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Abstract—In sensor networks, due to inevitable sensor fault- and equipped with communication and computing capabilities.
s, malfunctions, or deliberate attacks, sensors may transmit |n recent years, SNs have received significant attention, as

erroneous, inaccurate, or misleading data, thereby degrading ey enaple a wide range of critical applications, includ-
overall system performance. To address this issue, an effective. :

approach is to assign reputation scores to sensors based on"9 targt_et tracking, surveillan_ce, transportati(_)n, and Weat.her
their trustworthiness, historical performance, or reliability. In ~ forecasting [48]. The analysis and synthesis of dynamical
this paper, the reputation-based distributed filtering (RBDF) systems encompass, but are not limited to, control [20], [21],
problem is considered for a class of stochastic nonlinear sys-[44], synchronization [9], and filtering [2], [4], [5], [52]. In

tems over sensor networks with network-induced quantization. particular, the filtering problem has been extensively studied

A reputation mechanism is employed to mitigate the adverse _ . . ;
effects caused by noisy, faulty, or malicious sensors. Specifically,WIthln the framework of networked systems due to its broad

reputations are allocated by each sensor to the data received @pplicability across various domains, such as industrial mon-
from its neighbors, ensuring that abnormal data are assigned itoring, integrated navigation, and power generation. Specifi-
smaller reputation values and may even be discarded. For the cally, distributed fusion filtering problem for nonlinear time-
first time, a recursive RBDF algorithm is proposed, wherein an varying systems over SNs has been addressed in [30], where

upper bound of the filtering error covariance (UBFEC) is derived the d . ttri . hani has b | d
by solving two matrix equations. Subsequently, the filter gain is 1€ dynamic-event-tnggering mechanism has been empioye

determined by minimizing the trace of UBFEC at each step. !0 regulate data transmission and alleviate communication

Furthermore, a sufficient condition is presented to ensure the burdens. Furthermore, finite-timd ., filtering problems for

unif_orml ?OUNdedneSlS of the 'Elt?jri?g error (tjk)\/nafmicsl.)'l!?na”y(;l discrete-time nonlinear stochastic systems over SNs, subject

a simulation example IS provide 0 verl e Teasliolll an H H i~

valdity of the deveﬁ)ped FFQ)BDF algorithm.fy y to varying topologies and two-channel malicious attacks, have
been investigated in [13] and [53].

Index Terms—Sensor networks, distributed filtering, repu- Among various filtering algorithms, distributed filtering
tation mechanism, network-induced quantization, boundedness emerges as a particularly suitable technique for dynamical
analysis. systems over SNs, which are characterized by large-scale

structures, low-energy components, and limited computational
. INTRODUCTION resources. This approach leverages the collaborative capabili-

ties of sensor nodes to process data efficiently while reducing
Sensor networks (SNs) are composed of numerous low- Lo . . )
. ; communication overhead. It is generally applied to vehicle
cost sensor nodes that are dispersedly arranged in a region, .no | o ; o :
racking, indoor localization, environmental monitoring, orbit
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practical implementations to further enhance performance. [18], [24], [45], where the key challenge lies in effective-

Within the framework of the distributed filtering algorithmly handling quantization errors [46]. Notably, quantization
each node can receive the local information of its neighbofglues are often determined probabilistically. For instance,
through a shared network channel. Unfortunately, sudden erifie feedback quadratic distributed filtering problem in [31]
ronmental changes, hardware malfunctions, or communicatid®s incorporated probabilistic-uniform quantization between
interference can make this information unreliable. Furthepdjacent targets. However, research on distributed filtering over
more, the information from neighbors may become vulnerab®Ns with probabilistic quantization effects remains limited,
to malicious cyber attacks [34], such as denial-of-servigéhich serves as a key motivation for this paper.

attacks, data injection, or replay attacks, which can severelyEncouraged by the above discussions, this paper aims
degrade filtering performance and system stability. As a resu}, investigate the RBDF problem for a class of stochastic
the reliable/secure distributed filtering problem has attract@@nlinear time-varying systems (SNTVS) in the simultaneous
significant research attention. For instance, the consenspesence of stochastic nonlinearity, probabilistic quantization,
based distributed filtering issue has been investigated in [18hd a reputation mechanism. Compared with the current
where performance evaluation under replay attacks has beesults, the key challenges of this study can be listed as
comprehensively analyzed, highlighting the vulnerabilities afy a novel reputation principle is established to distinguish
systems under persistent threats. and discard the abnormal data caused by equipment failure

To address the aforementioned data trustworthiness chaid-malicious attacks, thereby improving the reliability and
lenges, reputation mechanisms have emerged as an effeatdl®istness of the designed distributed filtering algorithm; 2)
strategy for mitigating the impact of unreliable or maliciouthe reputation-dependent upper bound of the filtering error
data. In this approach, whether a node accepts data fromdtwariance (UBFEC) is determined by solving two recursive
neighbors depends on the assigned reputation scores, whiwtrix equations, whose trace is minimized by parameterizing
are determined based on factors such as trustworthiness, da¢afilter gain in the sense of minimum mean-square error;
consistency, and historical performance. Specifically, unrefind 3) a performance evaluation is given to verify the uniform
able data are assigned lower reputation scores and maybbendedness of filtering error.

discarded by the receiver to ensure system reliability; seej, response to the difficulties and challenges, the main
[35], [36] for further details. Despite the promising potentialontributions of this paper are listed as follows.

of reputation-based approaches, it is worth noting that there

are currently very few results focusing on the reputation- 1) A novel reputation mechanism suitable for distributed
based distributed filtering (RBDF) problem, particularly in filtering problem is proposed, effectively identifying and

the context of stochastic nonlinear systems with quantization  discarding the neighboring data interfered by sensor

effects. This noticeable gap in the literature strongly motivates  faults, malicious attacks, or sudden network environmen-
further research to develop effective RBDF strategies that si- 1t
multaneously ensure reliability and enhance filtering accuracy.2) The UBFEC is determined recursively by solving the
As is well-known, nonlinearity is a universal feature in many matrix equations and the filter gain is further selected by
practical systems, often leading to undesirable behaviors such minimizing the trace of UBFEC, enhancing the filtering
as oscillations, instability, and other complications. Extensive  algorithm performance.
research on nonlinearity has been reported and discusse®) A sufficient condition is given to verify the uniform
see [7], [8], [11], [22], [38], [51] for more details. Notably, boundedness of filtering error dynamics based on some
nonlinear disturbances typically arise from sudden environ-  mild assumptions.
mental changes, random failures of physical components, or
communication constraints. In such scenarios, the so-called'his paper is organized as follows. Section Ill introduces
stochastic nonlinearity becomes inevitable in engineering, éhe problem formulation, focusing on the RBDF problem for
ten involving state-multiplicative noise and second-order m&NTVS with stochastic nonlinearity, probabilistic quantiza-
ments. In recent years, significant research has been conduti@tl and a reputation mechanism. In Section 1V, the RBDF
on the analysis and synthesis of networked control syste@gorithm is presented, where the recursion for UBFEC is
subject to stochastic nonlinearity. For instance, the maximui#grived, and the filter gain is designed by minimizing the
correntropy Kalman filtering problem for time-varying systenyace of UBFEC. Section V provides a sufficient criterion to
with stochastic nonlinearity has been investigated in [39gnsure that the UBFEC is uniformly bounded. An illustrative
where detailed analyses of uniqueness have been present@gample is given in Section VI to demonstrate the validity of

Another significant research area involves quantization Bt€ Proposed RBDF algorithm. Finally, Section VII concludes
transmitted data in digital channels, particularly under banHl€ Paper by summarizing the main results.
width or energy limitations. Quantization introduces distor- Notations. The notations used in this paper are standard.
tions due to finite word lengths, which can degrade the and 0 represent the identity matrix and the zero matrix,
performance of filtering algorithms. As a result, considerabtespectively, with appropriate dimensiors{x} denotes the
attention has been given to the design of quantization-basedthematical expectation. The superscripts’ and (x)~!
filtering algorithms; see [14], [23], [32], [46], [49] for moreindicate the transpose and inverse operations, respectively. The
details. Quantization techniques are typically classified intmtationtr(x) refers to the trace, which is the sum of the
uniform quantization [26], [47] and logarithmic quantizatiordiagonal elements of a square matrix.
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Il. RELATED WORK ai; > 0 < (i,2) € & indicates that information transmission

Recently, a large amount of literature has focused on tR¥iSts from thez-th node to thei-th node. Furthermore,
attack-resistant distributed nonlinear filtering problems ovefi = {z € 7[(i, 2) € &'} denotes the set of neighbor nodes of
SNs, ensuring and improving the filtering performance in tHB€ i-th node, while|.#;| represents the number of neighbors
uncertain and unreliable network environment. Consequenf, the i-th node. .
the related literature can be divided into two aspects: distribut-Consider the following SNTVS:

[e60]l r[lgg]lin[izg filtering [3], [27], [53] and anti-attack strategy Toy1 = Asas + f(8, s, 05) + Baws, 1)

On one hand, a novel secure distributed set-membership Yi,s = Ci sTs + Vis, 2)
filtering algorithm has been proposed in [4] for a class @fherez, € R"* represents the model state to be estimated
dynamical systems, where a homogeneous Markov chain lmym € R™ denotes the measurement output. The system
been adopted to describe the switching topologies and @atricesA, € R"=*"=, B, € R"=*X" and Cis € RWwXna
event-triggered scheduling strategy has been employed to rggs given with appropriate dimensions. The process najse
ulate communication frequency and alleviate channel burdex is a sequence of Gaussian white noise with zero mean and
In addition, the filter has been designed by solving convex ogovariance®,, while v; , represents the measurement noise,
timization problem and boundedness conditions with resp&ghich is also a Gaussian white noise with zero mean and
to the filtering error have been derived completely. Anoth@bvarianceR; > 0.
representative example [3] has investigated the distribhted The termf’(s, zs,05) € R™ with f(s,0,6,) = 0 describes
filtering problem for a class of discrete-time nonlinear systenfige stochastic nonlinearity satisfying
with unknown parameters and energy-bounded disturbances,
where the asymptotic stability of filtering error has been E{f(s,xs,05)|zs} =0,
analyzed and thél., performance index has been guaranteedE { f (s, z, 0) " (0, 20,00) |z} =0, s#L
by means of Lyapunov theory and stochastic analysis. It should m
be emphasized that most of the literature mainly discusses anél {f(s, z4,05) T (s, s, 95)|x5} = Z My, a2l A szs, (3)
solves the distributed set-membership filtering and distributed h=1
H. filtering problems subject to unknown-but-bounded noisgghere n, > 0 is a given integerIl, ; and A, ; are known
[55] or energy-bounded noises [1], [12], but lacks the researgiytrices with proper dimensions. Throughout this paper, it is

on recursive filtering dealing with Gaussian white noisegssuymed that,, v; ; and@, are mutually independent.
especially in the situations of network-induced quantization For the sake of convenience, let

and anti-attack scheme.
On the other hand, the current node usually can receive Yi,s = [yil,s Yi2,s - Ying,s
the data from its neighbors by shared networks, typicalm
bringing challenges to data security owing to the uncertain agd
unreliable network environment. For example, the distribut
H.-consensus filtering method has been proposed in [15] for
a class of time-varying systems subject to sector-like-bounded  Q(y; ) = [Q1(yi1,s) Q2(yiz,s) - Qn, (ymw)]T
attacks, where robust performance under attack scenarios has o
been ensured. Similar to [15], the anti-attack distributed filter- 07 882 (Vins) (0 =1,2,...,n), the quantization lev-
ing methods generally construct attack-information-depend&jﬁ are described by the set,, = {Giy..p|Pinp = Phips Kip >
filters to ensure the desired estimation performance, see [éb P = 0,+1,£2,. '_'}' If ¢iH=P S Yips S _‘bilfﬁ“ holds, the
[42], [50] for more details. Furthermore, some literature h4&!MeNnt outpul;, s Is quantized probabilistically as follows:
been concerned with the de_sign of distributeq filtering algorith- Prob{Q(yips) = Gipplripn} =1 —rip,
m, thereby detecting, identifying and removing the abnormal

}T

practice, the raw measurements may be quantized using
probabilistic uniform-type quantizer. Such a quantizer is
fined as follows:

data contaminated by malicious attacks [33]. Different with Prob{Qu(Yins) = Pippalrint = T “)
the current results, we aim to develop a remarkable reputatiwhere
mechanism and propose a novel anti-attack RBDF algorithm in - M

r
our work, and then give the boundedness analysis of filtering i Kip

error dynamic. The comparison with representative works is Denoting the quantization error gs, . = Q,.(
presented in Table | to emphasize the distinctive novelties apgg|iows from (4) that "

advantages of the proposed RBDF method.

yi,u,s) —Yip,s»

Prob{qip,s = —Tipkiplripn} =1 — 14y,
[1l. PROBLEM FORMULATION Prob{qip,s = (1 = 7ip)RKiplrin} = rip. (5)

In this paper, the SNs consisting of sensor nodes are as noted in [31], the quantization error satisfies the follow-
utilized to measure the target information. The topology Qg properties:

the SNs is represented by a directed gréph- (¥, &, <),

where ¥ = {1,2,..., N} denotes the set of node&, C E{¢ip,s} =0,
¥ x ¥ represents the set of edges and = [a;.]nxn ) 2
with a;, > 0 stands for the adjacency matrix. The condition E {(qw,s) } < 10
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TABLE |
COMPARISON WITH REPRESENTATIVE WORKS IN ANTHATTACK DISTRIBUTED FILTERING.

Ref. Nonlinear System  Performance Index Anti-attack stratgy Anti-attack type  Performance Analysis
[3] Nonlinearity H performance O O Boundedness
[42] Nonlinearity H performance Attack confrontation Passive O
[15] O H performance Attack confrontation Passive O
[29] O Ellipsoid constraint Attack confrontation Passive O
[33] O Variance constraint Attack detection Active Boundedness
[50] O Variance constraint Attack detection Active Stability
[27] Nonlinearity Variance constraint [J O O

Our Work Nonlinearity Variance constraint Reputation mechanism  Active Boundedness

E {Qim,sqiuz,s} =0 where
for H1 7& H2 and,ula M2 € {1a 2,.. 7”1}} ) o <ij,s+1 = I_naf/(wim“ — _IIlinl/Jij,S+1.
Remark 1. Due to the shared networks with limited ca- JEN JEN:

pacities of transmission, storage and computation, the dﬁﬁally, the reputation-based parameter is determined by
to be transmitted are frequently quantized. It is essential to

deal with the quantization error appropriately, otherwise it will Vizst1s it Cijost1 > Nijss1
seriously deteriorate the filtering performance. Different from ;. .., = 1 . (10)
the deterministic quantization (e.g. uniform quantization), the Rz otherwise

network-induced probabilistic-type quantization is common

in engineering, which transforms the quantized data inwheren;; .1 is a positive scalar threshold.

stochastic variables. The probabilistic-type quantization couldRemark 2: A two-step recursive filter is designed in (6)—(7)
embody the statistical characteristics of signals adequaténgluding prediction, innovation and neighboring information.
reflecting the randomness and uncertainty inherent in prd¢ete that some research results have focused on the distributed
tical scenarios and enhancing the robustness of the desigfiéering problems with equal weights, whege. .1 has been

distributed filtering algorithm. set to a specific value within the rand8, 1/max;|-4]).
The following distributed filter is constructed: In contrast, a reputation-based anti-unreliability scheme is
proposed in this paper to identify and remove the abnormal
Tist1)s =AsTisls, (6) data from neighbors. In this approach, each sensor functions

Bi si1)s+1 =Tish1)s T Dist1[QWisr1) — Cisr1?5,541s)  as a local fusion center, capable of assigning individual repu-
) tations to the local predictions received from its neighbors,
following the definitions in (8)—(10). Specifically, a mean-
based evaluation rule is defined in (8) to derive the reputation
where z; .|, and Z; .1, represent the state estimation angarameter. Notably, the allocated reputation will decrease as
prediction ofx, at thei-th sensor, respectivel; ;4 is the the deviation calculated by (8) increases, which is further
filter gain to be determined, ang. ., is the reputation-basednormalized by means of (9). It can be seen from (8)—(9) that
parameter, which will be defined later. the predictions with low reputations are identified as abnormal
In the distributed filtering problem, each node can obtatmata subject to cyber attacks or sensor faults. The proposed
prediction information from its neighbors via a shared wirelesgputation strategy effectively reduces the adverse impact of
channel. However, the data received from neighboring nodesreliable sensory data, thereby enhancing the robustness,
may be contaminated due to sensor faults, hardware malfungsilience, and accuracy of the distributed filtering algorithm.

tions, communication errors, or deliberate malicious attacks.The objective of this paper is to propose an RBDF algorithm
Such contamination can significantly degrade the performangigh that

of the distributed filtering algorithm. To address this issue,
reputation mechanism is introduced to identify unreliable dat
and improve filtering accuracy. Specifically, theputation-
based parameter is firstly calculated by

+ § aiz¢iz,s+1(Iz,s+l‘s - Ii,s+1|s)a
zEN;

) The reputation-dependent recursion regarding UBFEC is
determined by solving some matrix equations;
(2) The filter gain is parameterized by minimizing the trace of
UBFEC to ensure locally optimal filtering performance.
(3) A sufficient condition is established to guarantee the

nd o ||jz,s+1|s - jj,s-ﬁ-l\s“ 3 . . 8 A
Vizs41 = — Z WA (8) uniform boundedness of the filtering error dynamics.
JENU{i}

Before proceeding, the following lemmas are presented for

where ;. 11 = 0 if z ¢ ;. Here, ;. ., represents the the subsequent derivation.
reputation assigned by noddo nodez. Next, the calculated Lemma 1. [45] For two given vectors € R™ andb € R”,

reputation is normalized as follows: the following inequality holds:
Viz 41 — MiNY;ij 11 ab? +ba” < oaa” + o7 1bb7,
’ je;
¢iz,s+1 = ; (9) .
Gij,s+1 whereo > 0 is a known scalar.
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Lemma 2: [31] Let G, H, F and D be matrices with + M3 641 +M§S+1, (14)
appropriate dimensions. Then, we have
where
Otr(GHF) _gTFT, 8tr(g7;[]-") _ g
5 aH’H]: DIGHFT oH My g1 =Eq (I - Ai,s+1ci,s+l)ei,s+ls|: Z @izl 41

T
X wiz,s-l—l(jz,erl\s - ‘%i,s+1|s)j| ;
IV. MAIN RESULTS

This section is devoted to obtaining the UBFEC and deter- 1
mining the filter gain in the sense of minimum mean-squareM2,s+1 =Eq (I - Ai,s+1Ci,s+1)€i,s+ls[ E : iz ||
. . . . . K3
error. First of all, the prediction error is given as follows: z€N

T
Cis+1|s = Ts+1 — ‘%i,s+1|s X (1 - hi,s+1)(iz,s+l‘s - ii,s+l|s):| )
— Asei,s\s + f(S,.I'S, 95) + Bsws- (11)

M o1 =0 s41B{qi s110] s 1 JAT 41
Furthermore, the filtering error dynamics is presented by Bot1 “hist B{grorivis i} i

. Proof: According to the error dynamics in (11) and (12),
Cistlls+1 =Ts+1 — i s41|s+1 it is easy to have
=(I = Dis+1Ci541)€ s 11)s — Dijst1Gi,5+1

_ T
P oq1ys —E{ei,s+l\sei,s+1|s}
— Ay s41Vi 541 — E @izl s 11Viz, 511

:AS‘P’i,S|5AZ + E{f(s, Ts, es)fT(Sa Ts, 93)}

zEN;
. . + E{Bswsw! BI'} + N1 s + N{.
X (Iz,s-i-l\s —:Z?i,5+1|3) — Z aiz(l —hi75+1) { sWs ; s} 1,s . 1,s
zEN; +N2-,5+N2,S+N375+N3,s7
1 .
X m(xz,s-i—ﬂs - Ii,s+1|s)7 (12) and
whereg; s 11 = [q; : , T and b oo i P st1)s41
QZ,erl - [Qz1,5+1 q12,s+1 Tt QZny,erl] an i,5+1 IS a T
binary variable satisfying :E{ei,s+1|s+1€i,s+1\s+1}
— (T — A ) ) AL ) T
pooo 23 b GG 2 e = A1=S+1Cl-rsH)JTDZ,SJrlls(TI Ais41Cis41)
isHl = otherwise + Ai s+ 1B{Gi 541G 511 1 D7 511
. . . a;. h; ; T — I
The following lemma provides the covariances of the pre- + Z;V iz s 1%z, 541 (F2 a1l = Fisra)s)
diction error and filtering error. zem -
Lemma 3: The prediction error covariance and filtering 5 . .
error covariance evolve, respectively, as follows: X Z @izl st 1¥iz51 (T2 5415 — Tissials)
€N
m i T
P st :ASPi,s\sAZ +E Z Hh,stAh,sxs + Bist1 i1 By s + Z @iz (1 — P s41)
h=1 ZEN;
T 1 .
+ BSGSBS (13) X W('rzas"'lls — xi,s+ls)|: Z Qi
and v ZEN;
1 T
Pi,erl\erl :(I - Ai,s-ﬁ-lci,s-ﬁ-l)Pi,erl\s(I - Ai,s+lci,s+1)T X (1 - hi,s-i—l) |JV| (‘%z,erl\s - ‘%i,s+1|s)j|
K3
+ A s11E{qi s11 T AT T T
7,8+ {QZ,s-i- Q1,s+1} i,5+1 _ Ml,s+1 _ M17S+1 _ M273+1 _ M2,s+1
’ ZJV aiZhi7s+1wiZ,S+l(xZIVSJrl'S a xi7s+1‘5) + M3,s+1 + ngerl - M4,s+1 - MZerl
zeN;
o T T
T = Ms 541 — M5 g1 + Mes41 + Mg o4
~ ~ T T
X Z aizhi,s-ﬁ-lwiz,s-i-l(:Ez,erl\s - xi,s+1|s)] + M773+1 + M?,s-ﬁ-l + M873+1 + M8,5+1
f T T
Z€N; + Mg s+1+ Mg o1 + Mio,s+1 + Mig g5
T
+ Aist1Rist1A 41 + Z @iz(1 — Ry s41) where
zEN;
T
< st =) | T @ Nio =B{Aseiiaf " (5,76}
z z,s+1|s = i, s+1|s 1z T T
|f/%| Py N275 :E{Asei,s|sws Bs },
T RT
(0 howe) (i i Noo =E{f(s,0,0,)7 BT},
XU =g s+1) 777 (L s 1]s — Tist1 T T
BRI g Vs tLls T st dls My s1 =E{(I = A s+1Ci s+1)€i 54159 51100 541}
T T T T
— M1 = My oy — Mooy — My oy M, 511 =E{(I = D s41Cis+1)€0541)5Vi 54100 541 )
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and
Me,s11 —E{Ai,s+1qi,s+1 { Z aiz(1— hist1)
e T Pi,s+1\s+1
1 N N :(1+02+03)(I_Ai75+10i75+1)7)i,s+1|3
X N (xz s+1)s — T4 s+1\s) s - o
“ X (I —Ajs41Cis41)" +2(1+057)

Xﬁi,erl E az‘jlbij,sﬂ E aiﬂ/h‘z,sﬂ

JEN; zEN;
X (Pz s+1|s + Pz s+1|s) + 2(1 + O?jl)

T
x (xza5+1|3 _xi73+15):| }’ X (1 - 7,s+1 |</V|2 Z Q5 Z Qi

M7 41 :E{Ai,s+IQi,s+l|: E @iz s 41z 41
zEN;

zZEN;
Ms 511 —E{Ai,sﬂvi,sﬂ [ Z @izl s11Viz, 611 X (P275+1\S + fPi-,S+1|8) + Ajst1
2N X [(140a)R+ (1+ 0y R s1]AT 44 (16)
T
X (£ 011)s — & SHS)} }’ have solutionsP; 1,41 > 0 andP; ;s > 0, where
Xi,s\s = (1 + Ol)Pi,SIS + (1 + 01_ ) Li,s|s ?s\s’
My 541 ZE{Ai s+1Vi s+l[ Z aiz(1— hist1) K2 K2 K2
’ ’ ’ ’ zl i2 mn
set N = diag 1 4,---,Ty . a7
1 T
X —|«/V| (T2,541]s — :Ei,s+1s)] }7 Then, P; 11541 is an upper bound of P, 41,
! i.e., P si11s4+1 < Pist1)s41 at each sampling step. Further-
Mips+1 = Z QizPi s 410z 541 (T2 s11)s — Fistils) more, if the selected filter gain satisfies
zEN;
1 Ai,s+1 :(1+02+03)’Pi75+1‘50315+1 {(1-}-024—03)
X Az 1- hi.s e
[z;t/ | ) | % Ci,s+1Pisr1]sCiars + (1 +04)R

—1
r 1
. . + (140, )Ris 1} , (18)
X (xz.,s+1|s - xi75+15):| . ( 4 ) +
then the indextr(P; ,+1j.41) can be minimized at each

Notice thatE{ (s, zs,05)} = 0, E{ws} = 0, E{gis+1} = 0,  sampling step and the minimiz&¥ . . |, can be recursively
E{vi,s11} = 0 andh; s41(1 — hisq1) = 0. It is obvious that cajculated by

Nis, Nos, N3 s, My o1, Ms o1, M 1, M7 41, Mg 511,
My ¢4+1 and Mo 411 are all zero-valued matrices by means Pi st1]s+1
:)r: the in?_ep?r?dent che}ratlcteristics of stochastic variables, and:(1 + 09 + OB)Pi,s+1|s —(14o0s+ 03)2Pi,s+1|sci7:5+1

e proof is then complete. [ | e

Remark 3: Taking network-induced  probabilistic-type X [(1 +02 4 03)Ci 511 Pi 54115 Ci s + (14 04)R
guantization, stochastic nonlinearity and reputation mechanism . -1 .
into account simultaneously, a comprehensive filter is +(1+0 )R@SH} Cis+1Pista)s +2(1 4+ 057)
deS|gn¢d_ recursively, resulting in the. ext.remely comple>l<|ty in Bi st Z Vi 511 Z iz i1
determining the exact value of the filtering error covariance. e ser;
Consequently, it is imperative to obtain an expression for the T ' _1
UBFEC by handling quantization errors, cross-product terms, % (PZ st1fs T Pistiys) +2(1+ 057 )(1 = R sp1)

223 gtnhael)rlsr;gnllnear effects, facilitating the further calculation |/V|2 Z aij Z Wiz (P st1)s + Pisti]s)- (19)
' JEN; zEN;

The covariance upper bounds of the prediction error and
filtering error are concretized in the following theorem. In
ﬁfgﬁtéoﬂbgg El(t)irn%aér; Lig)ﬂg@;?ﬂ&d to minimize the trace E{zsal} = E{ (%455 + €is)s) (Tis]s + ei.’s|s)T}

: : g 2T

Theorem 1: Consider the SNTVS (1)—(2) and reputation- < (Lt 00)Pisjs + (14017 )iss i )5
based distributed filter (6)—(7). For known scalays> 0, 0, > £ X 450 (20)
0, 03 > 0 andoy > 0, under initial conditior; ;o > P; o0 >
0, assume that the following recursive matrix equations:

Proof: By means of Lemma 1, one has

whereo; > 0 is a known scalar. It is obvious that

Pist1]s E {Z Hh7sszh7sxs} = Z I, str(B{zszl }Ap q)
m h=1 h=1
:Aspi,s|sAZ =+ Z Hh,str(Xi,s|sAh,s) m
h=1 Z h, str i,s|sAh,S)- (21)
+ B,0,B7 (15) At
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Substituting (21) into (13) yields <1402 +03)(I = A s11Ci541)Pi o1y
X (I = Ais11Cisp1)" + (1+057)

m
Py oi1s AP, AT £ 10, str(X; o sAn, R .
i,s5+1[s s17,s|s44s Z str( i,8|s s) % Z aizhi,s+17/}iz,s+l(xz,s+l|s_Ii,s+l|s)

h=1
N
+ B,0,BT. (22) A T
Recalling the fundamental inequality in Lemma 1, we have . { Z izhi s 41iz,41 (22,5415 = Tist1]s)
zEN;
- M - ML 1
1,5+1 1,5+1 . + (1 +0§1) Z aiz(l _ hi,s+l)7
<0o(I = D s1Ci 541) Py s1)s(I — A s11C5 541) set A
—1 A ~
+ 0q Z aizhi,s-l-lwiz,s-l-l (xz,s+1|s - xi,erl\s) ~ (jz otlls — # S+1|S) Z aiz(l — By S+1)
zEN; ’ ’ ’
T zEJViT
X a;h; ; z — I , (23 1 .
|:z€2,/:$/i ” Z,SJrl"Z)zz.,erl( Hetls l7s+1‘8) ( ) X |€/’/|( z,s+1|s _Ii,s+l|s):| +Ai,s+1
— M1 — M3 o4 X [(1+0a)R + (L + 0y Y Riss1]AT 1. (28)
T
<o3(I = A 511G, S+1)Pi st1ls(l = Ais41Cist1) Subsequently, the following inequality can be established
-1 —_ B . .
+o3t D |JV| i 1) D aihisiiGizsin (Ezat1s = Fistafs)
zEN; zEN;
N . T
X (T — I a; N ~
( z,5+1]s i,54+1|s [ng iZT ) i X |: Z aizhi_’s+1wiz_’s+1(IZ75+1‘S —1171',5+1|5)
T zEN;
X (1= Pis1) (@2 5415 — Bists )} (24) <D0 aiaaih? o Vis s Pijan
zE€N; JEN;
and X (‘%z,erl\s - ‘%i,s+1|s)(ij,s+l\s - ji.,er1|s)T
1
My 1+ Mg g1 <0ali a1 B{Gi o105 11 YA o1 <z Z Z Wiz i N7 oy 1 Viz s 1ij 541
=+ OZlAi_’S+1Ri_’S+1AZS+1’ (25) zEN; jJEN
. . . . T
whereo, > 0, o3 > 0 andos > 0 are known scalars. x {(xz,erlls = Tiyst115) (E2,541)s — Lijst1s)
Substituting (23)—(25) into (14) leads to N . N N
g ( ) ( ) ( ) + (Ij,s+l|s - xi,s+1\s)(xj,s+l|s - xi,s-{-l\s)T
Py st1)s41
<2R; 541 @i Vij,s+1 @iz Wiz s41
(1+02 +03)(I Az s+lcz s+l) i,5+1|s J;/z ZEZJV,;
X (I =D 41C5,541)" + (L4 04) Ay 541 X (P, s1)s + Pist1)s)- (29)
T T -1
XBldiot1 s} i+ (L+0z7) Similarly, we have
XY @ihisp1tis s (B2 ap1s — Fiara)s) 1 )
zEN; Z aiz(l - hi,s+l)m(xz,s+1|s - xi,erl\s)
T ZEN; ¢
X |: Z aizhi,s-l-lwiz,s-i-l(‘%z,erl\s - ‘%i,s+1|s)j| 1 R R T
ZEN; X |: Z aiz(l - hi-,SJrl)m('rZ,S-l-HS - Ii,s+l|s)
_ _ . ?
+(L+ 07 Ai st Ris1 Al 1 + (14051 e )
e <21 hie) ¥ ou iz ¥ mepig
X a;x(1 —h; — (2 = Ris41) ” % iz
ZGZJV zz( z,s+1)|€/l/i|( z,5+1|s je; z| =y |«/V|
& ){ 3" (1~ 1) 1 X (P stls + Pistafs): (30)
betlls 7 R WA Hence, we arrive at
zEN;
T
P <(1 I—A; 110 P
X (T2,541)s — :%i,s+1|s)} . (26) st1fs+1 S (1402 + 05)( WTH ist1) iiﬂ‘s
X (I = A s41C05541)" +2(140,7)
Obviously, the quantization error satisfies X B g41 Z aijij st Z Qizizst1
jE€Ni €N
E{Qi,s-ﬁ-lqg:erl} <N, (27) ! -

x (Pz s+1|s + Pi s+1\s) + 2(1 + 051)

( - zs+1 Zau | Zaiz
g zEN

P oi1)s41 JjENi

whereR is defined in (17). It is not difficult to verify that
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|JV|( zs+1\s+st+l|s)+Az s+1

x [(1+ 0N+ (1+ OZI)Ri,s+1]AZs+1- (31)

Based on (15), (16), (22), (31) and by means of mathemat=(1+ 02 + 03)P; s41]s —

ical induction, one has

Pi,s+1|s+1
<1+ 02+ 03)(1 — D 54105 s11)Pist1s
x (I =D s1Cisr1)" +2(1+ 031

Xhi,s+1 E az‘jlbij,sﬂ E aizwiz,erl

JEN; zZEN;
X (Pz s+1)s T Pist1]s) + 2(1+o03")

z s+1 § a”Lj § Qi

jeN il 2EN;
—_— 1 Az s
X |m| (PZ75+1|5 + ,Pz,erl\s) + Aist1
x [(1+ 00X+ (1 + 05 ) Risn]AT 1y

= Fis41]s+1- (32)

Now,

It follows from (16) and (34) that the minimizeR®; ;. 1|41
satisfies

Pi,s+1\s+1
(1+ 02 +03)°P; 5+1;sCr
02 03 i,5+1|sYi,s+1

X |:(1 + 02 + 03)0¢75+1Pi,5+1|3055+1 + (1 + 04)N
—1

+(1+ Oll)Rz',sH} Cist1Pisir)s +2(14+051)

X R s 41 Z i Vij s 41 Z iz iz 541

JEN; ZEN;
(Pz s+1|s + Pz s+1|s) + 2(1 + 03?1)(1 - hi s+l)

X Z Q5= |JV| Z iz |JV|( zs+1\s+Pz s+1|s) (35)

JEN;

and the proof is now complete. [ |
Remark 4: Up to now, the recursion of UBFEC is derived
by solving two matrix equations. Furthermore, the trace of
UBFEC serves as a performance index within the framework
of distributed Kalman-type filtering, which is optimized by
selecting the filter gain properly. The parameterization of the
filter gain is implemented by calculating (33), ensuring the

it remains to design a filter gain to minimize theminimization of filtering error dynamics at each sampling

filtering indextr(P; s41)s4+1). It follows from Lemma 2 that instant.

Otr(P; s41)s+1)
OA; s 41

_ 0

_aAi,erl
X Pisit)s(L — Disr1Cis1)” +2(1+03h)
X R st1 Z i Vij s 41 Z iz Viz 541

JEN; zEN
X (Pz.s+1|s + Pisti]s) + 2(1+o05")

z s+1 § a/z_] | § Qi

JEN; ZEJV

(Pz,s+1|s + ,Pi,erl\s) + Ai,s-ﬁ—l

tr ((1 +o02+03)(I — A s11Ci s11)

«
I«/Vil
X [(1T40g)R+(1+ 041)Ri,s+1]AZs+1>

0
N
X ,Pi,erl\s(I - Ai,s-Q—lei,s-ﬁ—l)T + Ai,s-ﬁ—l

X [(140g)R+(1+ OZI)Ri,s+1]AZs+1)
=—=2(1+o02+03)( = Dis41Ci,5+1)Pi s41s

tr((l +o024+03) (I —Aj 51105 511)

X 01 st1 + 2A; 3+1[(1 + O4)N + (1 =+ 04 )Ri,s+l]- (33)
Letting 20(Piesaien) _ h
g =xtes — 0, we have

Ai,s-ﬁ-l :(1 + 02+ O3)Pi75+1‘SCZS+1 |:(1 + 02 + 03)
X O’L,S+1Pi7s+1‘scgs+l + (1 + O4)N

-1
+(1+ ogl)Ri7s+1} . (34)

V. BOUNDEDNESSANALYSIS

This section is devoted to providing the uniform bounded-
ness analysis for the filtering error dynamics. To begin, it is
essential to introduce the following assumptions.

Assumption 1: There exist positive scalarg b, b, z, 6, 0,
7, \, ¢, ¢ and r such that the following inequalities

AAT <al, bl < B,BT <bI, 61 <O, <0I,
Xi,s|s < ,’f[, Hh,s < ﬁ'[, Ah,s < 5\17
el <C; Cf <el, Ris>rl,

hold for everys, h andi.

Assumption 2: C; 541 is a row-full
Cist1Ps s41)sCl 4, s invertible.

The uniform boundedness of the filtering error dynamics
is established in the following theorem with the help of
Assumptions 1 and 2.

Theorem 2: For the considered SNTVS (1)-(2) as well as
the constructed reputation-based distributed filter (6)—(7), if
there exists scalgs > 0 satisfying

rank matrix and

2(1+o02+03)p1 +n+¢ <p, (36)
where

1 = ap + TA\Tmn, + b0, p, = b0,

n=4[(1+o0y )P+ 1+ 03] il

¢ = (1 + 02 + 03)2]5%6

1 n 1
w,  (I+o )]’
thenP; 1 1)s41 is uniformly bounded under the initial condi-
tion P g0 < pl, i.€., P; 511541 < pl for each instant.
Proof: By means of mathematical induction, starting from
the initialization steg@P; oo < pI, we assume tha®; ,, < pIl
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and then proceed to verifP; ;. 1,,1 < pl. First of all, by
resorting to Assumption 1, we have

Pi,s+l|s :Aspi,s\sAZ + Z thstr(Xi,sbAh-,S)
h=1
+ B,0,BT
<apl + z \Tmng,I + bOT
£p11 (37)
and

Pi,s+1|s 2 BSGSB;F Z ﬁf = ]_71] (38)

for each: ands. It follows from Lemma 1 that

(I — N s41C5,541) Pisin)s(I — Aiys1Cisgr) "
S2Pi,s+1\s + 2Ai,s+10i,s+lpi,s+l\SOZS+1AI£S+1- (39)
Consequently, we can obtain

Pi st1)s+1
<2(1 402 4 03)(Pi,st1)s + Dirs41Ci 511 P s41)s
x CF 1 AT 11) +2(1 + 05 )i s41
X Z @i Vij s 41 Z iz 541
JEN; zEN;
X (P s+1)s + Pisti)s) +2(1 + 0??1)

X (1= hist+1) Z aijﬁ Z @iz

JEN; ZEN;

X |jV—i|(Pz,s+1\s + Pistils) + Dist1
X [(L4 00X+ (1+ 0y R s ]AT 44
<2(14 02 + 03)p1 ] +2(1 + 02 + 03) A s+1
X Cis41Pisi11sClai1 A o1 +4(1+031)
< | AT + 41+ 03 )il + Ajsia
< [(1+00)R + (1407 ) Ris 1] AT 4. (40)
For convenience, we denote

Yisi1 =(1+o02+ 03)Ci,s+1pi,s+1\sCiT,s+1
+ (14 0)R+ (1 +0; R sr1,
ZE}S)H =Ci,5+1Ps 5111sCl o115
EE,QS)H =14 04)R + (14 0y R 541
On the basic of Assumptions 1 and 2, one has
Ai,s+1Ci,s+1P¢,s+1|sCZs+1AZs+1
=(1+o02 + 03)2Pi,s+1\sCiT,s+1ii_,sl+1Zz(',ls)+1
X 875 1Ci st Pisius
<(14o02+ 03)2Pi,s+1\scgs+l(Eg,ls)Jrl)_l
X Cis+1Pi s41s
- (14 02 + 03)*pic
&by

I (41)

and

A i1 [(14 00N+ (1403 DR s11]AT 14

9
=(1+o02 + 03)2Pi,8+1|80i1;s+1ii_,;+12§,25)+1
X E;ZJrlCi,s-ﬁ—lPi,erl\s
S(l + 02 + 03)2,Pi.,s+1|sci7:s+1(Zz('?s)Jrl)_l
X Ci,s+17)i,s+l\s
1 2525
(I1+o4 )r
Finally, we conclude that
Pisyi]s+1
<2(1+ 02 +03)p1] +4(1 + 03 V)| Ai|*pr ]
+4(1+ o3 HprI + (1 + 02 + 03)*pic
1 1
—+—1
le (1 + 04 )[
<pl. (43)
Up to now, the proof of this theorem is complete. [ |

Remark 5: Until now, the reputation-dependent UBFEC has
been determined by solving two recursive matrix equations,
and the filter gain has been parameterized by minimizing
the trace of the UBFEC at each step. With the given initial
values, the proposed RBDF algorithm can be implemented
recursively. Furthermore, the performance of the developed
RBDF algorithm is evaluated through a rigorous boundedness
analysis. Specifically, a sufficient condition is presented to en-
sure that the filtering error dynamics are maintained within the
known desirable parameters. From the perspective of practical
application, this analysis provides a significant foundation for
ensuring system stability, reliability and consistent filtering
performance under varying conditions, including stochastic
disturbances, probabilistic quantization, and reputation mech-
anism.

Remark 6: The RBDF algorithm is developed recursively
for SNTVS with stochastic interferences and signal quantiza-
tion. Notice that it is extremely difficult to guarantee that the
filtering error converges to a fixed value due to the system
complexity or the external disturbances such as the stochastic
noises/nonliearity, signal quantization and reputation mecha-
nism. Hence, we are devoted to presenting the boundedness
analysis to ensure that the filtering error fluctuates within a
certain range rather than unlimited growth under the compli-
cated situations considered in this paper.

Remark 7: Compared to the existing results, the distinctive
novelties and advantages in this paper can be summarized as:
1) a reputation-based evaluation scheme is introduced to dis-
cern and eliminate the neighboring data with low reputation s-
cores by assigning different reputation weights to the data from
neighbors, which differs from the distributed filtering problem
with uniform weights; 2) the UBFEC is obtained by dealing
with stochastic nonlinearity, network-induced probabilistic-
type quantization, and reputation mechanism; 3) the filter gain
is selected by optimizing the trace of UBFEC at each step for
the purpose of improving filtering accuracy; and 4) a sufficient
condition is given to ensure that the filtering error dynamics
are uniformly bounded.
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VI. SIMULATION RESULTS The validity and superiority of the proposed RBDF algo-
. . . . . rithm are demonstrated by a simulation example over het-
In this section, a simulation example is adopted to demon- . X ; .

. . - erogeneous SNs, and the simulation results are depicted in
strate the effectiveness, superiority and extensibility of tq:e

. . Figs. 1-6. Among them, Figs. 1 and 2 depict the trajectories of
developed REDF algarithm over heteroge_neous SNs with %H(g real states and their corresponding estimation trajectories
nodes. The network topologies are described by

from six filters, demonstrating the close alignment between the
¥ ={1,2,3,4,5,6} two. Figs. 3 and 4 reveal that the mean-square errors (MSE1
oy (1 (1 and MSE2) consistently remain below their respective upper
¢ ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4) bounds. Here, MSE1 and MSE2 denote the sum of the mean-
(3,2),(4,1),(5,2),(5,6),(6,2), (

2
6,5)}- square errors of; , andx, ., respectively.
The system matrices are parameterized by

It is worth mentioning that the RBDF algorithm developed
in this paper is an improvement of the traditional distributed

—0.351 — 0.25sin(s) 0.429 recursive filtering schemes without reputation mechanism (see,
Ag = . , . ;
0.546 — sin(s) cos(s) —0.39 + 0.4 cos(s) e.g. [27]). In order to clarify the advantages relative to the
_0.24 traditional distributed recursive filtering methods, a simulation
B, = {0 6—0 ésm(s)] , comparison is presented to show the superiority of reputation

mechanism in response to network attacks. As mentioned in
Curs = [_0-1 _0-07] , Cos = [_0-25 0-5} ’ [25], the stochastic-type false data injection attack is typically
C3s =106 —06], Cys=[-05 08]. discussed and considered in the design of filtering algorithm,

. ] ) o which is modeled here by
The stochastic nonlinearity satisfies . .
é—i,s = (1 - Bi,s)gi,s + Bi,sei,sa

f(s,xs,05) . i, .
01 . . yvhere &.s Is the ongma! data _sent by neighbors, aﬂc:iS
= [0'2] [0.1sign(xy,s)z1,501,s + 0.2sign (w2 s )2 5025 , is a zero—r_ne_an_attack signal vx_nth variance = 50. Bis is
a Bernoulli distributed stochastic variable to characterize the
where r; ; and 7o are both the elements of,, 6; ; and attack frequency. Specifically; s = 1 means that the attack
62 s denote uncorrelated zero-mean Gaussian white noises vgieurs and otherwise no attack occurs. Here, the expectation
unity variances. of 3; s is set as0.95. Now, under a scenario whetg |,

The vectorss; ss = [41,5s i2ss]” (i = 1,2,3,4) are s subject to network attacks, the comparative results are pro-
the estimations of states at instanfThe corresponding initial vided to validate the effectiveness of the proposed reputation
values are set ad; s = @2 55 = 3,55 = Td 55 = L5,s)s = meghanlsm. FoCasel, the reputatlon-baseq flltgr desc_r!bed in
.55 = [0.8 0.8]T, Py gjo = 512, Paojo = I2, Ps )0 = 212, (7_) is employed, V\{h|le.foC§13eII, adopt the filter in tra_ldmonal
Paojo = 4l2, Psoj0 = Peojo = 3I>. Other parameters aredistributed recursive filtering method, whege, , is fixed at

set as®, = 0.2, Ris = Ros = R3 s = Ry = 0.5, k11 = 0.2. Figs. 5 and 6 demonstrate that the reputation mechanism
ko1 = 5 x 1072, 531': Ka1 = 1x 1075, 01 = 0.5, 0o = 0.8, Significantly improves estimation accuracy.
03 = 0.7, 04 = 0.2, 1;;.s = 0.01. Furthermore, it can be seen from (8)—(10) that the local

The considered heterogeneous SNs are composed of Rgdictionz. .|, contaminated by malicious attacks can be
types of sensors. The type | sensors are capable of measigientified and removed effectively when. . = 0. Otherwise,
ment as well as calculation and type Il sensors without megifferent reputation parameter will be allocated based on the
surement capability function as extending network operatié@lculation principle in (8). The successful identification and
time and maintaining overall network stability. The nodes removal situations under different variances of attack signal
4 belong to the type | sensors and the filter conforms to ti@e shown in Table I, where the first (second) element of
structure of(6)—(7), i.e., vector represents the numberef, s = 0 (p24,; = 0) and the

corresponding probability.

£u1,5+1|s :Asiul ,s|ss
TABLE Il

jul,s—klls—s-l :ful,s—s-l\s + Aul.,erl[Q(?/ul.,erl) = Cuy 541 THE SUCCESSFUL IDENTIFICATION SITUATIONS UNDER DIFFERENT
N VARIANCES OF ATTACKS.
X xu1,5+1|s] + Z Gy zPuy z,5+1

2€Nuy Ts The number ofp14,s = 0 and 24,5 = 0 Probability
A A 0.5 57 44 0.63 0.49
X ('rz,s+l|s - xu1,s+1|s)' 1 62 47 0.69 0.52
. . . . 4 64 48 0.71 0.53
For the type Il sensors including nodésand 6, the filter is 16 [66 49] [0.73 0.54]

designed by

i'ug,s+1|s :AS‘%Ug,s‘sa
. . ) VIlI. CONCLUSION
Lyy,s4+1]s+1 =Lug,s4+1]s + § auzz@ugz,s+l(1’z,s+1|s

by In this paper, we have proposed an RBDF algorithm for
z ug

. stochastic nonlinear time-varying systems over sensor net-
— Buy,st1ls)- works subject to probabilistic quantization and a reputation
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mechanism. First, a uniform-type probabilistic quantization3s] C. Gong, G. Zhu, P. Shi, and R. K. Agarwal, Asynchronous distributed

strategy has been employed to preprocess the data befor

transmission, thereby effectively addressing communication
constraints. Subsequently, a reputation mechanism has bgpenJ. Guo, Z. Wang, L. Zou, H. Dong, and Q.-L. Han, Accumulative-
introduced to identify and mitigate abnormal data, which may
arise due to sensor faults or cyber attacks. The RBDF problem
has been tackled under the simultaneous presence of stochas-2097, 2025.
tic nonlinearity, probabilistic quantization, and the reputatiolA5]
mechanism. A reputation-dependent UBFEC has been derived
recursively by solving two matrix equations. The filter gain

has then been optimally parameterized to minimize the traldél
of the UBFEC, ensuring improved estimation performance in

the mean-square error sense. Furthermore, sufficient condi-
tions guaranteeing the uniform boundedness of the UBFELC]
have been established under mild assumptions. Finally, an
illustrative example has demonstrated the effectiveness and
superiority of the proposed RBDF algorithm, particularly i8]
handling unreliable and attack-contaminated data. The future
extended directions could include the designs of ensemble or
unscented Kalman-type filtering algorithm subject to reputa-

tion mechanism and communication protocol. (19
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