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Abstract—The concept of fuzzy domain adaptation (FDA) is
focused on transferring a model trained in a source domain
to a target domain, where intrinsic distribution discrepancies
exist in non-stationary and non-deterministic environments. In
this paper, a novel drift decoupling-based variational adaptation
network (DD-VAN) is proposed for FDA, allowing for the learning
of intra-domain evolutionary patterns and inter-domain uncer-
tainties. The DD-VAN algorithm is implemented in three main
steps: (1) an intra-domain evolutionary trend modeling module is
first employed to capture unknown temporal variations through
an autoencoder architecture with variational inference; (2) a
prototype-assisted fuzzy clustering module is used to estimate the
membership degree of the target data, characterizing the inherent
uncertainty and imprecision present in real-world distributions;
and (3) a membership-aware domain fuzzy matching module is
utilized to learn the gradual transitions between category-related
data pairs in the source and target domains by introducing un-
certainties. Furthermore, it is theoretically demonstrated that the
inferred posterior distributions of latent codes can be optimized
to align with the corresponding prior distributions by minimizing
the Kullback-Leibler divergence. Extensive experiments are con-
ducted on cross-domain tasks involving both synthetic and real-
world datasets, and the experimental results suggest that the DD-
VAN algorithm outperforms existing state-of-the-art methods.

Index Terms—Fuzzy domain adaptation, concept drift, fuzzy
pseudo-label estimation, variational inference, fault diagnosis.

I. INTRODUCTION

Over the past decades, impressive achievements have been
made by deep neural networks (DNNs) in various application
areas including biology [19], [20], industry [28], [32], [45],
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and finance [35]. A fundamental assumption underlying the
effectiveness of these traditional DNNs is that both training
and test data must obey the independent and identically dis-
tributed (I.I.D.) principle, which is difficult to satisfy due to the
uncertainties and variations in real-world environments [41].
As a result, when trained on non-IID data, DNNs inevitably
encounter the distribution discrepancy issue, leading to a
decrease in inference or prediction performance [6]. To address
this issue, unsupervised domain adaptation (UDA) has been
introduced, as described in [36], which focuses on learning a
robust model from the provided training data (i.e., the source
domain) that can generalize well to the unlabeled test data
(i.e., the target domain) [39], [44], [49].

Despite the significant progress achieved by UDA, two
pivotal challenges have not been fully addressed in previous
works. The first challenge can be summarized as the issue
of non-deterministic covariate shift. Specifically, to enhance
transfer performance, numerous well-regarded UDA algo-
rithms have adopted a conditional alignment strategy to tackle
the covariate shift issue. Unfortunately, these UDA algorithms
are invariably constrained to a discrete environment setting,
where samples from each category are assumed to possess
distinctive features. In real-world scenarios, however, domain-
s often encompass intrinsic uncertainties and imprecisions,
which can ultimately result in suboptimal performance when
addressing covariate shift [2]. For example, pipeline failure is
a gradual process in which varying degrees of leakage occur
over time, leading to unclear decision boundaries between each
conditional distribution. Under such circumstances, traditional
pseudo-label algorithms for conditional alignment in UDA
inevitably lead to performance degradation. On one hand,
previous UDA works have rarely considered the inherent noise
embedded in pseudo labels due to the covariate shift, which
may compromise subsequent learning. On the other hand,
pseudo labels with crisp values are incapable of describing the
gradual transition process between different categories, which
may result in negative transfer.

The second challenge in UDA research is associated with
the phenomenon of data distribution changing consecutively
over time, referred to as the evolving concept drift issue.
Most existing UDA algorithms operate under the assumption
that knowledge is transferred within a stationary environment,
where both training and test data are arbitrarily sampled. This
assumption can prove problematic in practical applications, as
working conditions and service environments may continuous-
ly evolve in unforeseen ways over time, leading to the issue
of evolving concept drift [51], [56]. When evolving concept
drift occurs, the static domain knowledge induced from past
data may no longer be relevant to new data, resulting in
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poor decision-making outcomes. In the ever-changing big data
landscape, evolving concept drift has been identified as a root
cause of the degraded effectiveness observed in many data-
driven information systems, such as data-driven early warning
systems and fault diagnosis systems [5], [12], [55]. The recent
developments in concept drift have focused on (1) gradual self-
training; (2) domain manifold; (3) incremental learning; and
(4) meta-learning. However, most of these methods are bor-
rowed from static or stationary environments, leading to some
limitations when they are applied to changing environments,
such as computational instability, catastrophic forgetting, and
so on [9], [14], [22], [42], [50].

Motivated by the aforementioned analysis of the non-
deterministic covariate shift issue and the evolving concept
drift issue, a novel fuzzy domain adaptation (FDA) model,
termed drift decoupling-based variational adaptation network
(DD-VAN), is developed to address these two challenges. The
proposed DD-VAN consists of the following three modules:

1) The first is an intra-domain evolutionary trend mod-
eling module, which employs a variational inference-
based intra-domain evolution pattern modeling (VIIE)
mechanism to infer the changing dynamics of temporal
features in the latent space. Technically, VIIE models
the prior distribution of transformation properties in
source samples through a trainable posterior distribution,
with the objective of maximizing the evidence lower
bound (ELBO). In comparison to continuous learning
and online adaptation techniques, the VIIE mechanism
offers a more principled approach to capturing temporal
dependencies between samples and adapting to new
patterns without the need for frequent retraining.

2) The second is a prototype-assisted fuzzy clustering mod-
ule, which estimates pseudo labels of target data using
fuzzy logic, a mathematical technique designed to han-
dle inherent uncertainty and imprecision [3], [17]. Most
existing fuzzy domain adaptation (FDA) algorithms are
based on Takagi-Sugeno fuzzy rules designed for de-
terministic and stationary distributions, which implies
that the concept drift issue remains unsolved. Further-
more, fuzzy techniques, such as the fuzzy C-Means
algorithm [4], are highly flexible in modeling complex,
nonlinear, and intricate relationships in data. However,
existing fuzzy clustering approaches for UDA tasks typ-
ically operate independently of distribution discrepancy
optimization, which can lead to error accumulation.
To address this, a prototype-assisted fuzzy clustering
(PFC) method is proposed within this module, aiming
to correct pseudo labels through a persistent prediction-
correction process.

3) The third is a membership-aware domain fuzzy matching
module, addresses the non-deterministic covariate shift
issue by introducing a novel metric, Fuzzy Maximum
Mean Discrepancy (FMMD). FMMD aids in captur-
ing domain-invariant features from imprecise data by
learning fuzzy decision boundaries between different
conditional distributions. Unlike existing variants of
MMD, FMMD acknowledges the inherent uncertainty
and multi-label nature of target data, thus enhancing
generalization performance in real-world environments.

The core contributions of this paper are highlighted as

follows.
1) A more realistic and challenging setting, termed FDA, is

addressed in this paper, which extends beyond traditional
UDA. In many real-world applications, the inherent
uncertainty and imprecision in data make solving the
deterministic UDA optimization problem suboptimal or
even infeasible. Therefore, it is imperative to design an
effective method to analyze and adapt to these uncer-
tainties. This paper aims to enhance the classification
performance of fuzzy-valued target data by leveraging
knowledge from source data with evolutionary prop-
erties. In this paper, we propose a novel FDA tech-
nique, namely drift decoupling-based variational adap-
tation network (DD-VAN), which aims to improve the
classification evolution performance on target data with
fuzzy categories by utilizing the changing source data
knowledge over time.

2) To address the concept drift problem, a variational
inference-based intra-domain evolution pattern modeling
(VIIE) mechanism is first designed to train a time-
adaptive model by capturing unknown features from the
underlying data distribution over time. The key insight of
this module lies in explicitly modeling the process of the
target variable changing over time in the training stage
to enable the model to dynamically adjust and adapt to
the evolutionary trend of labels in the testing stage.

3) To solve the issue of non-deterministic covariate
shift, prototype-assisted fuzzy clustering method and
membership-aware domain fuzzy matching method are
successively adopted, which have the advantage of de-
scribing and learning the multilevel categorical relations
between the source and target domains during the dy-
namic adaptation process, thus avoiding the issue of
negative transfer.

4) Extensive experiments conducted on eight synthetic
datasets and three real-world datasets confirm that the
proposed DD-VAN model outperforms state-of-the-art
algorithms in its category. Additionally, findings from
the ablation study and stability test provide empirical
evidence supporting the underlying principles of varia-
tional inference and fuzzy logic utilized in the DD-VAN
model.

The remaining sections of this paper are organized as
follows: In Section II, related works regarding UDA, FDA,
and Evolving DA (EDA) are discussed. Section III presents
a challenge analysis and problem definition in relation to the
DD-VAN. In Section IV, the implementation procedure of each
module within the DD-VAN is introduced in detail. Section
V presents the experimental results and relevant analysis.
Conclusions are drawn in Section VI. Finally, an appendix
displaying additional experimental results is provided.

II. RELATED WORK

A. Unsupervised Domain Adaptation
The task setting of UDA assumes that the labeled source

domain and the unlabeled target domain exhibit different
feature distributions, while their learning objectives remain the
same. To enhance transfer performance, existing UDA algo-
rithms have addressed distribution differences in various ways,
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broadly categorized into: (1) metric learning, (2) adversarial
training, and (3) zero-shot generation. Metric learning aims to
mitigate domain shift by adjusting statistical moments, such
as MMD and its variants [36], Kullback-Leibler divergence
[15], and entropy optimization [30]. For instance, Sun et al.
[38] introduced deep CORAL, which aligns the second-order
statistics (correlation) of source and target distributions to
minimize domain shift.

Adversarial training, on the other hand, employs a domain
discriminator and a gradient inversion layer to achieve UDA
without relying on an explicit discrepancy metric [8]. Ad-
ditionally, zero-shot domain adaptation (ZSDA) represents a
special case of UDA, where the target-domain data for the
task of interest are unavailable. A classic work in ZSDA is
[23], which proposed a novel coupled generative adversarial
network. The CoGAN model learns the joint distribution of
multi-domain images by enforcing a simple weight-sharing
constraint, allowing it to generate pairs of images in different
domains that share the same high-level features.

Traditional UDA algorithms primarily focus on adapting
marginal distributions, often neglecting category information.
More recent UDA algorithms, however, have introduced fine-
grained discriminative information into optimization objectives
to avoid negative transfer. This is typically achieved through
subdomain alignment, also known as conditional distribution
matching [25], [54]. Nevertheless, these algorithms often over-
look the challenges posed by imprecise and non-stationary
data.

B. Fuzzy Domain Adaptation

FDA has emerged as a well-advanced framework in recent
years, integrating fuzzy rules or fuzzy relations into clas-
sical DA models to address uncertainty in the knowledge
transfer process. Preliminary attempts have been made by
introducing Takagi-Sugeno fuzzy rules [53], [57] to explore
transfer uncertainty caused by unlabeled data in target domains
[18], [27], [31], [37], [48]. For instance, Xu et al. [48]
presented a transfer representation learning approach using
the Takagi-Sugeno-Kang fuzzy system, which facilitates dis-
tribution discrepancy minimization and feature transformation
through fuzzy mapping. Li et al. [18] proposed a source-free
multi-domain adaptation method based on fuzzy rule-based
deep neural networks. Additionally, Ma et al. [31] introduced
a combination of Takagi-Sugeno fuzzy rules with a self-
supervised pseudo-labeling strategy to address uncertainties in
both source and target domains.

Most existing FDA algorithms have been designed for
deterministic and stationary distributions, meaning that the
concept drift issue remains unsolved. In this paper, a novel
DD-VAN algorithm is proposed to simultaneously tackle non-
deterministic covariate shift and evolving concept drift under
fuzzy classification decision boundaries. First, an intra-domain
evolutionary trend modeling module is designed to model the
changing dynamics of temporal features in the latent space
using variational inference. Second, a prototype-assisted fuzzy
clustering module is used to estimate pseudo-labels for target
conditional distributions using fuzzy logic to describe the
degree of multi-level information belonging to multiple cat-
egories. Finally, a membership-aware domain fuzzy matching

module is proposed to learn fuzzy decision boundaries be-
tween different conditional distributions via FMMD to capture
domain invariant features from non-deterministic and non-
stationary data streams.

C. Evolving Domain Adaptation

Previous UDA methods generally assume that training and
test data are derived from static domains with different dis-
tributions but the same semantics, which often does not hold
in real-world applications where environments and operation
conditions evolve unpredictably. The above phenomenon refers
to concept drift, which can be formalized as:

∃X : Pt (X, y) ̸= Pt+1 (X, y) (1)

where t represents time, X is feature space, y is label,
Pt (X, y) and Pt+1 (X, y) denote the data distributions at time
t and t + 1, respectively. By definition, the key to solving
the concept drift issue is to enable the model to continuously
adapt to varying data distributions in the time dimension.
Evolving domain adaptation (EDA), also known as continuous
domain adaptation, aims to address knowledge transfer for
continuously varying domains over time. Most existing EDA
approaches can be broadly categorized into four main groups.

a. Gradual self-training resorts to an extra sequence of
continuous unlabeled samples as intermediate domains
to adapt the source classifier to the target domain by
self-training instead of feature alignment. For example,
Kumar et al. [14] established the first non-vacuous upper
bound on self-training error under gradual shifts and
demonstrated that regularization and label sharpening
are crucial even with infinite data. However, gradual
self-training suffers from two limitations. Firstly, deter-
mining the appropriate number of intermediate domains
remains an open question. Secondly, self-training using
multiple pseudo-labeling iterations may lead to unstable
training.

b. Domain manifold treats each target sample as poten-
tially coming from a different subspace on the domain
manifold and aims to learn continuous manifolds of the
evolving target domain. For example, Hoffman et al. [9]
introduced a continuous manifold adaptation algorithm
to tackle the problem where test data not only differ
from training data but also evolve continuously. Nev-
ertheless, the issue of fuzzy class distribution decision
boundaries, which is the concern of this paper, may not
be applicable to manifold learning, as it assumes that
the data are distributed on a low-dimensional manifold
that is characterized by relatively clear and consistent
boundaries of the data.

c. Incremental learning simplifies concept drift by dividing
the domain alignment process into smaller incremental
transfer processes. For instance, Korycki et al. [13]
proposed a centroid-driven experience replay method
with a reactive subspace buffer that preserves relevant
information and adapts to changing category distribu-
tions. Incremental learning requires models to be able
to quickly adapt to new data while maintaining memory
and adaptability to old data in an ever-changing domain,
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which can be negatively affected by the issue of catas-
trophic forgetting.

d. Meta-learning aims to learn adaptable representations
during the training phase, thus new target data that
is continuously changing can be adapted by adapters
during the meta-testing phase without forgetting the
previous target. For example, Wu et al. [47] proposed
an adaptive compositional continuous meta-learning al-
gorithm that utilizes a compositional framework to share
meta-knowledge across heterogeneous tasks for continu-
ous adaptation. Meta-learning methods typically assume
that training and test tasks share a prior distribution,
however, if concept drift exceeds this assumption, the
model may fail to generalize.

In contrast to the approaches mentioned above, our research
focuses on continuous adaptation to real-time data streams,
which presents a more challenging yet realistic task for
real-world applications. This task requires the model to be
dynamically updated in response to the constant influx of new
data, necessitating the development of a methodology that can
immediately incorporate valid knowledge of new behaviors
without the need for extensive retraining.

III. CHALLENGE ANALYSIS AND PROBLEM DEFINITION

A. Challenge Analysis

In this section, we will analyze the research approaches to
address the aforementioned challenges.

For the first challenge, data uncertainty typically arises due
to overlapping categories or the presence of noise in the data.
This type of uncertainty is inherent in the data distribution
itself and is not a property of the model, making it irreducible.
Therefore, rather than attempting to eliminate these uncer-
tainties, it is essential for the proposed method to adapt to
them. A potential solution involves incorporating uncertainty
estimation into the pseudo-label generation process, and then
using these pseudo labels to provide fine-grained discriminant
information for subdomain matching. Based on this analysis,
we intuitively employ fuzzy logic to generate pseudo labels,
which are subsequently used to represent overlapping decision
boundaries.

For the second challenge, addressing the non-stationary
problem in UDA requires continuous learning and adaptation
to new data streams while retaining valuable information from
the initial training phase. Incremental learning is a common
technique used in existing UDA methods to address the
concept drift problem. However, the drawbacks of incremental
learning (such as catastrophic forgetting and high computation-
al resource consumption) significantly hinder model perfor-
mance. To overcome these limitations, we propose decoupling
the evolving factors from the domain and modeling their prior
distribution during the training phase. In the testing phase,
time-dependent variables can then be extracted from this
distribution and combined with time-constant features (learned
by a shared feature extractor) to obtain the final outcomes.

B. Problem Definition

In this section, the problem of the FDA is first formulated.
Consider a set of related domains {S, T }, where S and T

represent source domain and target domain, respectively. In
the source domain S, each data-label pair in the sample space
follows the joint distribution P (Xs, Y s), where Xs and Y s

denote the source feature and source label, respectively. In
the target domain T , each data point in the sample space
follows the marginal distribution P (Xt), where Xt represents
the target feature.

Suppose that we are given T sequentially arriving source
samples xs

1:T =
{
xs1, x

s
2, . . . , x

s
T |xst ∈ RM×N

}
, where M

represents the number of series, N is the length of each series,
and t ∈ {1, 2, . . . , T}. Conventional DA methods only address
the issue of covariate shift across domains (i.e., when P (X)
varies), which may result in suboptimal performance when
dealing with evolving covariate shift and concept drift (i.e.,
when both P (X) and P (Y |X) vary over time). As a result,
the goal of FDA is to train a classification model on the source
domain S that can generalize to L sequentially arriving target
samples xt

1:L =
{
xt1, x

t
2, . . . , x

t
L|xtδ ∈ RM×N

}
by exploring

the evolving patterns of covariate shift across domains and
concept shift across samples, where δ ∈ {1, 2, . . . , L}.

To ensure the solvability of the above problem setting,
we characterize the evolving nature of two sequential source
samples by defining the distance between them as 0 ≤
Dis(xst , x

s
t+1) ≤ ϵ under some distribution distance function

Dis (e.g., Kullback-Leibler divergence, Jensen-Shannon diver-
gence, MMD), where ϵ is a constant with a finite value.

IV. A DRIFT DECOUPLING-BASED VARIATIONAL
ADAPTATION NETWORK

In this section, a novel DD-VAN algorithm for FDA is
introduced, which aims to learn evolving, transferable, and
discriminative features through three customized modules.
The first module, called the intra-domain evolutionary trend
modeling module, is designed to train a time-adaptive model
by capturing unknown variations over time in underlying data
distributions using variational inference. The second module,
referred to as the prototype-assisted fuzzy clustering module, is
employed to derive membership degree information, allowing
the model to learn the inherent uncertainty and imprecision
present in real-world distributions. The third module, termed
the membership-aware domain fuzzy matching module, focuses
on learning the gradual transitions between category-related
data pairs in the source and target domains by introducing
fuzzy weight vectors, enabling a more nuanced adaptation
process.

A. Intra-Domain Evolutionary Trend Modeling Module
Variational inference can disentangle time-invariant and

time-variant variables under more relaxed constraints, enabling
the exploration of underlying factors associated with concept
drift. Therefore, the module described in this subsection is
designed to achieve robust adaptation to evolving data distri-
butions through variational inference. The architecture of the
intra-domain evolutionary trend modeling module is illustrated
in Fig. 1.

To model the evolving nature of source samples at different
time stamps, we consider two independent factors, C and V ,
which represent the static behavior in the sample space and
the dynamic behavior in the category space (i.e., concept drift),
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Fig. 1: Architecture of intra-domain evolutionary trend modeling module. The dynamic modeling network takes y1:T as input and outputs
q(zv1:T |y1:T ) to determine p(zv). In addition, the classifier outputs the predicted label ŷ1:T based on the latent variables zv and zc. Notably,
only source-domain data are available during the modeling stage, with the aim of generalizing the model well to unseen target domains.

respectively. Specifically, for the data-label pair {xst , yst} that
arrives at time stamp t, it can be decoupled into time-constant
latent variables zct for C and time-variant latent variables zvt
for V . For simplicity, the notation s is omitted when modeling
concept drift.

The inference process of the classification model can be
formulated using a Markov chain model as follows:

p(y1:T , z
v
1:T |zc) =

T∏
t=1

p(zvt |zv<t)p(yt|zc, zvt ), (2)

where p(zvt |zv<t) = Cat (π (zv<t)) is a learnable categorical
distribution indicating that zv<t is sampled from a finite set
of categories with probability determined by π(·). The term
p(yt|zc, zvt ) is the classification model, which addresses co-
variate shift through zc and concept drift through zvt for FDA.

The variables zc and zv are inferred from the observable
data as p(zc|x) and p(zv|y), respectively. Consequently, the
joint distribution of zc and zv can be described as

p(zc, zv1:T |x1:T ,y1:T ) = p(zc|x1:T )p(z
v
1:T |y1:T ). (3)

To approximate the prior distribution p(zc, zv1:T |x1:T ,y1:T ),
a learnable posterior distribution q(zc, zv1:T |x1:T ,y1:T ) over
the latent variables of provided source-domain data is in-
troduced using variational inference, which allows for the
calculation of the Kullback-Leibler Divergence described as

follows:

DKL(q∥p) =Eq

[
log

q(zc, zv1:T |x1:T ,y1:T )

p(zc, zv1:T |x1:T ,y1:T )

]
=Eq

[
log

q(zc, zv1:T |x1:T ,y1:T )

p(x1:T ,y1:T , zv1:T , z
c)
p(x1:T ,y1:T )

]
=Eq

[
log

q(zc, zv1:T |x1:T ,y1:T )

p(x1:T ,y1:T , zv1:T , z
c)

]
+ logp(x1:T ,y1:T ). (4)

Based on (4), we obtain

logp(x1:T ,y1:T ) =DKL(q∥p) (5)

+ Eq

[
log

p(x1:T ,y1:T , z
v
1:T , z

c
1:T )

q(zc1:T , z
v
1:T |x1:T ,y1:T )

]
.

As DKL(q∥p) ≥ 0, the variational lower bound for
logp(x1:T ,y1:T ) is

L = Eq

[
log

p(x1:T ,y1:T , z
v
1:T , z

c)

q(zc, zv1:T |x1:T ,y1:T )

]
, (6)

and the above formulation can be reorganized as

L =Eq

[
log

p(x1:T ,y1:T , z
v
1:T , z

c)

q(zc, zv1:T |x1:T ,y1:T )

]
=Eq

[
log

∏T
t=1 p (xt, yt|zc, zvt ) p (zc) p (zvt |zv<t)∏T

t=1 q (z
c|xt) q (zvt |zv<t, yt)

]

=Eq

[
−

T∑
t=1

log
q (zc|xt)
p (zc)

−
T∑

t=1

log
q (zvt |zv<t, yt)

p (zvt |zv<t)

+

T∑
t=1

log (p (xt|zc) p (yt|zc, zvt ))

]
. (7)
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Since DKL(q∥p) =
∑

x q(x) log
q(x)
p(x) , (7) can be further

reformulated by using Jensen’s inequality as follows:

L ≥Eq

[
T∑

t=1

log (p (xt|zc) p (yt|zc, zvt ))

−DKL (q (z
c|xt) ∥p (zc))

−DKL (q (z
v
t |zv<t, yt) ∥p (zvt |zv<t))

]
. (8)

Based on the above derivation, we are ready to give the
Evidence Lower Bound (ELBO) as follows:

L =Eq

[
T∑

t=1

log (p (xt|zc) p (yt|zc, zvt ))

−DKL (q (z
c|xt) ∥p (zc))

−DKL (q (z
v
t |zv<t, yt) ∥p (zvt |zv<t))

]
, (9)

where L consists of the classification loss Lcla and the
reconstruction loss Lres. Here, Lcla is formulated as

Lcla =Eq

[
T∑

t=1

log p (yt|zc, zvt )

−DKL (q (z
v
t |zv<t, yt) ∥p (zvt |zv<t))

]
, (10)

and Lres is described as

Lres = Eq

[
T∑

t=1

logp (xt|zc)−DKL (q (z
c|xt) ∥p (zc))

]
.

(11)

Remark 1: It is important to note that the intra-domain
evolutionary trend modeling module learns the evolutionary
patterns between samples exclusively on the source domain,
without involving the target domain. This approach considers
two potential scenarios: (1) the target domain arrives sequen-
tially after the source domain, and (2) the target domain exists
independently of the source domain in terms of a sample-time
relationship. Concept drift in either scenario can be effectively
addressed by the generalizable feature extractor and classifier,
which are trained to adapt to evolving patterns across domains.

B. Prototype-Assisted Fuzzy Clustering Module
Previous works on UDA have utilized pseudo labels ob-

tained through methods such as self-training [21], k-nearest
neighbor search, and clustering algorithms [43] for training.
These approaches typically employ an alternative optimization
strategy, involving two stages: a label generation stage that as-
signs pseudo labels, and a training stage that uses these pseudo
labels to train a generalizable model. However, inherent noise
and error accumulation during pseudo label generation can
significantly degrade the performance of these unsupervised
methods. To address this issue, the PFC method is proposed,
which leverages fuzzy set theory to assign each data point

to multiple categories with varying degrees of membership,
thereby enhancing robustness against random noise and label
errors. In addition, PFC provides detailed membership infor-
mation, which is crucial for domain matching. The architecture
of the prototype-assisted fuzzy clustering module is depicted
in Fig. 2.

In this work, the clustering prototypes
{
vtk,0

}K

k=1
of the

target domain are initialized as the mean values of the samples
from the same grouping category in the source domain, which
can be expressed as:

vtk,0 =

∑nk

i=1 Iys
i∈Yk

q(zc|xs
i )∑nk

i=1 Iys
i∈Yk

, (12)

where K is the category number; xs
i ∈ RT×M represents each

source sample in the training set without considering time t;
vtk,0 denotes initialized clustering prototype for target domain
in first epoch; and nk denotes the number of source samples
in Yk.

The membership degree of target samples xt
i ∈ RL×M is

defined as

ut
i,k =

1∑K
j=1

(
∥q(zc|xt

1:L)−vt
k∥

∥q(zc|xt
1:L)−vt

j∥

) 2
m−1

, (13)

where m is the fuzzy factor greater than 1; q (zc|xt
1:L) is

updated on the basis of the feature extractor. After the first
epoch, the clustering prototypes {vtk}

K

k=1 are updated as the
training process continues using the following equation:

vtk =

∑nt

i=1

(
ut
i,k

)m

q (zc|xt
i)∑nt

i=1

(
ut
i,k

)m (14)

where nt = L×M denotes the number of total target samples.
Different from the conventional fuzzy C-means algorithm,

which updates clustering centers based on a distance function,
the PFC method is designed to capture continuous and gradual
transitions between different categories of distributions in
the shared feature space by utilizing the global distribution
information contained in adaptive prototypes. First, the cate-
gorical distribution P s→t is obtained using source prototypes
as follows:

P s→t
i,k =

exp ((q (zc|xt
i) · vsk) /τ)∑K

j=1exp
((
q (zc|xt

i) · vsj
)
/τ

) , (15)

where q (zc|xt
i) can be parameterized by neural networks; τ

represents the temperature coefficient (defaulting to 1) and “·”
denotes the inner product.

The term vsk represents the k-th category prototype derived
from the common feature space and is defined as follows:

vsk =

∑nk

i=1 Iys
i∈Yk

q(zc|xs
i )∑nk

i=1 Iys
i∈Yk

. (16)

Furthermore, the fuzzy categorical distribution P t is obtained
using clustering prototypes as follows:

P t
i,k =

exp ((q (zc|xt
i) · vtk) /τ)∑K

j=1exp
((
q (zc|xt

i) · vtj
)
/τ

) . (17)
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Step2: Prototype-Assisted Fuzzy Clustering
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Fig. 2: Architecture of prototype-assisted fuzzy clustering module.

As the PFC method is less sensitive to initial source
annotation errors, the optimal solution provided by the source
prototype becomes comparable to a fully supervised scenario
in eliminating cross-domain covariate shift. To further stabi-
lize the learning process of the fuzzy clustering module, a
prototype-driven objective function is proposed as follows:

Lpfc = −
nt∑
i=1

K∑
k=1

ut
i,kζ

(
P s→t
i,k

)
log

(
P t
i,k

)
, (18)

where ζ
(
P s→t
i,k

)
represents the conversion from predicted

probabilities to soft targets, which is formulated as follows

ζ
(
P s→t
i,k

)
=

{
1 if k = argmaxk′ P s→t

i,k

0 otherwise
(19)

Remark 2: The primary role of the PFC method is to
generate a set of rough solutions that drive the model forward
through multiple epochs. The DD-VAN model then leverages
these rough solutions to obtain a more precise set of solutions
by training the feature extractor and classifier. This group of
refined solutions serves two purposes: it not only facilitates
further training of the overall model at the end of the i-th
epoch but also updates the clustering prototypes of the PFC
for the subsequent epoch. We refer to this iterative approach
as the “prediction-correction process.” In this process, the
rough solutions generated by the PFC in the early stages
are progressively refined through repeated predictions and
corrections, leading to more accurate domain adaptation and
model performance over time.

C. Membership-Aware Domain Fuzzy Matching Module

Most existing UDA algorithms focus on minimizing con-
ditional distribution discrepancies across domains to address
covariate shift, operating under the assumption of deterministic
category relationships. However, in real-world distributions,

complex relationships, nonlinearities, and intricate patterns
often lead to imprecise features and category uncertainties
due to gradual transitions caused by external environmental
factors or internal changes. Under such conditions, the model’s
transferability and discriminative ability can stagnate or even
degrade. To overcome this limitation, the membership-aware
domain fuzzy matching method is introduced, which mitigates
the impact of covariate shift by ensuring the model updates
the most confident fuzzy cluster embeddings. By incorporating
fuzzy matching, the model can account for the uncertainties
inherent in real-world data, enhancing its adaptability and
robustness in non-deterministic environments.

The architecture of membership-aware domain fuzzy match-
ing module is shown in Fig. 3. This module helps maintain
model performance by refining the domain matching process
through the use of fuzzy logic, allowing for smoother tran-
sitions between different categories and more accurate cross-
domain adaptation.

Membership-aware domain fuzzy matching is achieved
through FMMD, which compensates the information of fuzzy
category boundaries for the distribution alignment via the
fuzzy weight vectors generated by the PFC. The formulation
of FMMD is expressed as

FMMD2 (S, T ;k)

=
1

K

K∑
k=1

 1

ns(ns − 1)

ns∑
i=1

ns∑
j ̸=i

k
(
xs
i,k, x

s
j

)
+

1

nt(nt − 1)

nt∑
i=1

nt∑
j ̸=i

ut
i,ku

t
j,kk

(
xt
i,k, x

t
j

)
− 2

nsnt

ns∑
i=1

nt∑
j ̸=i

ut
j,kk

(
xs
i,k, x

t
j

) , (20)

where k is a kernel function. Note that (13) helps to match
similar conditional distributions across domains when consid-
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ering membership uncertainty in the target domain.

Step3: Membership-Aware Domain Fuzzy Matching
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Fig. 3: The architecture of membership-aware domain fuzzy matching
module.

D. Optimization
The network framework of the DD-VAN consists of two

stages: (1) the training stage composed of the evolutionary
trend modeling module and the membership-aware domain
fuzzy matching module; and (2) the label generation stage
composed of the prototype-assisted fuzzy clustering module.
This two-stage approach enables the DD-VAN to learn both
evolving trends and handle category uncertainties effectively,
resulting in improved domain adaptation and classification
accuracy.

The training stage consists of a static variational encoder
Ec for q (zc|xs

1:T ), a decoder D responsible for p (xst |zc), a
dynamic modeling network Ev which takes the one-hot label
as input and outputs the categorical distribution q(zvt |zv<t, yt),
a classifier C that takes zc and zv as input to output la-
bel for p(yt|zc, zvt ), a dynamic prior network F v working
for p(zvt |zv<t). Specifically, the encoder Ec, based on one-
dimensional convolutional neural networks (1DCNN), is used
as a feature extractor to capture domain-invariant features
during the training and testing stages. The decoder D mirrors
the architecture of the encoder. Ev is implemented using a
single-layer LSTM network and several linear layers, while the
classifier C is a single linear layer. The dynamic prior network
F v is also an LSTM network, which outputs categorical
distribution Cat (π (zv<t)).

Similar to VAE, the reparameterization trick is used to
update Ec, Ev , and F v. Based on (5), (6), and (20), the
optimization objective for the training module is defined as

Ltrain = Lres + Lcla + λ1FMMD2 (S, T ;k) , (21)

where λ1 is a trade-off parameter that balances the contribu-
tions of the various loss terms.

The prototype-assisted fuzzy clustering module is imple-
mented by clustering network A, which is constructed based
on Ec with frozen network parameters and multiple affine
transformation layers.

Algorithm 1 Optimization Procedure of the DD-VAN Model

Input: Sequential source samples xs
1:T and target samples

xt
1:L; source labels ys

1:T ; static feature extractor Ec;
dynamic modeling network Ev and its corresponding
dynamic prior network F v; classifier C, decoder D, and
clustering network A.

Output: Static feature extractor Ec, dynamic prior network
F v, and classifier C.

1: Initialize Ec, Ev, F v, C, D, A
2: Initialize clustering prototypes vtk,0 for initial epoch by

(12)
3: Assign u← 1
4: for (i0 ← 1; i0 ≤M0; i0 ← i0 + 1) do
5: Generate prior distribution p(zvt |zv<t) through F v

6: for (i1 ← 1; i1 ≤M1; i1 ← i1 + 1) do
7: Train Ec, D, F v, C, Ev with mini-batches from
{S, T } to minimize Ltrain.

8: end for
9: for (i2 ← 1; i2 ≤M2; i2 ← i2 + 1) do

10: Calculate membership degree by (13)
11: Calculate clustering prototypes by (14)
12: Update clustering network by minimizing Lpfc

13: end for
14: end for

V. EXPERIMENTS

In this section, the performance of the proposed DD-VAN
algorithm is evaluated on both synthetic and real datasets and
compared with state-of-the-art algorithms.

A. Implementation Details
1) Model Architecture and Hyperparameters. The neu-

ral network architectures for the synthetic and real
datasets are given in Tabs. I and II. Both classifiers
for synthetic and real datasets are implemented by fully
connected linear layers followed by a softmax function.
All models in this paper are optimized by the Adam
optimizer. For synthetic datasets, the hyperparameters
used in this paper include: learning rate for Ec, C, D,
and A is 3e− 5, learning rate for Ev and F v is 2e− 6,
batch size is 64, and λ1 is 0.2. For real datasets, the
hyperparameters used in this paper include: learning rate
for Ec, C, D, and A is 1e−4, learning rate for Ev and
F v is 1e− 5, batch size is 64, and λ1 is 0.2.

2) Comparison Algorithms. The advanced comparison
algorithms used in this paper include: (1) ERM; (2) DTL
[46]; (3) Deep Coral [38]; (4) DASAN [24]; (5) DRMEA
[29]; (6) IAST [33]; and (7) DIVA [16]. All experiments
are implemented using PyTorch on NVIDIA GEFORCE
RTX 3090 GPU, Intel(R) Core(TM) i9-10900k, 3.70-
GHz CPU. For a fair comparison, all the same parts
of the baseline network architecture are identical for
different benchmarks.

B. Experimental Setting
To gain insight into the performance improvement of the

DD-VAN algorithm, we first conduct experiments on two
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TABLE II: Implementation of ConvNet and ConvTranNet.

# Encoder Layer Decoder Layer

1 Conv1d(in=1, out=32) Linear(in=128, output=256)
2 ReLU ReLU
3 MaxPool1d(kernel size=2, stride=2) Linear(in=256, output=128*128)
4 Conv1d(in=32, out=64) Reshape(1, 128, 128)
5 ReLU ConvTranspose1d(in=128, output=64, kernel=3)
6 MaxPool1d(kernel size=2, stride=2) ReLU
7 Conv1d(in=64, out=128) BatchNorm
8 ReLU ConvTranspose1d(in=64, output=32, kernel=3)
9 MaxPool1d(kernel size=2, stride=2) ReLU
10 Linear(in=128 * 128, output=256) BatchNorm
11 ReLU ConvTranspose1d(in=32, output=1, kernel=3)
12 Dropout(0.5) BatchNorm
13 Linear(in=256, output=128) —

TABLE I: Implementation of non-linear encoder and decoder.

# Encoder Layer Decoder Layer

1 Linear(in=d, output=512) Linear(in=512, output=128)
2 ReLU BatchNorm
3 Linear(in=512, output=512) LeakyReLU(0.2)
4 ReLU Linear(in=128, output=64)
5 Linear(in=512, output=512) BatchNorm
6 ReLU LeakyReLU(0.2)
7 Linear(in=512, output=512) Linear(in=64, output=d)

synthetic datasets Circle/-C and Sine/-C equipped with manual
concept drifts.

(1) Circle/-C [34]. This dataset consists of evolving 30
domains where the instance is distributed in [0,1]. For Circle-
C, concept drift is synthesized by changing the center (xc, yc)
and radius rc of the decision boundary in a gradual manner
over time. The instances inside the circle are categorized as
positives, otherwise negatives. The domains in Circle/-C are
represented by different colors in the first row of Fig. 4, and
the categorical distributions in the second row are represented
in red and blue, respectively. During the experiments, the 30
domains are divided into 9, 6, 5, and 10 domains in order of
source, target, intermediate, and unknown domains for model
training, selection, and testing respectively.

Circle-CCircle

Fig. 4: The visualization of domains and decision boundaries in the
Circle/-C.

(2) Sine/-C [26]. This dataset consists of evolving 24
domains where the instance is distributed in [0,1] with classi-

fication function sin(x). Before the first drift, instances under
the curve are classified as positive and others as negative.
When the drift point is reached, the categorization is reversed.
The domains in Sine/-C are represented by different colors
in the first row of Fig. 5, and the categorical distributions in
the second row are represented in red and blue, respectively.
During the experiments, the 24 domains are divided into 6, 6,
4, and 8 domains in order of source, target, intermediate, and
unknown domains for model training, selection, and testing
respectively.

Sine Sine-C

Fig. 5: The visualization of domains and decision boundaries in the
Sine/-C.

(a) (b)

Fig. 6: (a) Console. (b) Pipeline platform.

(3) NPWD. To validate the practicability of the algorith-
m, we deploy natural gas pipeline fault diagnosis as the
test platform. Pipeline fault diagnosis plays a crucial role
in ensuring high reliability and long-term stability of long-
distance oil and gas transportation systems. For intelligent
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Fig. 7: Decision boundary visualization for the Circle/-C and Since/-C datasets. The last column shows the positive labels in each dataset
with red dots, the negative labels with blue dots, and the black lines representing the decision boundaries. The other columns show the
results of the baselines and the proposed DD-VAN.

TABLE III: Accuracy results (%) of DD-VAN and other UDA baselines on four synthetic datasets.

Algorithm
Without Concept Drift With Concept Drift

Circle Sine Avg. Circle-C Sine-C Avg.

ERM 56.25 51.26 53.76 56.16 54.42 55.29
MMD 70.31 68.75 69.53 69.70 64.31 69.21
Deep Coral 71.88 68.49 70.18 70.83 71.53 67.57
DASAN 73.44 69.87 71.66 74.23 71.88 73.05
DRMEA 73.25 72.01 72.43 76.54 72.30 74.42
IAST 75.00 73.61 74.31 75.31 73.52 74.42
DIVA 76.56 75.99 76.28 76.74 75.28 76.01
DD-VAN(ours) 83.16 82.39 82.78 83.68 80.61 82.15

fault diagnosis tasks, obtaining large-scale, well-characterized
datasets is not even practical in real industrial scenarios, and
most existing diagnostic algorithms tend to suffer from poor
accuracy and limited generalization capability [7], [40]. The
pipeline datasets used in this paper are obtained from the
ZJ-CSGD-type simulation platform, as shown in Fig. 6. The
length of the pipeline is 180.2m, the flow rate is 10m3/h,
and the sampling frequency is 1024Hz. The pipeline dataset
contains instances of three working conditions, which can be
categorized as high pressure (HP), medium pressure (MP), and
low pressure (LP). Instances of each domain can be classified
into four categories, including large leakage, medium leakage,
small leakage, and normal state. Each condition contains 24
domains, which are divided into 6, 9, and 9 domains in the
order of source domain, intermediate domain, and unknown
domain for model training, selection, and testing, respectively.
To implement the FDA, 6 domains are selected as target
domains from another working condition.

C. Performance Analysis on Synthetic Data

The evaluation results of the proposed DD-VAN algorithm
and baselines on synthetic data are presented in Tab. III. Con-
sidering that the comparison algorithms are not specialized in
dealing with concept drift, this paper presents the experimental
results in two parts according to concept drift and without
concept drift for fairness. As can be seen from the table, the
conventional DA algorithms or UDA algorithms with pseudo-
labeling strategies cannot perform satisfactorily when dealing
with the concept drift issue. Compared to the baselines, our

DD-VAN algorithm exhibits stronger advantages in capturing
time-dependent long-distance evolving patterns.

To better explore the merits of the proposed DD-VAN
algorithm, we visualize the decision boundaries of the baseline
and the DD-VAN algorithm on two synthetic datasets. The
visualization results are shown in Fig. 7. As can be observed
in Fig. 7, the predicted labels depicted in the first column
are equivalent to random discrimination, which means that
the ERM algorithm without any adaptation operation cannot
fit the target domain well. Furthermore, the conventional DA
algorithms depicted in the second through fifth columns of
Fig. 7 are incapable of dealing with the long-range concept
drift issue of regarding labels. However, as for Circle/-C and
Sine/-C, our DD-VAN algorithm shows a superior capability
in capturing the underlying evolving patterns across sequential
time stages.

D. Performance Analysis on Real Data

The diagnosis results of all algorithms are listed in Tab. IV.
In summary, the DD-VAN algorithm consistently outperforms
other comparison algorithms in a variety of FDA settings,
achieving 89.42% average accuracy. Specifically, while ERM
adapts well to the source domain, its generalizability to the tar-
get domain is compromised due to leaving covariate shift out
of consideration. Additionally, the conventional DA algorithms
focus solely on tackling the covariate shift issue when concept
drift negatively impacts the model’s performance, although the
ISAT algorithm enhances the transfer performance to a certain
extent due to adopting a pseudo-label generation strategy to
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TABLE IV: Accuracy results (%) of DD-VAN and other UDA baselines on six real-world pipeline evolving datasets.

Algorithm
Pipeline datasets

HM HL MH ML LH LM Avg.

ERM 68.75 62.50 60.93 62.50 65.63 59.38 63.28
MMD 71.33 73.85 73.18 72.98 72.05 70.63 72.33
Deep Coral 74.15 75.28 71.80 73.05 70.98 75.88 73.52
DASAN 72.00 74.43 73.63 71.90 73.03 75.85 73.47
DRMEA 72.65 74.50 72.35 75.43 75.90 73.93 74.13
IAST 73.60 73.65 76.85 74.75 77.63 75.18 75.28
DIVA 76.56 74.88 78.40 73.53 73.60 75.00 75.33
DD-VAN(ours) 88.47 89.47 88.34 89.78 92.86 87.57 89.42

generate reliable pseudo labels, its capability is not sufficient
to deal with the uncertainty and imprecision in the real world.
Moreover, we remold the DIVA algorithm from a multi-source
domain DG task to a UDA task, since it can handle the
concept drift problem by learning three independent latent
subspaces corresponding to domain-invariant feature, categor-
ical information, and other variation information, respectively.
Nevertheless, since the DD-VAN algorithm can explore, adapt,
and exploit evolving drift patterns to achieve FDA, it is
reasonable to achieve significantly better results than existing
UDA methods in pipeline fault diagnosis applications.

E. Parameter Sensitivity Analysis

The loss function for DD-VAN described in (21) deploys a
hyperparameter λ1, which is used to control the contribution
of the FMMD. To verify the impact of the hyperparameter
on the performance of the proposed algorithm, a sensitivity
analysis is implemented by varying the λ1 value according
to {0.1, 0.2, 0.3, 0.5, 0.7, 0.9}. The experimental results are
depicted in Fig. 8, where the dashed line represents the
best mean value among baseline methods and the solid line
represents the results of our DD-VAN algorithm.

(a) HM

(b) ML

(c) LH

Fig. 8: The hyper-parameter sensitivity analysis. (1) HM; (2) ML;
and (3) LH.

It can be noticed that the accuracy trend of DD-VAN
fluctuates slightly under different values of λ1, but it always
achieves better or at least competitive results than the optimal
baseline. Furthermore, the best performance is achieved when
λ1 = 0.2.

F. Ablation Study
To investigate the effectiveness of the proposed algorithm in

handling FDA tasks, we conduct an ablation study on Sine-C
and MH by removing the PFC and FMMD, respectively. The
results are shown in Fig. 9. For both MH and Sine-C, removing
zv would decrease the accuracy, which means that zv can be
used to model and learn the evolutionary trend of concept
drift. Furthermore, removing PFC and FMMD significantly
degrades the performance, which implies that ignoring the
uncertainty of real-world data leads to overconfident training.

Fig. 9: The ablation study for the zv , PFC, and FMMD.

VI. CONCLUSION

In this paper, a realistic and challenging DA setting, FDA,
has been investigated to address the issues of covariate shift
and concept drift varying over time. To tackle these challenges,
the DD-VAN algorithm has been proposed, which learns
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Fig. 10: Visualization of three concept drift types in Circle and Sine synthetic datasets.

time-varying, transferable, and distinguishable domain-sharing
features by leveraging variational inference and fuzzy logic.
Extensive experiments on both synthetic datasets and real-
world pipeline datasets have been conducted, and the results
have demonstrated that the proposed DD-VAN algorithm ef-
fectively captures evolving patterns and generalizes well to
unseen domains compared to state-of-the-art algorithms. In
future work, we will focus on introducing advanced control
strategies to handle evolving covariate shift and concept drift
in more challenging industrial scenarios, such as domain
generalization or multi-source domain generalization.

APPENDIX

A. SIMULATION EXPERIMENTS

The implementation details and experimental results of the
simulation experiments are specified as follows.

• Model and method setups: To reduce computational
consumption while maintaining performance, we try to
use 4× fully-connected layers in the static variational
encoder Ec, decoder D, and clustering network A, single-
layer LSTM network and 3× fully-connected layers for
dynamic modeling network Ev, 1× fully-connected lay-
ers for classifier C, and 5× layers LSTM network for
dynamic prior network F v. The runtime complexity of
the DD-VAN used for the synthetic datasets is O

(
T · d2

)
.

• Data usage: We use synthetic datasets Circle and Sine
equipped with four types of concept drifts, including
gradual drift, recurrent drift, incremental drift, and abrup-
t drift [52]. Gradual drift implies that both sampling
sources are active at a given moment. Over time, the
probability of sampling from one source decreases while
the probability of sampling from another source increases.
Recurrent drift is characterized by a data distribution
that returns to its original distribution over time after
drifting. Incremental drift represents a change in the data
distribution from one to the other over a period of time.
Abrupt drift indicates a variation in the data distribution at
a precise point in time. The synthetic datasets are shown
in Fig. 10.

• Comparison algorithms: We use comparison algorithms
that include the second-best algorithm DIVA and the
third-best algorithm IAST in Tab. III, with the addition of

the state-of-the-art MCMO algorithm [11] and CADM+
algorithm [10].

• Evaluation: All simulation results are derived by aver-
aging the set of 5 random seeds.

• textbfNumerical results and relevant analysis of simula-
tion experiments: We report the simulated classification
results of the DD-VAN and other comparative algorithms
under five random seeds in Tab. V. As shown in the
Table, DD-VAN always achieves the best performance
to different concept drifts, which proves its effectiveness
in dealing with changing target variables. Specifically,
the DD-VAN exhibits superior performance for gradual
and recurrent drifts where evolving patterns significant-
ly exist. In addition, the DD-VAN also achieves sharp
performance improvement compared to state-of-the-art
algorithms in dealing with incremental and abrupt drifts
on Circle and Sine, demonstrating its potential for rapid
adaptation to new variations.

B. REAL-WORLD EXPERIMENTS

In addition to the same configuration as the simulation
experiments, we summarize the implementation details of the
real-world experiments as follows.

• Model and method setups: Different from the simu-
lation experiments, we adopt 1D-CNN for the encoder,
decoder, and clustering network. Therefore, the runtime
complexity is increased to O

(
k · T · d2

)
, but the balance

between computational efforts and performance can also
be maintained.

• Data usage: We extensively evaluate model performance
using the following public datasets to ensure reproducibil-
ity.

a. Jiaolong DSMS V2 [10] is collected and provided
by the National Deep Sea Center located in Qing-
dao, Shandong, China. The initial data is collected
during the Jiaolong deep-sea manned submersible
exploration mission on March 19, 2017. The number
of data is 30,000 in the form of multivariate time
series with about 24 features. The dataset has three
safety levels, including (1) Level I, which indicates
no safety risks from the external environment and
the system is in a healthy state; (2) Level II, which
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TABLE V: Classification accuracy (%) and relevant analysis of Circle-C and Sine-C datasets. The best performance is
highlighted in bold.

Dataset Shift type DIVA IAST MCMO CADM+ DD-VAN

Circle-C

Gradual 76.92±1.27 74.67±1.42 79.01±0.31 81.26±0.59 83.54±0.63

Recurrent 73.62±1.64 73.43±2.33 77.52±1.69 77.84±1.40 81.32±0.47

Incremental 73.07±1.04 70.51±2.59 75.18±0.96 76.24±0.57 79.69±1.22

Abrupt 69.53±2.39 65.68±2.25 71.56±1.23 75.18±0.82 78.83±0.98

Sine-C

Gradual 79.06±0.73 76.61±2.21 82.55±0.56 86.40±1.53 90.54±1.30

Recurrent 77.86±1.56 73.63±1.55 81.32±1.32 84.10±1.36 85.99±0.71

Incremental 71.41±2.60 69.68±3.27 75.15±0.90 76.59±0.99 80.03±0.97

Abrupt 75.07±1.19 73.31±1.15 77.68±0.73 76.14±0.44 80.38±0.70

indicates that the current operation is mildly unsafe
state and there may be security risks in the external
environment or controllable anomalies within the
system; and (3) Level III, which indicates that the
current operation is in an unsafe state and there are
certain safety risks in the external environment or
dangerous abnormalities inside the system. Concept
drift exists in this dataset due to variations in the
evaluation criteria used to determine the safety of
the current state at different depths.

b. Electricity market dataset (ELEC) [1] is a widely
used dataset described by M. Harries and ana-
lyzed by Gama. These data are collected from the
Australian New South Wales Electricity Market.
In this market, prices are not fixed but fluctuate
based on supply and demand dynamics. The price
is determined every five minutes. The ELEC dataset
comprises 45,312 instances. The class labels indi-
cate the variation in price relative to the moving
average over the last 24 hours.

• Numerical results and relevant analysis of real-world
experiments: As shown in Tab. VI, DD-VAN achieves
state-of-the-art performance on two real-world datasets
compared to four competitors. Specifically, variational
inference and fuzzy technique collectively improve the
DD-VAN and achieve 7.62% (75.42% → 83.04%) and
4.06% (84.04% → 79.98%) average absolute improve-
ments over the second-best algorithms, respectively. The
experimental results demonstrate the effectiveness of the
DD-VAN in dealing with unknown concept drift patterns.
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