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Robust Kalman Filtering for Discrete Time-Varying
Uncertain Systems With Multiplicative Noises

Fuwen Yang, Zidong Wang, and Y. S. Hung

Abstract—In this note, a robust finite-horizon Kalman filter is designed
for discrete time-varying uncertain systems with both additive and multi-
plicative noises. The system under consideration is subject to both deter-
ministic and stochastic uncertainties. Sufficient conditions for the filter to
guarantee an optimized upper bound on the state estimation error vari-
ance for admissible uncertainties are established in terms of two discrete
Riccati difference equations. A numerical example is given to show the ap-
plicability of the presented method.

Index Terms—Additive noise, multiplicative noise, norm-bounded uncer-
tainty, robust Kalman filtering, time-varying system.

I. INTRODUCTION

The control and filtering problems for the systems with multiplica-
tive noises have recently received much attention, since the signals con-
taminated by multiplicative noises are common in many practical sys-
tems, such as image processing systems [9], [10], [18], communica-
tion systems [20], and aerospace systems (see, e.g., [11] and the refer-
ences therein). Different from the case of the additive noise, the second
order statistics of the multiplicative noise is usually unknown, as it de-
pends on the real state of the system. This gives rise to more difficulties
in the research. So far, there have been several approaches to dealing
with the control and filtering problems for systems with multiplicative
noises, including the game-theoretic method [2], [16], the linear matrix
inequality (LMI) approach [1], [3], [4], [21], and the Riccati equation
approach [6], to name just a few.

On the other hand, due to unmodeled dynamics, parameter varia-
tions, model reduction and linearization, the systems inherently con-
tain the modeling parameter uncertainties. Different kinds of descrip-
tions have been introduced in the literature to account for the uncer-
tainties, such as norm-bounded uncertainty, convex uncertainty, inte-
gral quadratic constraint (IQC) uncertainty, linear fractional transfor-
mation (LFT) uncertainty. Accordingly, different methods for studying
robust control and filtering problems of these uncertain systems have
been proposed (see, e.g., [7], [8], [15], [23]–[25], [27], [28], and the ref-
erences therein). Very recently, Petersenet al. investigated the control
problem in [12] and [13] for a class of systems with both stochastic
modeling uncertainty and deterministic modeling uncertainty, where
the stochastic uncertainty has been expressed as a multiplicative noise.
It should be pointed out that, compared to the control case, the corre-
sponding robust filtering problem for systems with stochastic and de-
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terministic uncertainties has gained much less attention. This situation
motivates our present investigation.

In this note, the robust Kalman filtering problem is considered for
discrete time-varying systems with two kinds of parameter uncertain-
ties. One is the norm-bounded deterministic uncertainty and the other
is the so-called stochastic uncertainty, namely, the multiplicative noise.
It is worth emphasizing that the robust Kalman filtering problems have
been intensively investigated in the past decade. However, most of the
papers have been concerned with the uncertain systemswithoutmul-
tiplicative noise (see, e.g., [5], [14], [17], [19], and [26]). In [21] and
[22], Wang and Balakrishnan have proposed an LMI method to cope
with thestationaryrobust filtering problem for the uncertain systems
with multiplicative noises over aninfinite horizon, and a practical ex-
ample on communication channel filtering problem has been given in
[22].

In this note, a robustfinite-horizonKalman filter is designed for the
uncertain systems with multiplicative noises where the signals arenon-
stationary. The problem addressed is the design of a linear filter that
yields an estimation error variance with an optimized guaranteed upper
bound for all admissible uncertainties. Sufficient conditions for de-
signing such an optimized filter are derived in terms of two discrete Ric-
cati difference equations, which might be suitable for recursive com-
putation in online applications.

The remainder of this note is organized as follows. In Section II, the
robust Kalman filtering problem for discrete time-varying systems sub-
ject to norm-bounded parameter uncertainty and multiplicative noises
is formulated. An algorithm for the filter design is developed in Sec-
tion III, which guarantees the upper bound on the state estimation error
variance and simultaneously minimizes this upper bound. An example
is given in Section IV, and some concluding remarks are drawn in Sec-
tion V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of discrete time-varying uncertain sys-
tems with multiplicative noises defined onk 2 [0; N ]:

xk+1 =(Ak +H1;kFkEk + As;k�k)xk +Bkwk

yk =(Ck +H2;kFkEk + Cs;k&k)xk + vk (1)

wherexk 2 Rn is the state,yk 2 Rp is the measured output,wk 2

Rq1 is the process noise,vk 2 Rq2 is the measurement noise,�k 2 R

and &k 2 R are the multiplicative noises,Ak, As;k, Bk, Ck, Cs;k,
H1;k, H2;k andEk are known real time-varying matrices with appro-
priate dimensions, whereasFk 2 Ri�j is the norm-bounded time-
varying uncertainty, i.e.,

FkF
T
k � I; 8k: (2)

The parameter uncertaintyFk is said to be admissible if it satisfies (2).
The noise signalswk, vk, �k and &k are all Gaussian white noise

sequences. They, together with the initial statex0, have the following
statistical properties:

E [wk] = 0 E [vk] =0 E [�k] = 0

E [&k] = 0 E [x0] =�x0 (3)

E

wk

vk

�k

&k

x0

wj

vj

�j

&j

x0

T

=

Qk�kj 0 0 0 0

0 Rk�kj 0 0 0

0 0 �kj 0 0

0 0 0 �kj 0

0 0 0 0 S0

(4)
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whereE stands for the mathematical expectation operator,�kj denotes
the Kronecker delta function, which is equal to unity fork = j and zero
elsewhere. The known matricesQk,Rk, andS0 represent the second-
order statistics of the noises and the initial state.

Remark 1: The deterministic uncertainty inFk and the stochastic
uncertainties in�k, &k can be scaled and absorbed in the matricesEk

andAs;k,Cs;k, respectively. Therefore, it is reasonable to assume that
the deterministic uncertainty inFk satisfies (2) and the stochastic un-
certainties in�k, &k satisfy (4). It is worth mentioning that all the noise
signals in (1) are modeled as the zero-mean Gaussian white noise se-
quences. This, however, does not cause any loss of generality, since
color noise can be whiteneda priori to the zero-mean Gaussian white
noise.

Note that the system matrix and output matrix in (1) contain both
deterministic parametric uncertaintiesH1;kFkEk,H2;kFkEk and the
stochastic parametric uncertaintiesAs;k�k, Cs;k&k, respectively. Due
to the complexity in the uncertainties, it is not easy to predict the system
states in the form of (1). In the following, we transform (1) into an
uncertain system with state-dependent noises:

xk+1 =(Ak +H1;kFkEk)xk + �wk

yk =(Ck +H2;kFkEk)xk + �vk (5)

where

�wk = As;k�kxk +Bkwk �vk = Cs;k&kxk + vk: (6)

It can be seen that the noise signals�wk and�vk depend on the system
statexk and their second-order statistics are unknown.

The statistical properties of the noise signals (6) can be described as
follows:

E [ �wk] =0; E [�vk] = 0 (7)

E
�wk

�vk
[ �wT

k �vTk ]

=
As;k

~PkA
T
s;k +BkQkB

T
k 0

0 Cs;k
~PkC

T
s;k +Rk

:=~�k (8)

where

~Pk := E xkx
T
k : (9)

Now, consider the following filter for the uncertain system (5):

x̂k+1 = Âkx̂k + K̂k (yk � Ckx̂k) (10)

wherex̂k 2 Rn is the state estimate,̂Ak andK̂k (0 � k � N ) are the
filter parameters to be determined.

The objective of this note is twofold. First, we intend to design a
finite-horizon filter of the structure (10), such that for all admissible
uncertainties inFk (Fk meetsFkF T

k � I), there exist a sequence of
positive–definite matrices�k (0 < k � N ) satisfying

E (xk � x̂k) (xk � x̂k)
T
� �k; 8k: (11)

That is, the finite upper bound on the state estimation error variance
is guaranteed. Second, we shall minimize the bound�k and obtain
an optimized filter eventually. This problem will be referred to as a
finite-horizon robust Kalman filtering problem. Note that the bound
�k is independent of the second order statistics of the system state,
i.e., ~Pk defined in (9).

III. FINITE-HORIZON ROBUST KALMAN FILTER DESIGN

In this section, we shall discuss the robust Kalman filter design
problem over finite horizon. Define a new state vector

~xk =
xk

x̂k
(12)

then an augmented system follows from the system (5) and the filter
(10) that

~xk+1 = ~Ak + ~HkFk ~Ek ~xk + ~Bkdk (13)

where

dk =
�wk

�vk
~Ak =

Ak 0

K̂kCk Âk � K̂kCk

~Hk =
H1;k

K̂kH2;k

~Ek = [Ek 0 ]

~Bk =
I 0

0 K̂k

: (14)

Denote the state covariance matrix of the augmented system (13) by

~�k := E ~xk~x
T
k = E

xk

x̂k

xk

x̂k

T

: (15)

According to (13) and (15), the Lyapunov equation that governs the
evolution of the covariance matrix~�k can be written as

~�k+1 = ~Ak + ~HkFk ~Ek
~�k

~Ak + ~HkFk ~Ek

T

+ ~Bk
~�k

~BT
k

(16)
where~�k is defined in (8). The initial value is~�0 and, for later use,
we set[ I 0 ]~�0[ I 0 ]T = S0, [ I �I ] ~�0[ I �I ]T = E[(x0 �
x̂0)(x0 � x̂0)

T ] := S1.
It is noted that the uncertaintyFk appears in (16). Therefore, it is

impossible to give the exact value of the covariance matrix~�k. An
alternative way is to find a set of upper bounds for~�k and then obtain
the minimum with respect to the filter parametersÂk andK̂k.

We now recall some useful lemmas.
Lemma 1 [1]: Let Y be a symmetric matrix,A, H andE be real

matrices,X be a symmetric positive–definite matrix and a matrixF
satisfyFF T � I . Then

(A+HFE)X(A+HFE)T � Y � 0 (17)

if and only if there exists a constant� > 0 such that

�
�1
I �EXE

T
>0; (18)

A X
�1
� �E

T
E

�1

A
T + �

�1
HH

T
� Y �0: (19)

Lemma 2 [26]: Given matricesA, H , E, andF with compatible
dimensions such thatFF T � I . LetX be a symmetric positive–def-
inite matrix and� > 0 be an arbitrary positive constant such that
��1I � EXET > 0, then the following inequality holds

(A+HFE)X(A+HFE)T

� A X
�1
� �E

T
E

�1

A
T + �

�1
HH

T
: (20)

Lemma 3 [19]: For 0 � k � N , suppose thatX = XT > 0,
fk(X) = fTk (X) 2 Rn�n andgk(X) = gTk (X) 2 Rn�n. If there
existsY = Y T � X such that

fk(Y ) �fk(X) (21)

and

gk(Y ) �fk(Y ) (22)
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then the solutionsAk andBk to the following difference equations:

Ak+1 = fk (Ak) Bk+1 = gk (Bk) A0 = B0 > 0 (23)

satisfyAk � Bk.
Remark 2: Lemma 1 is known as theS-procedure technique, which

is often utilized to convert the inequality involving norm-bounded un-
certainty like (17) into an equivalent matrix inequality with an extra
scalar parameter�. Lemma 2 is a direct result. Lemma 3 will be used
to give the upper bound for the covariance matrix~�k.

Now, we are in the position to introduce the notions ofquadratic
filter andidentity quadratic filterfor the uncertain system (13).

Definition 1 [14], [26]: The filter (10) is said to bea quadratic filter
associated with�k andPk if there exist symmetric positive–definite
matrices�k andPk(0 � k � N) such that for all admissible uncer-
taintyFk satisfying (2), the following inequality holds:

( ~Ak + ~HkFk ~Ek)�k( ~Ak + ~HkFk ~Ek)
T

��k+1 + ~Bk�k
~BT
k � 0 (24)

where

�k =
As;kPkA

T
s;k +BkQkB

T
k 0

0 Cs;kPkC
T
s;k +Rk

: (25)

According to Lemma 1, (24) holds for all admissible uncertaintyFk
satisfying (2), if and only if there exist a sequence of positive scalars
�k > 0 such that

~Ak(�
�1

k � �k ~E
T
k
~Ek)

�1 ~AT
k + �

�1

k
~Hk

~HT
k

��k+1 + ~Bk�k
~BT
k �0 (26)

and

�
�1

k I � ~Ek�k
~ET
k >0: (27)

Definition 2: The filter (10) is said to be anidentity quadratic filter
associated with�k andPk if there exist symmetric positive–definite
matrices�k andPk(0 � k � N) and positive scalars�k(0 � k �

N), such that for all admissible uncertaintyFk satisfying (2), both the
following equation:

�k+1 = ~Ak(�
�1

k ��k ~E
T
k
~Ek)

�1 ~AT
k +�

�1

k
~Hk

~HT
k + ~Bk�k

~BT
k (28)

and (27) are satisfied, where�k is given in (25).
Based on Definition 2, we have the following conclusion.
Theorem 1: If �0 = ~�0 and ~Pk � Pk, then

~�k � �k (29)

where~�k and�k satisfy (16) and (28), respectively.
Proof: Pk � ~Pk implies that�k � ~�k and ~Bk�k

~BT
k �

~Bk
~�k

~BT
k . Thus, (29) follows directly from Lemma 2 and Lemma 3.

Theorem 1 gives an upper bound for the covariance matrix~�k pro-
vided that ~Pk � Pk. Next, we shall first find the upper boundPk for
~Pk, then construct an upper bound�k for ~�k and select the filter pa-
rametersÂk andK̂k that minimize

�k := [ I �I ] �k [ I �I ]T

� [ I �I ] ~�k [ I �I ]T

=E[(xk � x̂k)(xk � x̂k)
T ]: (30)

Our main results are summarized in the following theorem that pro-
vides a constructive approach to designing the identity quadratic filter
with optimized upper bound�k. For the purpose of clarity, we only
give the sketch of the proof.

Theorem 2: Consider (1). Let�k > 0 be a sequence of positive
scalars. If the following two discrete-time Riccati difference equations:

�k+1 =� �
�1

k H1;kH
T
2;k + Ak(�

�1

k � �kE
T
k Ek)

�1
C

T
k

� R
�1

1;k �
�1

k H2;kH
T
1;k + Ck(�

�1

k � �kE
T
k Ek)

�1
A
T
k

+ Ak ��1k � �kE
T
k Ek

�1

A
T
k + �

�1

k H1;kH
T
1;k

+ As;kPkA
T
s;k +BkQkB

T
k ; �0 = S1 (31)

and

Pk+1 =�
�1

k H1;kH
T
1;k + Ak P

�1

k � �kE
T
k Ek

�1

A
T
k

+BkQkB
T
k + As;kPkA

T
s;k; P0 = S0 (32)

have positive–definite solutions�k and Pk such that��1k I �

EkPkE
T
k > 0 andPk > �k, then an identity quadratic filter (10)

with parameters

Âk =Ak + Ak � K̂kCk �kE
T
k

� �
�1

k I �Ek�kE
T
k

�1

Ek (33)

K̂k = �
�1

k H1;kH
T
2;k

+Ak ��1k � �kE
T
k Ek

�1

C
T
k R

�1

1;k (34)

where

R1;k = �
�1

k H2;kH
T
2;k + Cs;kPkC

T
s;k +Rk

+Ck(�
�1

k � �kE
T
k Ek)

�1
C

T
k (35)

will be such that the state estimation error variance satisfies bounded-
ness condition

E[(xk � x̂k)(xk � x̂k)
T ] � �k; 8k: (36)

Moreover, the filter (10) with parameters (33) and (34) minimizes the
bound�k.

Proof: First, substituting (14) into (16) and according to (9), we
have

~Pk+1 =(Ak +H1;kFkEk) ~Pk(Ak +H1;kFkEk)
T

+BkQkB
T
k + As;k

~PkA
T
s;k;

~P0 =S0: (37)

Comparing (37) to (32), and according to Lemmas 2 and 3, we conclude
that ~Pk � Pk.

Next, suppose that�k is of the following form [5], [19]:

�k =
Pk Pk ��k

Pk ��k Pk ��k

: (38)

Substitute (14), (33), (34), and (38) into the right-hand side of (28), and
consider the relationships (31) and (32). Then, direct algebraic manip-
ulations show the right-hand side of (28) is given by

~Ak(�
�1

k � �k ~E
T
k
~Ek)

�1 ~AT
k + �

�1

k
~Hk

~HT
k

+ ~Bk�k
~B =

Pk+1 Pk+1 ��k+1

Pk+1 ��k+1 Pk+1 ��k+1

: (39)
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This means (38) is a solution to (28). Now, from the initial conditions
in (31) and (32), we know that (16) and (28) have the same initial con-
ditions. It then follows from Theorem 1 that~�k � �k. Therefore, we
have

E[(xk � x̂k)(xk � x̂k)
T ] = [ I �I ] ~�k [ I �I ]T

� [ I �I ] �k [ I �I ]T

=�k; 8k (40)

which implies (36).
Substituting (14) and (38) into (28), we have

�k+1 = [ I �I ] �k+1 [ 0 I ]T

=��1k H1;k � K̂kH2;k H1;k � K̂kH2;k

T

+ As;kPkA
T
s;k +BkQkB

T
k

+ K̂k Cs;kPkC
T
s;k +Rk K̂T

k

+ [Ak � K̂kCk K̂kCk � Âk ] ��1k � �k ~E
T
k
~Ek

�1

� [Ak � K̂kCk K̂kCk � Âk ]
T : (41)

We take the partial derivatives of�k+1 with respect toÂk andK̂k

as follows:

@�k+1

@Âk

= [Ak � K̂kCk K̂kCk � Âk ]

� (��1k � �k ~E
T
k
~Ek)

�1 [ 0 �I ]T = 0 (42)
@�k+1

@K̂k

=� 2��1k (H1;k � K̂kH2;k)H
T
2;k

+ 2K̂k(Cs;kPkC
T
s;k +Rk)

+ 2 [Ak � K̂kCk K̂kCk � Âk ]

� (��1k � �k ~E
T
k
~Ek)

�1 [�Ck Ck ]
T = 0: (43)

From (42) and (43), and through tedious but straightforward algebraic
manipulation, we obtain the optimal filter parametersÂk andK̂k as
follows:

Âk =Ak + (Ak � K̂kCk)�kE
T
k

� (��1k I �Ek�kE
T
k )
�1Ek; (44)

K̂k =[��1k H1;kH
T
2;k +Ak

� (��1k � �kE
T
k Ek)

�1CT
k ]R

�1

1;k: (45)

The filter parameters (44) and (45) are identical to (33) and (34), respec-
tively. Therefore, we can conclude that the filter (10) with parameters
(33) and (34) minimizes the bound�k. This completes the proof.

Remark 3: Similar structure to�k in (38) has been used in [5] and
[19]. The choice of this special structure has been motivated by argu-
ments related to the minimization of the upper bound of the state esti-
mation error variance. Note that the difference Riccati equations (31)
and (32) involve the scalar parameter�k . Detailed discussions on the
feasibility and convergent properties of such kind of difference Riccati
equations can be found in [29] and [30].

IV. A N UMERICAL EXAMPLE

The following uncertain system:

xk+1 =
0 �0:5

1 1 + 0:3�k
xk +

�6

1
wk

yk = [�100 10 ] xk + vk (46)

has been considered in several papers [5], [19], [26], where the precise
bound on the uncertain parameter�k has been assumed to be exactly
known, i.e.,j�kj � 1. However, in practice, such a bound can often be

Fig. 1. MSE of the first-state estimate (MSE1) and its upper bound.

Fig. 2. MSE of the second-state estimate (MSE2) and its upper bound.

obtained from the statistical estimation. It is usually the case that the
probability of the uncertain parameter�k satisfyingj�kj � 1 is close
to one, butnot equal toone.

In our example, we assume thatP (j�kj � 1) = 0:998 whereP
means the probability and the statistical law for the uncertain param-
eter�k to satisfyj�kj > 1 coincides the zero mean Gaussian white
noise sequence with intensity 0.1. This leads to the following uncertain
system with multiplicative noise:

xk+1 =
0 �0:5

1 1 + 0:3��k
+

0 0

0 0:1
�k xk +

�6

1
wk;

yk = [�100 10 ] xk + vk (47)

where the deterministic uncertainty��k satisfies ��k � 1 andwk, vk
and�k are uncorrelated zero mean Gaussian white noise sequences
with unity covariance. Note that the system (47) is of the form of system
(1) withH1;k = [ 0 10 ]T ,H2;k = 0 andEk = [ 0 0:03 ]. Suppose
that the initial conditions are as follows:

x0 = [ 1 0 ]T x̂0 = [ 0 0 ]T S0 = 100I2 andS1 = 10I2:

The simulations have been conducted with�k = 1:15 for different
deterministic uncertainties��k = 0, ��k = 1 and��k = �1. Let MSE1
denote the mean square error (MSE) for the estimation of the first state,
i.e.,(1=M) M

k=1
f[ 1 0 ] (xk � x̂k)g

2, whereM is number of sam-
ples. Similarly, MSE2 is the mean square error for the estimation of
the second state, i.e.,(1=M) M

k=1
f[ 0 1 ] (xk � x̂k)g

2. In Fig. 1,
the solid (dotted, dashed, respectively) line plots the MSE1 for the case
��k = 0 (��k = 1, ��k = �1, respectively). The long dashed line is the
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diagonal element (1,1) of�k, which is clearly shown to be the upper
bound of MSE1 in all three cases. Analogously, in Fig. 2, the solid
(dotted, dashed, respectively) line plots the MSE2 for the case��k = 0

(��k = 1, = �1, respectively), where the long dashed line is the diag-
onal element (2,2) of�k.

We can see from the simulation results that our design goal is well
achieved.

V. CONCLUSION

A robust finite-horizon Kalman filter has been designed in this note
for the uncertain systemswith multiplicative noises, which guarantees
an upper bound on the state estimation error variance for admissible un-
certainties. This bound has been minimized by the construction of filter
parameters. Sufficient conditions for a finite-horizon filter to satisfy an
upper bound on state estimation error variance for all admissible un-
certainties have been given in terms of two discrete Riccati difference
equations, which are of a form suitable for recursive computation.

The results obtained have plenty application potentials in many
branches of control engineering. For example, in fault detection
problems, multiplicative (also called state-dependent) faults could be
viewed as a sort of stochastic multiplicative noise uncertainties and
our task is to detect multiplicative faults in a finite evaluation window
and establish a fault threshold that could be related to the upper bound
of the estimation error variance. In such a case, the theoretical results
of this note are directly applicable on a real-time basis, and this gives
us one of the future research topics.
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