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Reputation-based Distributed Filtering Over Sensor
Networks Subject to Stochastic Nonlinearity and

Network-Induced Quantization
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Abstract—In sensor networks, due to inevitable sensor fault-
s, malfunctions, or deliberate attacks, sensors may transmit
erroneous, inaccurate, or misleading data, thereby degrading
overall system performance. To address this issue, an effective
approach is to assign reputation scores to sensors based on
their trustworthiness, historical performance, or reliability. In
this paper, the reputation-based distributed filtering (RBDF)
problem is considered for a class of stochastic nonlinear sys-
tems over sensor networks with network-induced quantization.
A reputation mechanism is employed to mitigate the adverse
effects caused by noisy, faulty, or malicious sensors. Specifically,
reputations are allocated by each sensor to the data received
from its neighbors, ensuring that abnormal data are assigned
smaller reputation values and may even be discarded. For the
first time, a recursive RBDF algorithm is proposed, wherein an
upper bound of the filtering error covariance (UBFEC) is derived
by solving two matrix equations. Subsequently, the filter gain is
determined by minimizing the trace of UBFEC at each step.
Furthermore, a sufficient condition is presented to ensure the
uniform boundedness of the filtering error dynamics. Finally,
a simulation example is provided to verify the feasibility and
validity of the developed RBDF algorithm.

Index Terms—Sensor networks, distributed filtering, repu-
tation mechanism, network-induced quantization, boundedness
analysis.

I. I NTRODUCTION

Sensor networks (SNs) are composed of numerous low-
cost sensor nodes that are dispersedly arranged in a region
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and equipped with communication and computing capabilities.
In recent years, SNs have received significant attention, as
they enable a wide range of critical applications, includ-
ing target tracking, surveillance, transportation, and weather
forecasting [48]. The analysis and synthesis of dynamical
systems encompass, but are not limited to, control [20], [21],
[44], synchronization [9], and filtering [2], [4], [5], [52]. In
particular, the filtering problem has been extensively studied
within the framework of networked systems due to its broad
applicability across various domains, such as industrial mon-
itoring, integrated navigation, and power generation. Specifi-
cally, distributed fusion filtering problem for nonlinear time-
varying systems over SNs has been addressed in [30], where
the dynamic-event-triggering mechanism has been employed
to regulate data transmission and alleviate communication
burdens. Furthermore, finite-timeH∞ filtering problems for
discrete-time nonlinear stochastic systems over SNs, subject
to varying topologies and two-channel malicious attacks, have
been investigated in [13] and [53].

Among various filtering algorithms, distributed filtering
emerges as a particularly suitable technique for dynamical
systems over SNs, which are characterized by large-scale
structures, low-energy components, and limited computational
resources. This approach leverages the collaborative capabili-
ties of sensor nodes to process data efficiently while reducing
communication overhead. It is generally applied to vehicle
tracking, indoor localization, environmental monitoring, orbit
determination, navigation, and other critical fields that require
accurate state estimation in real-time. The objective of dis-
tributed filtering is to estimate the unknown state based on
local observations and neighboring interactions under given
topology structures, ensuring robustness and scalability; see
[10], [17] and the references therein.

The commonly used distributed filtering methods can be
broadly categorized into distributed extended Kalman filtering
[28], [40], distributed particle filtering [41], distributed cuba-
ture filtering [54], distributedH∞ filtering [16], and other vari-
ants. These methods are designed to address different system
complexities and practical constraints. For example, the event-
based distributed filtering problem has been addressed in [37]
for a class of discrete-time nonlinear systems with actuator
saturation, where two recursive equations have been derived
and the filter gain has been designed in the sense of minimum
mean-square error. It is worth mentioning that the distributed
Kalman-type filtering algorithm remains a significant area
of research among the various distributed filtering schemes,
requiring ongoing enrichment, theoretical advancements, and
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practical implementations to further enhance performance.

Within the framework of the distributed filtering algorithm,
each node can receive the local information of its neighbors
through a shared network channel. Unfortunately, sudden envi-
ronmental changes, hardware malfunctions, or communication
interference can make this information unreliable. Further-
more, the information from neighbors may become vulnerable
to malicious cyber attacks [34], such as denial-of-service
attacks, data injection, or replay attacks, which can severely
degrade filtering performance and system stability. As a result,
the reliable/secure distributed filtering problem has attracted
significant research attention. For instance, the consensus-
based distributed filtering issue has been investigated in [19],
where performance evaluation under replay attacks has been
comprehensively analyzed, highlighting the vulnerabilities of
systems under persistent threats.

To address the aforementioned data trustworthiness chal-
lenges, reputation mechanisms have emerged as an effective
strategy for mitigating the impact of unreliable or malicious
data. In this approach, whether a node accepts data from its
neighbors depends on the assigned reputation scores, which
are determined based on factors such as trustworthiness, data
consistency, and historical performance. Specifically, unreli-
able data are assigned lower reputation scores and may be
discarded by the receiver to ensure system reliability; see
[35], [36] for further details. Despite the promising potential
of reputation-based approaches, it is worth noting that there
are currently very few results focusing on the reputation-
based distributed filtering (RBDF) problem, particularly in
the context of stochastic nonlinear systems with quantization
effects. This noticeable gap in the literature strongly motivates
further research to develop effective RBDF strategies that si-
multaneously ensure reliability and enhance filtering accuracy.

As is well-known, nonlinearity is a universal feature in many
practical systems, often leading to undesirable behaviors such
as oscillations, instability, and other complications. Extensive
research on nonlinearity has been reported and discussed;
see [7], [8], [11], [22], [38], [51] for more details. Notably,
nonlinear disturbances typically arise from sudden environ-
mental changes, random failures of physical components, or
communication constraints. In such scenarios, the so-called
stochastic nonlinearity becomes inevitable in engineering, of-
ten involving state-multiplicative noise and second-order mo-
ments. In recent years, significant research has been conducted
on the analysis and synthesis of networked control systems
subject to stochastic nonlinearity. For instance, the maximum
correntropy Kalman filtering problem for time-varying system
with stochastic nonlinearity has been investigated in [39],
where detailed analyses of uniqueness have been presented.

Another significant research area involves quantization of
transmitted data in digital channels, particularly under band-
width or energy limitations. Quantization introduces distor-
tions due to finite word lengths, which can degrade the
performance of filtering algorithms. As a result, considerable
attention has been given to the design of quantization-based
filtering algorithms; see [14], [23], [32], [46], [49] for more
details. Quantization techniques are typically classified into
uniform quantization [26], [47] and logarithmic quantization

[18], [24], [45], where the key challenge lies in effective-
ly handling quantization errors [46]. Notably, quantization
values are often determined probabilistically. For instance,
the feedback quadratic distributed filtering problem in [31]
has incorporated probabilistic-uniform quantization between
adjacent targets. However, research on distributed filtering over
SNs with probabilistic quantization effects remains limited,
which serves as a key motivation for this paper.

Encouraged by the above discussions, this paper aims
to investigate the RBDF problem for a class of stochastic
nonlinear time-varying systems (SNTVS) in the simultaneous
presence of stochastic nonlinearity, probabilistic quantization,
and a reputation mechanism. Compared with the current
results, the key challenges of this study can be listed as
1) a novel reputation principle is established to distinguish
and discard the abnormal data caused by equipment failure
or malicious attacks, thereby improving the reliability and
robustness of the designed distributed filtering algorithm; 2)
the reputation-dependent upper bound of the filtering error
covariance (UBFEC) is determined by solving two recursive
matrix equations, whose trace is minimized by parameterizing
the filter gain in the sense of minimum mean-square error;
and 3) a performance evaluation is given to verify the uniform
boundedness of filtering error.

In response to the difficulties and challenges, the main
contributions of this paper are listed as follows.

1) A novel reputation mechanism suitable for distributed
filtering problem is proposed, effectively identifying and
discarding the neighboring data interfered by sensor
faults, malicious attacks, or sudden network environmen-
t.

2) The UBFEC is determined recursively by solving the
matrix equations and the filter gain is further selected by
minimizing the trace of UBFEC, enhancing the filtering
algorithm performance.

3) A sufficient condition is given to verify the uniform
boundedness of filtering error dynamics based on some
mild assumptions.

This paper is organized as follows. Section III introduces
the problem formulation, focusing on the RBDF problem for
SNTVS with stochastic nonlinearity, probabilistic quantiza-
tion, and a reputation mechanism. In Section IV, the RBDF
algorithm is presented, where the recursion for UBFEC is
derived, and the filter gain is designed by minimizing the
trace of UBFEC. Section V provides a sufficient criterion to
ensure that the UBFEC is uniformly bounded. An illustrative
example is given in Section VI to demonstrate the validity of
the proposed RBDF algorithm. Finally, Section VII concludes
the paper by summarizing the main results.

Notations. The notations used in this paper are standard.
I and 0 represent the identity matrix and the zero matrix,
respectively, with appropriate dimensions.E{∗} denotes the
mathematical expectation. The superscripts(∗)T and (∗)−1

indicate the transpose and inverse operations, respectively. The
notation tr(∗) refers to the trace, which is the sum of the
diagonal elements of a square matrix.
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I I. RELATED WORK

Recently, a large amount of literature has focused on the
attack-resistant distributed nonlinear filtering problems over
SNs, ensuring and improving the filtering performance in the
uncertain and unreliable network environment. Consequently,
the related literature can be divided into two aspects: distribut-
ed nonlinear filtering [3], [27], [53] and anti-attack strategy
[6], [33], [43].

On one hand, a novel secure distributed set-membership
filtering algorithm has been proposed in [4] for a class of
dynamical systems, where a homogeneous Markov chain has
been adopted to describe the switching topologies and an
event-triggered scheduling strategy has been employed to reg-
ulate communication frequency and alleviate channel burden.
In addition, the filter has been designed by solving convex op-
timization problem and boundedness conditions with respect
to the filtering error have been derived completely. Another
representative example [3] has investigated the distributedH∞

filtering problem for a class of discrete-time nonlinear systems
with unknown parameters and energy-bounded disturbances,
where the asymptotic stability of filtering error has been
analyzed and theH∞ performance index has been guaranteed
by means of Lyapunov theory and stochastic analysis. It should
be emphasized that most of the literature mainly discusses and
solves the distributed set-membership filtering and distributed
H∞ filtering problems subject to unknown-but-bounded noises
[55] or energy-bounded noises [1], [12], but lacks the research
on recursive filtering dealing with Gaussian white noises
especially in the situations of network-induced quantization
and anti-attack scheme.

On the other hand, the current node usually can receive
the data from its neighbors by shared networks, typically
bringing challenges to data security owing to the uncertain and
unreliable network environment. For example, the distributed
H∞-consensus filtering method has been proposed in [15] for
a class of time-varying systems subject to sector-like-bounded
attacks, where robust performance under attack scenarios has
been ensured. Similar to [15], the anti-attack distributed filter-
ing methods generally construct attack-information-dependent
filters to ensure the desired estimation performance, see [29],
[42], [50] for more details. Furthermore, some literature has
been concerned with the design of distributed filtering algorith-
m, thereby detecting, identifying and removing the abnormal
data contaminated by malicious attacks [33]. Different with
the current results, we aim to develop a remarkable reputation
mechanism and propose a novel anti-attack RBDF algorithm in
our work, and then give the boundedness analysis of filtering
error dynamic. The comparison with representative works is
presented in Table I to emphasize the distinctive novelties and
advantages of the proposed RBDF method.

III. PROBLEM FORMULATION

In this paper, the SNs consisting ofN sensor nodes are
utilized to measure the target information. The topology of
the SNs is represented by a directed graphG = (V , E ,A ),
where V = {1, 2, . . . , N} denotes the set of nodes,E ⊆
V × V represents the set of edges andA = [aiz]N×N

with aiz ≥ 0 stands for the adjacency matrix. The condition

aiz > 0 ⇔ (i, z) ∈ E indicates that information transmission
exists from thez-th node to thei-th node. Furthermore,
Ni = {z ∈ V |(i, z) ∈ E } denotes the set of neighbor nodes of
the i-th node, while|Ni| represents the number of neighbors
of the i-th node.

Consider the following SNTVS:

xs+1 = Asxs + f(s, xs, θs) +Bsωs, (1)

yi,s = Ci,sxs + υi,s, (2)

wherexs ∈ R
nx represents the model state to be estimated

andyi,s ∈ R
ny denotes the measurement output. The system

matricesAs ∈ R
nx×nx , Bs ∈ R

nx×nω andCi,s ∈ R
ny×nx

are given with appropriate dimensions. The process noiseωs ∈
R

nω is a sequence of Gaussian white noise with zero mean and
covarianceΘs, while υi,s represents the measurement noise,
which is also a Gaussian white noise with zero mean and
covarianceRi,s > 0.

The termf(s, xs, θs) ∈ R
nx with f(s, 0, θs) = 0 describes

the stochastic nonlinearity satisfying

E {f(s, xs, θs)|xs} = 0,

E
{

f(s, xs, θs)f
T (ℓ, xℓ, θℓ)|xs

}

= 0, s 6= ℓ

E
{

f(s, xs, θs)f
T (s, xs, θs)|xs

}

=

m
∑

h=1

Πh,sx
T
s Λh,sxs, (3)

wherem > 0 is a given integer,Πh,s and Λh,s are known
matrices with proper dimensions. Throughout this paper, it is
assumed thatωs, υi,s andθs are mutually independent.

For the sake of convenience, let

yi,s =
[

yi1,s yi2,s . . . yiny,s

]T
.

In practice, the raw measurements may be quantized using
a probabilistic uniform-type quantizer. Such a quantizer is
defined as follows:

Q(yi,s) = [Q1(yi1,s) Q2(yi2,s) · · ·Qny
(yiny ,s)]

T .

For eachQµ(yiµ,s) (µ = 1, 2, . . . , ny), the quantization lev-
els are described by the setUiµ = {φiµ,p|φiµ,p , pκiµ, κiµ >
0, p = 0,±1,±2, . . .}. If φiµ,p ≤ yiµ,s ≤ φiµ,p+1 holds, the
current outputyiµ,s is quantized probabilistically as follows:

Prob{Qµ(yiµ,s) = φiµ,p|riµ} = 1− riµ,

Prob{Qµ(yiµ,s) = φiµ,p+1|riµ} = riµ, (4)

where

riµ =
yiµ,s − φiµ,p

κiµ
.

Denoting the quantization error asqiµ,s = Qµ(yiµ,s)−yiµ,s,
it follows from (4) that

Prob{qiµ,s = −riµκiµ|riµ} = 1− riµ,

Prob{qiµ,s = (1 − riµ)κiµ|riµ} = riµ. (5)

As noted in [31], the quantization error satisfies the follow-
ing properties:

E {qiµ,s} = 0,

E

{

(qiµ,s)
2
}

≤
κ2iµ
4
,
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TABLE I
COMPARISON WITH REPRESENTATIVE WORKS IN ANTI-ATTACK DISTRIBUTED FILTERING.

Ref. Nonlinear System Performance Index Anti-attack strategy Anti-attack type Performance Analysis

[3] Nonlinearity H∞ performance ✗ ✗ Boundedness
[42] Nonlinearity H∞ performance Attack confrontation Passive ✗
[15] ✗ H∞ performance Attack confrontation Passive ✗
[29] ✗ Ellipsoid constraint Attack confrontation Passive ✗
[33] ✗ Variance constraint Attack detection Active Boundedness
[50] ✗ Variance constraint Attack detection Active Stability
[27] Nonlinearity Variance constraint ✗ ✗ ✗

Our Work Nonlinearity Variance constraint Reputation mechanism Active Boundedness

E {qiµ1,sqiµ2,s} = 0

for µ1 6= µ2 andµ1, µ2 ∈ {1, 2, . . . , ny}.
Remark 1: Due to the shared networks with limited ca-

pacities of transmission, storage and computation, the data
to be transmitted are frequently quantized. It is essential to
deal with the quantization error appropriately, otherwise it will
seriously deteriorate the filtering performance. Different from
the deterministic quantization (e.g. uniform quantization), the
network-induced probabilistic-type quantization is common
in engineering, which transforms the quantized data into
stochastic variables. The probabilistic-type quantization could
embody the statistical characteristics of signals adequately,
reflecting the randomness and uncertainty inherent in prac-
tical scenarios and enhancing the robustness of the designed
distributed filtering algorithm.

The following distributed filter is constructed:

x̂i,s+1|s =Asx̂i,s|s, (6)

x̂i,s+1|s+1 =x̂i,s+1|s +∆i,s+1[Q(yi,s+1)− Ci,s+1x̂i,s+1|s]

+
∑

z∈Ni

aizϕiz,s+1(x̂z,s+1|s − x̂i,s+1|s), (7)

where x̂i,s|s and x̂i,s+1|s represent the state estimation and
prediction ofxs at thei-th sensor, respectively.∆i,s+1 is the
filter gain to be determined, andϕiz,s+1 is the reputation-based
parameter, which will be defined later.

In the distributed filtering problem, each node can obtain
prediction information from its neighbors via a shared wireless
channel. However, the data received from neighboring nodes
may be contaminated due to sensor faults, hardware malfunc-
tions, communication errors, or deliberate malicious attacks.
Such contamination can significantly degrade the performance
of the distributed filtering algorithm. To address this issue, a
reputation mechanism is introduced to identify unreliable data
and improve filtering accuracy. Specifically, thereputation-
based parameter is firstly calculated by

~ψiz,s+1 = −
∑

j∈Ni∪{i}

||x̂z,s+1|s − x̂j,s+1|s||

|Ni|
(8)

where ~ψiz,s+1 = 0 if z /∈ Ni. Here, ~ψiz,s+1 represents the
reputation assigned by nodei to nodez. Next, the calculated
reputation is normalized as follows:

ψiz,s+1 =

~ψiz,s+1 − min
j∈Ni

~ψij,s+1

ζij,s+1
, (9)

where

ζij,s+1 = max
j∈Ni

~ψij,s+1 − min
j∈Ni

~ψij,s+1.

Finally, the reputation-based parameter is determined by

ϕiz,s+1 =







ψiz,s+1, if ζij,s+1 ≥ ηij,s+1

1

|Ni|
, otherwise

(10)

whereηij,s+1 is a positive scalar threshold.
Remark 2: A two-step recursive filter is designed in (6)–(7)

including prediction, innovation and neighboring information.
Note that some research results have focused on the distributed
filtering problems with equal weights, whereϕiz,s+1 has been
set to a specific value within the range(0, 1/maxi|Ni|).
In contrast, a reputation-based anti-unreliability scheme is
proposed in this paper to identify and remove the abnormal
data from neighbors. In this approach, each sensor functions
as a local fusion center, capable of assigning individual repu-
tations to the local predictions received from its neighbors,
following the definitions in (8)–(10). Specifically, a mean-
based evaluation rule is defined in (8) to derive the reputation
parameter. Notably, the allocated reputation will decrease as
the deviation calculated by (8) increases, which is further
normalized by means of (9). It can be seen from (8)–(9) that
the predictions with low reputations are identified as abnormal
data subject to cyber attacks or sensor faults. The proposed
reputation strategy effectively reduces the adverse impact of
unreliable sensory data, thereby enhancing the robustness,
resilience, and accuracy of the distributed filtering algorithm.

The objective of this paper is to propose an RBDF algorithm
such that

(1) The reputation-dependent recursion regarding UBFEC is
determined by solving some matrix equations;

(2) The filter gain is parameterized by minimizing the trace of
UBFEC to ensure locally optimal filtering performance.

(3) A sufficient condition is established to guarantee the
uniform boundedness of the filtering error dynamics.

Before proceeding, the following lemmas are presented for
the subsequent derivation.

Lemma 1: [45] For two given vectorsa ∈ R
n andb ∈ R

n,
the following inequality holds:

abT + baT ≤ oaaT + o−1bbT ,

whereo > 0 is a known scalar.
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Lemma 2: [31] Let G, H, F and D be matrices with
appropriate dimensions. Then, we have

∂tr(GHF)

∂H
= GTFT ,

∂tr(GHF)

∂HT
= FG,

∂tr((GHF)D(GHF)T )

∂H
= 2GTGHFDFT .

IV. M AIN RESULTS

This section is devoted to obtaining the UBFEC and deter-
mining the filter gain in the sense of minimum mean-square
error. First of all, the prediction error is given as follows:

ei,s+1|s = xs+1 − x̂i,s+1|s

= Asei,s|s + f(s, xs, θs) +Bsωs. (11)

Furthermore, the filtering error dynamics is presented by

ei,s+1|s+1 =xs+1 − x̂i,s+1|s+1

=(I −∆i,s+1Ci,s+1)ei,s+1|s −∆i,s+1qi,s+1

−∆i,s+1υi,s+1 −
∑

z∈Ni

aiz~i,s+1ψiz,s+1

× (x̂z,s+1|s − x̂i,s+1|s)−
∑

z∈Ni

aiz(1 − ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s), (12)

whereqi,s+1 = [qi1,s+1 qi2,s+1 · · · qiny ,s+1]
T and~i,s+1 is a

binary variable satisfying

~i,s+1 =

{

1, if ζij,s+1 ≥ ηij,s+1

0. otherwise

The following lemma provides the covariances of the pre-
diction error and filtering error.

Lemma 3: The prediction error covariance and filtering
error covariance evolve, respectively, as follows:

Pi,s+1|s =AsPi,s|sA
T
s + E

{

m
∑

h=1

Πh,sx
T
s Λh,sxs

}

+BsΘsB
T
s (13)

and

Pi,s+1|s+1 =(I −∆i,s+1Ci,s+1)Pi,s+1|s(I −∆i,s+1Ci,s+1)
T

+∆i,s+1E{qi,s+1q
T
i,s+1}∆

T
i,s+1

+
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

+∆i,s+1Ri,s+1∆
T
i,s+1 +

∑

z∈Ni

aiz(1− ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

[

∑

z∈Ni

aiz

× (1 − ~i,s+1)
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T

−M1,s+1 −MT
1,s+1 −M2,s+1 −MT

2,s+1

+M3,s+1 +MT
3,s+1, (14)

where

M1,s+1 =E

{

(I −∆i,s+1Ci,s+1)ei,s+1|s

[

∑

z∈Ni

aiz~i,s+1

× ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M2,s+1 =E

{

(I −∆i,s+1Ci,s+1)ei,s+1|s

[

∑

z∈Ni

aiz
1

|Ni|

× (1− ~i,s+1)(x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M3,s+1 =∆i,s+1E{qi,s+1υ
T
i,s+1}∆

T
i,s+1.

Proof: According to the error dynamics in (11) and (12),
it is easy to have

Pi,s+1|s =E{ei,s+1|se
T
i,s+1|s}

=AsPi,s|sA
T
s + E{f(s, xs, θs)f

T (s, xs, θs)}

+ E{Bsωsω
T
s B

T
s }+N1,s +NT

1,s

+N2,s +NT
2,s +N3,s +NT

3,s,

and

Pi,s+1|s+1

=E{ei,s+1|s+1e
T
i,s+1|s+1}

=(I −∆i,s+1Ci,s+1)Pi,s+1|s(I −∆i,s+1Ci,s+1)
T

+∆i,s+1E{qi,s+1q
T
i,s+1}∆

T
i,s+1

+
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

+∆i,s+1Ri,s+1∆
T
i,s+1 +

∑

z∈Ni

aiz(1 − ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

[

∑

z∈Ni

aiz

× (1− ~i,s+1)
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T

−M1,s+1 −MT
1,s+1 −M2,s+1 −MT

2,s+1

+M3,s+1 +MT
3,s+1 −M4,s+1 −MT

4,s+1

−M5,s+1 −MT
5,s+1 +M6,s+1 +MT

6,s+1

+M7,s+1 +MT
7,s+1 +M8,s+1 +MT

8,s+1

+M9,s+1 +MT
9,s+1 +M10,s+1 +MT

10,s+1,

where

N1,s =E{Asei,s|sf
T (s, xs, θs)},

N2,s =E{Asei,s|sω
T
s B

T
s },

N3,s =E{f(s, xs, θs)ω
T
s B

T
s },

M4,s+1 =E{(I −∆i,s+1Ci,s+1)ei,s+1|sq
T
i,s+1∆

T
i,s+1},

M5,s+1 =E{(I −∆i,s+1Ci,s+1)ei,s+1|sυ
T
i,s+1∆

T
i,s+1},
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M6,s+1 =E

{

∆i,s+1qi,s+1

[

∑

z∈Ni

aiz(1− ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M7,s+1 =E

{

∆i,s+1qi,s+1

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1

× (x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M8,s+1 =E

{

∆i,s+1υi,s+1

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1

× (x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M9,s+1 =E

{

∆i,s+1υi,s+1

[

∑

z∈Ni

aiz(1− ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T
}

,

M10,s+1 =
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz(1 − ~i,s+1)
1

|Ni|

× (x̂z,s+1|s − x̂i,s+1|s)

]T

.

Notice thatE{f(s, xs, θs)} = 0, E{ωs} = 0, E{qi,s+1} = 0,
E{υi,s+1} = 0 and~i,s+1(1 − ~i,s+1) = 0. It is obvious that
N1,s, N2,s, N3,s, M4,s+1, M5,s+1, M6,s+1, M7,s+1, M8,s+1,
M9,s+1 andM10,s+1 are all zero-valued matrices by means
of the independent characteristics of stochastic variables, and
the proof is then complete.

Remark 3: Taking network-induced probabilistic-type
quantization, stochastic nonlinearity and reputation mechanism
into account simultaneously, a comprehensive filter is
designed recursively, resulting in the extremely complexity in
determining the exact value of the filtering error covariance.
Consequently, it is imperative to obtain an expression for the
UBFEC by handling quantization errors, cross-product terms,
and other nonlinear effects, facilitating the further calculation
and analysis.

The covariance upper bounds of the prediction error and
filtering error are concretized in the following theorem. In
addition, the filter gain is parameterized to minimize the trace
of the upper bound of the UBFEC.

Theorem 1: Consider the SNTVS (1)–(2) and reputation-
based distributed filter (6)–(7). For known scalarso1 > 0, o2 >
0, o3 > 0 ando4 > 0, under initial conditionPi,0|0 ≥ Pi,0|0 >
0, assume that the following recursive matrix equations:

Pi,s+1|s

=AsPi,s|sA
T
s +

m
∑

h=1

Πh,str(Xi,s|sΛh,s)

+BsΘsB
T
s (15)

and

Pi,s+1|s+1

=(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× (I −∆i,s+1Ci,s+1)
T + 2(1 + o−1

2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )

× (1 − ~i,s+1)
1

|Ni|2

∑

j∈Ni

aij
∑

z∈Ni

aiz

× (Pz,s+1|s + Pi,s+1|s) + ∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1 (16)

have solutionsPi,s+1|s+1 > 0 andPi,s+1|s > 0, where

Xi,s|s = (1 + o1)Pi,s|s + (1 + o−1
1 )x̂i,s|sx̂

T
i,s|s,

ℵ = diag

{

κ2i1
4
,
κ2i2
4
, · · · ,

κ2iny

4

}

. (17)

Then, Pi,s+1|s+1 is an upper bound of Pi,s+1|s+1,
i.e., Pi,s+1|s+1 ≤ Pi,s+1|s+1 at each sampling step. Further-
more, if the selected filter gain satisfies

∆i,s+1 =(1 + o2 + o3)Pi,s+1|sC
T
i,s+1

[

(1 + o2 + o3)

× Ci,s+1Pi,s+1|sC
T
i,s+1 + (1 + o4)ℵ

+ (1 + o−1
4 )Ri,s+1

]−1

, (18)

then the indextr(Pi,s+1|s+1) can be minimized at each
sampling step and the minimizedPi,s+1|s+1 can be recursively
calculated by

Pi,s+1|s+1

=(1 + o2 + o3)Pi,s+1|s − (1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1

×
[

(1 + o2 + o3)Ci,s+1Pi,s+1|sC
T
i,s+1 + (1 + o4)ℵ

+ (1 + o−1
4 )Ri,s+1

]−1

Ci,s+1Pi,s+1|s + 2(1 + o−1
2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )(1 − ~i,s+1)

×
1

|Ni|2

∑

j∈Ni

aij
∑

z∈Ni

aiz(Pz,s+1|s + Pi,s+1|s). (19)

Proof: By means of Lemma 1, one has

E{xsx
T
s } = E{(x̂i,s|s + ei,s|s)(x̂i,s|s + ei,s|s)

T }

≤ (1 + o1)Pi,s|s + (1 + o−1
1 )x̂i,s|sx̂

T
i,s|s

, Xi,s|s, (20)

whereo1 > 0 is a known scalar. It is obvious that

E

{

m
∑

h=1

Πh,sx
T
s Λh,sxs

}

=

m
∑

h=1

Πh,str(E{xsx
T
s }Λh,s)

≤

m
∑

h=1

Πh,str(Xi,s|sΛh,s). (21)
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Substituting (21) into (13) yields

Pi,s+1|s ≤AsPi,s|sA
T
s +

m
∑

h=1

Πh,str(Xi,s|sΛh,s)

+BsΘsB
T
s . (22)

Recalling the fundamental inequality in Lemma 1, we have

−M1,s+1 −MT
1,s+1

≤o2(I −∆i,s+1Ci,s+1)Pi,s+1|s(I −∆i,s+1Ci,s+1)
T

+ o−1
2

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

, (23)

−M2,s+1 −MT
2,s+1

≤o3(I −∆i,s+1Ci,s+1)Pi,s+1|s(I −∆i,s+1Ci,s+1)
T

+ o−1
3

∑

z∈Ni

aiz
1

|Ni|
(1 − ~i,s+1)

× (x̂z,s+1|s − x̂i,s+1|s)

[

∑

z∈Ni

aiz
1

|Ni|

× (1− ~i,s+1)(x̂z,s+1|s − x̂i,s+1|s)

]T

(24)

and

M3,s+1 +MT
3,s+1 ≤o4∆i,s+1E{qi,s+1q

T
i,s+1}∆

T
i,s+1

+ o−1
4 ∆i,s+1Ri,s+1∆

T
i,s+1, (25)

where o2 > 0, o3 > 0 and o4 > 0 are known scalars.
Substituting (23)–(25) into (14) leads to

Pi,s+1|s+1

≤(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× (I −∆i,s+1Ci,s+1)
T + (1 + o4)∆i,s+1

× E{qi,s+1q
T
i,s+1}∆

T
i,s+1 + (1 + o−1

2 )

×
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

+ (1 + o−1
4 )∆i,s+1Ri,s+1∆

T
i,s+1 + (1 + o−1

3 )

×
∑

z∈Ni

aiz(1− ~i,s+1)
1

|Ni|
(x̂z,s+1|s

− x̂i,s+1|s)

[

∑

z∈Ni

aiz(1 − ~i,s+1)
1

|Ni|

× (x̂z,s+1|s − x̂i,s+1|s)

]T

. (26)

Obviously, the quantization error satisfies

E{qi,s+1q
T
i,s+1} ≤ ℵ, (27)

whereℵ is defined in (17). It is not difficult to verify that

Pi,s+1|s+1

≤(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× (I −∆i,s+1Ci,s+1)
T + (1 + o−1

2 )

×
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

+ (1 + o−1
3 )

∑

z∈Ni

aiz(1− ~i,s+1)
1

|Ni|

× (x̂z,s+1|s − x̂i,s+1|s)

[

∑

z∈Ni

aiz(1− ~i,s+1)

×
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T

+∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1. (28)

Subsequently, the following inequality can be established
∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz~i,s+1ψiz,s+1(x̂z,s+1|s − x̂i,s+1|s)

]T

≤
∑

z∈Ni

∑

j∈Ni

aizaij~
2
i,s+1ψiz,s+1ψij,s+1

× (x̂z,s+1|s − x̂i,s+1|s)(x̂j,s+1|s − x̂i,s+1|s)
T

≤
1

2

∑

z∈Ni

∑

j∈Ni

aizaij~
2
i,s+1ψiz,s+1ψij,s+1

×
[

(x̂z,s+1|s − x̂i,s+1|s)(x̂z,s+1|s − x̂i,s+1|s)
T

+ (x̂j,s+1|s − x̂i,s+1|s)(x̂j,s+1|s − x̂i,s+1|s)
T
]

≤2~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s). (29)

Similarly, we have
∑

z∈Ni

aiz(1− ~i,s+1)
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

×

[

∑

z∈Ni

aiz(1− ~i,s+1)
1

|Ni|
(x̂z,s+1|s − x̂i,s+1|s)

]T

≤2(1− ~i,s+1)
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz
1

|Ni|

× (Pz,s+1|s + Pi,s+1|s). (30)

Hence, we arrive at

Pi,s+1|s+1 ≤(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× (I −∆i,s+1Ci,s+1)
T + 2(1 + o−1

2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )

× (1 − ~i,s+1)
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz
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×
1

|Ni|
(Pz,s+1|s + Pi,s+1|s) + ∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1. (31)

Based on (15), (16), (22), (31) and by means of mathemat-
ical induction, one has

Pi,s+1|s+1

≤(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× (I −∆i,s+1Ci,s+1)
T + 2(1 + o−1

2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )

× (1− ~i,s+1)
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz

×
1

|Ni|
(Pz,s+1|s + Pi,s+1|s) + ∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1

=Pi,s+1|s+1. (32)

Now, it remains to design a filter gain to minimize the
filtering indextr(Pi,s+1|s+1). It follows from Lemma 2 that

∂tr(Pi,s+1|s+1)

∂∆i,s+1

=
∂

∂∆i,s+1
tr

(

(1 + o2 + o3)(I −∆i,s+1Ci,s+1)

× Pi,s+1|s(I −∆i,s+1Ci,s+1)
T + 2(1 + o−1

2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )

× (1− ~i,s+1)
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz

×
1

|Ni|
(Pz,s+1|s + Pi,s+1|s) + ∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1

)

=
∂

∂∆i,s+1
tr
(

(1 + o2 + o3)(I −∆i,s+1Ci,s+1)

× Pi,s+1|s(I −∆i,s+1Ci,s+1)
T +∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1

)

=− 2(1 + o2 + o3)(I −∆i,s+1Ci,s+1)Pi,s+1|s

× CT
i,s+1 + 2∆i,s+1[(1 + o4)ℵ+ (1 + o−1

4 )Ri,s+1]. (33)

Letting
∂tr(Pi,s+1|s+1)

∂∆i,s+1
= 0, we have

∆i,s+1 =(1 + o2 + o3)Pi,s+1|sC
T
i,s+1

[

(1 + o2 + o3)

× Ci,s+1Pi,s+1|sC
T
i,s+1 + (1 + o4)ℵ

+ (1 + o−1
4 )Ri,s+1

]−1

. (34)

It follows from (16) and (34) that the minimizedPi,s+1|s+1

satisfies

Pi,s+1|s+1

=(1 + o2 + o3)Pi,s+1|s − (1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1

×
[

(1 + o2 + o3)Ci,s+1Pi,s+1|sC
T
i,s+1 + (1 + o4)ℵ

+ (1 + o−1
4 )Ri,s+1

]−1

Ci,s+1Pi,s+1|s + 2(1 + o−1
2 )

× ~i,s+1

∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )(1− ~i,s+1)

×
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz
1

|Ni|
(Pz,s+1|s + Pi,s+1|s), (35)

and the proof is now complete.
Remark 4: Up to now, the recursion of UBFEC is derived

by solving two matrix equations. Furthermore, the trace of
UBFEC serves as a performance index within the framework
of distributed Kalman-type filtering, which is optimized by
selecting the filter gain properly. The parameterization of the
filter gain is implemented by calculating (33), ensuring the
minimization of filtering error dynamics at each sampling
instant.

V. BOUNDEDNESSANALYSIS

This section is devoted to providing the uniform bounded-
ness analysis for the filtering error dynamics. To begin, it is
essential to introduce the following assumptions.

Assumption 1: There exist positive scalars̄a, b, b̄, x̄, θ, θ̄,
π̄, λ̄, c, c̄ and r such that the following inequalities

AsA
T
s ≤ āI, bI ≤ BsB

T
s ≤ b̄I, θI ≤ Θs ≤ θ̄I,

Xi,s|s ≤ x̄I, Πh,s ≤ π̄I, Λh,s ≤ λ̄I,

cI ≤ Ci,sC
T
i,s ≤ c̄I, Ri,s ≥ rI,

hold for everys, h and i.
Assumption 2: Ci,s+1 is a row-full rank matrix and

Ci,s+1Pi,s+1|sC
T
i,s+1 is invertible.

The uniform boundedness of the filtering error dynamics
is established in the following theorem with the help of
Assumptions 1 and 2.

Theorem 2: For the considered SNTVS (1)–(2) as well as
the constructed reputation-based distributed filter (6)–(7), if
there exists scalar̄p > 0 satisfying

2(1 + o2 + o3)p̄1 + η + φ ≤ p̄, (36)

where

p̄1 = āp̄+ x̄λ̄π̄mnx + b̄θ̄, p
1
= bθ,

η = 4
[

(1 + o−1
2 )|Ni|

2 + (1 + o−1
3 )
]

p̄1I,

φ = (1 + o2 + o3)
2p̄21c̄

[

1

cp
1

+
1

(1 + o−1
4 )r

]

,

thenPi,s+1|s+1 is uniformly bounded under the initial condi-
tion Pi,0|0 ≤ p̄I, i.e.,Pi,s+1|s+1 ≤ p̄I for each instants.

Proof: By means of mathematical induction, starting from
the initialization stepPi,0|0 ≤ p̄I, we assume thatPi,s|s ≤ p̄I
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and then proceed to verifyPi,s+1|s+1 ≤ p̄I. First of all, by
resorting to Assumption 1, we have

Pi,s+1|s =AsPi,s|sA
T
s +

m
∑

h=1

Πh,str(Xi,s|sΛh,s)

+BsΘsB
T
s

≤āp̄I + x̄λ̄π̄mnxI + b̄θ̄I

,p̄1I (37)

and

Pi,s+1|s ≥ BsΘsB
T
s ≥ bθI , p

1
I (38)

for eachi ands. It follows from Lemma 1 that

(I −∆i,s+1Ci,s+1)Pi,s+1|s(I −∆i,s+1Ci,s+1)
T

≤2Pi,s+1|s + 2∆i,s+1Ci,s+1Pi,s+1|sC
T
i,s+1∆

T
i,s+1. (39)

Consequently, we can obtain

Pi,s+1|s+1

≤2(1 + o2 + o3)(Pi,s+1|s +∆i,s+1Ci,s+1Pi,s+1|s

× CT
i,s+1∆

T
i,s+1) + 2(1 + o−1

2 )~i,s+1

×
∑

j∈Ni

aijψij,s+1

∑

z∈Ni

aizψiz,s+1

× (Pz,s+1|s + Pi,s+1|s) + 2(1 + o−1
3 )

× (1− ~i,s+1)
∑

j∈Ni

aij
1

|Ni|

∑

z∈Ni

aiz

×
1

|Ni|
(Pz,s+1|s + Pi,s+1|s) + ∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1

≤2(1 + o2 + o3)p̄1I + 2(1 + o2 + o3)∆i,s+1

× Ci,s+1Pi,s+1|sC
T
i,s+1∆

T
i,s+1 + 4(1 + o−1

2 )

× |Ni|
2p̄1I + 4(1 + o−1

3 )p̄1I +∆i,s+1

× [(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1. (40)

For convenience, we denote

Σ̄i,s+1 =(1 + o2 + o3)Ci,s+1Pi,s+1|sC
T
i,s+1

+ (1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1,

Σ
(1)
i,s+1 =Ci,s+1Pi,s+1|sC

T
i,s+1,

Σ
(2)
i,s+1 =(1 + o4)ℵ+ (1 + o−1

4 )Ri,s+1.

On the basic of Assumptions 1 and 2, one has

∆i,s+1Ci,s+1Pi,s+1|sC
T
i,s+1∆

T
i,s+1

=(1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1Σ̄

−1
i,s+1Σ

(1)
i,s+1

× Σ̄−T
i,s+1Ci,s+1Pi,s+1|s

≤(1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1(Σ

(1)
i,s+1)

−1

× Ci,s+1Pi,s+1|s

≤
(1 + o2 + o3)

2p̄21c̄

cp
1

I (41)

and

∆i,s+1[(1 + o4)ℵ+ (1 + o−1
4 )Ri,s+1]∆

T
i,s+1

=(1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1Σ̄

−1
i,s+1Σ

(2)
i,s+1

× Σ̄−T
i,s+1Ci,s+1Pi,s+1|s

≤(1 + o2 + o3)
2Pi,s+1|sC

T
i,s+1(Σ

(2)
i,s+1)

−1

× Ci,s+1Pi,s+1|s

≤
(1 + o2 + o3)

2p̄21c̄

(1 + o−1
4 )r

I. (42)

Finally, we conclude that

Pi,s+1|s+1

≤2(1 + o2 + o3)p̄1I + 4(1 + o−1
2 )|Ni|

2p̄1I

+ 4(1 + o−1
3 )p̄1I + (1 + o2 + o3)

2p̄21c̄

×

[

1

cp
1

+
1

(1 + o−1
4 )r

]

I

≤p̄I. (43)

Up to now, the proof of this theorem is complete.
Remark 5: Until now, the reputation-dependent UBFEC has

been determined by solving two recursive matrix equations,
and the filter gain has been parameterized by minimizing
the trace of the UBFEC at each step. With the given initial
values, the proposed RBDF algorithm can be implemented
recursively. Furthermore, the performance of the developed
RBDF algorithm is evaluated through a rigorous boundedness
analysis. Specifically, a sufficient condition is presented to en-
sure that the filtering error dynamics are maintained within the
known desirable parameters. From the perspective of practical
application, this analysis provides a significant foundation for
ensuring system stability, reliability and consistent filtering
performance under varying conditions, including stochastic
disturbances, probabilistic quantization, and reputation mech-
anism.

Remark 6: The RBDF algorithm is developed recursively
for SNTVS with stochastic interferences and signal quantiza-
tion. Notice that it is extremely difficult to guarantee that the
filtering error converges to a fixed value due to the system
complexity or the external disturbances such as the stochastic
noises/nonliearity, signal quantization and reputation mecha-
nism. Hence, we are devoted to presenting the boundedness
analysis to ensure that the filtering error fluctuates within a
certain range rather than unlimited growth under the compli-
cated situations considered in this paper.

Remark 7: Compared to the existing results, the distinctive
novelties and advantages in this paper can be summarized as:
1) a reputation-based evaluation scheme is introduced to dis-
cern and eliminate the neighboring data with low reputation s-
cores by assigning different reputation weights to the data from
neighbors, which differs from the distributed filtering problem
with uniform weights; 2) the UBFEC is obtained by dealing
with stochastic nonlinearity, network-induced probabilistic-
type quantization, and reputation mechanism; 3) the filter gain
is selected by optimizing the trace of UBFEC at each step for
the purpose of improving filtering accuracy; and 4) a sufficient
condition is given to ensure that the filtering error dynamics
are uniformly bounded.
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VI. SIMULATION RESULTS

In this section, a simulation example is adopted to demon-
strate the effectiveness, superiority and extensibility of the
developed RBDF algorithm over heterogeneous SNs with six
nodes. The network topologies are described by

V ={1, 2, 3, 4, 5, 6},

E ={(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4)

(3, 2), (4, 1), (5, 2), (5, 6), (6, 2), (6, 5)}.

The system matrices are parameterized by

As =

[

−0.351− 0.2 sin(s) 0.429
0.546− sin(s) cos(s) −0.39 + 0.4 cos(s)

]

,

Bs =

[

−0.24
0.6− 0.2 sin(s)

]

,

C1,s =
[

−0.1 −0.07
]

, C2,s =
[

−0.25 0.5
]

,

C3,s =
[

0.6 −0.6
]

, C4,s =
[

−0.5 0.8
]

.

The stochastic nonlinearity satisfies

f(s, xs, θs)

=

[

0.1
0.2

]

[0.1sign(x1,s)x1,sθ1,s + 0.2sign(x2,s)x2,sθ2,s] ,

where x1,s and x2,s are both the elements ofxs, θ1,s and
θ2,s denote uncorrelated zero-mean Gaussian white noises with
unity variances.

The vectorsx̂i,s|s = [x̂i1,s|s x̂i2,s|s]
T (i = 1, 2, 3, 4) are

the estimations of states at instants. The corresponding initial
values are set aŝx1,s|s = x̂2,s|s = x̂3,s|s = x̂4,s|s = x̂5,s|s =
x̂6,s|s = [0.8 0.8]T , P1,0|0 = 5I2, P2,0|0 = I2, P3,0|0 = 2I2,
P4,0|0 = 4I2, P5,0|0 = P6,0|0 = 3I2. Other parameters are
set asΘs = 0.2, R1,s = R2,s = R3,s = R4,s = 0.5, κ11 =
κ21 = 5 × 10−5, κ31 = κ41 = 1× 10−5, o1 = 0.5, o2 = 0.8,
o3 = 0.7, o4 = 0.2, ηij,s = 0.01.

The considered heterogeneous SNs are composed of two
types of sensors. The type I sensors are capable of measure-
ment as well as calculation and type II sensors without mea-
surement capability function as extending network operation
time and maintaining overall network stability. The nodes1–
4 belong to the type I sensors and the filter conforms to the
structure of(6)–(7), i.e.,

x̂u1,s+1|s =Asx̂u1,s|s,

x̂u1,s+1|s+1 =x̂u1,s+1|s +∆u1,s+1[Q(yu1,s+1)− Cu1,s+1

× x̂u1,s+1|s] +
∑

z∈Nu1

au1zϕu1z,s+1

× (x̂z,s+1|s − x̂u1,s+1|s).

For the type II sensors including nodes5 and 6, the filter is
designed by

x̂u2,s+1|s =Asx̂u2,s|s,

x̂u2,s+1|s+1 =x̂u2,s+1|s +
∑

z∈Nu2

au2zϕu2z,s+1(x̂z,s+1|s

− x̂u2,s+1|s).

The validity and superiority of the proposed RBDF algo-
rithm are demonstrated by a simulation example over het-
erogeneous SNs, and the simulation results are depicted in
Figs. 1–6. Among them, Figs. 1 and 2 depict the trajectories of
the real states and their corresponding estimation trajectories
from six filters, demonstrating the close alignment between the
two. Figs. 3 and 4 reveal that the mean-square errors (MSE1
and MSE2) consistently remain below their respective upper
bounds. Here, MSE1 and MSE2 denote the sum of the mean-
square errors ofx1,s andx2,s, respectively.

It is worth mentioning that the RBDF algorithm developed
in this paper is an improvement of the traditional distributed
recursive filtering schemes without reputation mechanism (see,
e.g. [27]). In order to clarify the advantages relative to the
traditional distributed recursive filtering methods, a simulation
comparison is presented to show the superiority of reputation
mechanism in response to network attacks. As mentioned in
[25], the stochastic-type false data injection attack is typically
discussed and considered in the design of filtering algorithm,
which is modeled here by

ξ̃i,s = (1 − βi,s)~ξi,s + βi,sǫi,s,

where ~ξi,s is the original data sent by neighbors, andǫi,s
is a zero-mean attack signal with varianceτs = 50. βi,s is
a Bernoulli distributed stochastic variable to characterize the
attack frequency. Specifically,βi,s = 1 means that the attack
occurs and otherwise no attack occurs. Here, the expectation
of βi,s is set as0.95. Now, under a scenario wherêx4,s+1|s

is subject to network attacks, the comparative results are pro-
vided to validate the effectiveness of the proposed reputation
mechanism. ForCase I, the reputation-based filter described in
(7) is employed, while forCase II, adopt the filter in traditional
distributed recursive filtering method, whereϕiz,s is fixed at
0.2. Figs. 5 and 6 demonstrate that the reputation mechanism
significantly improves estimation accuracy.

Furthermore, it can be seen from (8)–(10) that the local
predictionx̂z,s+1|s contaminated by malicious attacks can be
identified and removed effectively whenϕiz,s = 0. Otherwise,
different reputation parameter will be allocated based on the
calculation principle in (8). The successful identification and
removal situations under different variances of attack signal
are shown in Table II, where the first (second) element of
vector represents the number ofϕ14,s = 0 (ϕ24,s = 0) and the
corresponding probability.

TABLE II
THE SUCCESSFUL IDENTIFICATION SITUATIONS UNDER DIFFERENT

VARIANCES OF ATTACKS.

τs The number ofϕ14,s = 0 andϕ24,s = 0 Probability
0.5 [57 44] [0.63 0.49]
1 [62 47] [0.69 0.52]
4 [64 48] [0.71 0.53]
16 [66 49] [0.73 0.54]

VII. C ONCLUSION

In this paper, we have proposed an RBDF algorithm for
stochastic nonlinear time-varying systems over sensor net-
works subject to probabilistic quantization and a reputation
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Fig. 1. Statex1,s and its estimations.
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Fig. 2. Statex2,s and its estimations.
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Fig. 3. Log(MSE1) and its upper bound.
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Fig. 4. Log(MSE2) and its upper bound.
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Fig. 5. MSE1 under different cases.
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Fig. 6. MSE2 under different cases.
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mechanism. First, a uniform-type probabilistic quantization
strategy has been employed to preprocess the data before
transmission, thereby effectively addressing communication
constraints. Subsequently, a reputation mechanism has been
introduced to identify and mitigate abnormal data, which may
arise due to sensor faults or cyber attacks. The RBDF problem
has been tackled under the simultaneous presence of stochas-
tic nonlinearity, probabilistic quantization, and the reputation
mechanism. A reputation-dependent UBFEC has been derived
recursively by solving two matrix equations. The filter gain
has then been optimally parameterized to minimize the trace
of the UBFEC, ensuring improved estimation performance in
the mean-square error sense. Furthermore, sufficient condi-
tions guaranteeing the uniform boundedness of the UBFEC
have been established under mild assumptions. Finally, an
illustrative example has demonstrated the effectiveness and
superiority of the proposed RBDF algorithm, particularly in
handling unreliable and attack-contaminated data. The future
extended directions could include the designs of ensemble or
unscented Kalman-type filtering algorithm subject to reputa-
tion mechanism and communication protocol.
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