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Abstract—This paper deals with a resilient estimation problem which has led to investigations into synchronization problems

for certain type of time-varying complex networks of energy [6], pinning control problems [7], [8], and state estimation
harvesting sensors that are vulnerable to deception attacks. problems [9], [10].

Measurement signals of the underlying complex network, as | t . tat timation has b identified
measured by energy harvesting sensors, are only given to a remote n system science, state esumation has been identimed as a

estimator when the energy level is adequate to offset the energy fundamental issue and has undergone extensive exploration
consumption, which is at risk of deception attacks during network due to its broad applicability in areas such as navigation
transmission. The deception attacks under consideration, are gnd radar tracking systems [11]. A significant percentage
depicted as events occurring randomly, governed by a Bernoulli of research has been conducted about various aspects of
sequence. To meet the desired estimation performance, a resilient . .

scheme is developed that addresses the side effects of randon?tate estlmatl_on _[12]_[17]' Among the developeq .mlethods,
perturbations of the estimator gain when it comes to the the Kalman f||ter|ng SCheme, Wh|Ch SeekS to minimize the
implementation. The primary objective is to devise a resilient estimation error covariance (EEC), is recognized as the op-
algorithm that can simultaneously manage energy harvesting timal approach for linear systems affected by Gaussian noises
setr)sorf,, dleqte_pltllonthattacks, al;]d ggln fptirturbba:tlpnsd of the state 1181 120]. However, for nonlinear systems, traditional Kalman
estimator. Initially, the upper bound of the obtained error co- [ .~ " )

variance is determined by making use of induction and intensive filtering is no !onger ap.pllca_\ble [21]. Consequently, the deve.l-
stochastic techniques. The necessary estimator gains are thenOpment of suitable estimation methods capable of addressing
identified recursively to prudently minimize this acquired bound. nonlinearities has become important, both in theoretical and
An illustrative example is presented ultimately to demonstrate practical contexts.

this scheme's efficacy. For state estimation problems, it is commonly assumed in

Index Terms—Complex networks, energy harvesting sensors, most existing literature that the estimator gain is implemented

resilient estimation, deception attacks, nonlinear systems. exactly without any perturbation during the algorithm im-
plementation. However, this assumption does not align with
|. INTRODUCTION many real-world scenarios. In practical engineering, there is a

Complex networks (CNs) are distinguished by their d}JikeIihood of non-zero fluctuations in the gain of the designed
namic behaviors, unique topological characteristics, and @stimator due to physical constraints such as component aging
bust modeling capabilities for complex systems with wefmnd finite word length. Note that the estimation performance
like structures. In recent years, extensive studies have béerhighly sensitive to such perturbations, and even minor
conducted on CNs, encompassing various domains such asM@ydations in the gain of the estimator are known to deteriorate
stock market [1], social dilemmas [2], and disease spreadifitf estimation performance. Thus, it is very necessary to de-
[3], among others. Significant research has been direct@gn one effective scheme to maintain estimation performance
towards the performance of nodes’ interconnections in CNB, Presence of perturbations into estimator gains, and this
with particular focus on the transmission strategy [4] an@ecessity has given rise to what is commonly referred to as
link prediction [5]. The dynamics of nodes within CNs havéhe resilient state estimation problem [22]-[27].

emerged as a critical area drawing increased research interedgnergy limitation is a critical issue in wireless commu-
nication systems. Energy harvesting sensors (EHSs), as a
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see e.g. [28]-[33].

Cybersecurity of communication networks recently has co s AL
sistently been a focal area within the fields of communici Ned¢! > sensors — — . | Detimator!
tion technology and signal processing. The development - | ‘ hd
wireless communication technology has facilitated networ . Sensor energy i :

based communication offering notable advantages. Howe

er, the adoption of wireless communication networks also

presents additional challenges. For instance, data in mEgt 1. State estimation with EHSs and deception attacks.

networked industrial systems, such as electric power systems

and petrochemical engineering, is susceptible to cyber-attacks

during transmission over wireless networks if effective data  aically studied for CNs that are equipped with EHSs and

protection measures are not in place. As a result, state esti- are vulnerable to deception attacks.

mation problems have recently garnered particular interest in2) The EEC upper bound is calculated through a novel

networked Systems prone to Cyber-attacks, see e.g. [34]_[37] approach invoIVing the recursive solution of two Riccati-
Cyber-attacks, as factors that significantly impair system like difference equations. This method provides a sys-

performance, are frequently utilized by adversaries to disrupt tematic and efficient means to handle the uncertainties

Energy harvester i

the normal data flow within communication networks. In en-  and dynamics introduced by EHSs and cyber threats.
gineering, the commonly encountered attacks include attacks}) The estimator gains, critical for achieving desired esti-
of false data injection [38]-[41], deception [42], denial-of- mation accuracy, are derived using a recursive calcula-

service [43], [44], and replay [45]. Among these, deception  tion method, which ensures that the gains are adjusted
attacks aim to destabilize or deteriorate the target system dynamically in response to changes in system condi-
by injecting malicious data. Also, it has been demonstrated tions and attack dynamics, thereby enhancing estimator
that traditional false data detection schemes are ineffective in  resilience and reliability.
detecting deception attacks [46]-[48]. Consequently, numerousSection Il introduces basic concepts and outlines the system
efforts have been directed towards investigating secure conohfiguration, including the model, the mechanics of the EHSs,
and filtering topics under the influence of deception attackise nature of deception attacks, and estimator resilience. In
[49]-[52]. Despite these efforts, nonlinear resilient estimatid®ection 1ll, we derive the EEC bound and detail the recur-
for CNs, particularly in the presence of deception attacks asiye gain calculation. Section IV demonstrates this scheme’s
EHSs, has not fully been explored. efficacy. Section V summarizes main findings and suggesting
As previously noted, designing resilient state estimatofigture research directions.
for CNs under the combined effects of EHSs and deception
attgcks holldshplrlactical s_:_ghnififc_anceh T”his study I]aceds s_everafl Il. PROBLEM FORMULATION
substantial challenges. The first challenge is the design o
a resilient estimator that minimizes the upper bound of tIﬁAé System Model
EEC while contending with EHSs and deception attacks. System construction is illustrated in Fig. 1, which high-
Furthermore, the handling of measurement outputs generalighits how the openness and shared nature of communication
by EHSs, particularly when sensor energy storage is depletB@fworks make systems susceptible to cyber-attacks. This
presents a significant challenge since improper handling cogigbsection initially develops a system model without cyber-
severely impact estimation performance. Therefore, the sec@iificks, which we will subsequently extend to include attack
difficulty involves analyzing the transient behavior of stat&cenarios in Subsection II-C.
estimation errors resulting from the use of energy stored inConsider a CN withV nodes and EHSs depicted in Fig. 1,
the sensors. Moreover, in the context of cyber-attacks, it Wg1ere the EHSs are designed to collect possible energy from
crucial to recognize that not all attempts by an adversalfye environment and store it in rechargeable batteries. These
may be successful, and the success ratio of attacks playseasors have the capability to transmit measurements to a
critical role in affecting estimation performance. Thus, theemote estimator for processing estimation tasks. The plant
third challenge is to develop an attack model that accuratglynamics and the corresponding measurements are

captures probabilistic nature of successful attacks, and to N
effectively utilize this success rate in implementing the pro- Tisi1 =f(2is) + Z@ijrxj o+ Bi Wi s
posed estimator. Accordingly, this research devises effective ’ Rt ’ o 1)

strategies to address these identified challenges.

Motivated by the discussions made thus far, our research is
dedicated to addressing the challenges of designing a robwkere, for nodei (i € & £ {1,2,...,N}), z;s € R
estimator that can effectively manage the complexities intrdenotes the internal state variable apds € R™ refers
duced by deception attacks and EHSs through the developmenthe measurement output. Mutually uncorrelated and zero-
of a recursive estimation algorithm. The following majomeany; ; € R™ andw; , € R™ stand for, respectively, the
contributions of this study are emphasized to underline itseasurement and the process noises Wi{thi,swfs} =W,
novelty and technical advancements. andE{v; .}, } = Vi s. 1,0 with a known mean is independent

1) The problem of resilient estimation is firstly and systenmof v; , € R™ andw; s € R™. I' is an inner coupling matrix

Yi,s =Ui,sTi.s + Di,sVi,s
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and is given.® = (0;;) € RV*Y is a coupled network wherey; s € R™ (i € £) represents the received signalieth
configuration matrix withd;; > 0 (i # j) (not all zeros). estimator subject to random attacks € R"v is a nonzero

MatricesB; 5, C; s and D; s are known. signal injected by adversaries, afig, € R™v satisfies
The nonlinear functiory(:) : R"» — R"= satisfies [54]:
£(0) =0, &isll <& (8)
[ £(21) = f(z2)| <allz1 — 2| )

o with &; being a known positive scalar. The random variables
wherez; andz, € R"= are two arbitrarily given vectors, and,, . (; € £) are white sequences of the Bernoulli distribution
scalara: > 0 is known. with probabilities of value$ or 1 as follows:

B. Energy Harvesting Model

Energy supply is a critical procedure in controlling and
monitoring systems, given that information transmission con-
sumes significant energy. Therefore, implementing efficient

energy replenishment strategies to maintain normal operat?/(\)”rtlh #i € [0,1) is known.

of an entire network is crucial for energy harvesting and Remark 1: Due to the implementation of security protection

storage. devices and the presence of CN fIl_Jctuatlon_s, an attacker _m|ght
In this scenario, the transmission of measurement outpf} @ways be able to infect the estimator with the attack signal

is contingent upon energy stored. For nagdhe maximum at a specific time. Consequen'_tly,_a §et _of st(_)chastlc variable

capacity to store energy is denoteddy Once node reaches S€duences that _obey Bernoulli distributions is introduced .to

its capacity limit, it is unable to store any additional energ9haracter|ze _ratlos of successful attacks, thereby reflecting

harvested from its surroundings until some of the stored eneii2ck behavior.

is consumed. The energy harvested at tiny sensot is u; ,

andu; , is assumed to be identically and also independently

distributed (i.i.d.) random variables satisfying D. Reslient Sate Estimator

Prob{u;s =7} =¢gr, 7=0,1,2--- 3)

PI‘Ob{(pLS = O} :1 — @i,
PI‘Ob{QPi,s = 1} =Q;

For CN (1) with measurements signals modeled by (7), we
whereg, is a known scalar satisfyinE;rf0 g =1and0 < adopt a resilient state estimator for nodef the following
gr < 1. structure:
At the time s, for node i of energy level;, €

{0,1,2,--- ,®;}, if there is stored energy in nodg the A . N .

measurement signal is transmitted normally by consuming one Tijst1)s = (Fis)s) + Z 0i; L' 515

unit of energy. Conversely, if the energy stored is insufficient, R R i=1 (9)
the measured signal cannot be transmitted and no energy is| Ti,s+1]s+1 =Ti,s+1|s T (Kis+1 + Az‘,s+1)(yz‘,s+1
consumed. In this scenario, any measurement signal that fails — (1= @i)ti,s11Ci o185 541)5)

to be transmitted due to the lack of energy is discarded [32]. As
such, the dynamics df; ; with the initial condition’; o < ®;

where v; , £ E{Y;n, .}, & 5415 € R™ is the one-step
can be expressed by : ,

prediction ofz; <11, % 411541 € R"* is the state estimate
Risi1 =min{h; o + uis — Yin, ., i} (4) Oof i1, K11 € R is the estimator parameter, and

A; s+1 € R™*™ denotes gain fluctuations satisfying:
where

S { L i >0, ) E{A; 1} =0
) 0, otherwise. E{Ai,s"'lAZs«Fl} <~ (10)
Based on the previous discussions, the information collected
by the estimator from sensaércan be modeled as follows: with ~; being a known scalar.

6 Remark 2: The perturbed matrix\; ;1 reflects the error
induced possibly by fixed length of words of given computa-
tion software and limited resolution of equipment. One goal

C. Deception Attacks . . )
P here is to address the above unknown matrix by enhancing

Generally, success of attacks implemented by an attacif |egjlience of the proposed algorithm against parameter
depends on both network condition and device performan%%rturbation.

Therefore, for nodei, attacks can be mathematically con- For thei-th node, we denote, .., 2o — B o 1lo

sidered as a randomly occurring event, and attacked signglllsd A N as one-sten prediction
during transmissions are modeled as follows: Cistlls+l = Tistl ™ Tijstl]stl PP
and estimation errors, respectively. Furthermore, we denote

— ~ ; A A
{ Yi,s =Yi,s T ©i,sNi,s covariancesP; ;1 1js = E{ei75+1‘sefs+lls} and P; s 1541 =

Uis = Yin, Yis, 1€E.

()

~ T
Ni,s = — Yi,s + &,s E{ei,5+1|5+16i75+1|5+1}.
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According to (1) and (9), we have where
A T
€ s+1s :f(ei,s|s) + B; swi s + Z Oijlej o o [L;’_g 1
_i= T _ 0 cer 0T
€istifst1 = = (1 = @i)0i s41Ki s41C5 541) €5 541)s _z? _53 — g0 .0
= Kist1((1 = ise1)Yin,. . — g2 — g2 —q1 e 0
— (1= @), s+1) i,5+1T4,54+1 ST . : :
— K oi1(1 = @is41)Yin  Dissy1Viss1 — 98,1 —gao, 1 —go.—2 - —qo
— Ki 4104, 541 541 0 e Yt o Yailge o g0
(11) From Lemma 3, it is easy to observe that
where Yis =Prob{Y;p, =1}=[0 1 --- 1x;s.  (15)
Feists) 2F(is) = F(i10); raa
Kisr1 2K o1 + D sp1. In the following theorem, we construct certain upper bounds

Remark 3: In this proposed resilient estimator, each nod]cor the error covariances. =
prop Theorem 1. Let B1, B2, B3 and 5 be given positive s-

utilizes only local and available information to estimate the
. ) alars. Given two sequences of matrlom s+1]ss>0 and
state. The interconnections among nodes, compounded Voso with R P 1y satisfying the followin
estimator parameter perturbations, make it challenging éc# s+l|s+1520 5,010 = £,000 9 9
) erence equations:
compute the accurate EER; ,,1|,.1. Therefore, our focus is
on developing a method that calculates the upper EEC bound ;. s+1]s

and minimizes it. N
The objective is to design resilient state estimator (9) for=(1 + ;)0 UF@J;S\SFT + BLSWZ-,SB;TS
system (1) in order to '
1) establish bound®; ;.15 and®; 11|11 for EECs such +a?(1+ 31 )tr{@i,s\s}ﬁ (16)
that R
i,5+1|s+1
Pi,s-i—l\s < §Rz ,s+1]s (1 + ﬂQ) i,s+1|s = (1 + BQ)Ti,SJrl%i,s+1\scgs+1Kgs+1
Pisi1js+1 < Risitjst1s — (L + Bo)Ti 511K 51105 s 11 5415
2) recursively calculate the desired estimator gding 1 + (04,541 + Do) Ki 511 Ci a1 Ry o115y 1 K g
by minimizing §Ri,s+l|s+1- + (Ui,erl + ¢i,s+1))\max(c’i,s+1@i,s+l‘scgs+1)7ij

-, ~T T T
I11. MAIN RESULTS + ‘b”“Ki75+1Cia8+1$i-,s+1lsxi,s+1\sCi,s+1Ki,s+1

; i s 12 o7 T ,
The following lemmas serve as the theoretical basis for +%5“)‘max(C%Hlx%sﬂlsxusﬂ\sCz,s+1)%I
deriving the main results. _ + Tis1 Ko o1 Dis 41 Vior1 DL KT
Lemma 1: [53] Let matricesL, N, K and H be given. We + Ti,s+1 Amax(Dis41Vis41 D7 g 1) il
have the following relationships:
+ (14851 + B35 1K, s+1KZ w181

Otr(LKN) 7o Otr(LKTN)

o = e + (148 + 2 17
5 LTNT, i NL, (L+ 85"+ B3 @&yl (17)

dtr(LKN)H(LKEN)T) where

=2LTLKNHNT. (12)

[I>

] ) [54]‘?:1{ ” a5 and . t Pis+1 =(1 = @i) i s1 [l — (1 = @i) i si1],
emma 2: or a positive scala and any given vectors & o
u and p, the following inequality holds: Pisst El + 52;(1 +B)pisr1,

[I>

Ti,s+1 =(1 — @) i 541,
Oi,s+1 :(1 + 52)71‘,54-1, (18)
energy then, the solution of (17) is proven to be an upper bound of

po” + op® < Bup + B oo™ (13)

Lemma 3: [32] Let {his}s>0 be the

level with distribution (4). Denote ;s
P sy1)sy1-

[Prob{f;,s = 0} Prob{h;s =1} .- Prob{hi, = &; }] Proof: According to the definition of?; ; 1|, and (11),
Then, recursion ofy; s is we have
Xi,s+1 = € + ZiXis (14) P st1s
whose initial condition is given by :E{ei s+1\s€iTs+1\s}
Xi,0 = [0 0 1 L __/O]T
_ﬁ;—‘yo q>1 h1 ) Z Z GZJG’LP]E{Fe] SIS D, s‘ F }
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+ E{f(ei,s|s)fT(ei,s\s)} + Bi,sWi,ngs

N
+ Z oijE{Fej,s\sz(ei,s\s)}

j=1
N
+ ) 05 f(eiss)er I} (19)
j=1
Notice that the termZévzlz 10505 E{Te; 5 ed o s 7}

can be calculated as follows:

N N

ZZﬁinipIE{Fejﬂﬂsegs‘sl“T}

j=1p=1

N N

ZZewewE{rems el I+ Tep el I}

N | =
<
Il
-
=3
H

?’{2
M =2

<
I
=
7
I
-

0,;0;p(TP; o TT +TPB, ,I7)

Mz

I
&y
S

0:;;T P 5T (20)

Ib
Il
—

wheref; = Z;V:l 0;p. Then, by using Lemma 2, we obtain

N N
ZoijE{Fej,s\sz(ei,s\s)} + Z oijE{f(ei,s\s)ejzjs\sFT}
j=1 j=1

N

Sﬂléz Z oijFPj,s\sFT + ﬂl_1E{f(ei,s|s)fT(ei,s\s)}'
j=1

(21)
In addition, with the aid of (2), one has that

E{f(ei,s\s)fT(ei,s\s)}
SE{fT(ei,s\s>f(ei,s\s)I}
§a2E{eZS‘SeLS|SI} < aztr{Piys‘s}I.
Substituting (20), (21) and (22) into (19) yields
N
0; Z eijFPj,s|sFT + Bi,sWi,sBiT:S
j=1
+a?(1+ Bfl)tr{PLS‘S}I.
It follows from (11) andP; ,|s+1’s definition that

(22)

F)i,s+l|s S(l + ﬂl)

(23)

P o i1)541
=E{ei 51154161 5151}
=E{(I = Ks11(1 = #:)ti,541Ci541)€is41[s€1 o 11)5
X (I = Koy1(1 = @)tis41Cisr1)" } + E{{(1 — @is41)
X Tisr1 — (1= @i)ts, s+1]2Ki,s+lci,s+1Ii,erlxz:s_;_l
x Cr o K1 b+ E{[(1 = @i,641) Ti o1 Ki s 1
X Di,s+1Vi,s+1Vi,s+1Di,s+1Ki:,Fs+1}
+ E{@? 11 Kior1&is18] o1 Koy}

—Li— L] +Ly+ L3 (24)
where
Ly 2E{(I — Ki s31(1 — @i)5,541Ci s+1)€i 5115

X i€ K1}
Lo 2E{[(1 = @i,s41) Ti,st1 — (1 — @i)¥i 541 Ki s 11
X Cz',s+1$z',s+1SDi,s+1§iT,s+1Kz‘,s+1}~
Lemma 2 implies
- L - L{
<BE{(I — Ksi1(1 — @i)¥i,541C5 541) €4 5+1)5
ters( = Kop1 (1= @) 511 Cis1) " }
+ B3 "B} 11 Kis1&is41& 1 K aia b
Lo+ L3
<BE{[(1 = @i541) Virsr1 — (1 — @i)iss1)
X Ki,erlCi,erlxi,erlxg:erlCz s+1Kz s+1}
+ ﬂglE {8012754_1Ki,s+l€i,s+l§i,s+lKi,s+l} .

X e;

Then, (24) becomes

P st1)s41

=(1+4 B2)E{(I — Ks1(1 — $;)¥i,s+1Cl,54+1)€s 541|5
X GZSH\S(I — K1 (1= 9)hi,541Cisg1)" }
+ (14 B)E{[(1 = @i,541) Vijsr1 — (1 = @) 541)°
X Ki,erlOi,erlxi,erlI;'I:erlOl s+1K1 s+1}
+ E{[(l — 0is11) Vis 12 Ki s+1Di s 11Vi 541
x vl D Kl + (L4 5y + B51)
X E{%2,5+1Ki,s+1§i,s+1§iT,s+1KiT,sH}-

Moreover, it is easy to see that

(25)

E{zisi12] 41}
:E{(ez s+1|s + j:z s+1\s)(ei,s+1|s + ji,s+1|s)T}
(1 +ﬁ) i,5+1|s (1+B_1)£i,s+l\sjz:s+l|s'

NOting E{Aiﬁerl} =0 andKi15+1 = Ki15+1 +Ai15+1, one
has

(26)

E{(I - K;o1(1 - @i)wi,erlOi,s+1)ei,s+l|sez:s+1‘s
X (I = Kop1(1 = @)t s11Cis1)" }
=E{e; 111567 5115} — E{(1 = @i)¥is41€i 541
X e s+1\scz S+1Kz s+1} E{ 1= "/’z s+1
X Ki s11Cis11€0,5411564 54115} T B{(1 — @)
X ¢1'2,S+1Kix5+1Cixs"‘lei»5+1|SeZs+1|ngs+lKgs+1}
+E{(1 = 0:)°97 1180 541Ci541€5 541567 411
x Cile1 A1}
Next, E{A; ;A

(27)
I} <l indicates

E{(I — Kisp1(1— @i)wi,s+1ci)s+l)eiﬁs+1|sezs+l‘s

x (I — Ks1(1 — cﬁi)wi)SJrlCi)erl)T}
<P s+1ls — (1 — 851)1/11 s+15; 5+1\SO;T5+1KZ;+1

(1 - @z)djz s+1Kz s+lcz erle ,s+1]|s
(1 - 901) szrlKl s+lcz s+lH s+1|sCz 5+1K1 s+1
+ (1 - %) i s+1)\maX(Oi,s+1Pz‘,s+1|sci,s+1)7il- (28)
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Similarly, we have

E{[(1 (1= i) s41)* Ki s
x Oi,s+1$iys+133i,s+1 Cz s+1Kz s+1}

<1 = @)Yisr1[l = (1 = @) Vi s41] K, s11Ci 541 Py s 41)s
X Cl o1 Kl on + (1= @i)isqr[1 — (1 — @ity 1]

X K s11Ci 51181 541158 5 111sCh o1 Kb o1

+ (1 = @i)Yiss1[l = (1 = @)Y s41] Amax (Ci s 41 P 41

x Cj, Tl + (1= @i)iss1[l — (1 — @i)i,s41]
X Amax (Ci,s 1185, s41|sT i,5+1\sci,s+1)%‘l

901 s+1 Ti,s—i—l -

(29)
and
E{[(l
X I/gs-l-lDEs-l-lKEs-l-l}
<(1 = @i)Vi,s41Ki 541 Di s1+1Vi 541 DZSJAKZS“

) -
— @i s1+1) Vi s+1)“ Kis+1Di s+1Vis+1

+ (1 — @i)r(/}i,erl)\max(Diﬁerl ‘/ivSJFlDZs-l-l)’YiI- (30)
From|&; s|| < &, one has
E{fzsngS} < 5_12[ (31)

Summarizing the above derivations, we arrive at

Py 11541
S+ B2) P sq1ys — (14 B2)(1 = @i) i s 41 P s41)s
X Cl o1 Koy — (14 B2) (1 = i)t 61 K o4
X Cis41Pisi1)s + (14 B2)(1 — 0:)°¢7 11 Ki s
X Cisp1 Pysi1)sClan Kibrn + (1+ B3)(1+ B)
X (1= @i)tist1[1 = (1 = @i)Yi,s1] Kis41Ci 541
X Pigy1sCh 1 KLy + (14 B3) 1+ B)(1 — @)
X i sp1[l = (1 = @) Vi s 1] Amax (Cis 11 P s41)s
x C; s+1)”YzI + (14 B2)(1 - ‘Pl) z‘,s+1/\maX(Ci,s+1
X Py gi1)sClop )il + (1 + B3)(1+ B)[(1 — &1)
X i sr1[1 = (1 = @i)Vi s11]| Kiys+1Ci 51181 5415
X & 1) Cropt Kion + (14 B3) (1 + B)
X [(1 = @i)thisra [l = (1 = @i) i sq]]
X )\max(Cz',s+1fi,s+1|sffs+1|SCiT,s+1)%‘I
+(1— sﬁi)@bi,sﬂKi,s+1Di,s+1W,s+1DiT,s+1KiT,s+1
+ (1 = @0)Vs 541 Amax (Di o1 Vo1 D g )%l
+ 1+ 8+ By e K s+ Fon &1
+ (1485 + B3 @il
Substituting (18) into (32) yields

(32)

Py st1)s41

<1+ B2)Pisi1)s — (1+ B2)Tis41Pisi1)sCrrap1 K ain
— (14 B2)7Ti,541 K4, s11Ci s 41 Py 541

+ (0i511 + Gisr1)Ki 11 Cisr1 Pi oy Ol o1 K 4
+ (04,541 + ¢i,s+l))\max(Ci,s+lﬂ,s+1|scgs+l)7il

+ ¢i,s+1Ki,s+1Oi,erlfii,s+l|sjg:5+1\SOZerlKZerl

. T T
+ Gi,s+1 Amax (Ci s 4185 541158 51115 Cisp1) Vil

6
+ Tis41 K 501 Di o1 Vi1 D] o K4
+ Ti,o+1 Amax (Di,s+1 Vi, s+1D;'[s+1)%'I
+ (1 + 52 + 53 )901 3 S+1Kz 5+1§ I
+ (14851 + B85 @i&inl. (33)

SinceP; 55 < §)?EZ-)S|5, by comparing (16) with (23), we have
Pi s41)s < Ry 54115 Which, together with (17) and (33), further
implies P; o 1js11 < Wi sp1jsr1. u

Have obtained the upper bou . .1, the estimator
gains are designed by minimizing; ;1,41 at each time
instant.

Theorem 2: Bound®; ,1js+1 Of the EEC is minimized by
designing the following estimator gains:

Kisy1= \I’i,s+1AZSI+1 (34)

where
N T
Vi o1 =(1+ B2)Tis41Pis111sCi 115

T
(Uz s+1 + ¢z s+1)Ci,s+1Pi,s+l\sCiﬁs+1

AT T
+ ¢¢,s+1Oi,s+1117i,s+1|s5171',5+1|sci,s+1

Az s+1

+ Ti,erlDi,erl‘/i,erlD;'I:erl
+ 1+ By + By el ]
Proof: The trace of théf%iysﬂ‘sﬂ can be computed as
follows:
tr{ Ry s1)s41}
=(1+ Bo)tr{R; sq1ys} — (1 + B2) i s tr{ Ry s 411sCF 1
x K; Il = (U4 Bo)Tisyrtr{Ki s41C: s41R5 51115 }
+ (04,541 + ¢i,s+1)tY{Ki,erlCi,s+13}i,s+1\scgs+1Ki:,rs+1}
+ (04,5141 + Do 1) Amax (Cis s 1R s4115C o1 i
+ @i s 1 t0{ K 541105 s 1185 s41) 75 s+1\scz s+1 555, Fen}

(35)

+ @i 511  Mmax (Ci s 1184 541)s T i,s+1|soi,s+1)%‘
+ Ti o1 tr{ K s41Di 541 ‘/i,s+1DZS+1KES+1}
+ Ti,s+1 Amax (Dis+1Vi,s4+1 D;—‘FSH)%'
+ (1 + ﬂ;l + ﬂ?j )‘Pztr{Kz s+1K; s+1}€_2
+ (1 + B+ B @il v
Taking the partial derivative dfr{ﬁf%l-ﬁ”sﬂ} regarding the
estimator gain; s+ yields
Otr(Ri s1)541)
0K st1
=—2(14 B2)Ti,s41 &}i,erl\sCij:erl

+2(0i 541 + ¢i,s+1)Ki,s+lCi,s+1§¥ei,s+l|scgs+1

+20i s+1Ki 541 Ci,s+1ii,s+1|sifs+1|scgs+1

+ 2Ti,s+1Ki,s+1Di,s+1Vz‘,s+1DiT,s+1

+2(1+ By + By @il K.
The gain parameteK; ., can be determined by letting

6tr(§%i,s+1|s+l)
0K, s11

(36)

(37)
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i.e.,

Ki,erl :(1 + ﬁz)Tz‘,erl&}i,s-i-l\sOgerl

TABLE |
THE STATISTICAL CHARACTERISTICS OF%); s AND X; s

Y8 T

X {(0i,5+1 + Gis+1)Cist1Ri s 411sCir 1 s 1 2 3 1

A T T D1s 1 0.8647 0.8840 0.8395
+ ¢is41Ci s+124 Z; C; i

¢z,s+1 i,5+1Li s+1|s ;,s+1|s i,5+1 V2s i 0.8799 0.8946 0.9009
+ Tis+1Dis+1Vis+1D; o1 V3. I 0.8792 0.0039 0.0114
—1 —1\ - F271—1 roq ~0.13537 F0.11607 r0.11057
(LB 4 BT} (38) o |emE|  [em|  |oEm
- T T A
which ends the proof. [ | 0 8:8835 8;8?gg 8;8?gé
Remark 4: We have addressed the recursive estimation = T o T
problem for a type of CNs with EHSs subject to deception ((13 (é%ggg §§§%§ §%§§
attacks. Recursive calculation has been novelly implemented*** 9 0:1102 0:1280 01339
for EEC bounds that are minimized by designing gains. By -0 - 0.0000 - 00187 ~0.0288 -
taking the system comp!exme_s (e.0. EHSs, _deceptlon attacks 0 02410 9.2055 01931
and parameter perturbations) into consideration, the developed3.s B 01042 9.2017 9.2012
approach not only provides the online estimation calculation Lo L88ood  Loosss)  L3oistd

but also has a certain level of resilience. The distinguished
novelties of this paper are mainly twofold: 1) the state est’
mation problem is new in that it considers both EHSs ar
deception attacks within CNs under the influence of perturb
estimator parameters; and 2) a novel resilient estimator
proposed that utilizes attack-affected measurements with ge
obtained recursively.

IV. AN ILLUSTRATIVE EXAMPLE
Consider a nonlinear CN composed of three nodes=

r *¥ ¥ | * 1

| T 11 Pl

- I I (| Ll
g2 | Ol el o A A
= AT A A 1 1 S A A O A
o 1| bl e e (e e

| (TR I\ [ \ \/ |

I O R A TR/ EREA! | |

OV O T
30 40 50 6 70 80 90 100

Time (s)

diag{1.5,1.5,1.5} and Osﬁ‘( | ﬁ“ Ty
-03 0.1 02 gosf || || || ]
©=|01 =03 02 gm[ I ]
02 01 =03 ozr || L |
O ‘ s%&z ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4
Other system matrices are 0 10 20 30 40 50() 60 70 80 90 100
Time (s
0.732
B;,s = (0.820 + 0.050 sin(s) | , Fig. 2. Energy consumption and harvestedrefs.
I 0.710 |
0.827
By,s = |0.837+ 0.0525sin(s) | ,
0.653 |
0.662
Bs., = |0.562 + 0.018sin(s)
I 0.824 |
o _ [0-532 0.854+0.010sin(s) 0.628]
L5~ 10.835  0.653 +0.010sin(s) 0.727]°
o = [0.637 0.535+ 0.011sin(s) 0.622]
> 7 (0.553  0.753 4 0.015sin(s) 0.824]
On = [0.833  0.257 4 0.021sin(s) 0.428]
%47 10437 0.375+ 0.032sin(s) 0.623]
D, s = 0.253 + 0.010 cos(s), P S . S B

Dy s = 0.354 + 0.010 cos(s),
D3 s =0.297 + 0.010 cos(s).

Fig. 3. The energy consumption and energy harvestet;of.

The nonlinear function is chosen as follows:
O.l?sin(:z:“ys)
0.16 Sin(Iigys)
0.16 Sin(Iigys)

f(iCi,s) =

It is easy to see thaf(x;) satisfies (2) witho = 0.17.
The covariances of the measurement and process noise for

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https:/journals.ieeeauthorcenter.ieee.org/lbecomean-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3568698, IEEE Transactions on Network Science and Engineering

FINAL VERSION 8

w
T

Value
——,
=
=1
—3
B

|
SRR Ew Sy
0 10 20 30 40 50 60 70 8 90 100
Time (s)
. . . \ : 3
1 ‘%’T isaaa i \ e —&— Yo, [T 0 10 20 30 40 50 60 70 80 90 100
08 Time (s)
306 1F ® ' 0 '@ 00 o} o‘e
3z [ [ I | ° i
> 04 =
<05 i
0.2f >
O#i-i& i&\ée& OCERXEXX KRR TDOCTRREEDOCD (DRI RITIIDORD CDTRIIDY
: : : : : : : : : 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 8 90 100 Time (s)
Time (s)

Fig. 7. Attack instant of thé-th node.

1 T
State x5
E 08r - =% - Estimate with ¢, = 0.1 -
g - -O - Estimate with ¢; = 0.3
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S
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©
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[
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Time (s)

Fig. 5. The energy stored in the three batteries at each moment Fig. 8. The stater; s and its estimations with differenp; values.

§ the i-th node are selected d§ , = 0.25 and W; ; = 0.4,
B 100 respectively. The initial states and covariances are chosen as
E . [0.12]

< o 1,0 = 0.16 5 Pl,O = 0015[,

0.16

g 100 [0.12]

BRI 220 =10.16| , Py =0.0151,

g % 0.16]

5 [0.12]

':Ewoi 3,0 = 0.16 5 Pg)o =0.0151

g sof 0.16

: [Y-10]

g o wherex, , = [z}, 22, a3.]" (i=1,2,3).

For nodei, suppose thaf, = 5 (i.e., a maximum energy
storage capacity df units) andh; o = 1 (i.e., an initial energy
Fig. 6. Accumulated Errors far; . (i = 1,2,3) under differenti; , and Storage ofl unit). u; s (the amount of energy harvested) is

Vis (i=1,2,3).

assumed to obey the Poisson process:

Prob{u;,s

¢ exp(—<)

)=

!
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Fig. 9. The stater; s and its estimations. Fig. 11. The stater3, s and its estimations.

estimation performance, we define the accumulated error by

1.2 T Smax
State 2,
' TR Qoum & D €l
08l - % - Estimate i}, s=0
osl Fig. 6 is presented to show the accumulated estimation error
' obtained with varying noise covariances. It can be seen that
04r the greater the noise covariance, the larger the accumulated
2 02l estimation error. Table Il presents the accumulated estimation
g o error under different values of. It is observed that, as
the parameter increases, the accumulated estimation error
02 decreases, which conforms to the fact that estimation perfor-
041 mance can be naturally improved by harvesting more energy.
Pl Fig. 7 shows the instant of attack for tli¢h node. Fig. 8
‘ ‘ ‘ ‘ presents the estimation error of node(i.e., e; ) under
B 20 40 60 80 100 different values ofg,. It is observed that a largep, (i.e.,

Time (5) a higher probability of an attack occurring) leads to a larger
error, which conforms to that a greater success rate of a decep-
tion attack decreases the estimation performance. Figs. 9-11
depict state trajectories and estimates.

To verify the applicability of the proposed method, we
with parameterc = 1. According to (14), Table | provides consider different topological cases, i.e.,

Fig. 10. The state> s and its estimations.

values ofi; ; (i = 1,2,3) (the expectation of the successful 02 01 01

measurement transmission), along with, (i = 1,2,3) o — Oi _(')2 0'1

(the probability distribution of sensor energy levels). The 0'1 Oi _(') 9 ’

parameters; (i = 1,2,3) are¢; = 0.10. Attack probabilities _ ) o S
are; = 0.15, ¢ = 0.10, and @3 = 0.12. and the state trajectories and estimates are given in Fig. 12.

Meanwhile, to demonstrate the effectiveness and advantages
of the proposed estimation algorithm, we have included a

TABLE Il comparative analysis with the existing method from [32], as
ACCUMULATED ESTIMATION ERROR UNDERDIFFERENTS shown in Fig. 13. The results indicate that our approach
Energy Harvesting Parameter 0.2 05 10 achieves better estimation performance under the same set-

ﬁccumu:ateg Est@mat!on E"gsum 123;2471 ﬂg.ggg jg.zg.i tings, primarily because it explicitly accounts for the effects
y 7 . .

AeamUTaid ETmafon BT 100605 Too004—dogs, O Poth attacks and energy harvesting in the theoretical design.

In conclusion, all simulations indicate the effectiveness of
the proposed state estimation approach.

The results of EEC bounds and gains are presented in

Figs. 2-13 and Table Il. Figs. 2—4 display the valuesupf V. CONCLUSION

andY;p, . (i =1,2,3). hy; s is depicted in Fig. 5. Specifically, We have researched into a topic of resilient estimation

to illustrate the influence of noise and the parameten the within CNs equipped with EHSs whose measurements are
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