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Abstract—This paper investigates the novel performance 

analysis of photovoltaic (PV) installations by applying 

machine learning techniques (ML). The data used for the 

research is a mixed dataset of data from an experimental 

PV installation located at Brunel University London with 

correspondingly available weather data. Firstly, the 

analysis aims to establish various sensitivity relationships 

between PV power generation and weather conditions 

using techniques based on Random Forest ML. Secondly, 

the processing stage is implemented to assess the fitness of 

the different ML techniques through cross-validation. The 

results highlight the differing effectiveness of the applied 

approaches in achieving accurate and reliable results for 

the PV installations. The best techniques offer valuable 

insights for optimizing renewable energy usage in diverse 

environmental conditions. 

Index Terms—Generation Forecasting, Machine Learning, 

Photovoltaic Installation, Solar Irradiance 

I. INTRODUCTION

In recent years, the global energy profile has changed 
rapidly, shifting towards the higher penetration of renewable 
energy sources (RES). Among these, photovoltaic (PV) 
installations have emerged as one of the key players, 
contributing significantly to the power generation mix. 
Increasing RES penetration aligns with the efforts to address 
climate change, reaching Net Zero and transitioning towards 
sustainable energy practices. PV power generation globally 
increased by a record 270 TWh, up 26% in 2022, reaching 
almost 1 300 TWh. It demonstrated the largest absolute power 
generation growth of all renewable technologies in 2022, 
surpassing wind for the first time in history [1]. 

The development of RES, particularly PV installations, 
creates a significant challenge to the reliable and efficient 
energy supply for the existing power systems. PV are heavily 
dependent on meteorological conditions, and predicting their 
power generation is a complex and dynamic task. As solar 
power production is linked to weather patterns, accurate 
forecasting becomes essential to ensure grid stability, optimal 
resource utilization, and effective energy management. 

The rise of distributed generation in the form of residential 
PV installations also started to be a growing challenge for 

system operators. Unlike centralised power generators, 
equipped with advanced monitoring systems, individual 
households typically do not install additional weather monitors 
simultaneously with their PV installations. As a result, they 
concentrate data on their power generation, but not on the 
weather conditions. This data gap creates significant challenges 
to accurate forecasting of weather-dependent output from these 
distributed sources. The absence of real-time weather data 
complicates integrating these decentralised power resources 
into the overall power system, highlighting the need for 
innovative approaches. 

In response to these challenges, this paper investigates the 
application of machine learning (ML) models for predicting 
power generation of distributed PV installations. Using the 
capabilities of ML, we aim to enhance the accuracy and 
reliability of generation forecasts, considering the complicated 
relationships between PV power output and meteorological 
parameters. ML`s ability to consider complex patterns and 
dependencies within huge datasets makes it a promising 
candidate for dealing with volatile patterns of RES generation 
behaviour. Accordingly, this paper analyses the performance of 
different ML algorithms for obtaining a suitable model for 
accurate prediction of the PV installation, demonstrating the 
differing effectiveness of the applied approaches. 

II. DATA DESCRIPTION

A. PV installation data and general characteristics

In this study, the dataset used for analysis originates from
the power generation of an experimental PV installation 
situated on the top of the Joseph Lowe building, located at 
51.5308°N, 0.4740°W at Brunel University`s London campus. 
The PV installation consists of 22 solar panels with a total 
nominal power rating of 7.5 kilowatts peak and serves as a case 
study for the investigations as presented in this research paper. 
The PV installation is located on a flat roof and occupies an 
area of around 300 m�, 15x20 m. A photographic image of the
PV installation and related configuration diagram are 
presented in Figures 1 and 2, respectively. 

The system`s power generation data is received through 
advanced monitoring and data management tools, specifically 
the EnnexOS Data Manager M and Sunny Portal powered by 
EnnexOS [2]. The combination of this device and software 
provides both comprehensive real-time and historical insights 
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into the performance of the PV installation. The power 
generation information has 5-minute records that allow a 
detailed exploration of the PV installation power generation 
dynamics. 

 
Figure 1.  Photographic image of the PV installation located at Brunel 

University London 

Figure 2.  Configuration diagram of the PV installation located at Brunel 
University London 

By focusing on a specific PV installation with defined 
characteristics and using monitoring technologies, our research 
aims to provide insights that can be then extrapolated on 

predictive capabilities of distributed PV power generation 
models across diverse settings and installed in different 
regions. By relying on generation data from the PV installation 
located at Brunel University London, the installation`s 
characteristics become representative of an average household 
customer`s system, and the data flow is considered equivalent 
across the scenario. 

B. Weather dataset

The weather data correspondingly combined with the PV
power generation dataset was obtained through the Weather 
Query Builder of the Visual Crossing website. Visual Crossing 
is a leading platform [3] containing weather data and enterprise 
data analysis tools for researchers, business analysts, 
professionals, and academics. The platform is also accessible to 
customers or distributed PV installation stakeholders as it has 
open access, offering extensive data packages on a 
complimentary basis. The company`s Weather Data API 
facilitates access to a comprehensive range of historical weather 
information, including specialised weather measures such as 
solar radiation, degree days, and weather alerts. 

The Visual Crossing platform provides essential 
meteorological variables crucial for understanding the complex 
interplay between weather conditions and PV installation 
performance. The weather factors analysed in this paper using 
the dataset and measurements look as follows: cloud cover %, 
dew point °C, humidity %, sea level pressure mb, solar energy 
MJ/m�, solar radiation W/m�, temperature °C, the temperature
feels like °C, UV index, visibility km, wind direction degrees, 
and wind speed kph. Solar radiation measures the power at the 
instantaneous moment of the observation and solar energy 
indicates the total energy from the sun that builds up over an 
hour or day Information about all these weather factors is 
reflected on the Visual Crossing site and allows us to perform a 
comprehensive analysis defining the main influencers on the 
PV power generation. The ability to integrate such specialised 
weather measures into our analysis makes this research useful 
for diverse datasets for enhanced prediction accuracy. 

Moreover, Visual Crossing`s Weather Data API opens 
possibilities for a wide range of projects beyond the scope of 
our current study. The availability of historical weather data, 
coupled with specialised measures, makes these datasets 
suitable for applications in RES power generation forecasting, 
climate research, and other data-driven investigations. 
However, due to the platform limitations, it provides only the 
data on a daily and hourly basis. 

For the research described in this paper, the weather dataset 
comes from the platform mentioned above and uses the 
Hillingdon Borough sensor as the main location. Hillingdon 
Borough is in London, UK and represents an area of 42 square 
miles [4] which is equal to around 109 km². The weather 
tracking device for the Visual Crossing platform is set up at the 
estimated distance of 2 km from the PV installation applied for 
the research. That leads to insignificant errors in interpreting the 
weather for the PV installation located at Brunel University. 
The mapping representation of the objects located in the 
Hillingdon borough is described in Figure 3. The maps utilized 
in this study adhere to the terms outlined by the Google Maps 
service [5]. 
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Figure 3.  Representation of the PV installation and weather station 
locations 

C. Overall dataset shaping

This research dataset is blended from two primary datasets
mentioned – PV power generation and meteorological data. To 
get a balance between accessibility and computational 
efficiency and take into account the dataset`s limitations we 
aggregated these data based on an hourly period. Accordingly, 
the power generation dataset was enlarged from the 5-minute 
periods into the hourly values. 

For the scope of our analysis, we chose the data from the 
year 2022. This selection aligns our investigation with actual 
and relevant information available. By managing this data 
from 2022, our research reflects the current energy landscape, 
capturing up-to-date features in PV installation performance. 
The year-long perspective offers insights into the PV 
installation`s behaviour across the dynamic spectrum of 
seasonal changes. 

D. Dataset preprocessing

To obtain the best quality research results, preprocessing
approaches were applied to the data. Columns containing 
overall date and time details were split into more detailed 
components, specifically day, month, year, and hour. After 
that, categorical variables representing specific weather 
conditions were transformed through the application of one-
hot encoding. This technique effectively expanded categorical 
columns into binary vectors, each representing a unique 
weather category [6]. Table 1 represents the structure of the 
processed dataset.

TABLE I.  REPRESENTATION OF THE FINAL DATASET USED IN THE PAPER 

III. METHODOLOGY PROPOSED

A. Benefits of using ML for forecasting

In general ML techniques appear as a powerful tool for
tackling forecasting. Utilizing ML for RES power generation 
offers sophisticated approaches to reveal the patterns and 
relationships between the data in complex datasets. Another 
benefit of the ML models is that historical data serves as the 
foundation for them and accordingly exists a continuous 
learning cycle, where models can be updated with new data. 
As a result, using more detailed datasets or expanding the 
overall amount of data can lead to an increase in accuracy [7]. 

Applied to PV installation power generation, ML shows 
superior quality in capturing the interplay between 
environmental factors and solar power output. Unlike 
traditional methods, ML models autonomously learn from 
historical data, enabling the development of accurate and 
adaptive forecasting models. By highlighting the most 
influential weather variables ML techniques allow power 
generation operators, owners, researchers, investors, and other 
stakeholders to make informed decisions for PV installation 
work optimization, and impact solar power generation. This 
insight contributes to the development of targeted strategies for 
enhancing PV installation efficiency [8]. 

B. Boruta as a feature extraction method

Boruta is a feature selection algorithm commonly used in
ML to identify and retain the most relevant variables for 
predictive modelling. This technique uses a Random Forest 
(RF) classifier, to assess the importance of each feature. The 
Boruta involves mixing the original sample feature matrix M 
to create a shadow feature P, forming a hybrid feature set N = 
[M, P]. The mixed feature set undergoes disordering to 
eliminate feature-response variable correlations. This process 
ensures that the assessment of feature importance is unbiased 
and not influenced by the original data structure, allowing for 
a fair comparison between real and shadow features. 

An RF model is established based on the mixed feature set, 
and features are evaluated for importance using Z values. 
Features with Z values higher than ����, along with
significant bilateral equality test results, are retained, while 
those below ���� are considered unimportant and deleted,
iteratively repeated until confirmation or rejection of all 
features or reaching the maximum iteration limit [9]. 

Boruta, as a feature selection method, offers several 
advantages over other techniques like Minimum Redundancy 
Maximum Relevance (MRMR), RF, and Decision Tree. One 
of the key strengths of Boruta is its focus on all-relevant feature 
selection, unlike other methods that concentrate on finding a 
small set of predictive features, thus providing a more 
comprehensive insight into the data. It also shows robustness 
against overfitting due to its RF-based approach, which gives 
it an edge over single decision trees that can lead to overfitting. 
Boruta also can handle complex interactions and non-linear 
relations between features, a limitation for linear methods like 
MRMR [10]. 

Day Month Year Hour 

PV 

generati

on 

Tem

pera

ture 

Humidity … 

1 1 2022 0 0 12,8 92,77 … 
1 1 2022 1 0 13,1 93,14 … 

… … … … … … … … 
31 12 2022 22 0 12,1 81,8 … 
31 12 2022 23 0 12,0 81,3 … 
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C. ML models used for the research

Our research paper uses multiple ML models to
comprehensively analyse the dataset and investigate the 
accuracy and reliability of the ML techniques. The model 
selection process aimed to capture the differing effectiveness 
of algorithmic approaches, each bringing unique strengths and 
characteristics to the predictive modelling task. The set of 
models used includes Linear Models (LM), Generalized Linear 
Models (GLM), k-Nearest Neighbors (k-NN), Support Vector 
Machines (SVM) with linear, polynomial, and Radial Basis 
Function (RBF) kernels, Generalized Boosted Models (GBM), 
RF, Classification and Regression Trees (CART), Stacking. 

Investigating the models, LM provides simplicity and 
interpretability of linear relationships within the data. GLM 
extended this framework to accommodate non-linear 
relationships and heteroscedasticity in the dataset. The k-NN 
algorithm leverages the proximity of data points to make 
predictions, adapting well to local patterns [11]. 

SVM is a powerful class of models, employed with various 
kernels and widely applied to classification tasks. However, 
these models could be effectively used for forecasting 
techniques. The linear kernel represents the forecasting of 
linearly separable data, while the polynomial kernel allows for 
the exploration of non-linear decision boundaries. The RBF 
kernel enabled the SVM to capture complex relationships 
between features, enhancing its capacity to manage advanced 
datasets [12]. 

Stacking represents a combination of predictions from 
multiple models to create a meta-model that aggregates their 
strengths and compensates for individual weaknesses. This 
ensemble approach aimed to improve overall predictive 
performance and generalization by involving the 
complementary nature of different mathematical algorithms 
[13]. 

D. Methods and measurements for result assessment

Cross-validation is a technique that assesses ML model
performance by splitting the dataset into subsets for training 
and testing. K-fold cross-validation, a common approach, 
involves training the model k times on different subsets, 
ensuring robustness and reducing dependency on specific data 
subsets. This method provides a reliable estimate of the 
model`s performance on unseen data, aiding in identifying 
issues like overfitting or underfitting. 

For assessing the models representing PV installation 
power generation, Root Mean Square Error (RMSE) [14] and 
R-squared (R²) are the metrics that play important roles in
evaluating the accuracy and reliability of predictive models.

RMSE is a value describing the average difference of the 
errors between predicted and observed values. It calculates the 
square root of the average squared differences between 
predicted and actual values. In the context of power generation 
prediction, RMSE provides a clear and interpretable 
representation of the model`s predictive performance. A lower 
RMSE value signals that the model`s predictions are closer to 
the observed values, indicating better accuracy [15]. The 
mathematical description of the RMSE is located further: 

��	
 �  
∑ ���� � ����/ℎ��������  (1)

where ���  is modelled value, ��is the real value, h, in turn, is the
number of forecasting steps ahead and T is the time step [14]. 

R² is a statistical measure that indicates a perfect fit [16]. 
R² is valuable for understanding how well the model captures 
the underlying patterns. The values of R² which are close to 1 
represent the better-quality models. However, in certain 
situations, especially when the model has a poor fit to the data, 
R² can turn negative. The mathematical representation of the 
R² can be found further: 

R� � 1 � ���
��� (2)

where �		 is the sum of residual squares and  		 is the total
sum of squares. 

E. Research algorithm used for this paper

The investigation algorithm used for this paper is
structured as a step-by-step process and shown in Figure 4. It 
runs from the collection of both historically distributed PV 
installation power generation data and relevant weather data. 
The subsequent integration of this dataset allows the 
production of analysis of the weather impact on energy 
generation, forming the base for applying the ML models and 
their validation. 

The overall algorithm is constructed using a flowchart and 
follows general approaches to building structured algorithms. 

Figure 4.  Algorithm used for the investigations in this paper 

IV. REVIEW OF THE RESEARCH PAPERS ON SIMILAR TOPIC

This chapter is dedicated to the review of current research
publications in the field of ML applied to forecasting PV 
installation power generation to show the topicality of this 
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research. The authors investigated the recent papers exploring 
the Scopus database using the ‘ML’, ‘forecasting’ and ‘PV 
power generation’ keywords. 

Accordingly, paper [17] explores the influence of Artificial 
Intelligence and specifically ML in facing various aspects of 
solar systems. This paper focuses on different applications to 
study the performance of state-of-the-art ML models. The 
paper discusses diverse ML applications in PV installation 
systems, covering topics from generation profile and anomaly 
detection to PV installation systems combined with storage, 
offering a comprehensive overview of the field`s challenges. 

Authors in the paper [18] provide a review of recent 
advancements in PV installation power generation forecasting, 
with a specific focus on the application of ML techniques. 
They confirm the crucial role of accurate PV power generation 
forecasting for optimal grid management. Their study covers 
both direct and indirect forecasting pathways, incorporating 
solar irradiance forecast models, plane of array irradiance 
estimation models, and PV installation performance models. 
The review highlights the effectiveness of ML methods, 
particularly deep neural networks and ensemble or hybrid 
models, in outperforming traditional approaches for short-term 
PV installation power generation forecasting, emphasizing the 
significance of intelligent optimization and data preparation 
techniques for enhanced accuracy. 

Paper [19] investigates the correlation between various 
input parameters and PV power generation through the 
application of ML models, specifically SVM and Gaussian 
process regression. The input parameters, encompassing solar 
PV installation temperature, ambient temperature, solar flux, 
time of day, and relative humidity, were used to predict solar 
PV power generation. 

In conclusion, the findings of this chapter highlight and 
confirm the significance and wideness of using ML for PV 
installation power generation and closely related fields. 

V. EMPIRICAL RESULTS

Applying the Boruta feature selection method determines 
the influence of weather factors on PV installation power 
generation. Figure 5 reflects the obtained results. The key 
factors influencing generation are the hour of the day, solar 
radiation, cloud cover, solar energy, UV index and the month 
of the year. Consistent with earlier assumptions in this paper, 
solar radiation is confirmed as one of the critical factors 
directly influencing the power generation of the PV installation 
applied for this study. 

 
Figure 5.  Importance of the factors influencing the power generation of the 

PV installation 

After identifying these key factors, we constructed ML 
models accordingly. Further, an evaluation framework using 
10-fold cross-validation was used for the ML models
assessment. The results of the calculations are presented in
Figure 6. Models Stacking represents the calculation results for
the bootstrapping of the RF, k-NN, GBM and CART models.

Figure 6.  Performance of the ML models used for the investigations 

The analysis includes the models previously discussed. 
Accordingly, the performance of these models can be split into 
3 groups with different effectiveness. First as presented in 
Figure 6 and highlighted green on the graph, provide the best 
results for forecasting, and include models stacking, k-NN, RF 
and CART. The results reveal that stacking models, a 
combination of different models, exhibited the most promising 
performance. This stacking approach includes the strengths of 
each model, resulting in a more powerful and generalized 
predictive capability. The key strength of stacking lies in its 
ability to leverage the unique strengths of each individual 
model, resulting in a more powerful and generalized predictive 
capability. By integrating various algorithms, stacking can 
handle diverse types of data and relationships, providing a 
more comprehensive solution. The ensemble approach of 
stacking helps mitigate the risk of overfitting, a common issue 
in standalone models. 

Furthermore, other standalone models such as RF, k-NN, 
and CART demonstrated commendable performance, 
showcasing their efficiency in predicting PV installation power 
generation based on weather factors. Despite the different 
approaches to these methods, they offer reliable experience for 
this case. 

The second group, highlighted with yellow on the graph, 
contains all the built SVM models with different kernels, LM 
and GBM. These models are diverse in their approaches and 
characteristics. In comparison they have achieved average 
results, however, and still can be used for forecasting with not 
high requirements for accuracy. 

The last group covered with the red color on the graph, 
contains only the GLM model and has non-satisfactory results. 
The highest level of RMSE in combination with a negative 
value of R² means poor fitness of the model and impossibility 
of further use for predictions of the PV installations. 
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The detailed analysis of the ML models` nature showed that 
k-NN, RF, and CART models are strong in their ability to
handle non-linear patterns in data, which are inherent in PV
installation power generation forecasting. On the other hand,
models such as LM, GLM, SVM, and GBM are widely
showing effectiveness in predicting linear behaviour. While
these models are powerful, their assumption of linearity limits
their effectiveness in scenarios where the underlying data
patterns are non-linear, such as in PV power generation
forecasting.

VI. CONCLUSIONS AND FUTURE RESEARCH

This study emphasizes the need for appropriate ML model 
selection based on the nature of the data and the specific task 
at hand. Moreover, the paper highlights the importance of 
selecting appropriate valuable features as the initial stage for 
future ML models to be built. 

Integrating Boruta feature selection with 10-fold cross-
validation has enhanced the model assessment process. The 
research contrasted different effectiveness of the applied ML 
techniques. The Stacking models, particularly when 
combining RF, k-NN, GBM, and CART, emerged as the top 
performers. However, other individual models like RF, k-NN, 
and CART also demonstrated notable efficacy. The models 
with linear mathematical backgrounds reveal unsatisfactory 
results. 

Given the effectiveness of ML models in PV installation 
power generation forecasting, the authors` future research will 
delve deeper, combining techniques and utilizing more 
detailed datasets to enhance predictive accuracy. By 
investigating extended datasets, we aim to uncover the 
influence of additional factors contributing to forecasting 
results. Also, future research could focus on using the closer 
weather sensor to improve results for the PV installation. 
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