"), uw' € L,(0,T:H;}), and
hence, ue€ Wl(H;(/Tz,H;;) and u e C°([o, T];H;:H/z) c

c°([0,T7; Hﬁg). Moreover,

(WC0.W) + (@G0 V)uc, 0, W)y + ar (0, w) (3.4)
= (f(,1, W)y, fora.e 1€ (0,T), VweH, . |

The unique pressure p associated with the obtained u belongs to
Ly(0,T; HYy).

Proof. By relation (1.10), multiplication Theorem 6.1(b), and
the Sobolev interpolation inequality (6.16),

l(w-Viullg: =IV-(@@u)lyg; < [[ud®ullgom

, (3.5)
< Capllalll,. < Copllullg llallg-.
#

where C,, = C,(n/4,n/4,n). Hence,
II(a - V)u”LZ(o,T;H;l) < C*n”u”LW(OYT:HQ)”u”LZ(O,T;H;/Z)’ (3.6)

that is, (u-V)u € L,(0,T;H;") and (2.13) implies that u’ €
L,(0,T;H,}). Hence, uer(H;f,H;gl), and Theorem 6.8
implies thatu € C°([0, T']; H;{f_l/z) c C°([o,T71; Hgd). Because of

this, Equation (2.11) for function u now reduces to (3.4).

To prove the lemma claim about the associated pressure p, we
remark that it satisfies (2.10), where F € L,(0,T; H;l) due to the
lemma conditions and the inclusion (u - V)u € L,(0,T; H;l). By
Lemma 6.5 for gradient, with s = 0, Equation (2.10) has a unique
solution p in L,(0,T; Hg). u]

Let us prove, in the variable-coefficient anisotropic setting, the
energy equality and solution uniqueness for the Serrin-type
solutions.

Theorem 3.5. (Energy equality for Serrin-type solutions).
Letn>2,T > 0,4/ € L(0.T: L), f€ L,(0.T:H, ) andu’ €
Hgg. If wis a Serrin-type solution of the initial-variational problem
(2.11) and (2.12), then the following energy equality holds for any
[75,11 C [0, T],

S0, + / ay(z:u(, 1), u(, 1)d7 =

0

. , (3.7)
Ml + [ (0. ut o).
Ty
It particularly implies the standard energy equality,
1 t
Mol + [ ot ouc e =
o0 (3.8)
L, + [ @enucn) dr Vi)
0

Proof. By Lemma 3.4, the function u satisfies Equation (3.4),
where for a.e. t € (0,T), we can employ u as w to obtain

(WCn.acn), + (@0 - Vuc,n,ut,0)y + ap(tw,ul, 1)

= (f(-,0),u(-, 1))y, fora.e.t € (0,7).
(3.9

Taking into account Lemma 6.9 with s = 1, s’ = —1 for the first
dual product and relation (6.4) for the second dual product, we get

%01||“('v DIy, +ar(tut,n,ul, 1) (3.10)

= (f(-,0),u(-, 1))y, fora.e. 1 € (0,T).
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By the inclusions obtained in Lemma 3.4, each dual product and
the bilinear form ay in (3.9) and hence in (3.10) are integrable in
t. After integrating (3.10), we obtain (3.7) for a.e. f,,.

By Lemma 3.4,u € C°([0, T]; Hgg), while the integrals in (3.7) are
continuous in #, as well. Then, we conclude that the energy equal-
ity (3.7) holds for any ¢, € [0, T), implying also (3.8). O

Theorem 3.6. (Uniqueness of Serrin-type solutions).
Letn >2,T > 0,4/ € L,(0.T; L), f€ L,(0.T:H, ) andu’ €

H# Let u be a Serrm -type solution of the initial-variational
problem (2.11)-(2.12) on theinterval [0, T] and v be any solution of
the initial-variational problem (2.11)-(2.12) satisfying the energy
inequality (2.14) on the interval [0, T]. Then, u = von [0, T].

Proof. 'We will here generalize the proof of Theorem 6.10 in [7].

By Lemma 3.4, the function u satisfies Equation (3.4), where for
a.e.t € (0,T), we can employ v as w to obtain

(W0, V0, 0)p + (@, 1) - Vyuc, 0,v(, D)y
+ a'lI(Z; u(', l),V(', I)) = (f(7 t),V(', t))F’

(3.11)
On the other hand, Equation (2.11) for v with u employed for w

can be written for a.e. t as

(Va0 + (V61 - VIVE D, al, D)y
+ aT([;v('a t)’ u(" t)) = (f('a t)’ u('7 t))'l]'a

(3.12)

where we took into account that u(¢) € H"/ ’c Hig for a.e. 1.

Adding Equations (3.11) and (3.12) and 1ntegrating in time, we
obtain

/ (W, 0,V D)y + (V0,0 1)y de
0
+2/ arp(z;u(-, 7),v(-, 7))dt
0
t
+ / (@, 7) - VU, 0),v(, D)y + (V1) - VIV, ), u, 1)p|de
0

t t
=/(f(-,f),u(-,r)>wdf+/(f(-,r),V(-,r))Tdr.
0 0
(3.13)

"/2) and hence, by
1/2 n/4

By Lemma 2.2(i), ve W'(0,T;H, . H
Lemma 6.8, the traces v(-,0),v(-, 1) € H
On the other hand, by Lemma 3.4, u € Wl(O T, H"/2 : 71), and
hence, by Lemma 6.8, the traces u(-,0),u(-,t) € H"/ 172 are well
defined. Then, due to Lemma 6.9(ii) with s = n/2 and s’ = -1,

are well defined.

t
/ (W', ), v, D))y + (V) ul, 1)y | de
0

(u(, ), v, D))y = %(u(nl),u(ut))q + %(V(-,t),v(~,t))T
- (W05,
) . (3.16)
= GOl + FIVCDIE,

- %”\7/(-, l)”ilu fora.e.t €(0,7).
#o

Due to (2.4),

2ag(z;u(, 1), v(-, 7)) = ag(z;u(, 7),u(:, 7))

+ ap(1; (-, 7), V(-, 7)) — ap (£; W(:, 7), W(-, 7).
By relations (6.3) and (6.4), we obtain

(-, 7) - Vu, 0),v(., )y +((v( ) - VIV(, ), u(, 7))y
={(v(,7) - VIV(, 1) = (-, 7) - VIV(, 7). u(, 7))y
= ((W(, 7) - VIW(, 7) = (W(-, 7) - VIu(, ), u, 7))y
= ((W(-, 7) - VIW(C, 7),u(, 7))y

(3.17)
Substituting (3.14-3.17) into (3.13), we get
1~ 2 ! ~ ~
SIWCDIg + [ ar(@ W, ). W, 1)di
° 0
o~ ~ 3.18
- / (W(, 7) - VIW(-, 7),u(, 7))yd7 (3.18)
0
= A(u;t) + A(v;)forae. t € (0,T).
Here,
1 2 '
A() := §||u(~,t)||}.IO + [ ap(r;a,7),u(,7))dt
e (3.19)
1
- 5||u°||f.{o - / (f¢.0),u,7)gdr =0
H#o 0
by the energy equality condition (3.8) for u, while
1 t
AW) = §||V(',I)||f.{n + / arp(z;v(-, 1), v(-, 7))dt
o0 (3.20)

t
-1l - [ v mar <o

by the energy inequality condition (2.14) for v.

(3.14)
= (u(-,1),v(-, )y — (u(-, 0),v(-,0));. Taking into account inequality (2.6) for the quadratic form aq,
(3.18-3.20) imply
Let us denote W :=u — v. Because u(-,0) =v(-,0) =u’ € HgU .
and u,v.% € L,(0,7;H,, ), we obtain LNl + 363 [ IS IR, dr
r 0 " (3.21)
@00 = [l =Vl 619 S M- 9 0 uC. .
Ho #o 0
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By multiplication Theorem 6.1(b), the Sobolev interpolation
inequality (6.16), and Young’s inequality, we obtain

() VIRC, 0,0, )]
<N, ) - VIRC Dl gz [0 2l
NIV - (W, ) @ W )]y o 0G0
<K 7) @ W, D gy [ Dl 5.22)
< CLINC DI 10, 2l
< CLIWC Dllgy I Dl I Dl g

1 =1 1<% 2 VA Eed 2 2
< JCHIWC DI, + CLCIIFC, DI, Il DI

where C, := C,(1/2,1/2, n) from Theorem 6.1(b). Implementing
(3.22) in (3.21), we obtain

1~ 2 t
IWCDle <CuC? /0 WG, DI, TG, DI, .d7. - (3.23)

#o #o

Because
T
= 2 2
IS0, a0 e

=2
< lwll

L, <O,T;H§g>

we can employ to (3.23) the integral Gronwall’s inequality from
Lemma 6.14 to conclude that ||W(-, 7)||e = 0. m]
#o

llul® g2, <00
L,O,T;H,) ’

3.2 | Serrin-Type Property of the
Two-Dimensional Weak Solution

By Definitions 2.1 and 3.1, any weak solution of the evolution
space-periodic anisotropic Navier—Stokes initial value problem
(2.1-2.3) is a Serrin-type solution for n = 2. Then, Lemmas 2.2
and 3.4 along with Theorems 3.5 and 3.6 lead to the following
results for any 7' > 0 and arbitrarily large data (unlike the higher
dimensions discussed further on).

Theorem 3.7. Letn=2,T >0, aj'jﬂ € L (0,T; L.,), and the
relaxed ellipticity condition (1.2) hold. Let f € L,(0,T; H;l), u e
0

H#a.

Then, the solution u € L_(0, T*;Hgo) N L,(0, T*;Hia) of the
anisotropic Navier—Stokes initial value problem (2.1-2.3)
obtained in Theorem 2.4 is of Serrin type, and hence,
(u-Vyjue L,0,T;H,"), ue Wl(Hig,H;;), u is almost every-
where on [0,T] equal to a function belonging to C°([0, T];Hga)
and

lim|lu(-, 1) = u°|ly,0 = 0.
HOIIu(,t) uIIHgO 0

In addition,

(W0, W)+, 1) - Vyuc, ), whp + ap(t; u, w)

= (f(-,1), W)y, forae t €(0,T), VwWE H;G,

and the following energy equality holds,
1 t
Sl + / ay(z:u(, 7). u(, 7))d
0
t
= 2, + / (fC, ), 1))y dr V1€[0,T].
0

Moreover, the solution u is unique in the class of solutions from
L, (O,T;Hgg> NnL, (O,T;Hiﬁ) satisfying the energy inequality
(2.14). The unique pressure p associated with the obtained u
belongs to L,(0, T} 1-'12).

4 | Serrin-Type Solution Existence
and Regularity for Constant Anisotropic Viscosity
Coefficients

In this section, we analyze the existence and regularity
of Serrin-type solutions for any »>2 in the anisotropic
constant-coefficient case. This gives a generalization of Theorem
10.1 in [7], where similar results were obtained for n=
3, for the smoothness index r=1/2, and for the isotropic
constant-viscosity coefficients.

4.1 | Vector Heat Equation
Let us first consider the spatially periodic Cauchy problem for the
(vector) heat equation,

ov—Av=0 inT x(0,c0), (4.1)

v(,00=u’ inT. (4.2)

Calculating the Fourier coefficients of the both sides of
Equations (4.1) and (4.2) and solving the obtained ODE problem,
the periodic solution of the Cauchy problem (4.1)-(4.2) can be
written as

v(x, 1) = (Ku)(x,1) 1= Y G(E)e CrléDi2eixe — (43)
gezn

If div u®(x) = 0, then div v(x, 1) = 0. If@°(0) = 0, then ¥(0,7) = 0.
Particularly, let us assume that u® € H;J for some r € R. Then,
taking dual product of the both sides of Equation (4.1) with Ai’v
gives

(0, ALV, ALv) + (VALV, VALV) = 0,

implying

d o2 2 _

N

After integration, this gives the energy-type equality

1 2 ' 2 _ 1y o2
The solution representation (4.3) and the norm definition (1.5)
imply that

IVC. Dl < v >0. (4.5)

ot
H,
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On the other hand, (1.10) and (4.4) lead to

t t 1
2
/ [Ku® g de = / V2, ..d7 <2 / 19V rd T
0 # 0 (4.6)

<, =0

Hr7

Estimates (4.5) and (4.6) mean that ve& L, (0,T;H, )u

L,(0,T; H;“) for any T > 0 and

= ||Ku < |ju® | 4.7)

2 0|2
”V”Lm(O,T;H;) ”Lm(o,T;H;) H}’

=||Ku°||} VT >0. (48)

2 0
”v”Lz(O,T;H;H) 2(0TH,+1) - ”u ||Hr’
This implies that the operator K : H;G . Lm(O,oo;H;‘y) U
L,(0, co; H )1s continuous.

4.2 | Preliminary Results for Constant
Anisotropic Viscosity Coefficients

Forsomen > 2,r > n/2—1,and T > 0, let the coefficients af;.ﬂ be
constant and the relaxed ellipticity condition (1.2) hold. Let also
fe L,0,T:H, )andu’ € Hj,

Let us employ, as usual, the Galerkin approximation, with the
sequence {w,} C C:; of eigenfunctions of the Bessel-potential

. -0 . N
operator A, in H, , corresponding to eigenvalues 4, and con-
stituting an orthonormal basis in Hgg; see Section 6.3. They also
constitute an orthogonal basis in H;n and H;:l; see Theorem 6.4.

Let us construct the m-term approximation to u°,
m
0 ._ 0 _ 0
u =Pu = Z(u S W) TWy,

where P, is the orthogonal projector from Hj to

m

Span{wj, ... ,w,,}, compare (6.13), that converges in Hga
and H;G, as m — oo. Due to the basis orthogonality, we have the

inequalities

0 0 0 0
ady e < 0l o Il < 0y
Let {u,} be the sequence employed to prove Theorem 2 in

[19], given here as Theorem 2.4. The sequence {u,} con-
verges to a solution uELOO(O,T;HiU)nL2<O,T;H;U> of
the initial-variational problem (2.11) and (2.12) weakly in
L2<0 T:H (0 T, H

weakly star in L and strongly in

#o‘)’ #o )

L, <0, T; H#G . Particularly, u, (x.1) = Y.7_ 7,,,()W, and solves

the following nonlinear ODE problem from Theorem 2 in [19]:

(O, W)y +art;u,, wy) + (W, - V)u,, w;)y

(4.9)
={Ew), ae.re€(,7T), YVke({l, .., m},

(u,, w)r(,0) =’ w, )y, Vke(l,..,m (4.10)

Similarly to the proof of Theorem 10.1 in [7], let us define
v,(x 1) = P,v= Y (v,w,);w, forvgiven by (4.3). Acting by

the projector P,, on (4.1) and (4.2) and then taking the dual prod-
uct with w,, we obtain that for any m > 1, v,, solves the initial
value ODE problem

OV, Wiy +(VVv,, VW )y =0, V€ (0,T), Vk (1, ...,m},
(4.11)

(v, W )7(,0) = (@, W)y, Vke(l, .. ,m}, (4.12)
and by (4.7) satisfies the estimates

[Iv, VT >0, (413)

2
m”Lw(O,T;H;) s ”V“im(o,r;ﬂg) <’ |H”

v, 112 VT >0, (4.14)

02

L (OT H’H) - I|V||L2(0T H'H) —_ ||u | H;’
To reduce the problem (4.9)-(4.10) to the one with zero initial
conditions, let us represent u,, = v,, + U,,. Then, due to (4.9) and
(4.10), the auxiliary function u,,(x,7) = Z;’Zlﬁf’m(t)wf satisfies
the ODE problem

(0,0, Wy )t + ap(t;1,, W) +((u,, - V)u,,, W)y

={Ew ) +(Vv,,Vw )y —a;(t;v,,, W), Yk e (1, ... ,m},
(4.15)
W, w)1(,00=0, Vkell,..,m}. (4.16)

After multiplying by /li’ and taking into account the property
AW, = A'w,, relation (2.4), and that the operator A, commu-
tate with operators V and E;;, Equation (4.15) leads to

(o, Azrwkﬁ +(E; ﬁ(u )s aaﬁAr#Em(A;wk»T

+ ((um : V)uvairwk>'ﬂ'
4.17
= (£ AW )1 + (VV,, ALVALW, )¢ (“.17)

< E(v,), a” A;E,a(/\;wk)>1r, Vkell, ....m).

These equations can be rewritten as
(0T, Aow, )y + <a§’jﬁEjﬂ(A;ﬁm), Eia(A;wk)>T
+ (AL (u,, - Vu, ], AL W)y

= (AT AW )T + (VALY VALW, )¢

# m?

(4.18)

~ (Epaf N EL(Nw) VK€ (1, ... om).

# i

Multiplying equations in (4.18) by 7, () and summing them up

over k € {1, ... ,m}, we obtain
1 rgy 2 rsy rgy r— r g
SO g + ar (AT, AL, = (ATEAGE, )y
+(VAlv,,VAIR,,)
# #omin (4.19)
— (Ep 0 N EL (AR, )
— (N7, - VIu, ], AT, )y

From (2.7), we have

. 1 1 arm 1 .
ar (AT, Aj,) 2 2 I, I, = 2 G I, 1. (4.20)
#o
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Let us now estimate the terms in the right-hand side of (4.19).
First,

(NN, ) < A lfIIHOIIA’+1~ llgge < Il 11, [l
4.21)
Next, inequality (1.10) implies
(VALv,,, VAU, )1 < [[VALY,

#m?

ol VA g

S A g AT gy < 1V g 18 g

(4.22)
Further, we obtain by inequality (1.10),
'( E;p(v,), a AL E, ;ﬁm)>T’
< NE;pVdll gy 05 A B N N grryn 42D
S ANVl 18, g
n
where |A| 1= {a;'.ﬁ } . Finally,
T Japij=1|p
(AL, - Vu, ] AL, ) |
<A, - Vu, ]IIHOIIA’HN Il (4.24)

< 06t VU g 18 g

Implementing (4.20-4.24) in (4.19) and using Young’s inequality,
we obtain
d i~ 2 1
D 2 + 2

< 2(Ifllgys + AT+ 111V, s + [, - Vu

-1
I

ol )1 g

2
< 4CA(||f||Hf-1 FIAL LIV, g+ [ V)

+7 C g[8
Hy

Hence, by the inequality (Z‘ 1) <k Z _,a? (following from
the Cauchy-Schwarz inequality),

5 1
Sl + ORI

HH—I —

16, (nfugg-l AP+ 115+ 0
#

(4.25)
Note that by the similar reasoning, but without employing in (4.9)
and (4.10) the function v, we obtain that u,, satisfies the differen-
tial inequality
d
T f[u L

2
m || Hj, Hr+1

(4.26)
< SCA(nfu;;,I 4, Vou, )

Let us also estimate the last term in (4.25) and (4.26) for
the case n/2—1<r <n/2. By relation (1.10), multiplication
Theorem 6.1(b), and the Sobolev interpolation inequality (6.16),
we obtain

where C.

*Irn

=C,(r/2+n/4,r/2+n/4,n).

4.3 | Serrin-Type Solution Existence
for Constant Anisotropic Viscosity Coefficients

Employing the results from Section 4.2 for r = n/2 — 1, we are
now in the position to prove the existence of Serrin-type solutions.

Theorem 4.1. Letn>2and T > 0. Let the coefficients af’jﬁ be
constant and the relaxed ellipticity condition (1.2) hold. Let f €
L,0,T; 1)) and u° € H}/*

i. Then, there exist constants A, >0, A, > 0, and A; > 0 that
are independent of f and u°® but may depend on n, |A| and
C,, such that if £ u® and T, € (0, T] satisfy the inequality

T,
1800+

T,
<A1II11°I|2n/H + Az) / (K, DII2,.dr < As.
H, 0 H,
(4.28)
where K is the operator defined in (4.3), then there exists
a solution u of the anisotropic Navier-Stokes initial value

problem (2.1-2.3) in Ly(0,T,;H," ") n L0, T,; H),
which is thus a Serrin-type solution.
ii. In addition, w' € L,(0,T,; H,""), uw e ([0, T,; H}/* ™),

lim,_, [la(, 1) — u°||H,1/H = 0, “and p € L,(0.T,; H#/ 1,
#o

iii. Moreover, u satisfies the following energy equality for any
[79.11 C [0, T, ],

t
%”u(.vl)“iz# + / a'ﬂ'(u("T)au('7 T))dT =

, (4.29)
1
S, + [ (o ut o).
Ty
It particularly implies the standard energy equality,
t
.ol + [ as(uto).ue s =
(4.30)

1
2
;I|u°||2 /(f( o),u(, 7))y dr ¥Vt e|[0,T,].

iv. The solution wu is unique in the class of solutions from
L_(0, T*;Hgg)mLz(O, T*,H;J) satisfying  the energy
inequality (2.14) on the interval [0, T,].

Proof.
i. Letr = n/2 — 1. Estimate (4.27) implies

”(um ' V)um”f{"‘1

2 4 2 s 14 4
<Gl w2 < 8C*,n(||um||H,/z+n/4 + IIVmIIH,m,,/q)

2 2
W, - V)u,|g— ={|V-@, @u,)| - 5 2 5 5 5 5
e, m|H# | e ”H** <8C,,lIu,,ll ,||u I n,2+8C*,,,||V g 11Vl w
2
< jw, ® w,)|| (4.27)
X - 2 2 2 2 2 2
) =8C,,IIu,lI; /21“u I n/z+8C*,,,||V Il ,,/21||V Il w
2 4 2
C*m“u | r/2+n/4 = *rn”u ||H,||u I n/27 (4 31)
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whereC?, :=C,,, 1, =C.(n/2=1/2,n/2—1/2,n). Then,

by (4.31), we obtain from (4.25),

d
w7l

m| H kIN

2 1 1y~ 2 2 ~ |2 ~ |2
ot ZCA\ (Il H <128C CA”um”H;/z”um”H;/ZA

2 2 2 2
+16C, <|IfIIHm 2 +8C IVl - IVl +
# #

*rn

(AP + 1]V, 12,

(4.32)
Let us now apply to (4.32) Lemma 6.12 with

n= ||ﬁm| i;;/z*‘» My =0,

c- , ¢ =128C2 C,,

*rn

= 12
y=l,ll b=
m H;/Z’

w =16Cy (IIfIIiI;/z L +8C vl e .IIVMIIf{:n +[IAP+1] IIVmIIiI;n),

*Irn

to conclude that if T, is such that

T,
L (0t (52 vl
0 #
4.33
+[|A|2+1]>||vm(.,t)||f_{;/2>dt (4.33)

< (512¢C2C2 )7,

*Irn

then .
~ 2 202\~
W11 gy, < (S12C5CE, )
2 2\~
8ol o, < (128C1C2) 7
and hence,
”ll ”L LOT.: Hn/z 1 ”l~l ”L LOT.: Hn/z 1+ ||V ”L LOT: Hn/Z L
< (16\/5CAC*,,,> Ty
H#o
(4.34)
Il gty < 8l o) + WVnll o7
_ (4.35)
< (8 ZCAC*M) + ||u°| Hn/z—l.
#o

Estimates (4.13) and (4.14) were taken into account in (4.34)
and (4.35).

Taking into account inequalities (4.13) and (4.14) again, we
obtain that condition (4.33) is satisfied if T, is such that

T,
. 2
1ot
T,
' 4.36
(sc:,nnu‘)nzn,zw[|A|2+1]) / IVC. DI, . dt (436
0 #

< (512¢C2C? )7

A wrn

Note that condition (4.36) gives condition (4.28) with

Ay = (512C2C2 )7

*rn

A, = 8C?

*rn’

A, = AP +1,

Inequalities (4.34) and (4.35) imply that there exists a
subsequence of {u,} converging weakly in L,(0,T, 2 4 2)
and weakly star in L (0 "/ N toa functlon uf e

LZ(O, n/Z)UL (0 n/2 1

) Then, the subsequence

converges to u' also weakly in L,(0, T*;H;G) and weakly

star in L_(0, T, Hgo). Because {u,,} is the subsequence of

the sequence that converges weakly in L, (0, T; H;J> and

weakly star in L (O, T; Hgo to the weak solution, u, of

problem (2.1-2.3) on [0,T, ] we conclude that u=u' €
L0, T HY ) U L0, T, HY).

This 1mphes that uisa Serrln -type solution on the interval
[0,T,], and we thus proved item (i) of the theorem.

ii. Repeating for u the reasoning related to inequality (4.27), we
obtain

*rn

2 2 2 2
ll(u- V)HIIHQ/Z . < Clall - Al
#

Hence,

”(u : v)u”Lz(O,T*;Hg/Z 2y < C»rn”u”L o(0.T,; H"/Z l)llu”L (0.T,: H"/Z)’

(4 37)
that is, (u-Vyue L,©0,T,;H,”
we have

). By (1.1) and (1.3),

2
120l < 1 @l sy < AP

and thus,

[|Qul|?

2
! oy < VAP

L,0.T,H}*)’

that is, Rfu e L,(0,T, "/2 -

L,0,T; H,* ™).

Then, (2.9) implies thatu’ € L,(0,T, ), and hence, by
Theorem 6.8, we obtain that u € CO([O T] "/2 1), which
also means that ||u(-,7) —u ”H:éz 1 — 0 as z—> 0 To prove
the theorem claim about the associated pressure p, we
remark that it satisfies (2.10), where F € L,(0,T; H"/ - 2)
due to the theorem conditions and the 1nc1us1on (u-

Viu e L,(0,T, Y/ 2) By Lemma 6.5 for gradient, with
s= n/2— 1, Equatlon (2.10) has a unique solution p in

L,O,T, ;/ >,

iii. The energy equalities (4.29) and (4.30) immediately follow
from Theorem 3.5.

). We also have fe

n/2 2

iv. The solution uniqueness follows from Theorem 3.6. O

Remark 4.2. Because ||f(-,1)||? isintegrable on (0, T'] by the

n/Z 2

theorem condition and ||(Ku0)( 1%, is integrable on (0, o)

n/2
by inequality (4.6), we conclude that "due to the absolute con-
tinuity of the Lebesgue integrals, for arbitrarily large data f e

L,(0,T; H" 22) and u° € H"/2 ' there exists T, > 0 such that
condition (4 28) holds.

Estimating the integrand in the second integral in (4.28) accord-
ing to (4.5), we arrive at the following assertion allowing
an explicit estimate of 7, for arbitrarily large data if fe
L (0,T;H*) and u° eH"/2

Corollary 4.3. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Letn>2andT > 0. Let
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the coefficients a?jﬁ be constant and the relaxed ellipticity condition

(1.2) hold. Let f € L (0, T; Hy**) and u° € H}/*.

Then, there exist constants A, A,, A; > 0 that are independent of £
and u® but may depend on T, n, |A| and Cy, such thatif T, € (0,T]
satisfies the inequality

2 012 012
TR s+ <A1||u Iy + A2>||u o] < As.
(4.38)
n/2—1

then there exists a Serrin-type solution u € L (0,T,;H, "~ )N
L,(0, T*;H:(/’ 2) of the anisotropic Navier-Stokes initial value

problem. This solution satisfies items (ii)—(iv) in Theorem 4.1.

Estimating the second integral in (4.28) according to (4.8), we
arrive at the following assertion.

Corollary 4.4. (Existence of Serrin-type solution for arbi-
trary time but small data). Letn >2and T > 0. Let the coef-

. ap T .
ficients a;; be constant and the relaxed ellipticity condition (1.2)

hold. Let f € L,(0,T; H}/**)andu® e H,/*™".

Then, there exist constants A, A,, A; > 0 that are independent of
f and u° but may depend on n, |A|, and C,, such that if £ and u°
satisfy the inequality
2 02 02
2 s * (Alnu s + A2> 17 e < As, (439)

then there exists a Serrin-type solution u € LOO(O,T;I’{;;(/7 2_1)0

L,(0,T; H;ﬁz) of the anisotropic Navier—Stokes initial value
problem. This solution satisfies items (ii)—(iv) in Theorem 4.1 with

T,=T.

4.4 | Spatial Regularity of Serrin-Type Solutions
for Constant Anisotropic Viscosity Coefficients

Theorem 4.5. (Spatial regularity of Serrin-type solution
for arbitrarily large data). Letn>2 r>n/2-1,and T >
0. Let the coefficients a:.’;.ﬁ be constant and the relaxed ellipticity
condition (1.2) hold. Let f € L,(0,T; H;_l) andu’ € H;g, while £,
u’, and T, € (0, T] satisfy inequality (4.28) from Theorem 4.1.
Then, the Serrin-type solution wu of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) belongs
to L,0,T,:H,)NnL,0,T,; H;:l). In addition, u' e
Ly(0,T,; H, ), w e C°(0, T,; ), lim, _ [lu(, 1) — ||y, =0,
and p € L,(0,T,; Hy).

Proof. The existence of the Serrin-type solution ue€
L0, T*;H;f_l) N LZ(O,T*;Hzf) is proved in Theorem 4.1(i),
and we will prove that it has a higher smoothness. We will
employ the same Galerkin approximation used in Section 4.2
and in the proof of Theorem 4.1(i).

implying

d 2 2 2 2
E”“ <8CLC ||um||H;/z||um||H; +8C,|Ifll

#In r—1°
Hy

(4.41)

m”il;

By Gronwall’s inequality (6.22), we obtain from
(4.41) that

2 2 2
. <
”um”Lm(O,TQH;g) = eXp<8CAC*""”um”LZ(O,T*;H;/Z))

x [ I, 01, +8C, 12 |

L,(0.T,:H;™)

(4.42)

We have |lu,(-,0)llg; < ||u°||H;, and by (4.35), the

sequence ||, or,H") is bounded. Then, (4.42)
PACE S

2

implies that the sequence |[u,, || L OTT ) is bounded as
0 2T Mg

well. Integrating (4.40), we conclude that
2 2 2 2 2
< .
L T S 322G Callanlly T Ity o7 )
+4C, [, (-, 0)lIg, +32C Il
#

L,OT,H; )
(4.43)

Inequalities (4.42) and (4.43) mean that the sequences

1 PP bl Y R [ty L

are bounded for n/2 -1 <r <n/2.
(4.44)

Stepb. Let now r=mn/2. Then, by multiplication
Theorem 6.1(a) and relation (1.10),

- V3 [ = [V - (u, @ w,)]

2
H:/Z*l
< ”um ® um)”(ZH;/Z)m (4.45)

2 2 2
< C*,,,Ilumllﬂz/z||umI|H;/M/z,

where C,,, = C,(n/2,n/2 +1/2,n).
Then, by (4.45), we obtain from (4.26),

d 2 1
E”um| H:/Z + ZCAlllum”iIn/Z-H <
y (4.46)
8C,C2,lIw,,|I llw,II2,,. +8C4lIfll?
A~ srn m H;/ZH/Z m H;/Z A H;;/Z*1
implying
i 2 <8C CZ 2 2
dt ||um| H;/Z = A ,-Fr,,“um”Hn/zﬂ/z“um”Hn/z
i # (4.47)

2
+8CAIIL,

By Gronwall’s inequality (6.22), we obtain from

(4.47) that
Stepa. Letus estimate the last term in (4.26) for the case n/2 —
1 < r < n/2. By (4.27), we obtain from (4.26), 2 < 2 2
”um ”LN(OYT*;HZZ) < exp SCA C*rn ”um ” LZ(OYT*;H;/M-I/Z)

d 2 1 -1 2

_||um| H + _C/\ I|um|IHr+1 2 2

i T g T ) X |11, G OIZ e +CAIEI? e |

< 8CAC, 1y 0 1 + 8CAIAG, . (4.48)
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Step c.

We have |lu,,(-,0)||gw2 < [[0°]lgwz, and by (4.44), the
# . #

sequence ||u,,|| Ly, m2) 18 boundezd as well. Then,

4.48) implies that th is al

(4.48) implies that the sequence ||um||Lw(0,T*;H;(/7Z) is also

bounded. Integrating (4.46), we conclude that

2
u <
1 e S

32C2C2 ||u,lI?
A *rn” m”LZ(O,T*;H

2 2 2
+4C, ||la,.(- + 32( < ( o
4 /\” m(’O)HH;/Z 32 A”f”LZ(O,T*;H;ﬂ’l)_ < .
(4.49)

Inequalities (4.48) and (4.49) mean that the sequences

2
u
o 1

a0z ) by A0 {0, o7y Yoy
oo\ luolys) T m 20T Hy ) I m (450)
are bounded for r = n/2.

Let now kn/2 <r < (k+1)n/2,k=1,2,3, ... By mul-
tiplication Theorem 6.1(a) and relation (1.10),

2 2 2 2
l(w,, - Vi, [l < €L, llg 1V,

H = Swrn (HIVymn
, i ’ , ' (4.51)
<C, I lha, -
# #
where C,,, = C,.(r — 1,r,n).
Then, by (4.51), we obtain from (4.26),
d 2 1 -1 2
_”um”H’ + _CA ”um” S
dt vo4 H (4.52)

2 2 2 2
BCAC,, Iyl Il + 8Callfllg -
implying
d 2 2 2 2 2
Ell“ml w, < 8CAC, 1, llg llw [l + 8Ca Il

(4.53)

By Gronwall’s inequality (6.22), we obtain from
(4.53) that

2 2 2
”um ”Lm(O,T*;H;H) < BXP(SCA C*rn IIum ”LZ(O,T*;H;))

x {11, L), + SCAlII2 1 s |

(4.54)
where [, (-, 0)llg; < [[u®]lg;.
If k =1, then the sequence ||um||L2(O’T*;H;) in (4.54) is
bounded due to (4.44) and (4.50). Then, (4.54) implies

that the sequence ||lu,,||? . is bounded as well.
L, (0.T,:H; )

Integrating (4.52), we also conclude that for k = 1,

2
u <
I, Lo S

2 2 2 2
2Rl rmg Wl oy
2 2 2
+ 4CA”um(s 0)”].[; + 32CA”f”LZ(O,T*;H;_1)’

kn/2 <r < (k+1)n/2.

Inequalities (4.54) and (4.55) mean that for k = 1, the
sequences

{ ”um ” LW(O,T*;H;'I) }m=1and{ ”um ”LZ(O,T*;H;‘I) }m=l (456)
are bounded for kn/2 < r < (k+ 1)n/2.

Step d.

If we assume that properties (4.56) hold for some inte-
ger k > 1, then by the similar argument, properties
(4.56) hold with k replaced by k+1, and thus, by
induction, they hold for any integer k. Hence, collecting
properties (4.44), (4.50), and (4.56), we conclude that
the sequences

{llw,, Il Lo (0,T,;H, ) };.::1 and {[lu,, ”LZ(O,T*;H;:l) };.::1

are bounded for n/2 -1 <r.
(4.57)

Properties (4.57) imply that there exists a subse-
quence of {u,} converging weakly in L,(0, T*;Hzl)
and weakly star in L_(0, T*;H:m) to a function
u’ € L,0,T,;H, ") U L(0,T,; H, ). Then, the subse-
quence converges to u' also weakly in L,(0,T,; Hi{y)
and weakly star in L_(0,T,; Hgo). Because {u,,} is the
subsequence of the sequence that converges weakly
in L2<O,T;H;U> and weakly star in L (O,T;H§6>
to the weak solution, u, of problem (2.1-2.3) on
[0.7.], we conclude that u=u’e€ L0, T*;H::) U
L,(0,T,;H, ), for any r > n/2 -1, and we thus fin-
ished proving that

ue L (0,T,;H, )N L0, T,;H,). (4.58)

Repeating for u the reasoning related to inequalities
(4.27), (4.45), and (4.51), corresponding to the consid-
ered r, we obtain

2
+1°
Hy

- Vyul?,., <C?

H;‘l *rn

2
lallg llall
#
Hence,

[[(a- V)“”LZ(O,T;H;;I) < C*rn”u”Lw(O,T*;H;)”uHLz(O,T*;H;”)'
(4.59)

Due to (4.58), then (u- V)u € L,(0,T,; H} ™). By (1.1)
and (1.3), we have

2 2 2 2
IRully s < 11a) En@ly e < AR,

for a.e. t € (0,7),

and thus,
2 2 2
<
”gulle(o,n;Hg‘l) <|A] ||u||Lz(0,T*;H;+1),
. =1
that is, Rfu€ L,0,T,;H, ). We also have

fe L,0,T; H;_l). Thus, F defined by (2.8)
belongs to L,(0,T; H;_l). Then, (2.9) implies that
u’ € L,(0,T,;H, "), and because u € L,(0,T,; H,'),
we obtain by Theorem 6.8 that u € C°([0, T*];H;U),
which also means that ||u(-, ) — uOHHQ,, —0ast — 0.

To prove the theorem claim about the associated pres-
sure p, we remark that p satisfies (2.10). By Lemma 6.5
for gradient, with s = r, Equation (2.10) has a unique

solution p in L,(0,T,; H).
o
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As in Corollaries 4.3 and 4.4, condition (4.28) in Theorem 4.5
can be replaced by simpler conditions for particular cases, which
leads to the following two assertions.

Corollary 4.6. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Letn>2andT > 0. Let
the coefficients af}ﬂ be constant and the relaxed ellipticity condition
(1.2) hold. Let £€ Ly(0,T:H, )N L,(0,T;H;*™) and v’ e
H, n H;(/;Z, r>n/2—1. Let T, € (0, T) satisfies inequality (4.38)
in Corollary 4.3.

Then, the Serrin-type solution w of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) belongs
to  LoO,T:H,)nL,0T:H,"). In additon, w e
Ly(0,T,;H, "), u € C°(0, T, H,), lim,_, [[u(-,1) - Wy =0,

and p € L,(0,T,; Hy).

Corollary 4.7. (Serrin-type solution for arbitrary time but
small data). Letn>2,r>n/2—1, and T > 0. Let the coef-
ficients af;,ﬁ be constant and the relaxed ellipticity condition (1.2)
hold. Let the data f € L,(0, T} H;_l) andu® € H,_satisfy inequal-
ity (4.39) in Corollary 4.4.

Then, the Serrin-type solution wu of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) belongs to
L0, T;H, ) n Ly, T; H,' ). In addition, w' € L,(0,T;H,."),
ue (0, T H,), lim,_, lu¢.0)—w’lly, =0, and peL,

(0,T; Hy.

Theorem 4.5 leads also to the following infinite regularity
assertion.

Corollary 4.8. Let T >0 and n > 2. Let the coefficients af}ﬂ
be constant and the relaxed ellipticity condition (1.2) hold. Let
fe L,0,T;C;)andu’ € C;, whilef, u’, and T, € (0,T] satisfy
inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier-Stokes
initial value problem (2.1-2.3) is such that u € C°([0,T,]; C;),
u' € L,0,T,:C;), and p € L,y(0, T, C).

Proof. Taking into account that C; =(),cH,,.
Theorem 4.5 implies that u € L_(0,T,; H;y) N L,(0,T,; H;H),
w € L,0,T;H,"), peL,0T;H,, VreR.  Hence,

u e C([0,T,1;C;), 0’ € L,(0,T,:C;), and p € L,(0,T,;C;). O

4.5 | Spatial-Temporal Regularity
of Serrin-Type Solutions for Constant Anisotropic
Viscosity Coefficients

Theorem 4.9. LetT >0andn>2. Letr>n/2—1if n> 3,
while r > n/2 — 1 if n = 2. Let the coefficients af;.ﬁ be constant and
the relaxed ellipticity condition (1.2) hold. Letf € L (0, T, H;_z) n
L,(0,T; H;_l) and u’® € H, , while f, u’, and T, € (0,T] satisfy
inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier-Stokes
initial value problem (2.1-2.3) is such thatw’ € L_(0,T,; H;;z) U
Ly(0,T,; ), while p € L (0., Hy ) 0 Ly(0, T, HY).

Proof. By Theorems 4.1 and 4.5, we have the inclusions u €
L,0,T,:H, ), uw € L,(0,T,; H;j), and p € L,(0,T,; H}). Then,
we only need to prove the inclusions u’ € L (0, T*;H;;z) and
pELLO, T, H, .

Let, first, n/2 —1 < r < n/2+ 1 (and also 0 < r if n = 2). By rela-
tion (1.10) and multiplication Theorem 6.1(b), we have

ICE V)u”H;{2 =|V-u® u)||H;72 <u® u)”(H;*l)m

2 2
< C,imllullH;/M/afl/z <C il

where C! = C,(r/2+n/4,r/2+n/4,n).
Let now r > n/2 + 1. Again, by relation (1.10) and by multiplica-
tion Theorem 6.1(a), we have

l@-Viullg- =[V- @@ Wy < [[u @ W1y

2
< €l Iy < €7 Nl

where C” = C,(r —1,r,n). Hence, in both cases,

®rn
2
”(u : V)ll”Lm(O,T*;H:’_ZJ < C*m”u”Lw(O,T,_\;H;)’ (460)

where C,. isC’ or C"

#rn *rn *rn’

respectively.
By (1.1) and (1.3), we have

I1fully; < 1167 @l gy < 1ALllgg -

1

Thus,

Ifall, orz02) < 1AL o731,
thatis, Qu € L_(0,T,; H;_z). We also havef € L_(0,T; H;_2)~

Then, (2.9) implies that uw’' € L(0,7,;H] %), while (2.10)

and Lemma 6.5 for gradient, with s =r—1, imply that p e
L0, T, Hy . =

Theorem 4.10. Let T>0 and n>2 Let r>n/2-1
Let the coefficients a:.’;.ﬂ be constant and the relaxed elliptic-
ity condition (1.2) hold. Let k € [1,r+1) be an integer. Let
e 0.T:H, ") nL,0T:H,"), 1=01 .. k-1
andu® € H;g, while £, u®, and T, € (0, T] satisfy inequality (4.28)
from Theorem 4.1.

Then, the Serrin-type solution wu of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) is such that
u® e L (0,T,;H, YN L0, T;H, ™), 1=0,.. .k while

PO e LT Hy " Ly0, T, Hy ) 1=0, ... k-1,

Proof.  Some parts of the following proof are inspired by [30,
Theorem 3.1] and [11, Chapter 3, Section 3.6], see also [7,
Section 7.2].

We will employ the mathematical induction argument in the
proof. We first remark that by Theorems 4.1, 4.5, and 4.9,
iffe L,(0,T;H, ©)n L,0,T;H, '), thenu € L,(0,T,;H, )N

L0, T;H)h), w' € L (0, T,;H, ") L,(0, T, "), while p €
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L 0,T,; I-'I;_l) N L,(0,T,; H}). This means that the theorem
holds true for k = 1.

Let us assume that the theorem holds true for some k' = k-1 €
[1,r), that is,
u® e L (0,7, H, ) n L0, T;H, ™), 1=0,...,k-1,
(4.61)

and prove that it holds also for / = k. To this end, let us differen-
tiate Equation (2.9) k — 1 times in ¢ (in the distribution sense) to
obtain

u® =p F*D in T x(0,7), (4.62)

where
FO :=f"+9'Qu-d'[(w-Viu] VIeN. (4.63)

Let us denote sy c=r—=2max{(k—-1-=1),1}, s, 1=
r—2min{(k—1-1),/}. Then,

sp<r—k+1<s),,

spt Sy =r=2k-1-D+r-21=2(0r-k+1), VI=0, .. k-1
The theorem condition » — k + 1 > 0 implies s;; + s, > 0.

Step 1. Convection term.

k-1
-Vl = Y ¢ @ vu?, (4.64)
1=0

where C,lc_1 are the binomial coefficients.

Case A. Let0<I < (k—-1)/2.
Then, s;; =r—2(k—1-1), s, =r—2I.

Subcase Al. Let n/2—-1<r<n/2+2l. Then, s, =
r—2l <n/2. By the theorem conditions, r+1—
n/2>0and r— k+ 1> 0, and hence, there exists
€ € (0,min{r+1—n/2,2(r — k +1)}), and thus,
r+1-n/2)—e>0, s,;—€/2<s5,—€/2<n/2,
Spt+s,—€=2r—k+1)—e>0.

By relation  (1.10) and  multiplication
Theorem 6.1(b), we have

”(uac—l—/) ) V)u<’>|

r—2k
H#

- ||V Sk @ u(l))|

r—2k
Hy

< ||u(k—1—l) ® u(t))H(

H’;H—Zk),,x,,

<ot o)

(H;+1—2k+(r+1—n/2)—z )nx,,

o)

—e=n/2

(Hmﬂlz ynxn

#
! (k=1-=1) )

= C*rn ‘u H;“—e/z u ) H;,Z—g/z
’ (k=1-1) )

< C*rn ‘u |‘H;—Z(k—1—l) Hu H;—zl’

H(u<k—1—l> . V)u(’)|

r+1-2k
H#

< “(u<k—1—z> . V)u(’)‘

Hr+1—2k+(r+l -n/2)—e
#

],

511 +sp—€—n/2
#

<C
- *rn

€/2

N I LT
H#[l (H*[Z

ynxn

< C’ ]

*rn

u(k—l—l)|

u
r—=2(k=1-1) || r+1-21°
H, Hy

where C! = C. (s —€/2,5, —€/2,n).

Subcase A2. Letr > n/2 +2I.
Then, s;, = r — 2/ > n/2. Hence, by relation (1.10)
and multiplication Theorem 6.1(a), we have

H @*1-D . yyp® ”

r—2k
H#

- HV S © u(’>)|

r—2k
H#

<fue o)

(H;H—Zk ynxn

<Jurr 0w

(H;—Z(k—l—l)),,xn

" (k—1-1)
S C*rn u

u</>)‘

r=2(k=1=1) || r=21"
H, Hy

H(u(k—l—l) . V)u(l)H

r+1-2k
H#

< H(u<k—1—1) -Vyu®

r=2(k—1-1)
H,

" (k—1-1)
< C*rn u

fout

r=2(k=1-1) r=21
H, Hj

"
< C*rn

k—1-1 1
W o)
#

H;+1—21’
where C!! = C,(s;1, 5,5, 1)

Thus, combining Cases (A1) and (A2), we obtain
thatforanyr > n/2 —1landfor0 </ < (k—-1)/2,

H *1-D . yyp® H

H;_Zk

(4.65)
(k=1-1) )
S C*rn Hu H;—Z(k—kM ”u H;’Z/ ’

|t

' (4.66)
(k=1=1) O]
< o [

where C,,,, is C! or C! , respectively.
CaseB. Let (k—1)/2<1<k—1. Then, taking into
account that

”(u(k‘l‘” . V)u<’>|

= “V c(u*1) @ u<’))‘

r—2k r—2k
H# H#

= l® (k=1-1)
= wut]

we arrive at Case (A) for I’ = k — 1 — / and finally to the
same estimates (4.65) and (4.66).
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Thus, for any r > n/2 — 1 and any integer / € [0, k — 1],
we obtain the estimates

“(u<k—1—/) - Vyu®

Lo (0.T,;H;?)

<C ”u<k—1—l> o
—_ *rn

u
Lo (0T, H 2170 ” Lo (0.7, H; 2’

“(u<k—1—1) - Vyu®

Ly(0.T,:H;2%)

<c,, ”u(k—l—l) |u(1)

L, (0.T,;H; 170y | LyO.T, ;=)

Hence, by (4.64) and (4.61),
O (u- Vyu] € L (0,T,; Hy %) 0 Ly(0,T,; HH=%),
(4.67)

Step 2. Linear terms and right-hand side.
Due to (4.61),

of'u =gu*"V e L (0,T,;H, %) n L,y0,T,; H;"'~%).

(4.68)
We also have £V € L_(0, T Hj, ) n L,(0, T; H," ).
Then, (4.63), (4.67), and (4.68) imply that

=2k i +H1-2k

FED e L0, T;H, ™) n Ly, T H,™ 7). (4.69)
Thus, by (462, u®e L 0.T.;H *n
Ly0,T,; H, ™).

Step 3. Pressure.
The associated pressure p satisfies (2.10). Differentiating
it in time, we obtain

vp" =pF" inTx(©,7), [=01,..,k—1.
(4.70)
By the same reasoning as in the proof of (4.69), the similar

inclusions for junior derivatives also hold:

oy —1-21

1,7 N L0, T H, ),

FO e L (0,T;H,
1=0,1, ..., k—1.

By Lemma 6.5 for gradient, with s =r—1—2/ and s =
r — 21, respectively, Equation (4.70) implies that p® e

L0, T,; Hy "0 L0, T, H, ™), o

Corollary 4.11. Let T > 0 and n > 2. Let the coefficients af’jﬂ
be constant and the relaxed ellipticity condition (1.2) hold. Let
fe C®(0.T:C;)andu’ € C;, whilef, u’, and T, € (0, T satisfy
inequality (4.28) from Theorem 4.1.

Then, the Serrin-type solution u of the anisotropic Navier—-Stokes
initial value problem (2.1-2.3) is such thatu € C*(0,T,; C:;), pE
C*(0,T,;C;).

Proof.  Takinginto account that C;’ = 1,z H,,, Theorem;’t.lo
o

implies that for any integer k >0, u® € L (0,T,;H, ~)n

Lo, T 1,7, p® e L .1, H, ) nL,0,T,;H.",

for any r € R. Hence,u € C*(0,7,;C;.), p € C*(0,T,;C;). O

4.6 | Regularity of Two-Dimensional Weak
Solution for Constant-Viscosity Coefficients

The regularity results of Sections 4.4 and 4.5 hold for n = 2, but as
for the isotropic constant-coefficient case (cf., e.g., [11, Chapter
3, Sections 3.3 and 3.5.1], [7, Section 6.5]), these results can be
essentially improved for n = 2 also in the anisotropic setting with
constant coefficients.

Let us give a counterpart of Theorem 4.5 that for n = 2, it is valid
on any time interval [0, T'] (and not only on its special subinterval
[0,T.D).

Theorem 4.12. (Spatial regularity of solution for arbitrar-
ily large data). Letn=2,r > 0,and T > 0. Let the coefficients
a:.’jﬂ be constant and the relaxed ellipticity condition (1.2) hold. Let

fe L,0,T; H;_l) andu’ € H,_.

Then, the solution u of the anisotropic Navier—Stokes initial value
problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type
and belongs to L, (0,T;H, )N L,(0,T; H;:l). In addition, w’ €
L,(0,T: H,_ "), we C°(0, T H,), lim,_ lu(, 1) — |l =0,

and p € Ly(0,T,; H,,).

Proof. The proof coincides word for word with the proof of
Theorem 4.5 if we take there n =2 while replacing 7, by T
and the reference to (4.35) for the boundedness of the sequence

I, || L1, H%) for n = 2 by the reference to the corresponding

inequality
2 < 012 2
10 s < A€ (101, +aCaf2 ).
obtained as inequality (59) in our paper [19]. O

The following assertion can be proved similarly to Corollary 4.8.

Corollary 4.13. Let T > 0 and n = 2. Let the coefficients a;’jﬁ
be constant and the relaxed ellipticity condition (1.2) hold. Let f €
L,0.T:C;)andu’ € C;.

Then, the solution u of the anisotropic Navier—Stokes initial value
problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type
and is such that u € C°([0,T1;C), w' € L,y(0,T;C;), and p €
Ly(0,T;CY).

The next three assertions on spatial-temporal regularity for n =
2 are the corresponding counterparts of Theorems 4.9 and 4.10
and Corollary 4.11 and are proved in a similar way after replacing
there T, by T.

Theorem 4.14. LetT > 0,n =2, andr > 0. Let the coefficients
af}ﬁ be constant and the relaxed ellipticity condition (1.2) hold. Let

fe L (0, T;H,)nL,0,T;H, )andu’ € H,_.

Then, the solution w of the anisotropic Navier—-Stokes initial
value problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin
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type and is such that w' € L (0,T;H, ")U L,(0,T;H, "), p €
Lo(0.T; Hy )N Ly(O,T; HY.

Theorem 4.15. Let T >0, n=2, and r > 0. Let the coeffi-
cients a;’jﬁ be constant and the relaxed ellipticity condition (1.2)
hold. Let k € [1,r + 1) be an integer. Let f € L (0,T,; H;_Z_ZI) n
L0, T:H, ™), 1=0,1, ... k-1, andu’ € H, .

Then, the solution u of the anisotropic Navier—Stokes initial value
problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type and is

such that u® € L_(0,T:H, Yn L0, T;H." 7, 1 =0, ... ,k;
- oo1 21 #o ~2~ 21 o
PP €L O0.T:H, ~)NnL,0,T:H, "), 1=0, ... .k—1.

Corollary 4.16. Let T > 0 and n = 2. Let the coefficients af;.ﬂ
be constant and the relaxed ellipticity condition (1.2) hold. Let f €
C*(0,T;C;) andu’ € C;, .

Then, the solution u of the anisotropic Navier—Stokes initial value
problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type and is
such thatu € C*(0,T;C;), p € C®(0,T; ;).

5 | Serrin-Type Solution Existence
and Regularity for Variable Anisotropic Viscosity
Coefficients

In this section, we generalize to the anisotropic variable viscos-
ity coefficients the analysis of the existence and regularity of
Serrin-type solutions for any n > 2 given in Section 4 for the
anisotropic constant-viscosity coefficients.

51 | Preliminary Results for Variable
Anisotropic Viscosity Coefficients

For some n>2, r>n/2-1, and T >0, let a' €
Lo([0,T]; H{™, &> 5 +max{|r—1|,|n/2~2]}), and the
relaxed ellipticity condition (1.2) hold. Let alsof € L,(0,T; H;_l)
andu’ € H .

We employ the Galerkin approximation as in Section 4.2 and
repeating the same arguments arrive at the same Equation (4.17)
but now with the variable coefficients a;’jﬁ (x,1). These equations
can be now rewritten as

(O NG, N + ) By (NG, E(Apw))
+ (AL (u,, - Vu, ] AL W)y

= (A AW )T+ (VALY VAW )
s (5.1)
- <Ejﬂ(vm)’ 4 A;Eia(/\;wk»w

_ ( E;@,). a” AL E,, (Ajw,) — Aj[a” E,.a(A;wk)]>T

Vke{l, .. ,m}

Multiplying equations in (5.1) by 7, ,(t) and summing them up
over k € {1, ... ,m}, we obtain

1 73 ~ ~
Ear”A;um”f{g +ar(t; Aju,,, Ayu,)

#m?

= (AT A, )y + (VALY VAL, )y
- <Ej,,(vm), af’fA;Em(A;ﬁm)>T (5.2)
- (E, §(@,). N E,, (AjT,,) - Ajfa? Em(A;ﬁm)]>T
— (A7, - Vu, ] AL, )y
From (2.7), we have

re~

PO PR 1y
ap(t; N, AjH,,) > ZCA\IHA#“'"”;; = ZCAl”“m”iI;“' (5.3)

Let us now estimate the terms in the right-hand side of (5.2). For
the first two terms and for the last one, estimates (4.21), (4.22),
and (4.24) still hold.

Further, because & + 1 > n/2, we obtain by Theorem 6.1(a) and
inequality (1.10),

'(Ejﬁ(vm), a;’j!’A;Em(Agﬁm)>T’
< ||Ejp(Vm)||(H;)nX~||a?jﬁAQEm(A;am)”(H;’)"Xn (5.4)
< ”Ejﬂ(vm)”(H;)"X"C*&rn”az‘ﬂ”H;}“ ”A;Eia(/\;ﬁm)”(H;’)"X”

< C*&rn”A”Hj“,F ||Vm||H;+‘ ||ﬁm||H;+1,

where C,;

*Orn

:=C,(-r,6+1,n),

1A Ol 2= |l )

a,pi,j=1

F

By Theorem 6.3 with @ =r, s =0,

‘(E,ﬂ(ﬁ,,,), all NyE, (Nj4,,) — A;[a;;”E,.a(A;ﬁm)]M

S NE; @) gy |07 A E (AT,
ﬂ ~
— AL E (NS gyt (5:3)
< oo N E; @) gz 1) gz I E g (8, g0y 00

< CO,r.&lAlH;’“,F”ﬁm“H;”ﬁm”H;“’

where

e = 1@ )t V. NI
AC D)oo p 1= '{ 1 (1) oo }a’ﬂ’w_:l'F < IAC Ol gzt 5.

Implementing estimates (4.21), (4.22), (4.24), (5.3), (5.4), and
(5.5) in (5.2) and using Young’s inequality, we obtain

2 |
o

d |~
L, |
< 20l + [ CoamallAll g + 1 1Vl
+Eo,r,&|A|Hj“,F”ﬁm||H; + ||(um . V)umllﬂgl)”ﬁm”H;“
<4C (Bl + [ CurmallAll g 5+ 11Vl
+ Co ol Al g pl18, Il + ||y, - VI, )

1 1~
+ 3G I,

41t
H
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2
Hence, by the inequality ( Z, X ,) <k Zﬁ;laf (following from
the Cauchy-Schwarz inequality),

LG, + 2O G,

gzoq\<||f||2 1+[c A2

2
2 F1|Ival  66)

)
H;! )

Note that by the similar reasoning, but without employing in (4.9)
and (4.10) the function v, we obtain that u,, satisfies the differen-
tial inequality

*Grn HJYLF

AL 811 + |, - Vu

(),o-l Hn‘+1F m|

D, i + 2 12,

2
= 12CA\(|IfII2 . COrgl/-\le F||u,,,||§{; + |, - Vyu,, [ )
(5.7)

5.2 | Serrin-Type Solution Existence
for Variable Anisotropic Viscosity Coefficients

Employing the results from Section 5.1 for r =n/2 — 1, we are
now in the position to prove the existence of Serrin-type solutions.

Theorem 5.1. Let n>2 and T>0. Let af’jﬂ e
L ([0,T]; HJ'Y), 6> ﬂ +|n/2 = 2|, and the relaxed ellipticity

condition (1.2) hold. Letf € L,(0,T; H"/2 *Yandu® € H"/2 !

i. Then, there exist constants A, >0, A, >0, and A; > 0 that
are independent of f and u® but may depend on T, n, ||A|,
and Cy, such that if f,u®, and T, € (0, T satisfy the inequal-
ity

T,
/ IEC DI, oadt + (Alnu"u;,z,l +A2)
0 # #

T, (5.8)
/(; ”(Kuo)(st)”f_ln/zdt < A3,

where K is the operator defined in (4.3), then there exists

a solution u of the anisotropic Navier-Stokes initial value
n/2 1 n/2

problem (2.1-2.3) in L_(0,T, )N L,(0,T. )
which is thus a Serrin-type solution.

ii. In addition, u’' € L,(0,T,;H "/2 %), we oo, T, 1),
lim, g [uC, 1) = 0l s = 0 “and p e L,(0,T,; "/2 1,

iii. Moreover, u satisfies the following energy equality for any
[tO’ t] C [0’ T*]’

20l + / ar(zuC, 7). (., 1)de
: o (5.9)
= Ll + [ B o uC ),

It particularly implies the standard energy equality,

t
Sl + / ay(r;u(, 7),u(, 1)dz
0

t
= %||u°||iz“ + / (f¢.o),u(, 7))y dr Y1 €[0,T,].
’ (5.10)

iv. The solution w is unique in the class of solutions from
L_(0, T*;Hgg)ﬂLz(O, T*;H;j) satisfying  the energy
inequality (2.14) on the interval [0, T,].

Proof.

i. Letr = n/2 — 1. The estimate (4.27) still holds. Let us fix any
small &, such that 6 > &, > n/2+ |n/2 — 2| = max{2,n —
2}. Then, by (4.31), we obtain from (5.6),

1 2
= C I, e

L, 1,

*IR

2 =~ 2 2IA2 =~ 2
<160c Call,lIg,» + 2ocAc3|A|H5M’F> (L

*Irn

2
||v,,,||H;,z),
_ _ (5.11)
where C, :=Cy,n_15, Cyy 1= Cis up1n=C(-n/2+
1,6, 4 1,n).
Let us now apply to (5.11) Lemma 6.13 with

2 2 2 2
+20CA(”f||Hn/z , +8C, vl - IVl H?
#

~2 2
B [C*nnAuH?Hf +1

1
b= ZCA N

~ 12 ~ 112
n= ||um| H;/Z*h Mo = 0’ y= ”um”H;/zv

¢ =160C2, C,, ¢ = ZOCACﬂMi,;w,F’

*rn

2
1 ||vm||H;,z),

to conclude that if 7, is such that

y = zocA(ufn;,z-z +8C, IV, 7 e IV
# #

F

2 2
CollAI

T,
/ e‘l’@-‘l’@(nf(-,r)ng,,n2 (scf,nnv( Ol
0 #

>||vm<-,r)||§{;,z)dr

2 2
CLIAIL 0, +1

(6406C/§ Cfrn ) - ’

(5.12)
where

D(s) 1= / P(r)dt = 20C, C? / AC, D), dT,
0 " 0 H# o

then

”um “LM(O,T*;H%ZA) < “um ”Lm(O,T*;H;éZA) + “Vm ”LM(O,T*;H%ZA)

< (8\/ECAC*,,,>_1 +[u°|

-n/2-1,
Hy,

(5.13)
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ii.

”u ||L2(OT H"/z < ”u ||L2(OT H"/2 + ”V ”Lz(OyT*;H;(/,Z)

-1
< (4vi0CiC,, )+

n/2-1.
H,,

(5.14)

Estimates (4.13) and (4.14) were taken into account in
(5.13) and (5.14).

Taking into account inequality (4.13), we obtain that
condition (5.12) is satisfied if 7, is such that

T,
/ ”f(.’t)”iln/l—ldt + <8C:,.,,”u0”2 n/2-1
0 #

T,
2
) [ e ar

< (64022 )7 exp< 1-20C,C2||A|2

2 A

1
Lo (O.T:H]"™ ™), F +

*Fn L (0,T; HU”H) F

(5.15)

Note that condition (5.15) gives condition (5.8) with

=2
A, =C, A2 +1,

A, =8C? s
L (OTH nt ).F

*rn’

4, = (640c2c2,) ™ exp( -1~ 200, CEIIAI

Lo (O.T;H{™),F T)

Inequalities (5.13) and (5.14) imply that there exists a
subsequence of {u,,} converging weakly in L,(0,7T,; H;é 2)
and weakly star in L_(0,T,; H"/ >t
L0, T,;H)) UL (O.T, ”/ -
converges to u' also weakly in L,(0,
star in L_(0,T.
the sequence that converges weakly in L, (0, T; H;g) and

) to a function u’ e
) Then, the subsequence
T,; H;g) and weakly
Hga). Because{u,,} is the subsequence of

weakly star in L (0, T; HL) to the weak solution, u, of
problem (2.1-2.3) on [0, T] we conclude that u=uf e
Lo, T H/> YU L,0,T,; 1))

This imphes that uisa Serrln type solution on the interval
[0, T,], and we thus proved item (i) of the theorem.

As in step (ii) of the proof of Theorem 5.1, estimate (4.37)
implies that (u - V)u € L,(0,T,; H;* ). By (1.1) and (1.3),
we have

2
12U e < N @t < A I
#

and thus,

2 2
IR sy SIAIE g e I

n 2-2
/ have

that is, fu e L,(0,T,
fe L,0,T; 1))
Then, (2.9) implies that u’ € L,(0,7,; H
by Theorem 6.8, we obtain that u € CO([O T.;H
which also means that |[u(-, ) — u°||H;£z 1 —>0ast — 0
To prove the theorem claim about the associated pres-
sure p, we remark that it satisfies (2.10), where F €
L,(0,T,; H"/ - 2) due to the theorem conditions and the
inclusion (u-V)u € L,(0,T, "/2 2) By Lemma 6.5 for
gradient, with s =n/2 -1, Equatlon (2.10) has a unique
solution p in L,(0,T,; H" /2= 1)

). We also

"/ >%) and hence,

n/2 1),

iii. The energy equalities (5.9) and (5.10) immediately follow
from Theorem 3.5.

iv. The solution uniqueness follows from Theorem 3.6. O

Remark 5.2. Note that by the Sobolev embedding theorem,
the condition a” € L ([0,T]; H*), &> |n/2-2|+%, in
Theorem 5.1 and further on implies a;”jﬂ € Lm([O,T];Cg) C
L ([0,T]; Looy)-

Remark 5.3.

Because ||f(-, 1)||? isintegrable on (0, T'] by the

n/Z -2

theorem condition and ||(Ku®)(-, t)||2 is integrable on (0, o) by

n/2
the inequality (4.5), we conclude that due to the absolute con-
tinuity of the Lebesgue integrals, for arbitrarily large data f e
L,(0,T; H" /2= 2) and u’ € H"/2 ! there exists T, > 0 such that

condition (5 8) holds.

Estimating the integrand in the second integral in (5.8) according
to (4.5), we arrive at the following assertion allowing an explicit
estimate of T, for arbitrarily large data if f € L_ (0, T; H"/ 2,

Corollary 5.4. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Letn > 2and T > 0. Let
a‘.’.ﬂ € Lo(10,T]; H]™), & > |n/2 = 2| + 5, and the relaxed ellip-
ticity condition (1.2) hold. Letf € L (0, T H"/2 2)omdu € H"/2
Then, there exist constants A, A,, A; > 0 that are independent of
f and u° but may depend on T, n, |A||, and C,, such thatif T, €
(0, T satisfies the inequality

L, (0,T;H}

2 012 012
[ufn s (Aluu [ A2> o ||H;,z] < A,

(5.16)

then there exists a Serrin-type solution w € L_(0,T,;H "/2 1) A
L,(O,T, ;/ ’ ) of the anisotropic Navier-Stokes mltlal value

problem. This solution satisfies items (ii)—(iv) in Theorem 5.1.

Estimating the second integral in (5.8) according to (4.8), we
arrive at the following assertion.

Corollary 5.5. (Existence of Serrin-type solution for arbi-
trary time but small data). ~Let n>2and T > 0. Let a!! €
Lo((0,T1; H{™), &> |n/2~2|+ 3, and the relaxed ellipticity
condition (1.2) hold. Let f € L,(0,T; H"/ 2y andw® € 1y
Then, there exist constants A,, A,, Ay > 0 that are independent of
f and u® but may depend on T, n, ||A||, and C,, such that if fand
u’ satisfy the inequality

2 012 012
” ”L (OTH"/Z z) (Al”u ||Hn/2—l +A2> ||ll ”Hn/Z—l < A3, (517)
# #

then there exists a Serrin-type solution we L_(0,T; H"/ > 1) N

L,(0,T; H"/ > ) of the anisotropic Navier—Stokes initial value
problem. Thls solution satisfies items (ii)-(iv) in Theorem 5.1 with
T,=T.
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5.3 | Spatial Regularity of Serrin-Type Solutions
for Variable Anisotropic Viscosity Coefficients

Theorem 5.6. (Spatial regularity of Serrin-type solution
for arbitrarily large data). Letn>2r>n/2—1,andT > 0.
Let ) € L (10, T]; HI™), 6 > &+ max{|r—1|,|n/2 - 2|}, and
the relaxed ellipticity condition (1.2) hold. Let f € L,(0, T;H;_l)
andu® e H;G, while £, u°, and T, € (0, T] satisfy inequality (5.8)
from Theorem 5.1.

Then, the Serrin-type solution wu of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) belongs
o LoOT:H,)nL,0T;H, ). In additon, w e

L0 T ), w e COQ0,T,1 ), lim,_ [u(-,1) - Wy, =0,
and p € L,(0,T,; Hy).

Proof. The existence of the Serrin-type solution ue
L (O,T, "/2 1) N L,(0,T, ;/TZ) is proved in Theorem 5.1(i),
and we w111 prove that 1t has a higher smoothness. We will
employ the same Galerkin approximation used in Section 5.1
and in the proof of Theorem 5.1(i).

Step a. Letusestimate the last termin (5.7) for thecasen/2 — 1 <
r < n/2. By (4.27), we obtain from (5.7),

+7 C o, ||

L, 3 2 <

lch( O,UIAIHMF c? I, ||2,1/2>||u ||2 +12CA||fIIHm
(5.18)

implying

d
L, |2

H, —

12%( O,UI/-\IHMF c,lu, ||2n/2>||11 1% +12CA||fIIH,1
(5.19)

By Gronwall’s inequality (6.22), we obtain from
(5.19) that

2
”u ”L O.T,H, )SeXp |:12CA<C0rD- *”IA|H““F”L ©(0.T,)

c: lu,l?
Com L,(0.T,:H}*)

x [||um<-,0)||2; F 2GR o |-

(5.20)
We have ||um(~,0)||H;$||u°||H; and by (5.14),
sequence is bounded. Then, (5.20)
is bounded as

Il LO.TH?)

implies that the sequence |u,, ||i JOTHL)

well. Integrating (5.18), we conclude that

2 2
”u ”LZ(OT H;H) <438C <C0r6T |||A|H"*’l F“L 0.1
2 2 2 (5.21)
gl )nu [

+4C, [, (Ol +4SCIIAE o

Inequalities (5.20) and (5.21) mean that the sequences

.o ooy @and {|lw,ll, N
(0T, Hy ) I = O, 1) I m=1
o 20 I (5.02)

are bounded for n/2 -1 <r <n/2.

Step b. Let now r = n/2. By (4.45), we obtain from (5.7),

d 1
E”um”Hn/z + - C lllu ||2u/z+1 <

2 2
12%( AL+ C2 W,z)uu 17

2
+ IZCA ”f”H;/z—l ’

(5.23)
implying
d
E”uml /2 <12C/\< OrU|A|H0+1F Cfm”ll ” n/Z+1/2>
2 2
X ||11,,1||H;/Z + 12CAIIfIIH;/z_l-
(5.24)
By Gronwall’s inequality (6.22), we obtain from
(5.24) that
2
10l gy, < 5P [12C4(C LA g 1o
2 2
Ol HWZ)]
10t O+ 12Ca N 1)]
(5.25)

We have |[u,(-,0)ly < [0’z and by (5.22), the
# #
sequence [lu,|l, JOT, ) is bounded as well. Then,

is also

(5.25) implies that the sequence [|u,,||? 2

L (0T H
bounded. Integrating (5.23), we conclude that

n/Z

< 48¢? (c TIIIA] o

2 2
lla,, I o, < FlL o)

L,0.T,:H,**") 0.,

2 2
F O )n

2 2 2
+4C 10, O+ 4BCLIE

2
mll

LT,

)
=N <C<oo.
(5.26)

Inequalities (5.25) and (5.26) mean that the sequences

{”um“Lm(O,T*;H;U)} and{”u ”LZ(OT H )}m 1

(5.27)
are bounded for r = n/2.

Stepc. Let now kn/2 <r < (k+1n/2,k=1,2,3, ...
we obtain from (5.7),

By (4.51),

1

d 2 -1
E”umlH; + = ”u ||Hr+1
<126, (G, AR + €2, I ),
#
+12C4 161, ..

(5.28)
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implying

2, |2 c,
de " mIHG

+12C, 1l -
#

(5.29)
By Gronwall’s inequality (6.22), we obtain from

(5.29) that

—2
2 2
Il gz ) < 0P [12Ca(Copu TLllAL £IE_o,

2 2
+C, LZ(O.T*QH;)>]

2 2
x [ 11, L Ol +12Ca 12 o |-

(5.30)
where [[u,, (-, 0)llg, < 0]l
If k=1, then the sequence ||u, |l o7, .5 in (5.30) is
bounded due to (5.22) and (5.27). Then, (5.30) implies
that the sequence [lu,,||? . _ is bounded as well.
L (O.T,:H,)
Integrating (5.28), we also conclude that for k =1,

—2
2 2 . 2
112 ey < 48CE(Co s TlA g o1,

2 2 2
HC2 I oy Il

2 2 2
+4C, I, (Ol +48CIIER () o

knj2 < r < (k + 1)n/2.
(5.31)

Inequalities (5.30) and (5.31) mean that for k = 1, the
sequences

{“um”Lm(O,T*;H;ﬁ)}mzl and {||um||L2(0,T*;H;:1>}m:1 (532)
are bounded for kn/2 < r < (k + 1)n/2.

If we assume that properties (5.32) hold for some inte-
ger k > 1, then by the similar argument, properties (5.32)
hold with k replaced by k + 1, and thus, by induction,
they hold for any integer k. Hence, collecting properties
(5.22), (5.27), and (5.32), we conclude that the sequences

{ ”um ”Lm(O,T*;H;U) }m=1 and { ||um ” LZ(OvT*§H;;1) }m=l (533)
are bounded for n/2 -1 < r.

Properties (5.33) imply that there exists a subsequence
of {u,,} converging weakly in L,(0,T,; Hgl) and weakly
starin L, (0,7, H, )toafunctionu’ € L,(0,T,; H;l) U
L (0,T,; H;ﬂ). Then, the subsequence converges to
u’ also weakly in L,(0, T*;Hig) and weakly star in
L (0,T,; Hzg). Because {u,,} is the subsequence of the

sequence that converges weakly in L, (0, T;H;(J and

weakly starin L (0,T; H§6> to the weak solution, u, of

problem (2.1-2.3) on [0,7,], we conclude thatu = u’ €
it

Ly(0,T,;H, )UL,(0,T,;H, ), foranyr > n/2-1,and
we thus finished proving that

ue L (0,T,;H, )N L,0,T,;H, ). (5.34)

2 2 2 2
<120, (Cy AR, + €2l I ), 1

Step d. Estimate (4.59) and inclusion (5.34) imply that (u - V)u €
L,(0,T,;H; ™). By (1.1) and (1.3), we have

2 2
I12all, s < llaf Eq@)IEy

< IAl]? [l fora.e.r € (0,7),

HI'LF H!
and thus,
2 2 2
< [|A _
||9u||L2(O’T*;H;_1) < ”Lw(o,T*;H;’”),F”u”LZ(O,T*;H;“)’
that is, Rfue LZ(O,T*;H;_I). We also have

fe L,0,T;H, ). Thus, F defined by (2.8)
belongs to L,(0,T; H;_l). Then, (2.9) implies that
u’ € L,(0,T,:H, "), and because u € L,(0,T,; H,!"), we
obtain by Theorem 6.8 that u € C°([0,T,]; H, ), which
also means that ||u(-, 1) — u0||H;,, —0ast — 0.

To prove the theorem claim about the associated pressure
p, we remark that p satisfies (2.10). By Lemma 6.5 for gra-
dient, with s = r, Equation (2.10) has a unique solution p
in L,(0,T,; Hy). o

As in Corollaries 5.4 and 5.5, condition (5.8) in Theorem 5.6
can be replaced by simpler conditions for particular cases, which
leads to the following two assertions.

Corollary 5.7. (Serrin-type solution for arbitrarily large
data but small time or vice versa). Letn>2andT > 0. Let
af;.ﬂ e L([o, T];Hf“), 6> |r—1|+ g, and the relaxed elliptic-
ity condition (1.2) hold. Let f € L,(0,T;H, ') n L (0, T; 1))
andu’ € H, n H%z, r>n/2—1 Let T, € (0,T) satisfy inequal-
ity (5.16) in Corollary 5.4.

Then, the Serrin-type solution w of the anisotropic
Navier-Stokes initial value problem (2.1-2.3) belongs
to  Lo0,T:H,)nL,0T;H, ). In additon, v e
L,(0,T,;H,. 1), w € C°[0, T, 1 Hj,), Tim,_ fluC, 1) =l =0,
and p € L,(0,T,; H).

Corollary 5.8. (Serrin-type solution for arbitrary time
but small data). Let n>2, r>n/2-1, and T > 0. Let
af;ﬂ € L ([0, T, HJ™), 6 > [r—1] + 5, and the relaxed ellipticity
condition (1.2) hold. Let the data f € L,(0, T} H;fl) andu’ € H,
satisfy inequality (5.17) in Corollary 5.5.

Then, the Serrin-type solution wu of the anisotropic
Navier—Stokes initial value problem (2.1-2.3) belongs to
Lo(0,T;H, )N L,(0,T; H,'"). In addition, w' € L,(0,T;H,"),
u e C°(0,T]: H,), lim,_ [u¢,0)—wllyy, =0, and pe L,

o
(0,T; H,).

Theorem 5.6 leads also to the following infinite regularity
assertion.

Corollary 5.9. LetT >0andn> 2. Leta!! € C*([0,T];C)
and the relaxed ellipticity condition (1.2) hold. Letf € L,(0,T’; C;°)
and u® € C,, while f, u’, and T, € (0, T satisfy inequality (5.8)
from Theorem 5.1.
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Then, the Serrin-type solution u of the anisotropic Navier-Stokes
initial value problem (2.1-2.3) is such that u € C°([0,T.,]; C;Z),
u' € L,0,T,:C;), and p € L,(0,T,: C).

Proof. Taking into account that C; =()sH,,,
Theorem 5.6 implies that u € L (0,7,;H, )N L,(0, T, H,),
w € L,0,T,;H,"), peL,y0T;H,), VreR. Hence,

u e C([0,7,]1;C, ), 0 € L,(0,T,;C;)and p € L,(0,T,;C;). O

5.4 | Spatial-Temporal Regularity
of Serrin-Type Solutions for Variable Anisotropic
Viscosity Coefficients

Theorem 5.10. LetT >0andn> 2. Letr>n/2—1if n> 3,
while r > n/2—1if n=2. Let a;’f € L, ([0,TI; HI*Y), 6 > |r—
1 + g, and the relaxed ellipticity condition (1.2) hold. Let f e
Lw(O,T;H:z) N LZ(O,T;H;l) and u° € H, , while f, u’, and
T, € (0, T1] satisfy inequality (5.8) from Theorem 5.1.

Then, the Serrin-type solution u of the anisotropic Navier—-Stokes
initial value problem (2.1-2.3) is such that v’ € L (0, T,; H;;z) U
Ly(0.T,: ), while p € L, (0, T.; Hy )0 Ly(0, T, H).

Proof. By Theorems 5.1 and 5.6, we have the inclusions u €
L, (0,T,:H, ), u’ € L,(0,T,;H, "), and p € L,(0,T,; H}). Then,
we only need to prove the inclusions v’ € L_(0,T,; H;;z) and
pELLO,T,;H, ™.

As in the proof of Theorem 5.10, we arrive at estimate (4.60).

By (1.1), (1.3), and multiplication Theorem 6.1(a), we have

“211”1-1;’2 < ”azﬂ Em(u)”(H;l)m

< C*(r - 1’ ¢+ 1’ n)“A”HgH,F”u“H;’
where we took into account thaté + 1 > n/2and 6 + 1 > r. Thus,
||Qu”Lm(0,T,;H;'2) <C(r—16+ Ln)“A”L&(o,T*;H;'“),F”u”Lw(o,T*;H;),

thatis, Qu € L_(0,T,; H;_z). We also have f € L (0,T; H;_Z).

Then, (2.9) implies that w’' € L(0,7,;H] %), while (2.10)
and Lemma 6.5 for gradient, with s =r—1, imply that p e
L (0, T, H} ). o
To simplify the following two assertions we assume there that
the viscosity coefficients are infinitely smooth it time and in the
space coordinates. This smoothness condition can be relaxed if
we instead assume that all the norms of these coefficients encoun-

tered in the proof are bounded.

Theorem 5.11. Let T >0 and n>2. Let r>n/2—1. Let
a;.’;.ﬂ € C®([0,T]; C°) and the relaxed ellipticity condition (1.2)
hold. Let k € [1,r + 1) be an integer. Let e L.(0,T,; H;_Z_ZI) N
LZ(O,T;H;A*ZI), 1=0,1, ... ,k—1, and u° € H, , while £, u’,

and T, € (0, T] satisfy inequality (5.8) from Theorem 5.1.

Then, the Serrin-type solution wu of the anisotropic
Navier—Stokes initial value problem (2.1-2.3) is such that
u® € L0, T, H, ) n L0, T, Hy ™), 1=0,....k while
0 € L. T, Hy )N L0, T, Hy ) 1=0, ... k1.

Proof.  The proof coincide with the proof of the corresponding
constant-coefficient Theorem (4.10), except the proof of inclusion

(4.68) in Step 2, that for the variable coefficients is replaced by the
following argument.

k-1
oF1gu = Zcﬁ_lv [ACIDE@D)]. (5.35)
1=0

By (1.1), (1.3), and Theorem 6.1(a), we have

IV - [ACT D E@O)]||
< ”A(k—l—l)[(u(l))”(H;Hfzk)y,x,,
k—=1-1 !
< ||A( )[E(u( ))“(H*;fl—zl)nx,,
k—1-1 I
< CllA! )||H::1,FII[E(11( ))”(H;-I-Z’)"Xn
k=11 !
< C*IIHA( )”H;’“’F”u()”H;'ZI’

where &;,; > max{n/2,21+1-r}, C, =C,(r—1-21,6,,n).
Thus,

A K=1=D =y (D
IV - A E(u )]”Lw(o,T*;H;‘_,Zk)

k—=1-1 !
<Cun ”A( )”Lm(O,T*;Hf“),F “u( )“Lw(O,T*;H;—ZI),

that is, due to (4.61),

Lo, T;H, ™), 1=0, .. k-1

V. [A(k‘l")[E(u(’))] c

On the other hand, by (1.1), (1.3), and Theorem 6.1(a), we have

IV - [A®TDE@D)]|| oz
#o
< ||A(k_l_’)[E(u(’))ll(H;n—Zk)nx,,
< ||/w—l-’){E(u<’>)||(H;4,W
(k=1-1)) o
<CpllA ||H;’!2,F”[E(u )”(H;*Zl)m
k—1-1 1
< CxIleA( )”H;D’Fllu()”H;“’z”
where 6,, > max{n/2,2] —r}, C,, = C,(r — 21,6, n). Thus,
(k=1=1) U]
”V : [A |E(u )]”LW(O,TWH;ZI_M)

k—1-1 !
S C*IZ ||A( ) ”Leo(O,T*;H:/z ).F ”u( ) ” LZ(O,T*;H;H’Z’)y

that is, due to (4.61), V- [A*1I-DE@®)] €
L0, T;H, ™), 1=0, ... k-1 Hence, by (535),

of'Qu e L0, T,;H; ) n L,(0,T,; H;'~%). (5.36)

]

Corollary5.12. Let T>0 and n>2 Let da7¢€
C*([0,T];C) and the relaxed ellipticity condition (1.2) hold.
Let f€ C*(0,T:C;), and u® € C,,, while f, u’, and T, € (0,T]

satisfy inequality (5.8) from Theorem 5.1.
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Then, the Serrin-type solution u of the anisotropic Navier-Stokes
initial value problem (2.1-2.3) is such thatu € C*(0,T,; C;‘;), pE
C®(0,T,;Cy).

Proof.  Takinginto account that C;; = (), ¢ H, Theorem 5.11
1mphes that for any integer k > O u® e L (0,T,;H, 2k) n
LO,T r+1 %y e 0T H 1- 2k)nL2(O r Zk)
for anyr S IR. Hence,u € C*(0,7T,; #5),p € C*(0,T,;C, ). O

5.5 | Regularity of Two-Dimensional Weak
Solution for Variable Anisotropic Viscosity
Coefficients

Here, we provide a counterpart of Section 4.6 generalized to vari-
able viscosity coefficients.

Theorem 5.13. (Spatial regularity of solution for arbi-
trarily large data). Letn=2, r>0, and T > 0. Let af’j” €
Lo ([0,T]; HZ*Y), & > 1+ max{|r — 1|, 1}, and the relaxed elliptic-
ity condition (1.2) hold. Let f € L,(0,T; H;_l) andu’ € H,

Then, the solution w of the anisotropic Navier—Stokes initial
value problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type
and belongs to L (0,T; H ) N Ly0,T; H;H) In addition, u' €

L,(0,T; H ) ueC’0,T]; H S lim,_g Jlu(, 1) — OHHLU =0,

andp € LZ(O, s #)-

Proof. The proof coincides word for word with the proof of
Theorem 5.6 if we take there n =2 while replacing T, by T
and the reference to (5.14) for the boundedness of the sequence

la,Il, LOT,H) for n = 2 by the reference to the corresponding

1nequa11ty
2 012 2
[EE, 4cA\<||u I, +4CaIEI ))
obtained as inequality (59) in our paper [19]. O

The following assertion is proved similar to Corollary 5.9.
Corollary5.14. Let T>0 and n=2. Let a’¢
C*([0,T]; Cy°) and the relaxed ellipticity condition (1.2) hold. Let
fe L,0,T:C;)andu’ € C;,

Then, the solution u of the anisotropic Navier—- Stokes initial value

problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type

and is such that u € C°([0,T1;C;.), w' € Ly(0,T;C;), and p €
L,(0,T; C ).

The next three assertions on spatial-temporal regularity for n =
2 are the corresponding counterparts of Theorems 5.10 and 5.11
and Corollary 5.12 and are proved in a similar way after replacing
there T, by T.

Theorem 5.15. Let T >0, n>2 and r>0. Let
a;’jﬂ € L ([0,T]; H'"), & > |r — 1| + 1, and the relaxed ellipticity
condition (1.2) hold. Let f € L.(0,T;H, *)n L,(0,T; H, ') and
u’ e H;U

Then, the solution w of the anisotropic Navier—Stokes initial
value problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin
type and is such that ' € L_(0,T; H;;Z) U LZ(O,T;H;:), pe
Ly (0,T; Hyy )0 Ly(0,T; HY).

Theorem 5.16. Let T >0, n=2 and r>0. Let
af;ﬂ €C*([0,T];C°) and the relaxed ellipticity condition
(1.2) hold. Let kel[l,r+1) be an integer. Let e
L (OTH’ZZI)nLZ(OTH'IZI), 1=01,....k—1, and
u e H 4o

Then, the solution u of the anisotropic Navier—Stokes initial value
problem (2.1-2.3) obtained i m Theorem 2.4 is of Serrin type and is
such that u® € L (0,T;H,, )N LyO, T;H, ™), 1=0, ... ,k;
p € L,O,T; H} - 2’)an(o T H, ) 1=0, ... k-1
Corollary5.17. Let T>0 and n=2 Let a€
C*([0,T]; C°) and the relaxed ellipticity condition (1.2) hold Let
feCc>0,T, C ) and u® ECG

Then, the solution u of the anisotropic Navier- Stokes initial value
problem (2.1-2.3) obtained in Theorem 2.4 is of Serrin type and is
such thatu € C*(0,T;C;), p € C®(0,T; ;).

6 | Auxiliary Results

6.1 | Advection Term Properties

The divergence theorem and periodicity imply the following
identity for any v,,v,,v; € C;°.

(V) - VIV, V3)y = /v. (v, (v, - v3))dx
T
6.1)

—((V-v)V3 + (v, - VIV3, Vy )¢

=—((vy - V)stV2>v (v 'V1)V3’V2>1r-

Hence, for any v, v, € C?,

1,,.
((v; - VIV, Vy)p —5<d1V vy, |v2|2>T.

6.2)

1
= _E«V VIV Vo) =
In view of (6.1), we obtain the identity

(v - VIV, Vi) = —((v; - VIV3, V) Vv, €CP, vy, v3 €CYF

(6.3)

#o

and hence, the following well-known formula for any v, € C;,
v, € CY,

((vy - V)V, vy =0. (6.4)

Equations (6.3) and (6.4) evidently hold also for v;, v,, and v,
from the more general spaces, for which the dual products in (6.3)
and (6.4) are bounded and in which C;° and C;°, respectively, are
densely embedded.

23 of 28

351801 SUOWILLIOD) SAIIE.D) 3]0 ddke 8L Aq PueA0B a2 31 O ‘88N JO S3|NJ 10j Azl aUIIUO 43|\ UO (SUO 1IPUOD-PUE-SULSIWIOD"AB| 1M LRI UIIUO//'ScL) SUONIPLIOD PUE SWLS 13U 385 *[5202/90/80] U ARiq178UIIUO A1 59 L Ad TZ60T BLIW/Z00T OT/I0P/LI0Y A3 |1m ARe.q1pu U0//SAIY WOJ) PBPROIUMOQ ‘0 ‘927 T660T



6.2 | Some Point-Wise Multiplication Results

Let us accommodate to the periodic function spaces in R", n > 1,
a particular case of a much more general Theorem 1 in Section
4.6.1 of [31] about point-wise products of functions/distributions.

Theorem 6.1. Assume n > 1, s; <s,, and s; + s, > 0. Then,
there exists a constant C,(s;, s,,n) > 0 such that for any f, € Héz
and f, € H;',

a. f,-f, € H,'and
||f1 'fz”H;1 < C*(Sl’sz’”)“fl”H;l ||f2||H;2
if s, >n/2;

b. fi-f, € H " and
I1f7 - fz”H;l“r"/Z < Cu(sy, 8, ")”fl”H;l ||fz||H,j2
if s, <nj/2.

Proof. Ttems (a) and (b) follow, respectively, from items (i)
and (iii) of [31, Theorem 1 in Section 4.6.1] when we take
into account the norm equivalence in the standard and periodic
Sobolev spaces. m]

Let
@xv)@) = Y umuE-n), E€Z",

nezr
be the convolution in Z”". We will need the following Young’s
inequality for discrete convolution of sequences in Z". For other
choices of parameters, see, for example, [32, p. 316] and refer-

ences therein.

Lemma6.2. Let neN, 1 <q < oco. Then, the convolution of
sequences u € ¢,(Z") and v € ¢ (Z") belongs to ¢ ,(Z") and

llux vllz, 20y < Nullg,@znllolle iz (6.5)

Proof. By the triangle inequality, we obtain

[l % U||fq(zn) = 2 u(mu(- —n)
nezn fq
< Y llutmot- =,
nez"
= Y lutmllivll,,
nezn

= ||u||f1(zn)||v||fq(Z”)'
O

Theorem 6.3. Assumen >1.Lets,0 € R,w € Hj, g € HJ',

&>max{|s|,|s—e+1|}+§=|s—‘%1|+|%|+§. Then,
6 0 —0+1
Ay(gw) —gAhyw € H, and

0 0 Val
||/\#(gw) - gA#w”H;’“' < Cs,9,&|g|ﬂj+‘ “w”H;‘s

where the constant C
ons, 0,and 6.

does not depend on g or w but may depend

5,0,6

Proof. By (1.6), we have

K(&) 1= F[Al(gw) — gAJwl(&)
= 2n) (A + [EDY2E * D)) — (8 * FrlAJw])(&)
= Q) D 1A+ [ = 1+ |& = a2 18D - m)

iz
= 2n)* zz‘, (- &+n- (& —mIfy& & — MEmMDE — )
nezr
- 27”’1;”@@) C(E+E—M & E - mRE - ).
Here,
FEE—m = 2 IS = (Lt e = )P

&> = 1€ —nl?
_d@®-d¢-n
@) —-0E-m’
and we took into account that |£]> — |E— > =n-E+n-(E—1n).

Because the inequality |c1ﬁ - cfl <1Blle; — c2|(cf_1 + czﬂ_l) holds
for any ¢;, ¢, > 0, f € R, we have

l0°71(&) + 0”& —m)
lo(©) + o(€ — )|

[fo(&. & —m| <
Hence,

27|(E+E—m/fp&.E—m)l

< 2z(|81 + 18 = 1Dl fo(8, & = m)

1S1+ 18 —ml

< 27101[e"' (&) + 6" (¢ — )] o0& + o0& —1)

<101[e" & + "€ =),

for any 6 € R. Then,

IK@I <101 Y. [0"7'(©) + 0”& — )] IVemi(& — m)|

nez"

=101 Y, [ @1 VemiE - ] +7eme’ " ¢ — mid€ — |

nezr
= 101 [0 @1Vl * |1} + (178 % 10" @1} (©)].
Taking into account Petree’s inequality

Hlsl/2
SN

@< Slme'E-mV Enez, Vs eR,

and the discrete Young’s inequality (6.5) for convolutions with
g = 2, we obtain

1A (gw) = gAguwll ot = [l0”"* K|,

< 101" (19l % 11} + 0™+ {1Vl % o1},
2

Isl/2
< 2200101551 % 1001 + 10"1T51 + o'
(2m)ls! ?,
2ISI/2|Q| P _ Py R
< =7 (1" Tilly, + 1105711 Tl ) llo* Bl
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By the Schwarz inequality for any 6 > |s| + n/2, we have

e Velle, = Y o(&)IVe@)

Eezn
1/2 1/2
< [ > 026(5)@(5)?] [ > 02'3-2'3(5)] :
Eezr Eezr

(6.6)

Similarly, for any 6 > |s — 6 + 1| + n/2, we have

1/2 1/2
lloh = 11¥gll,, < [Z ozf"(@w}(z:)ﬁ} [Z oz's-"“'*f"(@] :

Eezn Eezn
(6.7)
Then, for 6 > 6, := max{|s| + g,ls—€+1| + g} = ’s— 9%| +
6-1 n .
‘T| + 35, we obtain
IAG(g10) = gAGwll o1 < C 511V gz 1011
< Coo518l e 101l
where
Isl/2 12
— 2l o
Cips i= 10] [202"0 " 2"(5)] ,
2r
Eezn
and (1.9) is taken into account. O
6.3 | Spectrum of the Periodic Bessel-Potential

Operator

In this section, we assume that vector functions/distributions u
are generally complex valued and the Sobolev spaces HS#J are
complex. Let us recall the definition

(A, w)®) := Y 0@ U™ VueH,, ssreR (68)
eez"

of the continuous periodic Bessel-potential operator A, : H;g -

H,', r € R;see (1.6), (1.8), and (1.11).

The following assertion is given in [19, Theorem 4, Remark 2].
Theorem 6.4. Letr € R, r #0.

. . 0 .

i. Then, the operator A, in H, possesses a (nonstrictly)
monotone sequence of real eigenvalues /15.’) =4 and a real
orthonormal sequence of associated eigenfunctions w; such

that
Ayw; = /l;wj, iz1, 4;>0, (6.9)
Aj = +00, j = 400, (6.10)
w, eCl. (Wuwyp =8, Vj.k>0. (611)

ii. Moreover, the sequence {w;} is an orthonormal basis in
<0 .
H, , thatis,
{0}

u= Z(u,wj)ij, (6.12)
i=1

. .0 0
where the series converges in H, _foranyu € H,, .

ili. In addition, the sequence {w;,} is also an orthogonal basis
in H, with

W, W = A A6, Vj.k>0,

and for any u € H,_ series (6.12) converges also in H,,_,
that is, the sequence of partial sums

m
Pu = Z(u,w,)rwj (6.13)
j=1

converges tou in H;G as m — oo. The operator P, defined
by (6.13) is for any r € R the orthogonal projector operator
Jfrom Hy, to Span{w,, ... ,w,,}.

6.4 | Isomorphism of Divergence and Gradient
Operators in Periodic Spaces

The following assertion proved in [19, Lemma 2] provides
for arbitrary s € R and dimension n > 2 the periodic version
of Bogovskii/deRham-type results well known for nonperiodic
domains and particular values of s; see, for example, [33, 34] and
references therein.

Lemma 6.5. Lets e R andn > 2. The following operators are
isomorphisms,

div : H,' - A, (6.14)
grad : H, - H, " (6.15)

6.5 | Some Functional Analysis Results

Let us provide the Sobolev embedding theorem that can be con-
sidered, for example, as a particular case of [31, Section 2.2.4,
Corollary 2] adapted to the periodic spaces.

Theorem 6.6. Let n € N be the dimension, q, < q; < oo and

g, > 1. The periodic Bessel-potential space H ;qo is continuously
embedded in Ly, ifandonlyif = > 11

1 n qo q1
The following version of the Sobolev interpolation inequal-
ity without a multiplicative constant, generalized also to
any real (including negative) smoothness indices, on periodic
Bessel-potential spaces was given in [19, Theorem 5].

Theorem 6.7. Let s, sy, s,, 0, 0, be real numbers such that
0<0,,6,<1,6,+0,=1and s =0,s, +6,s,. Then, forany g €
s s
H} nH},
91 92
el < ||g||H;1 ||g||H;-z- (6.16)

Theorem 3.1 and Remark 3.2 in Chapter 1 of [27] imply the fol-
lowing assertion.
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Theorem 6.8. Let X and Y be separable Hilbert spaces and
X C Y with continuous injection. Let u € W(0,T; X,Y). Then, u
almost everywhere on [0, T] equals to a function ii € C°([0,T1; Z),
where Z =[X,Y], R the intermediate space. Moreover, the
trace u(0) € Z is well defined as the corresponding value of i €
C%[0,T); Z)att =0.

The following assertion was proved in [19, Lemma 4].

Lemma6.9. Lets,s' €R, s’ <s andue€ W0,T; H;, HY)
be real valued.

i. Then,

Ollull? o = 2N U Auyy = 2(AS W )y (6.17)

#

fora.e.t € (0,T) and also in the distribution sense on t €
0,T).

ii. Moreover, for any real-valued v € W(0,T; H#“",H#‘S)
andt e (0,7T],

/0 | [('(0). 0(0))y + (u(@). V' (D)) dT (6.18)

= <u(t)’ U(’))"I]' - <u(0)a U(O)>'[f

Let us now prove the first Korn inequality for the periodic Sobolev
spaces by adapting the proof available for the standard Sobolev
spaces, for example, in [35, Theorem 10.1]; compare also [20,
Theorem 2.8].

Theorem 6.10. Letve Hj, s € R. Then,

IVVIZ, e < 2NE@E e (619)

Proof. By the norm definition (1.5), we obtain

IOy = Y 0@ D IFHE@NEL

Eezn

= Y o€ VP(E)E) - Fr(EW)E)

tezn

= > 0@ Vi) (&9, +&9;) - (r) (0 + &)

tezn

= 0@ V2> (EPIVP + 1€ - 9P)

Eezn

> 2 ) 0@ are o

Eezn

_1 25-1 [ Gof2 = 1 2
= zgéf’@ IVVIE = SIVVI -

6.6 | Gronwall’s Inequalities

Gronwall’s inequality is well known and can be found, for
example, in [36, Appendix B.2.j], [7, Lemma A.24]. Here, we pro-
vide its slightly more general version valid also for arbitrary-sign
coefficients.

Lemma 6.11. Letn : [0,T] — R be an absolutely continuous
function that satisfies the differential inequality

n'(®) < pOm@) +w(@) forae te(0,T], (6.20)
where ¢ and y are real integrable functions.

a. Then,

() < e s PO [(0) + / e o ¥0dry(yds] Yt e[0,T].
’ (6.21)

b. Moreover, for nonnegative ¢ and y, (6.21) implies

n(t) < e [n0) + / w(s)ds] Ytel[0,T]. (6.22)
0

c. In particular, if n is nonnegative, while w = 0 on [0,T] and
n(0) =0, thenn =0o0n[0,T].

Proof. Multiplying (6.20) by
a(t) :=e” Jo#ar 5 0,

we obtain J
E[a(l)n(t)] < a@®y(1).

Integration gives

a(n(e) < a(O)n(0) + / a(s)w(s)ds.
0

Dividing by a(t), we arrive at

n(t) < ——[n(0) + / as)w(s)ds] V1el0.T],
a(t) 0

giving (6.21) and thus proving item (a). Items (b) and (c) follow
from (6.21). O

Let us slightly generalize and give an alternative proof of [7,
Lemma 10.3].

Lemma 6.12. Letn : [0,T] — [0, o) be an absolutely contin-
uous function that satisfies the differential inequality
7'(1) + by(t) < cyOn() + w(t), forae 1 €[0,T]; n(0)=n,

(6.23)
wherey,y > 0areintegrable real functions, while b, ¢ > 0 and n, >
0 are real constants.

If
! b
D :=ny+ / w(r)dr < — (6.24)
0 ec
then
b : 1
sup n(zr) < De < = and / y(r)ydr < =. (6.25)
0<7<T c 0 c
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Proof. By Lemma 6.11(a), inequality (6.23) and condition
(6.24) lead to

t t
a(On() + b/ a(s)y(s)ds < ny + / a(s)w(s)ds < D, (6.26)
0 0

where a(s) :=e"® >0 and Y(s) := [ y(z)dr. Inequality
(6.26) implies

t
be™YOY (1) < b / a(s)y(s)ds < D < LAV e[0,T]. (6.27)
0 ec

Let us consider the function f(Y) :=e Y'Y on the interval
0 <Y < co. One can elementary obtain that max, .y ., f(Y) is
reached at Y = 1/c¢ and equals to 1/(ec). But due to (6.27), this
maximum for =Y @Y (¢) is not reached for # € [0, T], and hence,
Y(T) < 1/¢, giving the second inequality in (6.25).

Further, (6.26) implies that

06 < L2 = De0 < pe< b wieqo T,
a(t) c

thus giving the first inequality in (6.25). O

Let us give a generalization of [7, Lemma 10.3] and of
Lemma 6.12.

Lemma 6.13. Letn : [0,T] — [0, ) be an absolutely contin-
uous function that satisfies the differential inequality

n'(t) + by(t) < [ey(t) + pOIn(®) + w (1), forae t €[0,T];
n(0) = Ho»
(6.28)
where ¢, y,y > 0 are integrable real functions, while b, c > 0 and
1o = 0 are real constants.

If
T b
D =+ / e *Oy(r)dr < —e 170D, (6.29)
0 c
where ®(s) 1= [ ¢p(z)dz, then
b T 1
sup #(r) < = and / y(r)dr < =. (6.30)
0<7<T c 0 c

Proof. By Lemma 6.11(a), inequality (6.28) and condition
(6.29) lead to

t

t
a(Hn(t) + b/ a(s)y(s)ds < ny + / a(s)p(s)ds < D, (6.31)
0 0

where a(s) 1= e~Y®=*® > 0 and Y(s) := /Osy(T)dT. Inequality
(6.31) implies

t
be ®Me= YOy (1) < b / a(s)y(s)ds < D < be1-om) vy e [0,T].
0 C

(6.32)

Let us consider the function f(Y) :=e™ Y'Y on the interval
0 <Y < co. One can elementary obtain that max, .y, f(Y) is
reached at Y = 1/¢ and equals to 1/(ec). But due to (6.32), this

maximum of e=*Y®Y (¢) is not reached for ¢ € [0, T], and hence,
Y(T) < 1/c, giving the second inequality in (6.30).

Further, (6.31) implies that

n(t) < % = DY OO0 ¢ polrem) o by, o [0,T],
a C

thus giving the first inequality in (6.30). O

Let us give a version of integral Gronwall’s inequality implied, for
example, by Theorem 1.3 and Remark 1.5 in [37].

Lemma 6.14. Let u, b, and a be measurable functions in J =
[a, f1, such that bu,ba € L,(J). Suppose that b(t) is nonnegative
a.e.on J. Suppose

t
u(t) < a(t) + / b(s)u(s)ds, fora.e.t€eJ.
Then,

u) < a(t) + / a(s)b(s) eXp(/ b(T)dT)dS, forae.r € J.
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