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Nonlinear Filtering for State Delayed Systems With
Markovian Switching

Zidong Wang Member, IEEEJames LamSenior Member, IEEEand Xiaohui Liu

Abstract—This paper deals with the filtering problem for a It is now well known that the delayed state is very often the
general class of nonlinear time-delay systems with Markovian cause for instability and poor performance of systems. In the

jumping parameters. The nonlinear tlme-de_lay stochastic systems past few years, we have seen an increasing interest in the con-
may switch from one to the others according to the behavior of

a Markov chain. The purpose of the problem addressed is to trol of linear systems With_certain types of time-d_ela)_/s; see
design a nonlinear full-order filter such that the dynamics of the [12] for a survey. Concerning the robust andld, filtering
estimation error is guaranteed to be stochastically exponentially of time-delay systems, see [11] and [17]. However, the non-
stable in the mean square. Both filter analysis and synthesis prob- |inear filtering problem for general time-delay stochastic sys-
lems are investigated. Sufficient conditions are established for the 15 has received very little attention. In [16], the nonlinear fil-
existence of the desired exponential filters, which are expressed in, . . L .
terms of the solutions to a set of linear matrix inequalities (LMIs). tering problem was St“‘?"ed f9_r uncerta_ln tlme-delz_sly stochastic
The explicit expression of the desired filters is also provided. A Systems where the nonlinearities were introduced in the form of
simulation example is given to illustrate the design procedures additional nonlinear disturbances.
and performances of the proposed method. On the other hand, many physical systems are subject to fre-
Index Terms—Linear matrix inequalities, Markovian jump sys-  quent unpredictable structural changes, such as random failures,
tems, nonlinear filtering, nonlinear systems, stochastic exponential repairs of sudden environment disturbances, abrupt variation of
stability, time-delay systems. the operating point on a nonlinear plant, etc. Markovian jump
systems (MJSs), which comprise an important family of models
|. INTRODUCTION subject to abrupt variations, are very often used to describe the
L . . ._above class of systems. Loosely speaking, a jump system is a
ONLINEAR filtering is one of the important issues INvbrid one with state vector that has two componerts and

signal processing and has been an aciive research 'G5 The first one is in general referred to as the state, and the

over the past three decades. A recent overview on nonlln% ond one is regarded as the mode. In its operation, the jump

filtering in the deterministic case can be found in [2]. For thg stem will switch from one mode to another in a random way
stochastic case, the nonlinear filtering problem has been eXteNy the switching between the modes is governed by a Markc;v
S|veblybs_|t_l£|d|§d. [_)tue ;?[hthetf"’}[d thatt the tlan_? evcl)lut|c3£ of th rocess with discrete and finite state space. In the past decade,
probabiiity densily of the state vector concitional on the meg, optimal regulator, controllability, observability, stability, and
surements cannot be directly calculated in most cases, a bilization problems have been extensively studiedt

of approximatiops have bgen developed in the Iitgrature, s ar systems (JLSs); see, e.g., [6] and [10]. The stability anal-
z‘;gg’m&ggawzirgﬁgjgiﬁné fidguiv;g;h dz)riz‘ia:inesslogér?;(rtgl? _ ofa c!ass_ of linear/nonlinear stochgstic systems with Mar-
Ieast-squares, approximation, and statistically Iinea’lrized filters; 'an SWItChm.g has been addressed in [9], and_a_l number_ of

_ ' . ol &ablllty test criteria have been proposed. In addition, the fil-
see, e.9., [4]. In particular, the nonlinear filtering problem wi

ring problem for JLSs has recently received initial attention:
investigated in [15] through the concepts of observers for st g b y ved i on.

. . . ; .?ée [14] and references therein.
chastic nonlinear systems, and an important stochastic stabi

It . . . L .
approach to designing the observers with guaranteed conveﬁ—n practice, a nonlinear system with Markovian jumping pa-

gence was developed. The results of [15] were then extenéaweters may be more reasonable to account for the nonlinear-

h . : ifies and structural changes. To the best of the authors’ knowl-
in [18] to more general stochastic nonlinear systems and mea:

surement models, and excellent results were obtained that ggig_e, so far, there have been very few papers dealing with filter

. esign problem for generabnlinear time-delagystems with
ensure the exponential rate of convergence. : A .
or without Markovian jump parameters. This may be because
the stochastic exponential stability analysis problem is quite in-
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in terms of the solutions to a set of linear matrix inequalitienear vector functionsr denotes the state delay, ant) is a
(LMIs; see [1]). Note that over the past few years, LMIs haveontinuous vector valued initial function.

gained much attention for their computational tractability and Assumption 1:For any fixed system mod€t¢) =i € S, the
usefulness in control engineering [1] as the so-called interinonlinear vector functiong(-,-), g(-,-), h(-,-) are assumed to
point method [3] has been proved to be numerically vewsatisfyf(0,7) = 0,¢(0,%) = 0,h(0,7) = 0, and

efficient for solving the LMIs. Therefore, in our study, the

powerful Matlab LMI toolbox [3] can be ideally employed |f(z(t) 4+ 0,i) — f(x(t),i) — A(i)o| < a1(i)|o] (4)
to facilitate the filter design problem. We demonstrate the |g(z(t — 7) + 0,i) — g(x(t — 7),i) — Aq(i)o| < az(i)|o|
usefulness and applicability of the developed theory by means (5)

of a numerical simulation example.
Notation: The notations in this paper are quite stand&'d.
nxm i 1 1 1
e ac espectycl, e dimensione) cliean wherea() € . () € R, C(0) € R are kour
constant matrice R™ is a vector, and: i), and
“T" denotes the transpose, and the notatlon> Y (respec- T € 1), a2(3)

. . - a3(7) are known positive constants.
tively, X > Y), whereX andY are real symmetric matrices : -

’ ' ) " A =" Remark 1:The nonlinear descriptions (4)—(6) (see [18
means thatX — Y is positive semi-definite (respectively, P (4)(6) [18])

" - . ) . o .~ 'reflect the “distance” between the originally nonlinear model
positive definite). ! is the identity matrix with compatible (1)=(3) and the “nominal’ linear model, whose system param-
dimension. We let, > 0 andC([—h, 0]; R™) denote the family '

. : X eters areA(:), Aq(2),C(i). Such nonlinear descriptions are
_ n ) ’
of continuous function from [ h,O]_ to R W'th the norm actually similar to the Lipschitz conditions on the nonlinear
llell = sup_j<g<ole(f)], where|-| is the Euclidean norm

AL . | . functionsf(-,-), g(-,-), h(-,-). In applications, the linearization
n R™. If A is a real matrix, denote byA|| its operator norm, technique may be exploited to quantify the maximum possible
i.e., ||A|] = sup{|Az|: |[z] = 1} = /Amax(ATA), where R X

derivations from the nominal model. One of the future research

Amax( ) (respectively, Anin(-)) means the largest (reSpeC'topics is to describe the nonlinearities in a more general way.
tively, smallest) eigenvalue of. /5[0, co] is the space of square Throughout this paper, we will employ the full-order non-
integrable vector. Moreover, I€2, 7, {7 }1>0, ) be @ Com- 1, fiyor that is of the féllowing structure:

plete probability space with a filtratiofiF; },>( satisfying the '
usual conditions (i.e., the filtration contains &lnull sets and ;.\ — F(E(t), () + g(@(t — ), 7(1))

is right continuous). Denote byl ([—h,0];R™) the family ’ K s b 2
of all F,-measurable’([—,0]; R")-valued random variables K (r(®)ly(t) — h(@ ), r@)] (@)
§={&(0): =h < 6 < 0} such thabup_, <4< E[¢(6)[" < oo,
whereE{ - } stands for the mathematical expectation operat
with respect to the given probability measureThe shorthand
diag( My, M,,...,My) denotes a block diagonal matrix
with diagonal blocks being the matricédy, Ms, ..., My.

|h(x(t) + 0,0) = h(x(t), i) — C(i)o| < az(i)|o] (6)

wherez is the state estimate, and the constant g&ins(t)) are
fe filter parameters to be designed.

Notice that the Markov proceqs(t),t > 0} takes values in
the finite spac& = {1,2, ..., N}. For notational convenience,

. . . . . we write
Sometimes, the arguments of a function will be omitted in the

analysis when no confusion can arise. AG) = Ay, Agd)=Ag, C(i):=C; (8)

1) 1=a11i, 1) 1= a292i, 33(%) ' = a33;. 9
Il. PROBLEM FORMULATION AND ASSUMPTIONS 011(1) 1= an1i, - a22(1) 1= anzi, - as3(i) = assi. (9)

Let {r(t),t > 0} be a right-continuous Markov process on Letthe error state be(t) = x(t) — &(t). It then follows from
the probability space which takes values in the finite sgaee  (1)—(3) and (7) that
{1,2,..., N} with generatoll = (v;;) (i,j € S) given by

P{r(t+A) =j|r(t) =1} + g(z(t — 1), 7(t)) — ;,(:E(/ —7),7(t))

ijA+0(A), ifi7 g — K(r z(t),r(t)) — h(z(t),r(t))].
_{¥+7¢1A+0(A)7 ifi:j' K (r()[h(x(t),r(t)) — h(&(t), ()] (10)

whereA > 0, andlima_.o 0o(A)/A = 0,v;; > 0 is the transi-
tion rate fromi to j if ¢ # j andv;,; = — Z#i Vi

Now, we will work on the system modet) = 7,Vi € S. To
continue, we introduce the following definitions:

Let us consider a nonlinear state delayed jump system in a (1) = Fla(t).0) — Fla(1).0) — A(i)e
fixed complete probability spad€, 7, { F;}+>0, P) described hilt) = f((8), ) ,f( (t)L ) AQ @
by mi(t —7):=g(x(t —7),1) — g(z(t — 7),1)
— Ag(De(t — 1) (12)
18 = f((f)(t)»r(é))) + ((g;(t —tT)v[T(t))O] g ni(t) = h(z(t),i) — h(i(t),i) — C(i)e(t). (13)
x(t) = o(t), r(t)=r(0), € |—T,
y(t) = :(:v(t), r(t)) A3) Then, we can obtain from (8)—(13) that

wherez(t) € R" is the statey(t) € RP is the measurement €(t) = (Ai — KiCi)e(t) + Aaie(t — 7) + i(?)
output, andf(-,-) € R", g(-,-) € R",A(-,-) € R? are non- +m;(t — 1) — K;ni(t). (14)
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Now, let e(¢; €) denote the state trajectory from the initiaif and only if
datae(f) = £(f) on—7 < 6 < 0in L%, ([-7,0;;R"). Itis . .
clear from our Assumption 1 that the system (14) admits a trivial XXT =YY~
solutione(t; 0) = 0 corresponding to the initial data= 0.
Definition 1: Consider the error dynamic system (14). Fotrh
every¢ € L ([-7,0];R"), we have the following.

The following theorem, which acts as a main key for solving
e addressed nonlinear filtering problem, shows that the ex-
Fo Y ) ) ponential stability of a given filter for the nonlinear time-delay
* The trivial solution is asymptotically stable in the meaiqchastic system (1)=(3) can be guaranteed if positive definite

square if solutions to a set of modified algebraic Riccati-like matrix in-
) ) equalities (quadratic matrix inequalities) are known to exist.
tlgglo[Ele(ts oI =0. (19) Theorem 1:Let the filter parameters(; be given. If there

exists a sequence of positive scalérs;, €2;,€3:, 4,7 € S}
* The trivial solution is exponentially stable in the meaguch that the following matrix inequalities
square if there exist constants > 0 andf > 0 such

that al —1 4T -1 2
Z%‘j (e1j AgjAagj + €3 a59;1) <0 (17)
Ele(t; ) < ae™® sup E[¢(9)] (16) =
—7<6<0 N
(A; — K;C))"P; + Pi(A; — K;C;) + Z%‘jpj
Definition 2: The filter (7) is said to be exponential (re- j=1
spectively, asymptotic) if, for every e L“}O ([-7,0];R™), the + P [(5” +e9i +esi) + e4iKiK,iT] P;
system (14) is exponentially stable (respectively, asymptoti- n ( 62—i1 a2y + 54—i1 a§3i) T+Q;i <0 (18)

cally stable) in the mean square.
The primary objective of this paper is to provide a practicalhere
design procedure for an exponential filter of the nonlinear time-
. . . Q: 7<1AT'A . 7'1 2 N (19)
delay system (1)—(3). In other words, we will design the filter pa- i:= 814 Agildi T E3; Qa4
rameterk; such that the dynamics of the estimation error (i.e,

the solution of the system (14)) is guaranteed to be stocha?t?—ve pos!t|ve deﬂmtg solutions; > 0, then system (14) is
cally exponentially stable. exponentially stable in the mean square.

Proof: Fix { € L%, ([-7,0];R") arbitrarily, and write
e(t; &) = e(t). For (e(t),t) € R™ x R4, we define the sto-
chastic Lyapunov functiondf (- ):R" x Ry x S — Ry as

In this section, we will obtain a solution to the filter design ) )
problem formulated in the previous section by using a linedr(e(t), 7(t) = i) := V(e(t),1,9) .
matrix inequality approach. 7 T

We first recall several lemmas that will be needed in the proof = (OPie(t) + /H ¢ (5)Qie(s) s (20)
of our main results.

Lemma 1 (Schur Complementlsiven constant matrices
01,905,093 whereQ; = QF ando < Q, = Q7 then
Q1 + Q10505 < 0if and only if

I1l. M AIN RESULTS AND PROOFS

wherep; is the positive definite solution to the matrix inequality
(18), and@; > 0 is defined in (19).

The weak infinitesimal operatod (see [6]) of the stochastic
process{r(t),e(t)} (¢t > 0) is given by

T
o ] <o AV (e(t), (1)
Q3 —Qs 1
or = lim —[E{V(z(t+ A),r(t+ A))|z(t),r(t) =i}
—Q, Q4 A=0 A ‘
o o <o S V(alt) (1) = i)
Lemma 2: Letz € R™,y € R” ande > 0. Then, we have =e'(t) |(Ai — K;C)" P + Pi(A; — K;C;)
2Ty +yTe <exTz+e lyTy. N
_ ' + Z’Yijl’j + Qi e(t)
Proof: The proof follows from the inequality j=1
T T T
(61/2$ _ 6_1/2y)T(51/237 _ E_I/Zy) >0 + eT(t)PiAdie(t —7)+e (t—T7)AgPie(t)
+e (t)B[l,(t) + m,;(t — T) — K,Th(t)]
immediately. [ + [li(t) + mi(t — 1) — King(8)]" Pie(t)
Lemma 3 [5]: Let X € R™*™ Y € R™*Pt(my < pq). —eT(t —7)Qse(t — 1)

There exists a matrik € R™ *Pt that simultaneously satisfies

N t
#3005t ds. (21)
Y=XU, UUT =1 ; g !
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It is obvious from (17) and (19) that stochastically exponentially stable in the mean square. We arrive
N \ at th_e conglusipn that the s_olvability of the addressed pqrticular
Z i / (22) nonlinear f||ter|ng probllenj is cloge_ly related to the solutions to
, N a set of quadratic matrix inequalities.
=t The following corollary reveals that for the nonlinear time-
Let 15,92, €3:,€4; D€ positive scalars. It then follows fromdelay jump system (14), the exponential stability in the mean

el (5)Qje(s)ds < 0.

Lemma 2 that square also implies the almost-surely exponential stability. The
. . . proof can be found in [7].
e’ ()P Agie(t — 1) + e (t — 7)Ay; Pie(t) Corollary 1: Under the same conditions as in Theorem 1, the

< epel () Pre(t) + eyt et (t — )AL Agie(t — 7). (23) nonlinear ime-delay system (14) is almost-surely exponentially
stable in the mean square. That is
In addition, it results from Assumption 1, the definitions (8), (9),

and (11)—-(13), that tlim sup % log |e(t; &)| < _B

2
H L) < alyle®” = atie” (Oe(t)  24) qimost surely holds for aff € L%, ([-7,0];R™), wheres > 0
m (t = )ymi(t —7) < ajpe” (t —)e(t — 7) (25) is the the unique root of the (32).
n (H)ni(t) < adq;le(t)|* = a3s.e’ (t)e(t).  (26) Having obtained the analysis results in Theorem 1, we are
now ready to tackle the corresponding synthesis problem. That
Considering (24)—(26), we can obtain from Lemma 2 that s, we need to derive thexplicit expression of expected filter
gains and propose a practical design procedure. It should be

T T
e () Pili(t) + 1 (t)Pie(t) pointed out thatin most literature concerning nonlinear filtering,

< el(t) (e2iP? + 3 a3y, 1) e(t) (27) the solution to the nonlinear filtering problem has not been given
T () Pimi(t — 7) +mT (¢ — 7)Pre(t) as an explicit representation. T
< eqicT (H)P2e(t) + e ayieT (t — T)e(t — 7) (28) For presentation convenience, we further define
T T T N
— € (t)PZ'KZ"I’Li(t) - n; (t)Kl Pie(t) T 2
< cuieT (1) (PEKTP) e(t) + exladsse? (De(t).  (29) Lii=A; Pi+ PiA; + ]z_;%jpj + (1 +€2i + €3:) P}
For simplicity, we denote + (extady; +egady) T+ Qi (33)
N
N = T 2
2 =A; P+ PA, + vi; Pj + (€1; + €2; + €3:) P;
I == (A; — K;C)TP; + Pi(A; — K, C;) + Z Yi; Pj ;
j=1 —1 4T —1_2 —1,.2 —1_2
+ ey AgiAai + (ea; aly; + e agg; + €4, a33;) T
+ P; [(e1i + e2; +e3i)] + esi K; K[| Pi
[(e1i + e2i el + eai kK] —eicrc; (34)

+ (exitady; +egtads) I
N il_leilAdi +453Tif;§)2i1 (30) ©;:= [P, AL P poanid Py psiassd]  (35)
] where(); is defined in (19).

then (18) and (19) result in thak; < 0. _ _ In principle, our task now consists of two parts. One is to find

Substituting (19), (22), (23), and (27)—(29) into (21) yields {he necessary and sufficient conditions for the existence of filter
. e T gainsK; such that there exist positive definite matri¢gésatis-

AV(e(t),1) < e (OLie(t) < —Amin(—1L)e" (H)e(?).  (31) fying (18), and the other one is to express all expected filter gains
To show the expected exponential stability (in the medf terms of the positive definite solutiors and, if any, some

square) of the system (14), we need to perform some stand@iler free pg_rameters. The following theorem accomplishes the

manipulations on (31) by utilizing the technique developed P0Ve specified task. -

[7] and [8]. The details are along the similar line of the proof of 1heorem 2:There exist a sequence of positive scalars

[8, Th. 2.1] and are thus omitted here. We just mention that fof i €2i» €3i, €4i, ¢ € S} and positive definite matrices; such

the exponential stability of (14), the required consfant 0 in  that the matrix inequalities (18) (fare S) have solutions;

(16) is the unique root of the equation if and only if one of the following two assertions holds.
1) There exist a sequence of positive scaléss;, ...,
Amin(=11) = BAmax(Pi) — BT A max(Qi)e’™ =0 (32) €4, € S} and positive definite matriceB; such that

) ) E; < 0, whereE is defined in (34).
and the required constant > 0 can be determined by 2) There exist a sequence of positive scaléys;, ...,

a:=A 1 (P)Amax(P) + TAmax(Qi)(1 + 7¢’7)]. This pai,i € S} and positive definite matriceB; such that
completes the proof of Theorem 1. u the following set of linear matrix inequalities

Remark 2: In Theorem 1, we establish ttanalysisresults
for the exponential stability of the nonlinear time-delay jump T; 0; <0
systems. That is, for a given filter structure, we derive the suffi- | ©7  —diag{u1il, pail, poil , pail, psil, pail }
cient conditions under which the estimation error dynamics are (36)
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hold, where Let

N i =crt, k=1,2,34. (46)
Yi:=ATPi+ PiAi+ Y % P+ pai (35,1 — CTCi) . (37)
J=1 Pre- and post-multiplying the inequality (45) by

. —1/24 —1/2; —1/2; —1/24 —1/2; —1/2
Furthermore, if (36) is true for positive scalars, z12;, ft3:, ftai d|ag{I751i Loy Loy Loy " eg 7] e I}
and positive definite matriceB;, all matricesk; meeting the Yyield (36). This proves the first part of this theorem.

matrix inequalities (18) can then be parameterized by Suppose now that (36) is true. Note that the dimension of the
filter gain K; isn x p andp < n. From (41) and the definition
K; = paiPCT + i PAU; (38) of A; € R™ in (39), we have
T
1/2 —1/2 ~1] [.1/2 —1/2 A7)t T
whereA; € R™*? is any matrix satisfying [%‘ FiKi—ey 70 } [%‘ FiKi—ey 70 } = A
AAT = 39 ik
i < =i (39) 1t then follows from Lemma 3 that (47) holds if and only if
for ey = py (k= 1,2,3,4), andU; € RP*? is an arbitrary e’PK; — e CT = AU (48)
orthogonal matrix (i.e J;U7 = I). _whereU; € RP*? is an arbitrary orthogonal matrix. Therefore,
~ Proof: It is straightforward to rearrange the maitrix3g) follows from (48) immediately, and the proof of this the-
inequality (18) as orem is complete. n
i T Noticing that (17) is the same as the LMI
—Cy K; P — PKCi + 4, PK;K; P; +1; <0  (40) N
T 2
wherel’; is defined in (33), or ;’Yu ('U’IJAd]Ad] + pzjage;l ) <0 (49)

_ _ T we summarize our main results as follows, which are easily de-
[Ei{QP’iKi - 64@'1/20?] [EZQP’L'KL' - 54il/20iT] rived from Theorems 1 and 2.
< EZ,ilC’iTCi —T;. (41) Theorem 3:Consider the nonlinear jump state de-
layed system (1)-(3) and the corresponding nonlinear
It is apparent that there exist filter gain matridéssuch that filter (7). If there exist a sequence of positive scalars
the inequalities (18) (or equivalently, (41) fore S) hold for  {f1i, 2i, p3i, pai, @ € S} and positive definite matrices
some positive scalats;, e2;, £3;, £4; and positive definite ma- P; (i € S) such that the LMIs (36) and (49) hold, then the
trix P; if and only if the right-hand side of (41) is positive defi-filter (7) with its parameter given in (38) will be such that

nite. That is the dynamics of the estimation error (i.e., the solution of the
N error-state system (14)) are stochastically exponentially stable
ATP, + P A; + Z Vi Pj + (€10 + €2i + €3i) P? in the mean square. _ _
= Remark 3:The solution to the addressed filter de-

e AT Ay + (5;1&“_'_6?;161%% si_gn problem for nonlinear jump tim_e-delay systems is

1o T given in Theorem 3. Note that the design procedure of the

+egagy) I — e G Ci <0 (42)  filter parameters depends solely on the feasibility of the

orZ; < 0 holds. LMIs (36) and (49) that are linear on the scalar variables
Notice that (42) is neither linear o®; nor linear on H1i > 0,p2i > 0,ps3; > 0,p4; > 0 and the matrix variable
€14, €04, €31, £4:. OUr NEXt goal is to convert (42) into an LMI sof% > 0. Fortunately, with the recently developed Matlab LMI
that the powerful Matlab LMI Toolbox can be applied. To dd©olbox [3], we can check the solvability of the LMIs (36)

this, we continue to rewrite (42) as and (49) readily and reliably. This makes our proposed design
. approach very practical.
Ti+Q:Q; <0 (43)  Remark 4: We can see that if the set of desired filter gains
whereY; is defined in (37) (lefu, := 1), and is not empty, it is often very large. We may utilize the freedom
(37) (ehai :=<47) (such as the choices of matricks andU;) in the filter design
Q= Qa4 (44) to improve other system properties. One of the future research

topics is to exploit such remaining freedom to achieve the spec-

where ified reliable constraint on the filtering process. It would also
Oy = H{Qpi e /AT 55{2]774} be interesting to study the case when the nonlinear function
g(z(t — 7),7(¢)) is regarded as an unknown perturbation. Fi-
—1/2 1/2 —1/2 . - e .
Qo; = [6% a1l e3P ey a22iI:| : nally, we point out that it is not difficult to obtain parallel results

for both the multidelay case and for the case where there are
Founded nonlinearities and uncertain disturbances. The reason
why we discuss the relatively simple system (1)—(3) associated
T, @ with (4)-(6) is to make our theory more understandable and to

{Q,LT —I} <0. (45) avoid unnecessarily complicated notations.

(43) holds if and only if the following inequality holds:

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 09:33 from IEEE Xplore. Restrictions apply.



2326 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 9, SEPTEMBER 2003

Case11: Responses of Error Dynamics to Initial State (4,-4)
T T

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented to illustrate
the usefulness and flexibility of the developed theory.

The nonlinear time-delay jump system under consideration it
assumed to havievo modes. The Markov process that governs
the mode switching has generafdr = (v;;) (4,7 = 1,2),
where

Amplitude

Y11 =-3, v12=3, 721 =04, 72 =-04.

Let the system mode 1 be given by |
-2r;

j]‘l(t) =—-2. 8:171( ) + 0. 11172(t) !

+ 0.2sin(z1(t) + z2(t)) o

+0.05z1(t — 0.1) — 0.02z5(¢ — 0.1) . , , , , ,
o (t) = 0.431(t) — 3.225(t) 4 0.3 cos z2(t) ° ! L et ’ °
+0.01z1(t — 0.1) — 0.03z5(t — 0.1) Fig. 1. ex (solid),ex (dash).

y1(t) = 0.95z1(¢) + 0.2 sin zo(t),

y2(t) = 0.95z2(t) + 0.1 cos z1(t) We are now ready to compute the desired filter parameters

K; (1 = 1,2). To illustrate the design flexibility, we will make
use of the freedom in selecting the parameterandU;. We
first consider the system mode 1.

Case 11: In this case, we choosg (meetingAiAiT < -Z)

and the system mode 2 be described by

. and the orthogonal matrik; asA; = 2I,,U; = I. It then

+0.3sin(21(t) - 202(1)) follows from (38) that ' ' T

4 0.08z1(t — 0.1) 4 0.06z2(t — 0.1)
@a(t) = 0.3z (t) — 4.52(t) + 0.4 cos x5 (t) K, = {1.9393 0.2470}

+0.02a1(f — 0.1) 4 0.0525(f — 0.1) 0.2470 26273
y1(t) = 0.98z1(t) + 0.1sin zo(t) Denote the error states = z; —#; (i = 1,2). The responses
yo(t) = 0.98z5(t) + 0.2 cos x1 (t). of the error dynamics to initial conditions are shown in Fig. 1.

The simulation result implies that the desired goal is achieved.

Considering the system (1)—(3) with the constraints (4)—(6), €ase 12: In this case, we sele¢t, (meetingh; AT < —E;),
we can obtain the system data as follows: which is the orthogonal matriéd; and therefore obtain the filter

gain K, respectively, as follows:

—2.8 0.1 2 .

Ay = |: 0.4 _3.2:| , As = |: 5:| A =181, U;= dlag{L—l}
. [005 —002] 0.08 0.06 K, = é'gggg :8%22
4= 1001 —0.03 2= 10.02 0.05 ' o0

— 3 The responses of the error dynamics to initial conditions are
— 4 — —
Cr =095, C =098, II= [0.4 —0. 4} shown in Fig. 2.
a1 =037, ax =0, a3 =0.23, a2 =0.50 Next, let us consider the system mode 2.
4y =0, a3 =023, 7=01, ¢(t)=0.L1. Case 21: In_this case, we set, e_stz = 1_.212 and the or-
thogonal matriXU; asU, = I,. The filter gain is then calculated

Solving the LMIs (36) and (49); = 1, 2) by using the LMI as

toolbox [3], we obtain that Ky — 1.4237 0.0199
27 10.0199  1.5960
= 2.4876, = 1.5076 . . . R L
a L and the simulation result is given in Fig. 3, which indicates that

po1 = 1.5721, g2 = 2.0567 our expected performance is guaranteed.
31 = 1.0275,  pss = 1.4356 Case 22: We now letA; be As = 0.91> and the orthogonal
[ia1 = 2.8835, 149 = 2.5592 matrix U, beU, = diag{—1, 1}. Then, we obtain
3.2020 —0.3010
—0.3010 2.3636

p, _ [ 31106 —0.0388
27 1-0.0388  2.7748

P = 0.3828 0.0487}

K» = {0.0487 0.5186

and give the simulation result in Fig. 4.
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Case12: Responses of Error Dynamics to Initial State (3,-4)
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V. CONCLUSION

In this paper, we have investigated the filter design problem
for a class of nonlinear time-delay systems with Markov
jumping parameters. Both the filter analysis and design issues
have been discussed in detail by means of linear matrix in-
equalities. We have derived the existence conditions as well as
the analytical parameterization of desired filters. The method
relies not on the optimization theory but on Lyapunov-type
stochastic stability results that can guarantee a mean square
exponential rate of convergence for the estimation error. It has
been emphasized that the desired exponential filters for this
class of nonlinear time-delay systems, when they exist, are
usually a large set, and the remaining freedom can be used to
meet other expected performance requirements. The results of
this paper have been demonstrated by a numerical example.

Finally, we point out that we may generalize our results
to more complex systems such as sampled-data systems and
stochastic parameter systems, which gives us future research

topics.
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