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Robust Kalman Filtering for Discrete Time-Varying terministic uncertainties has gained much less attention. This situation
Uncertain Systems With Multiplicative Noises motivates our present investigation.
In this note, the robust Kalman filtering problem is considered for
Fuwen Yang, Zidong Wang, and Y. S. Hung discrete time-varying systems with two kinds of parameter uncertain-

ties. One is the norm-bounded deterministic uncertainty and the other
) o ) o ] is the so-called stochastic uncertainty, namely, the multiplicative noise.
Abstract—in this note, a robust finite-horizon Kalman filter is designed i \yorth emphasizing that the robust Kalman filtering problems have
for discrete time-varying uncertain systems with both additive and multi- . . . . .
plicative noises. The system under consideration is subject to both deter- P€€N intensively investigated in the past decade. However, most of the
ministic and stochastic uncertainties. Sufficient conditions for the filter to  papers have been concerned with the uncertain sysigtnsut mul-
guarantee an optimized upper bound on the state estimation error vari- tiplicative noise (see, e.g., [5], [14], [17], [19], and [26]). In [21] and
ance for admissible uncertainties are established in terms of two discrete [22], Wang and Balakrishnan have proposed an LMI method to cope
Riccati difference equations. A numerical example is given to show the ap- ...’ - i .
plicability of the presented method. w!th thes_tapongryropust fllterlng p_ro_blem f_or the uncertaln_ systems
N _ S ' with multiplicative noises over aimfinite horizon and a practical ex-
_IndexTerms—Addltl\{e noise, _multlpllce_ltlve noise, norm-bounded uncer- ample on communication channel filtering problem has been given in
tainty, robust Kalman filtering, time-varying system. [22]
In this note, a robudtnite-horizonKalman filter is designed for the
|. INTRODUCTION uncertain systems with multiplicative noises where the signalsare

stationary The problem addressed is the design of a linear filter that

. The_control and filtering prc_)blems for the systems with mlj'lt'pl'ca)'/ields an estimation error variance with an optimized guaranteed upper
tive noises have recently received much attention, since the signals 4gg;n g for all admissible uncertainties. Sufficient conditions for de-
taminated by multiplicative noises are common in many practical Sysjyning such an optimized filter are derived in terms of two discrete Ric-

t_ems, such as image processing systems [9], [10], [18], communit&g—ti difference equations, which might be suitable for recursive com-
tion systems [20], and aerospace systems (see, e.g., [11] and the r%fl?trétion in online applications

ences therein). Different from the case of the additive noise, the se(:onq-he remainder of this note is organized as follows. In Section II, the

order statistics of the multiplicative noise_ is l_JsuaI!y unknown, as it d?ébust Kalman filtering problem for discrete time-varying systems sub-
pends on the real state of the system. This gives rise to more difficultigs; 1 horm.bounded parameter uncertainty and multiplicative noises
in the research. So far, there have been several approaches to de B mulated. An algorithm for the filter design is developed in Sec-
with the control and filtering problems for systems with multiplicativqion 11, which guarantees the upper bound on the state estimation error
noises, including the game-theoretic method [2], [16], the linear matt% ance and simultaneously minimizes this upper bound. An example
inequality (LMI) approach [1], [3], [4], [21], and the Riccati equationg yiyen in Section IV, and some concluding remarks are drawn in Sec-
approach [6], to name just a few. tion V.
On the other hand, due to unmodeled dynamics, parameter varia-
tions, model reduction and linearization, the systems inherently con-
tain the modeling parameter uncertainties. Different kinds of descrip-
tions have been introduced in the literature to account for the uncerConsider the following class of discrete time-varying uncertain sys-
tainties, such as norm-bounded uncertainty, convex uncertainty, irt@ms with multiplicative noises defined éne [0, N]:
gral quadratic constraint (IQC) uncertainty, linear fractional transfor-
mation (LFT) uncertainty. Accordingly, different methods for studying wrpr = (Ax + Hip By + As o) @+ Browy
robust control and filtering problems of these uncertain systems have yr = (Cr + Ho 1 Fi B 4 C jsi) wr + op 1)
been proposed (see, e.g., [7], [8], [15], [23]-[25], [27], [28], and the ref- ) )
erences therein). Very recently, Peterseal. investigated the control wh]ere.rk € R" is the stateyx € R is the measured output;. €
problem in [12] and [13] for a class of systems with both stochastfé’ IS the process noise;. € R is the measurement noisg, € R
modeling uncertainty and deterministic modeling uncertainty, whef@d<x € It are the multiplicative noiseslx, A..x, Bx, Cr, Cu .
the stochastic uncertainty has been expressed as a multiplicative ndiger> 2.~ and Eix are known real time-varying matrices with appro-
It should be pointed out that, compared to the control case, the cofpéate dimensions, whereds, € R'*” is the norm-bounded time-
sponding robust filtering problem for systems with stochastic and dé'yINg uncertainty, i.e.,

F.FE <I, vk 2)
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whereFE stands for the mathematical expectation operaigrdenotes Ill. FINITE-HORIZON ROBUST KALMAN FILTER DESIGN
the Kronecker delta function, which is equal to unityfoe j and zero
elsewhere. The known matric€s., R, andS, represent the second-
order statistics of the noises and the initial state.

Remark 1: The deterministic uncertainty ifi, and the stochastic P = {u} (12)
uncertainties iny;, ¢ can be scaled and absorbed in the matriggs T
andAs «, Cs, i, respectively. Therefore, itis reasonable to assume thgkn an augmented system follows from the system (5) and the filter
the deterministic uncertainty iR}, satisfies (2) and the stochastic un<10) that
certainties imy, ¢ satisfy (4). It is worth mentioning that all the noise
signals in (1) are modeled as the zero-mean Gaussian white noise se- Tpt1 = (Jik + ﬁI;,FkE;) 1 + Bidy, (13)
quences. This, however, does not cause any loss of generality, since
color noise can be whitenedpriori to the zero-mean Gaussian whitewhere

In this section, we shall discuss the robust Kalman filter design
problem over finite horizon. Define a new state vector

noise. [ | Wk . Ay 0

Note that the system matrix and output matrix in (1) contain both di = {M } Ak = { K.Cr Ap — IA{};CL»,:|
deterministic parametric uncertainti&s . Fy £y, Ho  F . and the ~ i .
stochastic parametric uncertaintids ,7, Cs x sk, respectively. Due H;, = {I H } Ey, =[Ey 0]
to the complexity in the uncertainties, itis not easy to predict the system k2 E
states in the form of (1). In the following, we transform (1) into an B = {I 0 } . (14)
uncertain system with state-dependent noises: 0 K

Denote the state covariance matrix of the augmented system (13) by
Try1 = (Ar + Hi 1 FrEy) oy + g

Tk an ]
yr = (Ch + Ho p FLEy) i + 0 5) Swi=E[anih | = E { {“fk } { f’"} } : (15)
T T
where According to (13) and (15), the Lyapunov equation that governs the
evolution of the covariance matr®®, can be written as
Wy = Aspnpar + Brwr  Ur = Cs prar + vr. (6) : R 5 L, B NT . o
Ypy1 = (Ak + HkFleEk) Sk (Ak + HkaEk) + By P By
It can be seen that the noise signals andv;, depend on the system . } (16)
statex;. and their second-order statistics are unknown. where®y, is defined in (8). The initial value &, and, for later use,
The statistical properties of the noise signals (6) can be describedwasset{ I 0]So[1 0]7 = So, [T —I|Z0[I —I]" = E[(x0 —
follows: 20)(wo — 20)7] := Sy
It is noted that the uncertainty, appears in (16). Therefore, it is
E[w,] =0, FElv;]=0 (7) impossible to give the exact value of the covariance mafrix An
£ W] alternative way is to find a set of upper bounds3arand then obtain
e [@r T ] the minimum with respect to the filter parametels and K.
AoxPoAT, + BLQuBF 0 We now recall some useful Iemma§. _
= ’ 5 T Lemma 1 [1]: LetY be a symmetric matrix4d, H and E be real
0 Cs 1PeC, 1 + Ry . - . .. . . .
. ' matrices,X be a symmetric positive—definite matrix and a matfix
=P (8) satistyFF? < I.Then
where (A+ HFE)X(A+ HFE)"' —Y <0 a7
. 5 if and only if there exists a constant> 0 such that
P, =F [;w\wk] . 9) 3
o 'T-EBEXE*Y >0, (18)
Now, consider the following filter for the uncertain system (5): A (X” _ aaE'TE)ﬂ AT+ o 'HHT — Y <0. (19)
:i’k+1 = fiki’k + Kk (yk — Ck;i’k) (10) L

Lemma 2 [26]: Given matricesd, H, F, and F' with compatible
wherei), € R" is the state estimatel, andk, (0 < k < N)arethe dimensions such thafF" < I. Let X be a symmetric positive—def-
filter parameters to be determined. inite matrix andae > 0 be an arbitrary positive constant such that

The objective of this note is twofold. First, we intend to design @~ '7 — EXE" > 0, then the following inequality holds

finite-horizon filter of the structure (10), such that for all admissibl T
, A4+ HFE)X(A+ HFFE
uncertainties inF (Fr meetsF,F} < I), there exist a sequence of? + )X(A+ ) 4
positive—definite matrice®;, (0 < k < N) satisfying <A (X‘l - aETE> A"+ "HH". (20)

n
Lemma 3 [19]: For0 < k < N, suppose thak = X% > 0,

_ - o (X)) = fH(X) € R andge(X) = g (X) € R™X™. If there
That is, the finite upper bound on the state estimation error vanané‘gstsy _ ’ifr > X such that k() i

is guaranteed. Second, we shall minimize the bofipdand obtain

an optimized filter eventually. This problem will be referred to as a Fe(Y) 2 fe(X) (21)
finite-horizon robust Kalman filtering problem. Note that the boun

O;. is independent of the second order statistics of the system state,

i.e., P, defined in (9). g (Y) > fe(Y) (22)

E [(m — 1) (ak — 24 )T] < O, V. (11)
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then the solutionst, and B;, to the following difference equations: Our main results are summarized in the following theorem that pro-
vides a constructive approach to designing the identity quadratic filter
App1 = fe (Ag) Brs1 =gk (Bx) Ag=DBo >0 (23) with optimized upper boun@®;.. For the purpose of clarity, we only
give the sketch of the proof.
satisfyA, < By. ™ Theorem 2: Consider (1). Letvy; > 0 be a sequence of positive
Remark 2: Lemma 1 is known as thg-procedure technique, which scalars. If the following two discrete-time Riccati difference equations:
is often utilized to convert the inequality involving norm-bounded un-

certainty like (17) into an equivalent matrix inequality with an extra Oz = — [a[leH{k + A (0" — akE{Ek)’lCﬁ]
scalar parameter. Lemma 2 is a direct result. Lemma 3 will be used I r L o
to give the upper bound for the covariance makix n "Ry [% Hy wHiy + Cr(© — anEj Ex) ’h]

Now, we are in the position to introduce the notionsgofdratic 1 T L 1 T
filter andidentity quadratic filterfor the uncertain system (13). + A (@k — anky E“) Ak oy HipHig
Definition 1 [14], [26]: The filter (10) is said to ba quadratic filter + J‘ls.kpk-"/lz;k + BiQwBl, ©0=51 (31)
associated witlt,, and P, if there exist symmetric positive—definite
matricesX; and P, (0 < k < N) such that for all admissible uncer- gnd
tainty Fy, satisfying (2), the following inequality holds: 1
o o Pev =ap HyaHiy + A (PC' = anBLEC) AL
(A + HL F By ) Sk (A + Hi FrEy)

o BiQuBi + A1 PeAly, Po= 2
S+ B BT <0 (24) + BrQwBy + As ik PeAsx, o= 50 (32)

have positive-definite solution®, and P; such thata; 'l —

where E.P.El > 0andP, > Oy, then an identity quadratic filter (10)
A, P.AT, 4 B.OQ.BT with parameters
L £QuBy . C?T Rl @
ok TR G g Ak A=Ay + (4k - chk) OvET
u —1 \ 7!
According to Lemma 1, (24) holds for all admissible uncertaifity : ("“k I - EvOrE; ) E (33)
satisfying (2), if and only if there exist a sequence of positive scalars ]y = [0{;1 HlkHsz
ay > 0 such that
—1
. e _ o +4, (07 —avE[E CT} Ry, 34
A(ST = anELE)T AL 1 ar BT g ( BT ’“) e Bre o (39
~Sp41 + Br®B) <0 (26)  where
and Rk = oy Hy o Hi  + Co k PCYL + Ry
o +Cu (07 — anE{Ey)~'C (35)
ai I — EyScEE >0. 27

will be such that the state estimation error variance satisfies bounded-
Definition 2: The filter (10) is said to be aidlentity quadratic filter ness condition
associated witfE, and P if there exist symmetric positive—definite . o7
matrices¥; and P, (0 < k < N) and positive scalars; (0 < k < El(ex — &) (wx — 21)" ] < O, VE. (36)
N), such that for all admissible uncertainfy satisfying (2), both the

. . Moreover, the filter (10) with parameters (33) and (34) minimizes the
following equation:

bound©;,.
~ _ e s s - -, Proof: First, substituting (14) into (16) and according to (9), we
Ses1 = A(Sy —aw B Ey) T Al 4a; 'H H + B, ® B, (28) have g (14)into (16) 910 ()
and (27) are satisfied, whete, is given in (25). ] ISk+1 =(A; + Hl,kF/eEk)Pk(flk + Hl,kaEk)T
Based on Definition 2, we have the following conclusion. T 5 4T
< - B.QrBj + A, 1 PL AL .,
Theorem 1: If ¥y = ¥y andP. < P, then N + BeQuBi + Asr i,
Py =So. (37)
DI (29)

Comparing (37) to (32), and according to Lemmas 2 and 3, we conclude
that P S P
Next, suppose that, is of the following form [5], [19]:

Py P, — Oy
P, -0, P,—0;]’

whereX, andX, satisfy (16) and (28), respectively.
Proof: P, > P, implies that®, > &; and B;®,Bi >
B, &, Bl Thus, (29) follows directly from Lemma 2 and Lemmas3.
Theorem 1 gives an upper bound for the covariance matipro-
vided thatP, < Py. Next, we shall first find the upper bourfd. for ) ) ] )
Py, then construct an upper bouli. for £, and select the filter pa- Substitute (14), (33), (34), and (38) into the right-hand side of (28), and
rametersd, and k&, that minimize consider the relationships (31) and (32). Then, direct algebraic manip-
ulations show the right-hand side of (28) is given by

S = [ (38)

Op:=[I —I|Si[I -I]"
>[I —I1Se[I -I]"
=E[(xx — #x)(2x — 36) 7] (30)

fik(zfl — LIkEgEk)714‘1:£ + (l[lﬁkf{{

Py Pivi — Ort

BB = [ } . (39)

Piy1 —Op11 Pry1 —Opq
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This means (38) is a solution to (28). Now, from the initial conditions 80

in (31) and (32), we know that (16) and (28) have the same initial con-
ditions. It then follows from Theorem 1 thal, < Xi. Therefore, we

have 60
El(wx — dx) (s —2x) 1 =[I =I)Se[I -I]" 50
<[I -Il%i[I -I]" "
=0, Vk (40)
R 30
which implies (36).
Substituting (14) and (38) into (28), we have 20
Opp1 =1 —I]1Se1[0 117 10
~ - T
:(1;1 (H1J-" - IX"LVHQ,;‘) (H]_’],r-, — I{A»HQJ;) 0
0 20 40 60 80 100 120 140 160 180 200
+A-s,lcPlc‘4£k +BkaB£ No. of samples, M
n 7 (C pCT 4R ) QT Fig. 1. MSE of the first-state estimate (MSE1) and its upper bound.
Ve ([ Ce ke kG i ARy
N . . e\l 300
+[Ax = EuCr KiCu— 4] (S0 - an B By ) R P I I A
Uiy S
. [Ak — K.C,. K Cp— A ]T . (41) 250;
We take the partial derivatives 6f;, with respect tad, and &’ |
as follows: 2°°|
00 . . -
¢ :[Ak — K. Ch kaOk—Ak] 150
AR
(St —arEB B0 -1 =0 (42) ol -
8 N 1 y ~ ~.. «'--l"u...._.—.
aelf_+1 = — 2&;1(H1,k — IXVkHQ,k)HQIjk H ‘.."n.-f'a'f: :.:f"...:: Pt 1y A >
K} EN LN e %
+ 2K 4(Co 1 P CL . + Ry) %
+2[Ar — K Cr K Cp — Ay

0
(ST A ETENT O P - 0 20 40 60 80 100 120 140 160 180 200
(% arBEp By)” [=Ce Gi] =0. (43) No. of sarroles. M

From (42) and (43), and through tedious but straightforward algebr&id- 2~ MSE of the second-state estimate (MSE2) and its upper bound.
manipulation, we obtain the optimal filter parametels and K, as

follows: obtained from the statistical estimation. It is usually the case that the
) . - probability of the uncertain paramet®r satisfying|é.| < 1 is close
Ap =Ag + (Ar — K Cr)Ok B to one, bumnot equal toone.
(o' = E.OLEL) T E,, (44) In our example, we assume thBt|6;| < 1) = 0.998 where P
K, =[a; ! Hl.kHQT,k + A, means the probability and the statistical law for the uncertain param-

eteré, to satisfy|6,| > 1 coincides the zero mean Gaussian white
noise sequence with intensity 0.1. This leads to the following uncertain

The filter parameters (44) and (45) are identical to (33) and (34), resp&¥stem with multiplicative noise:

tively. Therefore, we can conclude that the filter (10) with parameters 0 05 0 0 —6

(33) and (34) minimizes the bourtgk.. This completes the proof. m Tt ql 140 351@} L) 0 1} 7]1«) i + { 1 } W,
Remark 3: Similar structure t&;. in (38) has been used in [5] and ’ )

[19]. The choice of this special structure has been motivated by argu- Y% = [-100 10k + vx (47

meqts related to_the minimization of th_e upper bo_und _of the s_tate e%iﬁere the deterministic uncertainty satisfies|5k| < 1andwy, i

mation error variance. Note that the difference Riccati equations (%dm are uncorrelated zero mean Gaussian white noise sequences

and (32) involve the scalar parameter. Detailed discussions on the i, ity covariance. Note that the system (47) is of the form of system
feasibility and convergent properties of such kind of difference RICCEtti) with H, . = [0 10]7 Hap = 0andE, = [0 0.03]. Suppose

(07" — arEl BT 'Cl\RT . (45)

equations can be found in [29] and [30]. ®  that the initial conditions are as follows:
IV. A NUMERICAL EXAMPLE zo=[1 0]" do=[0 0]" S, =100l andS; = 10L.
The following uncertain system: The simulations have been conducted with= 1.15 for different
0 —0.5 -6 deterministic uncertainties. = 0, 6, = 1 andé, = —1. Let MSE1
Thtt = L 1+ ()_Sék:| Tk + { 1 } Wk denote the mean square error (MSE) for the estimation of the first state,

k=11
ples. Similarly, MSE2 is the mean square error for the estimation of

has been considered in several papers [5], [19], [26], where the predise second state, i.€.]1/M) ny; [0 1](xx —4x)}>. InFig. 1,
bound on the uncertain parameterhas been assumed to be exactlyhe solid (dotted, dashed, respectively) line plots the MSEL for the case
known, i.e.,|6x| < 1. However, in practice, such a bound can often b&, = 0 (6, = 1, 6x = —1, respectively). The long dashed line is the

vk =[—100 10]2s + ve (46) e (1/M) S A[1 0] (xx — #k)}?, whereM is number of sam-

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 11:27 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002

diagonal element (1,1) &, which is clearly shown to be the upper [13]
bound of MSEL1 in all three cases. Analogously, in Fig. 2, the solid
(dotted, dashed, respectively) line plots the MSE2 for the &ase 0
(6 = 1,= —1, respectively), where the long dashed line is the diag-
onal element (2,2) 0B5..

We can see from the simulation results that our design goal is well5]
achieved.

[14]

[16]
V. CONCLUSION

A robust finite-horizon Kalman filter has been designed in this notej17)
for the uncertain systemith multiplicative noises, which guarantees
an upper bound on the state estimation error variance for admissible ubs8l
certainties. This bound has been minimized by the construction of filter
parameters. Sufficient conditions for a finite-horizon filter to satisfy anj1g
upper bound on state estimation error variance for all admissible un-
certainties have been given in terms of two discrete Riccati difference
equations, which are of a form suitable for recursive computation.

The results obtained have plenty application potentials in many
branches of control engineering. For example, in fault detection
problems, multiplicative (also called state-dependent) faults could b§1]
viewed as a sort of stochastic multiplicative noise uncertainties and
our task is to detect multiplicative faults in a finite evaluation window [22]
and establish a fault threshold that could be related to the upper bound
of the estimation error variance. In such a case, the theoretical results
of this note are directly applicable on a real-time basis, and this give&3]
us one of the future research topics.
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