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Abstract— The increasing number of dispersed EEG
dataset publications and the advancement of large-scale
Electroencephalogram (EEG) models have increased the
demand for practical tools to manage diverse EEG
datasets. However, the inherent complexity of EEG data,
characterized by variability in content data, metadata, and
data formats, poses challenges for integrating multiple
datasets and conducting large-scale EEG model research.
To tackle the challenges, this paper introduces EEGUnity,
an open-source tool that incorporates modules of “EEG
Parser”, “Correction”, “Batch Processing”, and “Large Lan-
guage Model Boost”. Leveraging the functionality of such
modules, EEGUnity facilitates the efficient management of
multiple EEG datasets, such as intelligent data structure
inference, data cleaning, and data unification. In addition,
the capabilities of EEGUnity ensure high data quality and
consistency, providing a reliable foundation for large-scale
EEG data research. EEGUnity is evaluated across 25 EEG
datasets from different sources, offering several typical
batch processing workflows. The results demonstrate the
high performance and flexibility of EEGUnity in parsing and
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I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCI) are really pushing
the limits, being able to record over not just days, weeks,

but months, years at a time [29]. The proposal of BCI systems
has encouraged many researchers to actively explore brain
signals and apply BCI systems in various fields: game interac-
tion entertainment, robot control, emotion recognition, fatigue
detection, sleep quality assessment, and clinical fields [2],
[10], [30], [36], [38], [42]. With the increasing exploration
of BCI systems, the demand for neuro-monitoring capabilities
has significantly increased. EEG is applied in various BCI
systems to collect active electrical signals from the brain.
To meet diverse requirements, numerous EEG-based BCI
system paradigms have been proposed [1]. The paradigms
allow for the selection of an appropriate approach to gather
extensive brain electrical signals to form EEG datasets that
provide foundational knowledge of specific patterns in the
brain [35], [50].

In recent years, there has been a marked increase in both the
quantity and demand for EEG data publications. On the one
hand, online databases such as Zenodo [7] and PhysioNet [8]
have a vast and growing collection of diverse EEG datasets.
On the other hand, a study [15] on large EEG models
employing over 20 datasets demonstrates the ever-increasing
need to process large-scale EEG data. Nevertheless, the inher-
ent characteristics of EEG data present a challenge in data
processing [22], [51]. The challenge is primarily attributed to
three key factors:
• Differences in content data: Variations in the config-

uration of electrodes, characteristics of the sensor, and
circuit structures can lead to significant differences in the
dimensions and distribution of EEG data [31], [44], [45];

• Differences in metadata: Variations in the labeling cri-
teria for metadata (such as channel names and events
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TABLE I
OVERVIEW OF COMMONLY USED EEG DATA PROCESSING SOFTWARE

Fig. 1. Objective of Proposed EEGUnity.

annotation), along with the absence or errors in standard
information, can lead to inconsistencies in annotation [9];

• Differences in data formats: Variations in data formats
(such as gdf, edf, mat, csv, txt) complicate the stan-
dardization and processing steps of data, demonstrating
that the processing pipeline must be tailored for each
study [9], [32].

The challenges above indicate an urgent need for an effi-
cient large-scale EEG data management tool to simplify data
standardization and processing steps, eventually improving
data processing efficiency. Table I summarizes highly inte-
grated EEG data processing tools, covering their openness
and supported platforms. Various EEG data processing tools
with comprehensive functionality are widely used in multiple
EEG research. Some of the common open-source tools include
SPM [24], EEGLAB [4], FieldTrip [32], Brainstorm [37],
and MNE-Python [9], offering flexible and powerful analy-
sis capabilities to meet diverse research needs. Additionally,
commercial software such as NeuroScan CURRY [41] and
BESA [17] are also available.

Despite the significant advantages in functionality and broad
applicability offered by existing tools, the tools listed in
Table I exhibit shortcomings when handling large-scale data.
Specifically, the existing tools offer flexible processing for
individual datasets, but lack specialized management meth-
ods to simultaneously handle multiple datasets with varying
content data, metadata, and formats. Therefore, current tools
are limited in effectively managing and analyzing hetero-
geneous EEG data from various sources. As the quantity
and demand for EEG datasets continue to increase, the
shortcomings become particularly evident, affecting research
efficiency and the reliability of results. Therefore, an urgent
need is to enhance EEG data processing capability for handling
large-scale EEG data.

In this paper, a novel EEG data processing tool named
EEGUnity is proposed, aiming to unify diverse EEG datasets
from all over the world, as reflected in its name. As illustrated
in Fig. 1, the objective of EEGUnity is to manage multiple
datasets, efficiently process large-scale data, and enhance data
processing efficiency. The introduction of EEGUnity addresses
the limitations of existing tools in handling large-scale EEG
data and provides a new approach to the unified manage-
ment and processing of EEG data. EEGUnity offers several
innovative features: (1) intelligent data structure inference
technology to address the challenge of data heterogeneity;
(2) a user-friendly interface for reviewing and modifying EEG
dataset annotations to ensure accurate analysis; (3) a compre-
hensive and unified interface for large-scale data processing
to establish a solid foundation for subsequent analyses. These
features allow EEGUnity to effectively manage and process
heterogeneous EEG data from different sources, enhancing
data consistency and comparability.

Based on the above discussions, the main contributions of
this paper can be summarized as follows:
• The proposal of a new concept for efficiently managing

and processing large-scale EEG data through a unified
platform;

• The proposal of EEGUnity, a tool specifically designed
for EEG data processing, supporting the management of
multiple datasets, thereby addressing the challenges of
data heterogeneity;

• The intelligent integration of features into EEGUnity,
including data structure inference, correction, cleaning,
and unification, ensuring high data quality and consis-
tency, thereby providing a reliable data foundation for
EEG research.

The remaining structure of this paper is arranged as
follows: Section II provides a detailed introduction to EEGU-
nity, including overview and implementation details, giving
readers comprehensive background information about the
tool. Section III demonstrates several typical batch process
workflows of EEGUnity, such as dataset management, data
correction, data cleaning, and data unification, through specific
use cases, helping readers understand the practical application
of the tool. Section IV comprehensively analyzes the advan-
tages and limitations of EEGUnity in practical applications,
and Section V concludes this paper and proposes future
research directions.

II. INTRODUCING EEGUNITY: OVERVIEW
AND IMPLEMENTATION

In this section, an overview of EEGUnity is initially
presented, including the implementation platform, compo-
nents, usage, and innovative features. Subsequently, the
architectural design of two core components of EEGUnity,
UnifiedDataset and Locator, is detailed.

A. Overview of EEGUnity
EEGUnity is currently a Python package focused on

managing multiple EEG datasets. The EEGUnity package
includes a core Python class—UnifiedDataset, along
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Fig. 2. Three Approaches for Managing Datasets in EEGUnity. “U∼Dataset” refers to UnifiedDataset.

with functions for creating, modifying, and merging on the
UnifiedDataset. The Python class UnifiedDataset is
designed to provide a unified interface for different operations
to datasets. Users can efficiently manage multiple datasets
through UnifiedDataset, thereby gaining the capability
to handle large-scale EEG data.

The usage for managing datasets in EEGUnity is very
convenient, following a two-step process: 1) instantiating a
UnifiedDataset; 2) performing batch processing based
on the UnifiedDataset. There are three approaches for
managing datasets in EEGUnity, as shown in Fig. 2:
• The first approach is illustrated in Fig. 2A. EEGUnity

supports the instantiation of UnifiedDataset by pro-
viding an accessible path to EEG dataset for the initial
accessing. After instantiating the UnifiedDataset,
users can utilize the interface of UnifiedDataset for
batch processing or export a Locator, which is a file
recording the essential metadata that required to access
the dataset, while parser processes are automatically
employed by UnifiedDataset.

• The second approach is illustrated in Fig. 2B. EEGUnity
supports the instantiation of UnifiedDataset by uti-
lizing a pre-existing Locator. If the dataset referenced
by the Locator remains accessible on the user’s system,
the resulting UnifiedDataset instance is equivalent
to one that would have been instantiated directly via an
EEG dataset address. This design allows users to quickly
reload a dataset and save any modification made to the
metadata.

• The third approach is illustrated in Fig. 2C. EEGUnity
supports the instantiation of UnifiedDataset by inte-
grating multiple UnifiedDataset instances, thereby
allowing users to effectively manage multiple datasets
according to specific requirements.

Compared to other processing tools, EEGUnity offers the
following innovative features:
• Data Scale Capabilities: EEGUnity is designed to pro-

cess large-scale EEG datasets, supporting the integration
of multiple datasets and large-scale data operations;

• Functional Scope: EEGUnity processes diverse functions
for data cleaning, data correction, data unification, and

custom batch processing operations, significantly improv-
ing EEG data processing efficiency;

• Compatibility and Flexibility: EEGUnity supports intel-
ligent data structure inference using preset code and large
language models (LLM), enhancing the flexibility and
accuracy of data processing.

B. Implementation Details of UnifiedDataset
In EEGUnity, the parser for EEG data and the unified inter-

face are integrated within a Python class UnifiedDataset.
UnifiedDataset includes a comprehensive set of methods
and attributes to provide a unified interface, as shown in Fig. 3.
The functions can be categorized into four modules:
• EEG parser module: This module facilitates the intel-

ligent parsing of EEG data across diverse formats,
including but not limited to edf, gdf, mat, txt, and csv.
The EEG data files are initially processed using stan-
dard readers, such as parser functions in MNE-Python.
If standard readers are insufficient, non-standard readers
are employed, which are boosted by pre-defined code
and another module in EEGUnity—large language model
boost module. EEGUnity supports various multimodal
data by classifying them into different channel types,
including electrooculography (EOG), electromyography
(EMG), electrocardiography (ECG), stimulation (STIM),
and other biological signals.

• Correction module: This module offers a user-friendly
interface to facilitate the correction of dataset annotations.
On the one hand, the module allows users to visually
inspect and modify annotations within a spreadsheet-like
environment. On the other hand, the module provides
several correction methods, by built-in functions and the
large language model boost module, to systematically
review and refine dataset annotations.

• Batch processing interface module: This module pro-
vides batch processing functionality. On the one hand,
this module enables users to customize batch processing
pipelines according to specific needs, with implementa-
tion details presented in Table V in Appendix A. On the
other hand, this module includes a variety of built-in
functions for EEG data processing, such as data cleaning,
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Fig. 3. Structure of the UnifiedDataset.

denoising, quality assessment, channel alignment, and
standardization.

• Large language model boost module: This mod-
ule enhances the capabilities of other modules within
UnifiedDataset by leveraging existing large lan-
guage models, such as ChatGPT and DeepSeek. It assists
with tasks like parsing metadata when traditional
programming-based methods are insufficient, improving
efficiency in these cases.

C. Implementation Details of Locator
In the design of EEGUnity, a critical component supporting

the functionality of EEGUnity is the Locator. During the
instantiation of UnifiedDataset, attributes for each EEG
data file are stored in the Locator, which is structured using
a DataFrame from the Pandas package—a widely adopted
Python library for data science applications [26]. The attributes
within the Locator are categorized into basic and advanced
attributes for each data file:
• Basic attributes include file path, domain tag, file type,

EEG channel configuration, sampling rate, duration, and
completeness check;

• Advanced attributes are linked to specific submodules
for functionalities such as data quality scoring. Advanced
attributes can be added by subsequent community devel-
opers or customized according to user requirements.

Based on the design of Locator, users can calibrate the
dataset by visually inspecting and modifying the Locator
file in a spreadsheet-like environment, either programmatically
or manually. The metadata specified by the Locator takes
precedence over those in source data. In such a design,
EEGUnity allows users to quickly correct metadata through
the locator without modifying the source files.

D. Difference between EEGUnity and Other Toolboxes
Existing EEG analysis toolboxes, such as SPM, EEGLAB,

FieldTrip, Brainstorm, MNE-Python, NeuroScan CURRY,
and BESA, provide a range of features tailored to diverse
research requirements. However, none of these toolboxes fully
address the increasing need for large-scale EEG data anal-
ysis optimization and the integration of LLMs. EEGUnity
is specifically designed to bridge this gap, offering unique

TABLE II
DIFFERENCE BETWEEN EEGUNITY AND OTHER TOOLBOXES

capabilities that enhance the efficiency and automation of EEG
data processing.

A comparative summary of features across these tool-
boxes is presented in Table II. As demonstrated in the table,
EEGUnity distinguishes itself through its specialized sup-
port for large data analysis optimization and LLM-boosted
functionality, which are absent in existing toolboxes. These
features underscore the necessity of EEGUnity within the EEG
research community, particularly in the context of modern
advancements in artificial intelligence and large-scale data
processing.

III. TYPICAL BATCH PROCESSING WORKFLOW
IN EEGUNITY

This section introduces typical batch processing workflows
in EEG data processing, including dataset management, data
correction, data cleaning, and data unification. The described
typical batch processing workflows comprise multiple func-
tions of EEGUnity and are not fixed pipelines. Users can
customize the pipelines according to specific requirements
(such as reducing computational load and minimizing alias-
ing effects). Table III lists the datasets used in this study,
covering diverse paradigms such as disease classification,
auditory attention, motor imagery, and sleep pattern detection.
For large-scale model training, EEGUnity can automatically
process all datasets. The total storage of effective EEG data
exceeds 2TB (with the entire database around 4TB), and the
processed EEG data spans 35,489 hours. These datasets also
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TABLE III
DATASETS USED IN THIS STUDY

support various research domains, including clinical applica-
tions, cognitive neuroscience, and neuro-engineering.

A. Dataset Management and Integration
EEGUnity offers three primary approaches when initiating

the processing of one or multiple EEG datasets: (1) specifying
the path to an available dataset; (2) specifying the path to
an available locator; and (3) integrating multiple datasets.
The detailed implementation for each approach is provided
in Table IV in Appendix A.

In data management, differences often exist across datasets.
To standardize or compensate for the differences, EEGU-
nity is capable of handling some common discrepancies.
Whether EEGUnity can automatically resolve inconsistencies
in metadata across datasets depends on the severity of these
inconsistencies and the capabilities of its current version. For
cases where automatic processing is not available, EEGUnity
provides convenient options to inspect and manually correct
metadata.

B. Data Correction
EEGUnity supports data correction for one or multiple EEG

datasets, including a user-friendly interface for inspecting,
modification, diagnosis, and visualization for dataset integrity.
The implementation details of the aforementioned functions
are outlined in Table VI in Appendix A and elaborated below:
• Interface for reviewing and modification: EEGUnity

stores metadata in the Locator, which users can easily

review and modify using tools like PyCharm, Microsoft
Excel, and Pandas;

• Dataset diagnosis: EEGUnity supports dataset diagnosis
through built-in functions that generate detailed dataset
reports, including the ratio of file types, domain tags,
channel configurations, sampling rates, and completeness
checks;

• Dataset visualization: EEGUnity includes built-in
functions to visualize datasets, such as displaying
magnitude-frequency curves for alpha, beta, theta, and
gamma waves and channel correlations for each data. Two
visualization results are shown in Fig. 4 and Fig. 6 in
Appendix B.

C. Data Cleaning
EEGUnity supports data cleaning for one or multiple

EEG datasets, with the detailed implementation outlined in
Table VII in Appendix A. The suggested data cleaning process
is divided into the following steps:
• Data completeness check: EEGUnity classifies the com-

pleteness of EEG data into three levels and records the
results in basic attributes of the Locator: (1) com-
pleted, indicating that the data includes the original EEG
sequence and all basic attributes in the Locator have
been correctly parsed; (2) acceptable, indicating that fur-
ther parsing of EEG information may affect the accuracy
of analyses; (3) unavailable: indicating the original EEG
sequence is unavailable or any basic attributes in the
Locator cannot be filled. Based on data completeness
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check, quality assessment, and sample filtering, a statis-
tical result for multiple datasets is presented in Fig. 5 in
Appendix B.

• Quality assessment: EEGUnity is capable of supporting
established methodologies [9], [28] to comprehensively
assess the quality of EEG data. The EEG quality assess-
ment method from [28] is employed for data cleaning,
with results presented as scores ranging from 0 to 100,
as detailed in Algorithm 1 in Appendix C. Addition-
ally, EEGUnity supports the artifact-free ratio, adapted
from an existing artifact detection algorithm [9]. The
pseudocode and corresponding results are presented in
Algorithm 2 in Appendix C and Fig. 7 in Appendix B.

• Sample filtering: EEGUnity supports filtering the data
based on the attributes in the Locator to meet the
specific requirements. The filtering process can take into
account the quality and completeness level of the data,
as well as custom criteria.

• Denoising: EEGUnity supports the use of independent
component analysis and filtering techniques to remove
noise [49] from the EEG data [9]. The denoising process
can significantly improve the quality of the data and
ensure the reliability of subsequent analysis.

D. Data Unification
Data unification is a novel batch processing workflow in

EEGUnity, aiming to transform heterogeneous EEG data into a
unified entity. The specific implementation of data unification
varies according to different requirements and standards. A
detailed outline of the implementation for data unification is
illustrated in Table VII in Appendix A. Currently, EEGUnity
supports the following unification methods:
• Save as unified format: EEGUnity supports saving EEG

data in a specified unified format to facilitate subsequent
processing and analysis.

• Resampling: EEGUnity supports resampling each EEG
dataset to a specific target sampling rate.

• Channel alignment: EEGUnity supports aligning EEG
channels according to a specified order, with or with-
out interpolation. While interpolation assumes consistent
electrode placement, the effectiveness depends on task
sensitivity (e.g., motor imagery is more affected than
sleep or emotion detection) and variability across datasets
(e.g., ear electrodes differ for audio detection and SSVEP,
whereas similar tasks have more consistent placements).
To assess the practical impact of channel alignment,
an experiment is conducted, with results presented in
Table IX and Table X in Appendix D.

• Normalization: EEGUnity supports computing normal-
ization transformation factors, including the variance and
mean of samples/channels, and records the results in the
Locator. The transformation factors are stored in the
Locator, making it convenient for users to inspect and
correct the factors. This normalization process can be
performed when retrieving data.

• Infer unit: EEGUnity supports inferring the units for
each channel in EEG data. The inferred units are stored
in the Locator, enabling users to inspect and correct

inferred units easily. Users can convert the units when
retrieving data.

• Extract event: EEGUnity supports extracting events for
each data and storing the results in the Locator. Users
can quickly inspect, correct, and supplement the events
in Locator. The events in Locator can be directly
used with other epoch functions in EEGUnity.

• Epoch by event: EEGUnity supports extracting epochs
(segments) from each EEG dataset based on specified
events listed in the Locator.

• Epoch for pretraining: EEGUnity supports extracting
epochs (segments) from each EEG dataset by controlling
segment parameters.

In the final stage of data processing, the selection of
an appropriate dataset structure and read/write policy is
critical for accelerating subsequent analysis. EEGUnity sup-
ports both individual file formats (e.g., FIF, EDF) organized
within a directory and a compact HDF5-based format, with
optional multithreading optimization, specifically designed to
improve efficiency in input/output operations and storage.
A comparative analysis of processing speed with and with-
out multithreading optimization for epoching is presented in
Table XI.

E. Large Language Model Boosting
The integration of LLMs can enhance the efficiency and

automation of data processing pipelines, but their use is
not strictly necessary. Traditional data processing workflows
typically depend on predefined algorithms and manual inter-
vention for tasks such as metadata extraction, formatting,
and calibration. EEGUnity leverages LLMs to intelligently
interpret and structure EEG data, thereby reducing the need
for manual corrections and improving overall accuracy.

In the current version of EEGUnity, this functionality
is implemented through API-Key authentication. LLMs are
employed to facilitate the extraction and calibration of critical
metadata, including channel order and sampling frequency,
from descriptive files. The results of metadata extraction using
LLMs are presented in Table XII in Appendix D

IV. DISCUSSION

EEG data processing capability has been significantly
improved by software tools such as EEGLAB, FieldTrip,
and MNE-Python. Initially, EEGLAB revolutionized EEG
analysis by providing a user-friendly MATLAB-based GUI
with advanced capabilities like independent component anal-
ysis. Following EEGLAB, FieldTrip offered a modular and
flexible MATLAB-based toolbox that emphasized customized
and in-depth analyses script-based approach. Subsequently,
MNE-Python expanded the landscape by introducing Python
packages for EEG data processing, with an emphasis on
the reproducibility of data processing pipelines. The pro-
gression of established software tools reflects a trajectory
toward increasingly sophisticated, flexible, and integrated EEG
analysis methods.

Compared with established software, the novel Python pack-
age EEGUnity proposed in this paper provides notable advan-
tages in multiple EEG datasets management and large-scale
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TABLE IV
IMPLEMENTATION OF THREE APPROACHES FOR

MANAGING DATASETS IN EEGUNITY

TABLE V
CUSTOM BATCH PROCESSING INTERFACE

FOR EEG DATA IN EEGUNITY

data processing, including various functions such as data
correction, data cleaning, data unification, and customized
batch operations. In addition to functionality, the flexibility
of EEGUnity is another critical aspect: (1) the Locator
design facilitates easy inspection and modification of dataset
descriptions, ensuring accurate and reliable data processing;
(2) the package features a user-friendly batch process interface,
allowing researchers to develop customized batch processes
tailored to specific requirements.

The ability to process large-scale data has become increas-
ingly significant in the field of EEG, as foundation models
require vast amounts of data for pretraining [53]. This trend
is similar to computer vision, where the availability of large
and annotated datasets like ImageNet [5] have significantly
boosted the development of foundational models. Similarly,
the ability of EEGUnity to handle and integrate multiple
datasets can drive significant advancements in EEG research,
enabling the creation of powerful and accurate foundation
models. The large foundational models are essential for

TABLE VI
IMPLEMENTATION FOR DIAGNOSING AND

VISUALIZING DATASETS IN EEGUNITY

TABLE VII
IMPLEMENTATION FOR DATA CLEANING IN EEGUNITY

TABLE VIII
IMPLEMENTATION FOR DATA UNIFICATION IN EEGUNITY

extending advanced EEG tasks, eventually facilitating the
application of BCI systems. Despite the advantages provided
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Fig. 4. Frequency Visualization Results of Correction Module. The
figure displays magnitude-frequency curves across four subfigures, with
each subfigure corresponding to one of the frequency bands: alpha,
beta, theta, and gamma. The samples visualized are randomly selected
within a domain specified by a “domain tag”. The average curve for each
band is represented in blue, while individual curves for each data sample
are depicted in grey.

Fig. 5. A Statistical Result of Data Integrity Checks and Quality
Assessments for Filtering. The figure illustrates the results of sample
filtering using two types of charts: a pie chart and a box plot. The pie
chart displays the proportion of data filtered by completeness (i.e., fully
completed data) and quality (i.e., data with scores above 80), along with
the proportion of the remaining data. The pie chart provides an overview
for users to understand the extent of data retained after filtering. The box
plot shows the distribution of scores across various datasets. The red
line within each box plot represents the median score, while individual
dots around the box represent the scores of specific data points, with the
maximum number of dots adjustable via parameters. These dots provide
insight into the score distribution within each dataset.

by EEGUnity, the construction of large-scale EEG datasets
faces three challenges: data permission, privacy concerns, and
data validation [22], [43]. Addressing these challenges requires
coordinated efforts from the research community to establish
guidelines and frameworks that facilitate data sharing while
safeguarding individual privacy and ensuring data validation.

V. CONCLUSION

This paper introduces EEGUnity, a new Python package
designed to manage multiple EEG datasets, representing a
significant step forward in the management of large-scale
EEG datasets. In the management of large-scale EEG datasets,
EEGUnity provides powerful data processing capabilities,

Fig. 6. Channel Correlation Visualization Results of Correction Module.
The figure presents channel correlation for samples that are randomly
selected within a domain identified by a “domain tag”. The number of
samples to be visualized is adjustable via a parameter. Subfigure place-
ment is automatically optimized for ease of review. This figure allows
users to inspect specific aspects of the samples, such as low-frequency
noise or channel noise, facilitating a detailed analysis [52].

Fig. 7. The Artifact-free Ratio Score for Available Datasets. The dataset
scores presented in this figure differ slightly from those in Fig. 5 due to
variations in the availability conditions.

including data correction, data cleaning, and data unification,
all of which can be applied flexibly through the Locator
design and custom batch processing interface. The compre-
hensive capabilities and flexible design position EEGUnity as
a valuable tool for researchers. The integration of large-scale,
high-quality datasets facilitated by EEGUnity has the potential
to help researchers gain a deep understanding of brain patterns
and develop powerful EEG foundation models. As EEGUnity
continues to evolve, the contribution of EEGUnity to efficiency
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TABLE IX
CHANNEL ALIGNMENT EVALUATION: CROSS-DATASET BY CHANNEL ALIGNMENT

and scalability will become pronounced. Future work includes
addressing the challenges in data permission, privacy concerns,
and data validation. Addressing these challenges requires coor-
dinated efforts, potentially led by a representative organization
that obtains necessary permissions and leverages EEGUnity to
create a public, large, and standardized EEG dataset.

APPENDIX A
IMPLEMENTATION OF EEGUNITY

See Tables IV–VIII.

APPENDIX B
FIGURES

See Figs 4–7.

APPENDIX C
ALGORITHMS

Algorithm 1 EEG Signal Quality Assessment via the
Shady Method (Adapted and summarized from original
literature [28])
Input: EEG data Xdata; Sampling rate f s
Output: Lists of EEG quality scores S

1 Function Score(X):
2 (S2,L,R) = ClassifyChannels(C) ;

// S2, channels for score sh
// L/R, left/right-side channels

3 Xβ = BandpassFilter(Xdata, βlow, βhigh);
4 Xθ = BandpassFilter(Xdata, θ low, θhigh);
5 sg = GeneralAmplitudeScore(Xdata);
6 sβ = BetaAmplitudeScore(Xβ);
7 ss = BetaSinusoidalScore(Xβ);
8 sθ = ThetaAmplitudeScore(Xθ);
9 if |S2| + |L| + |R| >= |C|andC ̸= ∅ then

10 Xα = BandpassFilter(Xdata, αlow, αhigh);
11 sh = HighestAmplitudeScore(Xα,S2);
12 sd = SymmetryScore(Xα,L,R, f s);
13 S = [sg, sh, sd, sβ, ss, sθ];

14 else
15 S← [sg, sβ, ss, sθ ];

16 return S;

Algorithm 2 EEG Signal Artifact-free Ratio Score
Assessment via the ICA Method (EOG/EMG/ECGArtifact-
Detection is based on MNE-Python library [9] )
Input: EEG data Xdata, ICA parameters θ ICA, Filter

parameters θfilter
Output: EEG quality scores S

1 Function Score(X, θICA):
2 X f ilter = Filter(X, θfilter);
3 Set ncomponents← Number of EEG channels;
4 Initialize ICA with ncomponents and θ ICA;
5 XI C A = ICA(X f ilter);
6 Initialize EEOG = ∅, EEMG = ∅, EECG = ∅;
7 if EOG channels detected in X then
8 EEOG, sEOG = EOGArtifactDetection(XI C A);

9 if EMG channels detected in X then
10 EEMG, sEMG = EMGArtifactDetection(XI C A);

11 if ECG channels detected in X then
12 EECG, sECG = ECGArtifactDetection(XI C A);

13 Eartifact = EEOG ∪ EEMG ∪ EECG;
14 rartifact = |Eartifact|

ncomponents ;
15 S = 1− rartifact;
16 return S;

APPENDIX D
TABLES

Table X presents the classification accuracy of models
trained on a mixed dataset comprising bcic-iv-2a, physionet-
eegmmidb, figshare-meng2019-64, and figshare-meng2019-62.
The mixed dataset is aligned into four versions with different
channel configurations. Datasets figshare-meng2019-64 and
figshare-meng2019-62 share the same task and stimulus, while
the others involve similar motor imagery tasks. The results
underscore the effectiveness of channel alignment in motor
imagery datasets despite the inherent sensitivity of motor
imagery to spatial patterns.

Table IX presents the classification accuracy of models
trained on figshare-meng2019 and physionet-eegmmidb, then
tested on similar tasks without fine-tuning. Channel orders
were aligned using four configurations. Results show that
despite initial differences, alignment improves cross-dataset
generalization, confirming its effectiveness in preserving
shared patterns.
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TABLE X
CHANNEL ALIGNMENT EVALUATION: MIX DATASETS

TRAINING BY CHANNEL ALIGNMENT

TABLE XI
PERFORMANCE COMPARISON OF MULTITHREADING (W. MT) AND

WITHOUT MULTITHREADING (W.O. MT)
IN EEG DATASET PROCESSING

TABLE XII
EEG METADATA EXTRACTION TASK BY LLMS

Table XII presents EEG metadata extraction results using
the LLM boost module of EEGUnity. The extraction process
follows six steps: 1) Potential description files are filtered
by attributes like file size, format, and name. 2) EEGUnity
generates a predefined prompt from each identified file. 3) The
prompt is sent to remote LLMs via API-Key authentication.
4) Responses are retrieved in JSON format. 5) Sampling rate
and channel order are extracted. 6) If inconsistencies arise,
an interactive answer selection resolves conflicts. The results
from XII validate the effectiveness of LLMs in extracting EEG
metadata.

Table XI compares processing times for epoching in EEG
dataset processing. In the multithreading setting, datasets are
grouped by predefined domain tags, with each group processed
in a separate thread. Processing speed depends on factors
like thread count and available CPU cores. The speedup ratio
ranges from 6.91% to 43.64%, demonstrating the effectiveness
of multithreaded design in EEG processing.
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