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Recursive Resilient State Estimation for Nonlinear
Stochastic Complex Networks With Energy

Harvesting Sensors Under Deception Attacks
Yu-Ang Wang, Zidong Wang, Lei Zou, and Fan Wang

Abstract—This paper deals with a resilient estimation problem
for certain type of time-varying complex networks of energy
harvesting sensors that are vulnerable to deception attacks.
Measurement signals of the underlying complex network, as
measured by energy harvesting sensors, are only given to a remote
estimator when the energy level is adequate to offset the energy
consumption, which is at risk of deception attacks during network
transmission. The deception attacks under consideration, are
depicted as events occurring randomly, governed by a Bernoulli
sequence. To meet the desired estimation performance, a resilient
scheme is developed that addresses the side effects of random
perturbations of the estimator gain when it comes to the
implementation. The primary objective is to devise a resilient
algorithm that can simultaneously manage energy harvesting
sensors, deception attacks, and gain perturbations of the state
estimator. Initially, the upper bound of the obtained error co-
variance is determined by making use of induction and intensive
stochastic techniques. The necessary estimator gains are then
identified recursively to prudently minimize this acquired bound.
An illustrative example is presented ultimately to demonstrate
this scheme’s efficacy.

Index Terms—Complex networks, energy harvesting sensors,
resilient estimation, deception attacks, nonlinear systems.

I. I NTRODUCTION

Complex networks (CNs) are distinguished by their dy-
namic behaviors, unique topological characteristics, and ro-
bust modeling capabilities for complex systems with web-
like structures. In recent years, extensive studies have been
conducted on CNs, encompassing various domains such as the
stock market [1], social dilemmas [2], and disease spreading
[3], among others. Significant research has been directed
towards the performance of nodes’ interconnections in CNs,
with particular focus on the transmission strategy [4] and
link prediction [5]. The dynamics of nodes within CNs have
emerged as a critical area drawing increased research interest,
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which has led to investigations into synchronization problems
[6], pinning control problems [7], [8], and state estimation
problems [9], [10].

In system science, state estimation has been identified as a
fundamental issue and has undergone extensive exploration
due to its broad applicability in areas such as navigation
and radar tracking systems [11]. A significant percentage
of research has been conducted about various aspects of
state estimation [12]–[17]. Among the developed methods,
the Kalman filtering scheme, which seeks to minimize the
estimation error covariance (EEC), is recognized as the op-
timal approach for linear systems affected by Gaussian noises
[18]–[20]. However, for nonlinear systems, traditional Kalman
filtering is no longer applicable [21]. Consequently, the devel-
opment of suitable estimation methods capable of addressing
nonlinearities has become important, both in theoretical and
practical contexts.

For state estimation problems, it is commonly assumed in
most existing literature that the estimator gain is implemented
exactly without any perturbation during the algorithm im-
plementation. However, this assumption does not align with
many real-world scenarios. In practical engineering, there is a
likelihood of non-zero fluctuations in the gain of the designed
estimator due to physical constraints such as component aging
and finite word length. Note that the estimation performance
is highly sensitive to such perturbations, and even minor
variations in the gain of the estimator are known to deteriorate
the estimation performance. Thus, it is very necessary to de-
sign one effective scheme to maintain estimation performance
in presence of perturbations into estimator gains, and this
necessity has given rise to what is commonly referred to as
the resilient state estimation problem [22]–[27].

Energy limitation is a critical issue in wireless commu-
nication systems. Energy harvesting sensors (EHSs), as a
type of energy replenishment scheme, are extensively utilized
in systems to prevent energy depletion in communication
equipment. Typically, the harvesting technology involves using
an energy harvester, such as a windmill, solar panel, or other
devices, to extract energy from the outside environment as well
as store the converted power of sensors for communication
purposes. A significant challenge in the study of EHSs is man-
aging the special sensing logic when designing the estimator.
Energy harvesting can introduce measurement losses which,
if not properly addressed, could significantly impair system
performance. To tackle this issue, various research efforts have
been directed towards filtering problems associated with EHSs,
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see e.g. [28]–[33].
Cybersecurity of communication networks recently has con-

sistently been a focal area within the fields of communica-
tion technology and signal processing. The development of
wireless communication technology has facilitated network-
based communication offering notable advantages. Howev-
er, the adoption of wireless communication networks also
presents additional challenges. For instance, data in most
networked industrial systems, such as electric power systems
and petrochemical engineering, is susceptible to cyber-attacks
during transmission over wireless networks if effective data
protection measures are not in place. As a result, state esti-
mation problems have recently garnered particular interest in
networked systems prone to cyber-attacks, see e.g. [34]–[37].

Cyber-attacks, as factors that significantly impair system
performance, are frequently utilized by adversaries to disrupt
the normal data flow within communication networks. In en-
gineering, the commonly encountered attacks include attacks
of false data injection [38]–[41], deception [42], denial-of-
service [43], [44], and replay [45]. Among these, deception
attacks aim to destabilize or deteriorate the target system
by injecting malicious data. Also, it has been demonstrated
that traditional false data detection schemes are ineffective in
detecting deception attacks [46]–[48]. Consequently, numerous
efforts have been directed towards investigating secure control
and filtering topics under the influence of deception attacks
[49]–[52]. Despite these efforts, nonlinear resilient estimation
for CNs, particularly in the presence of deception attacks and
EHSs, has not fully been explored.

As previously noted, designing resilient state estimators
for CNs under the combined effects of EHSs and deception
attacks holds practical significance. This study faces several
substantial challenges. The first challenge is the design of
a resilient estimator that minimizes the upper bound of the
EEC while contending with EHSs and deception attacks.
Furthermore, the handling of measurement outputs generated
by EHSs, particularly when sensor energy storage is depleted,
presents a significant challenge since improper handling could
severely impact estimation performance. Therefore, the second
difficulty involves analyzing the transient behavior of state
estimation errors resulting from the use of energy stored in
the sensors. Moreover, in the context of cyber-attacks, it is
crucial to recognize that not all attempts by an adversary
may be successful, and the success ratio of attacks plays a
critical role in affecting estimation performance. Thus, the
third challenge is to develop an attack model that accurately
captures probabilistic nature of successful attacks, and to
effectively utilize this success rate in implementing the pro-
posed estimator. Accordingly, this research devises effective
strategies to address these identified challenges.

Motivated by the discussions made thus far, our research is
dedicated to addressing the challenges of designing a robust
estimator that can effectively manage the complexities intro-
duced by deception attacks and EHSs through the development
of a recursive estimation algorithm. The following major
contributions of this study are emphasized to underline its
novelty and technical advancements.

1) The problem of resilient estimation is firstly and system-

Fig. 1. State estimation with EHSs and deception attacks.

atically studied for CNs that are equipped with EHSs and
are vulnerable to deception attacks.

2) The EEC upper bound is calculated through a novel
approach involving the recursive solution of two Riccati-
like difference equations. This method provides a sys-
tematic and efficient means to handle the uncertainties
and dynamics introduced by EHSs and cyber threats.

3) The estimator gains, critical for achieving desired esti-
mation accuracy, are derived using a recursive calcula-
tion method, which ensures that the gains are adjusted
dynamically in response to changes in system condi-
tions and attack dynamics, thereby enhancing estimator
resilience and reliability.

Section II introduces basic concepts and outlines the system
configuration, including the model, the mechanics of the EHSs,
the nature of deception attacks, and estimator resilience. In
Section III, we derive the EEC bound and detail the recur-
sive gain calculation. Section IV demonstrates this scheme’s
efficacy. Section V summarizes main findings and suggesting
future research directions.

II. PROBLEM FORMULATION

A. System Model

System construction is illustrated in Fig. 1, which high-
lights how the openness and shared nature of communication
networks make systems susceptible to cyber-attacks. This
subsection initially develops a system model without cyber-
attacks, which we will subsequently extend to include attack
scenarios in Subsection II-C.

Consider a CN withN nodes and EHSs depicted in Fig. 1,
where the EHSs are designed to collect possible energy from
the environment and store it in rechargeable batteries. These
sensors have the capability to transmit measurements to a
remote estimator for processing estimation tasks. The plant
dynamics and the corresponding measurements are







xi,s+1 =f(xi,s) +

N∑

j=1

θijΓxj,s +Bi,sωi,s

yi,s =Ci,sxi,s +Di,sνi,s

(1)

where, for nodei (i ∈ E , {1, 2, . . . , N}), xi,s ∈ R
nx

denotes the internal state variable andyi,s ∈ R
ny refers

to the measurement output. Mutually uncorrelated and zero-
meanνi,s ∈ R

nν andωi,s ∈ R
nω stand for, respectively, the

measurement and the process noises withE{ωi,sω
T
i,s} =Wi,s

andE{νi,sνTi,s} = Vi,s. xi,0 with a known mean is independent
of νi,s ∈ R

nν andωi,s ∈ R
nω . Γ is an inner coupling matrix
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and is given.Θ = (θij) ∈ R
N×N is a coupled network

configuration matrix withθij ≥ 0 (i 6= j) (not all zeros).
MatricesBi,s, Ci,s andDi,s are known.

The nonlinear functionf(·) : Rnx → R
nx satisfies [54]:

f(0) =0,

‖f(z1)− f(z2)‖ ≤α‖z1 − z2‖ (2)

wherez1 andz2 ∈ R
nx are two arbitrarily given vectors, and

scalarα > 0 is known.

B. Energy Harvesting Model

Energy supply is a critical procedure in controlling and
monitoring systems, given that information transmission con-
sumes significant energy. Therefore, implementing efficient
energy replenishment strategies to maintain normal operation
of an entire network is crucial for energy harvesting and
storage.

In this scenario, the transmission of measurement outputs
is contingent upon energy stored. For nodei, the maximum
capacity to store energy is denoted byΦi. Once nodei reaches
its capacity limit, it is unable to store any additional energy
harvested from its surroundings until some of the stored energy
is consumed. The energy harvested at times by sensori is ui,s,
andui,s is assumed to be identically and also independently
distributed (i.i.d.) random variables satisfying

Prob{ui,s = π} = gπ, π = 0, 1, 2 · · · (3)

wheregπ is a known scalar satisfying
∑+∞

π=0
gπ = 1 and0 ≤

gπ ≤ 1.
At the time s, for node i of energy level ~i,s ∈

{0, 1, 2, · · · ,Φi}, if there is stored energy in nodei, the
measurement signal is transmitted normally by consuming one
unit of energy. Conversely, if the energy stored is insufficient,
the measured signal cannot be transmitted and no energy is
consumed. In this scenario, any measurement signal that fails
to be transmitted due to the lack of energy is discarded [32]. As
such, the dynamics of~i,s with the initial condition~i,0 ≤ Φi

can be expressed by

~i,s+1 =min{~i,s + ui,s −Υi,~i,s
,Φi} (4)

where

Υi,~i,s
,

{

1, ~i,s > 0,

0, otherwise.
(5)

Based on the previous discussions, the information collected
by the estimator from sensori can be modeled as follows:

ỹi,s = Υi,~i,s
yi,s, i ∈ E . (6)

C. Deception Attacks

Generally, success of attacks implemented by an attacker
depends on both network condition and device performance.
Therefore, for nodei, attacks can be mathematically con-
sidered as a randomly occurring event, and attacked signals
during transmissions are modeled as follows:

{

~yi,s =ỹi,s + ϕi,sηi,s

ηi,s =− ỹi,s + ξi,s
(7)

where~yi,s ∈ R
ny (i ∈ E) represents the received signal ofi-th

estimator subject to random attacks,ηi,s ∈ R
ny is a nonzero

signal injected by adversaries, andξi,s ∈ R
ny satisfies

‖ξi,s‖ ≤ ξ̄i (8)

with ξ̄i being a known positive scalar. The random variables
ϕi,s (i ∈ E) are white sequences of the Bernoulli distribution
with probabilities of values0 or 1 as follows:

Prob{ϕi,s = 0} =1− ϕ̄i,

Prob{ϕi,s = 1} =ϕ̄i

with ϕ̄i ∈ [0, 1) is known.
Remark 1: Due to the implementation of security protection

devices and the presence of CN fluctuations, an attacker might
not always be able to infect the estimator with the attack signal
at a specific time. Consequently, a set of stochastic variable
sequences that obey Bernoulli distributions is introduced to
characterize ratios of successful attacks, thereby reflecting
attack behavior.

D. Resilient State Estimator

For CN (1) with measurements signals modeled by (7), we
adopt a resilient state estimator for nodei of the following
structure:







x̂i,s+1|s =f(x̂i,s|s) +

N∑

j=1

θijΓx̂j,s|s

x̂i,s+1|s+1 =x̂i,s+1|s + (Ki,s+1 +∆i,s+1)
(
~yi,s+1

− (1− ϕ̄i)ψi,s+1Ci,s+1x̂i,s+1|s

)

(9)

where ψi,s , E{Υi,~i,s
}, x̂i,s+1|s ∈ R

nx is the one-step
prediction ofxi,s+1, x̂i,s+1|s+1 ∈ R

nx is the state estimate
of xi,s+1, Ki,s+1 ∈ R

nx×ny is the estimator parameter, and
∆i,s+1 ∈ R

nx×ny denotes gain fluctuations satisfying:

E{∆i,s+1} =0

E{∆i,s+1∆
T
i,s+1} ≤γiI (10)

with γi being a known scalar.
Remark 2: The perturbed matrix∆i,s+1 reflects the error

induced possibly by fixed length of words of given computa-
tion software and limited resolution of equipment. One goal
here is to address the above unknown matrix by enhancing
the resilience of the proposed algorithm against parameter
perturbation.

For the i-th node, we denoteei,s+1|s , xi,s+1 − x̂i,s+1|s

and ei,s+1|s+1 , xi,s+1 − x̂i,s+1|s+1 as one-step prediction
and estimation errors, respectively. Furthermore, we denote
covariancesPi,s+1|s , E{ei,s+1|se

T
i,s+1|s} andPi,s+1|s+1 ,

E{ei,s+1|s+1e
T
i,s+1|s+1

}.
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According to (1) and (9), we have






ei,s+1|s =f̃(ei,s|s) +Bi,sωi,s +

N∑

j=1

θijΓej,s|s

ei,s+1|s+1 =
(
I − (1− ϕ̄i)ψi,s+1K̄i,s+1Ci,s+1

)
ei,s+1|s

− K̄i,s+1

(
(1 − ϕi,s+1)Υi,~i,s

− (1− ϕ̄i)ψi,s+1

)
Ci,s+1xi,s+1

− K̄i,s+1(1 − ϕi,s+1)Υi,~i,s
Di,s+1νi,s+1

− K̄i,s+1ϕi,s+1ξi,s+1

(11)

where

f̃(ei,s|s) ,f(xi,s)− f(x̂i,s|s),

K̄i,s+1 ,Ki,s+1 +∆i,s+1.

Remark 3: In this proposed resilient estimator, each node
utilizes only local and available information to estimate the
state. The interconnections among nodes, compounded by
estimator parameter perturbations, make it challenging to
compute the accurate EECPi,s+1|s+1. Therefore, our focus is
on developing a method that calculates the upper EEC bound
and minimizes it.

The objective is to design resilient state estimator (9) for
system (1) in order to

1) establish bounds̄ℜi,s+1|s andℜ̄i,s+1|s+1 for EECs such
that

Pi,s+1|s ≤ ℜ̄i,s+1|s

Pi,s+1|s+1 ≤ ℜ̄i,s+1|s+1,

2) recursively calculate the desired estimator gainsKi,s+1

by minimizing ℜ̄i,s+1|s+1.

III. M AIN RESULTS

The following lemmas serve as the theoretical basis for
deriving the main results.

Lemma 1: [53] Let matricesL, N , K andH be given. We
have the following relationships:

∂tr(LKN)

∂K
= LTNT ,

∂tr(LKTN)

∂K
= NL,

∂tr((LKN)H(LKN)T )

∂K
= 2LTLKNHNT . (12)

Lemma 2: [54] For a positive scalarβ and any given vectors
µ and̺, the following inequality holds:

µ̺T + ̺µT ≤ βµµT + β−1̺̺T . (13)

Lemma 3: [32] Let {~i,s}s≥0 be the energy
level with distribution (4). Denote χi,s ,
[
Prob{~i,s = 0} Prob{~i,s = 1} · · · Prob{~i,s = Φi}

]T
.

Then, recursion ofχi,s is

χi,s+1 = εi + Ξiχi,s (14)

whose initial condition is given by

χi,0 = [0 · · · 0
︸ ︷︷ ︸

~i,0

1 0 · · · 0
︸ ︷︷ ︸

Φi−~i,0

]T

where

εi ,
[
0 · · · 0
︸ ︷︷ ︸

Φi

1
]T
,

Ξi , −












−g0 −g0 0 · · · 0
−g1 −g1 −g0 · · · 0
−g2 −g2 −g1 · · · 0

...
...

...
...

...
−gΦi−1 −gΦi−1 −gΦi−2 · · · −g0
∑Φi−1

π=0
gπ

∑Φi−1

π=0
gπ

∑Φi−2

π=0
gπ · · · g0












.

From Lemma 3, it is easy to observe that

ψi,s = Prob{Υi,~i,s
= 1} = [0 1 · · · 1

︸ ︷︷ ︸

Φi

]χi,s. (15)

In the following theorem, we construct certain upper bounds
for the error covariances.

Theorem 1: Let β1, β2, β3 and β̃ be given positive s-
calars. Given two sequences of matrices{ℜ̄i,s+1|s}s≥0 and
{ℜ̄i,s+1|s+1}s≥0 with ℜ̄i,0|0 = Pi,0|0 satisfying the following
difference equations:

ℜ̄i,s+1|s

=(1 + β1)θ̄i

N∑

j=1

θijΓℜ̄j,s|sΓ
T +Bi,sWi,sB

T
i,s

+ α2(1 + β−1
1 )tr{ℜ̄i,s|s}I, (16)

ℜ̄i,s+1|s+1

=(1 + β2)Pi,s+1|s − (1 + β2)τi,s+1ℜ̄i,s+1|sC
T
i,s+1K

T
i,s+1

− (1 + β2)τi,s+1Ki,s+1Ci,s+1ℜ̄i,s+1|s

+ (σi,s+1 + φi,s+1)Ki,s+1Ci,s+1ℜ̄i,s+1|sC
T
i,s+1K

T
i,s+1

+ (σi,s+1 + φi,s+1)λmax(Ci,s+1ℜ̄i,s+1|sC
T
i,s+1)γiI

+ φi,s+1Ki,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1K

T
i,s+1

+ φi,s+1λmax(Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1)γiI

+ τi,s+1Ki,s+1Di,s+1Vi,s+1D
T
i,s+1K

T
i,s+1

+ τi,s+1λmax(Di,s+1Vi,s+1D
T
i,s+1)γiI

+ (1 + β−1
2 + β−1

3 )ϕ̄iKi,s+1K
T
i,s+1ξ̄

2
i I

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i γiI (17)

where

ρi,s+1 ,(1 − ϕ̄i)ψi,s+1[1− (1− ϕ̄i)ψi,s+1],

φi,s+1 ,(1 + β2)(1 + β̃)ρi,s+1,

τi,s+1 ,(1 − ϕ̄i)ψi,s+1,

σi,s+1 ,(1 + β2)τ
2
i,s+1, (18)

then, the solution of (17) is proven to be an upper bound of
Pi,s+1|s+1.

Proof: According to the definition ofPi,s+1|s and (11),
we have

Pi,s+1|s

=E{ei,s+1|se
T
i,s+1|s}

=

N∑

j=1

N∑

p=1

θijθipE{Γej,s|se
T
p,s|sΓ

T }
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+ E{f(ei,s|s)f
T (ei,s|s)} +Bi,sWi,sB

T
i,s

+

N∑

j=1

θijE{Γej,s|sf
T (ei,s|s)}

+

N∑

j=1

θijE{f(ei,s|s)e
T
j,s|sΓ

T }. (19)

Notice that the term
∑N

j=1

∑N

p=1
θijθipE{Γej,s|se

T
p,s|sΓ

T }
can be calculated as follows:

N∑

j=1

N∑

p=1

θijθipE{Γej,s|se
T
p,s|sΓ

T }

=
1

2

N∑

j=1

N∑

p=1

θijθipE{Γej,s|se
T
p,s|sΓ

T + Γep,s|se
T
j,s|sΓ

T }

≤
1

2

N∑

j=1

N∑

p=1

θijθip(ΓPj,s|sΓ
T + ΓPp,s|sΓ

T )

=θ̄i

N∑

j=1

θijΓPj,s|sΓ
T (20)

whereθ̄i =
∑N

p=1
θip. Then, by using Lemma 2, we obtain

N∑

j=1

θijE{Γej,s|sf
T (ei,s|s)}+

N∑

j=1

θijE{f(ei,s|s)e
T
j,s|sΓ

T }

≤β1θ̄i

N∑

j=1

θijΓPj,s|sΓ
T + β−1

1 E{f(ei,s|s)f
T (ei,s|s)}.

(21)

In addition, with the aid of (2), one has that

E{f(ei,s|s)f
T (ei,s|s)}

≤E{fT (ei,s|s)f(ei,s|s)I}

≤α2
E{eTi,s|sei,s|sI} ≤ α2tr{Pi,s|s}I. (22)

Substituting (20), (21) and (22) into (19) yields

Pi,s+1|s ≤(1 + β1)θ̄i

N∑

j=1

θijΓPj,s|sΓ
T +Bi,sWi,sB

T
i,s

+ α2(1 + β−1
1 )tr{Pi,s|s}I. (23)

It follows from (11) andPi,s+1|s+1’s definition that

Pi,s+1|s+1

=E{ei,s+1|s+1e
T
i,s+1|s+1}

=E
{
(I − K̄s+1(1− ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|se

T
i,s+1|s

× (I − K̄s+1(1 − ϕ̄i)ψi,s+1Ci,s+1)
T
}
+ E

{
[(1− ϕi,s+1)

×Υi,s+1 − (1 − ϕ̄i)ψi,s+1]
2K̄i,s+1Ci,s+1xi,s+1x

T
i,s+1

× CT
i,s+1K̄

T
i,s+1

}
+ E

{
[(1− ϕi,s+1)Υi,s+1]

2K̄i,s+1

×Di,s+1νi,s+1ν
T
i,s+1D

T
i,s+1K̄

T
i,s+1

}

+ E
{
ϕ2
i,s+1K̄i,s+1ξi,s+1ξ

T
i,s+1K̄

T
i,s+1

}

− L1 − LT
1 + L2 + LT

2 (24)

where

L1 ,E
{
(I − K̄i,s+1(1− ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|s

× ϕi,s+1ξ
T
i,s+1K̄

T
i,s+1

}
,

L2 ,E
{
[(1− ϕi,s+1)Υi,s+1 − (1 − ϕ̄i)ψi,s+1]K̄i,s+1

× Ci,s+1xi,s+1ϕi,s+1ξ
T
i,s+1K̄

T
i,s+1

}
.

Lemma 2 implies

− L1 − LT
1

≤β2E
{
(I − K̄s+1(1− ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|s

× eTi,s+1|s(I − K̄s+1(1− ϕ̄i)ψi,s+1Ci,s+1)
T
}

+ β−1
2 E

{
ϕ2
i,s+1K̄i,s+1ξi,s+1ξ

T
i,s+1K̄

T
i,s+1

}
,

L2 + LT
2

≤β3E
{
[(1− ϕi,s+1)Υi,s+1 − (1 − ϕ̄i)ψi,s+1]

2

× K̄i,s+1Ci,s+1xi,s+1x
T
i,s+1C

T
i,s+1K̄

T
i,s+1

}

+ β−1
3 E

{
ϕ2
i,s+1K̄i,s+1ξi,s+1ξ

T
i,s+1K̄

T
i,s+1

}
.

Then, (24) becomes

Pi,s+1|s+1

=(1 + β2)E
{
(I − K̄s+1(1 − ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|s

× eTi,s+1|s(I − K̄s+1(1− ϕ̄i)ψi,s+1Ci,s+1)
T
}

+ (1 + β3)E
{
[(1− ϕi,s+1)Υi,s+1 − (1− ϕ̄i)ψi,s+1]

2

× K̄i,s+1Ci,s+1xi,s+1x
T
i,s+1C

T
i,s+1K̄

T
i,s+1

}

+ E
{
[(1 − ϕi,s+1)Υi,s+1]

2K̄i,s+1Di,s+1νi,s+1

× νTi,s+1D
T
i,s+1K̄

T
i,s+1

}
+ (1 + β−1

2 + β−1
3 )

× E
{
ϕ2
i,s+1K̄i,s+1ξi,s+1ξ

T
i,s+1K̄

T
i,s+1

}
. (25)

Moreover, it is easy to see that

E{xi,s+1x
T
i,s+1}

=E{(ei,s+1|s + x̂i,s+1|s)(ei,s+1|s + x̂i,s+1|s)
T }

≤(1 + β̃)Pi,s+1|s + (1 + β̃−1)x̂i,s+1|sx̂
T
i,s+1|s. (26)

NotingE{∆i,s+1} = 0 andK̄i,s+1 , Ki,s+1+∆i,s+1, one
has

E
{
(I − K̄i,s+1(1− ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|se

T
i,s+1|s

× (I − K̄s+1(1 − ϕ̄i)ψi,s+1Ci,s+1)
T
}

=E
{
ei,s+1|se

T
i,s+1|s

}
− E

{
(1 − ϕ̄i)ψi,s+1ei,s+1|s

× eTi,s+1|sC
T
i,s+1K

T
i,s+1

}
− E

{
(1− ϕ̄i)ψi,s+1

×Ki,s+1Ci,s+1ei,s+1|se
T
i,s+1|s

}
+ E

{
(1 − ϕ̄i)

2

× ψ2
i,s+1Ki,s+1Ci,s+1ei,s+1|se

T
i,s+1|sC

T
i,s+1K

T
i,s+1

}

+ E
{
(1− ϕ̄i)

2ψ2
i,s+1∆i,s+1Ci,s+1ei,s+1|se

T
i,s+1|s

× CT
i,s+1∆

T
i,s+1

}
. (27)

Next, E{∆i,s∆
T
i,s} ≤ γiI indicates

E
{
(I − K̄i,s+1(1 − ϕ̄i)ψi,s+1Ci,s+1)ei,s+1|se

T
i,s+1|s

× (I − K̄s+1(1− ϕ̄i)ψi,s+1Ci,s+1)
T
}

≤Pi,s+1|s − (1− ϕ̄i)ψi,s+1Pi,s+1|sC
T
i,s+1K

T
i,s+1

− (1− ϕ̄i)ψi,s+1Ki,s+1Ci,s+1Pi,s+1|s

+ (1− ϕ̄i)
2ψ2

i,s+1Ki,s+1Ci,s+1Pi,s+1|sC
T
i,s+1K

T
i,s+1

+ (1− ϕ̄i)
2ψ2

i,s+1λmax(Ci,s+1Pi,s+1|sC
T
i,s+1)γiI. (28)
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Similarly, we have

E
{
[(1− ϕi,s+1)Υi,s+1 − (1 − ϕ̄i)ψi,s+1]

2K̄i,s+1

× Ci,s+1xi,s+1x
T
i,s+1C

T
i,s+1K̄

T
i,s+1

}

≤(1− ϕ̄i)ψi,s+1[1− (1 − ϕ̄i)ψi,s+1]Ki,s+1Ci,s+1Pi,s+1|s

× CT
i,s+1K

T
i,s+1 + (1 − ϕ̄i)ψi,s+1[1− (1− ϕ̄i)ψi,s+1]

×Ki,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1K

T
i,s+1

+ (1 − ϕ̄i)ψi,s+1[1− (1− ϕ̄i)ψi,s+1]λmax(Ci,s+1Pi,s+1

× CT
i,s+1)γiI + (1− ϕ̄i)ψi,s+1[1− (1 − ϕ̄i)ψi,s+1]

× λmax(Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1)γiI (29)

and

E
{
[(1− ϕi,s+1)Υi,s+1]

2K̄i,s+1Di,s+1νi,s+1

× νTi,s+1D
T
i,s+1K̄

T
i,s+1

}

≤(1− ϕ̄i)ψi,s+1Ki,s+1Di,s+1Vi,s+1D
T
i,s+1K

T
i,s+1

+ (1− ϕ̄i)ψi,s+1λmax(Di,s+1Vi,s+1D
T
i,s+1)γiI. (30)

From ‖ξi,s‖ ≤ ξ̄i, one has

E
{
ξi,sξ

T
i,s

}
≤ ξ̄2i I. (31)

Summarizing the above derivations, we arrive at

Pi,s+1|s+1

≤(1 + β2)Pi,s+1|s − (1 + β2)(1 − ϕ̄i)ψi,s+1Pi,s+1|s

× CT
i,s+1K

T
i,s+1 − (1 + β2)(1 − ϕ̄i)ψi,s+1Ki,s+1

× Ci,s+1Pi,s+1|s + (1 + β2)(1 − ϕ̄i)
2ψ2

i,s+1Ki,s+1

× Ci,s+1Pi,s+1|sC
T
i,s+1K

T
i,s+1 + (1 + β3)(1 + β̃)

× (1− ϕ̄i)ψi,s+1[1− (1 − ϕ̄i)ψi,s+1]Ki,s+1Ci,s+1

× Pi,s+1|sC
T
i,s+1K

T
i,s+1 + (1 + β3)(1 + β̃)(1 − ϕ̄i)

× ψi,s+1[1− (1− ϕ̄i)ψi,s+1]λmax(Ci,s+1Pi,s+1|s

× CT
i,s+1)γiI + (1 + β2)(1− ϕ̄i)

2ψ2
i,s+1λmax(Ci,s+1

× Pi,s+1|sC
T
i,s+1)γiI + (1 + β3)(1 + β̃)

[
(1− ϕ̄i)

× ψi,s+1[1− (1− ϕ̄i)ψi,s+1]
]
Ki,s+1Ci,s+1x̂i,s+1|s

× x̂Ti,s+1|sC
T
i,s+1K

T
i,s+1 + (1 + β3)(1 + β̃)

×
[
(1− ϕ̄i)ψi,s+1[1− (1− ϕ̄i)ψi,s+1]

]

× λmax(Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1)γiI

+ (1− ϕ̄i)ψi,s+1Ki,s+1Di,s+1Vi,s+1D
T
i,s+1K

T
i,s+1

+ (1− ϕ̄i)ψi,s+1λmax(Di,s+1Vi,s+1D
T
i,s+1)γiI

+ (1 + β−1
2 + β−1

3 )ϕ̄iKi,s+1K
T
i,s+1ξ̄

2
i I

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i γiI. (32)

Substituting (18) into (32) yields

Pi,s+1|s+1

≤(1 + β2)Pi,s+1|s − (1 + β2)τi,s+1Pi,s+1|sC
T
i,s+1K

T
i,s+1

− (1 + β2)τi,s+1Ki,s+1Ci,s+1Pi,s+1|s

+ (σi,s+1 + φi,s+1)Ki,s+1Ci,s+1Pi,s+1|sC
T
i,s+1K

T
i,s+1

+ (σi,s+1 + φi,s+1)λmax(Ci,s+1Pi,s+1|sC
T
i,s+1)γiI

+ φi,s+1Ki,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1K

T
i,s+1

+ φi,s+1λmax(Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1)γiI

+ τi,s+1Ki,s+1Di,s+1Vi,s+1D
T
i,s+1K

T
i,s+1

+ τi,s+1λmax(Di,s+1Vi,s+1D
T
i,s+1)γiI

+ (1 + β−1
2 + β−1

3 )ϕ̄iKi,s+1K
T
i,s+1ξ̄

2
i I

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i γiI. (33)

SincePi,s|s ≤ ℜ̄i,s|s, by comparing (16) with (23), we have
Pi,s+1|s ≤ ℜ̄i,s+1|s which, together with (17) and (33), further
impliesPi,s+1|s+1 ≤ ℜ̄i,s+1|s+1.

Have obtained the upper bound̄ℜi,s+1|s+1, the estimator
gains are designed by minimizinḡℜi,s+1|s+1 at each time
instant.

Theorem 2: Boundℜ̄i,s+1|s+1 of the EEC is minimized by
designing the following estimator gains:

Ki,s+1 = Ψi,s+1Λ
−1

i,s+1 (34)

where

Ψi,s+1 ,(1 + β2)τi,s+1Pi,s+1|sC
T
i,s+1,

Λi,s+1 ,(σi,s+1 + φi,s+1)Ci,s+1Pi,s+1|sC
T
i,s+1

+ φi,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1

+ τi,s+1Di,s+1Vi,s+1D
T
i,s+1

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i I. (35)

Proof: The trace of thēℜi,s+1|s+1 can be computed as
follows:

tr{ℜ̄i,s+1|s+1}

=(1 + β2)tr{ℜ̄i,s+1|s} − (1 + β2)τi,s+1tr{ℜ̄i,s+1|sC
T
i,s+1

×KT
i,s+1} − (1 + β2)τi,s+1tr{Ki,s+1Ci,s+1ℜ̄i,s+1|s}

+ (σi,s+1 + φi,s+1)tr{Ki,s+1Ci,s+1ℜ̄i,s+1|sC
T
i,s+1K

T
i,s+1}

+ (σi,s+1 + φi,s+1)λmax(Ci,s+1ℜ̄i,s+1|sC
T
i,s+1)γi

+ φi,s+1tr{Ki,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1K

T
i,s+1}

+ φi,s+1λmax(Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1)γi

+ τi,s+1tr{Ki,s+1Di,s+1Vi,s+1D
T
i,s+1K

T
i,s+1}

+ τi,s+1λmax(Di,s+1Vi,s+1D
T
i,s+1)γi

+ (1 + β−1
2 + β−1

3 )ϕ̄itr{Ki,s+1K
T
i,s+1}ξ̄

2
i

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i γi. (36)

Taking the partial derivative oftr{ℜ̄i,s+1|s+1} regarding the
estimator gainKi,s+1 yields

∂tr(ℜ̄i,s+1|s+1)

∂Ki,s+1

=− 2(1 + β2)τi,s+1ℜ̄i,s+1|sC
T
i,s+1

+ 2(σi,s+1 + φi,s+1)Ki,s+1Ci,s+1ℜ̄i,s+1|sC
T
i,s+1

+ 2φi,s+1Ki,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1

+ 2τi,s+1Ki,s+1Di,s+1Vi,s+1D
T
i,s+1

+ 2(1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
iKi,s+1. (37)

The gain parameterKi,s+1 can be determined by letting

∂tr(ℜ̄i,s+1|s+1)

∂Ki,s+1

= 0,
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i.e.,

Ki,s+1 =(1 + β2)τi,s+1ℜ̄i,s+1|sC
T
i,s+1

×
{
(σi,s+1 + φi,s+1)Ci,s+1ℜ̄i,s+1|sC

T
i,s+1

+ φi,s+1Ci,s+1x̂i,s+1|sx̂
T
i,s+1|sC

T
i,s+1

+ τi,s+1Di,s+1Vi,s+1D
T
i,s+1

+ (1 + β−1
2 + β−1

3 )ϕ̄iξ̄
2
i I

}−1
, (38)

which ends the proof.
Remark 4: We have addressed the recursive estimation

problem for a type of CNs with EHSs subject to deception
attacks. Recursive calculation has been novelly implemented
for EEC bounds that are minimized by designing gains. By
taking the system complexities (e.g. EHSs, deception attacks
and parameter perturbations) into consideration, the developed
approach not only provides the online estimation calculation
but also has a certain level of resilience. The distinguished
novelties of this paper are mainly twofold: 1) the state esti-
mation problem is new in that it considers both EHSs and
deception attacks within CNs under the influence of perturbed
estimator parameters; and 2) a novel resilient estimator is
proposed that utilizes attack-affected measurements with gains
obtained recursively.

IV. A N ILLUSTRATIVE EXAMPLE

Consider a nonlinear CN composed of three nodes.Γ =
diag{1.5, 1.5, 1.5} and

Θ =





−0.3 0.1 0.2
0.1 −0.3 0.2
0.2 0.1 −0.3



 .

Other system matrices are

B1,s =





0.732
0.820 + 0.050 sin(s)

0.710



 ,

B2,s =





0.827
0.837 + 0.052 sin(s)

0.653



 ,

B3,s =





0.662
0.562 + 0.018 sin(s)

0.824



 .

C1,s =

[
0.532 0.854 + 0.010 sin(s) 0.628
0.835 0.653 + 0.010 sin(s) 0.727

]

,

C2,s =

[
0.637 0.535 + 0.011 sin(s) 0.622
0.553 0.753 + 0.015 sin(s) 0.824

]

,

C3,s =

[
0.833 0.257 + 0.021 sin(s) 0.428
0.437 0.375 + 0.032 sin(s) 0.623

]

,

D1,s = 0.253 + 0.010 cos(s),

D2,s = 0.354 + 0.010 cos(s),

D3,s = 0.297 + 0.010 cos(s).

The nonlinear function is chosen as follows:

f(xi,s) =





0.17 sin(xi1,s)
0.16 sin(xi2,s)
0.16 sin(xi3,s)



 .

TABLE I
THE STATISTICAL CHARACTERISTICS OFψi,s AND χi,s

s 1 2 3 4 · · ·

ψ1,s 1 0.8647 0.8840 0.8895 · · ·

ψ2,s 1 0.8722 0.8946 0.9009 · · ·

ψ3,s 1 0.8792 0.9039 0.9114 · · ·

χ1,s







0

0

0

1

0

0

0













0.1353
0.2707
0.2707
0.1804
0.0902
0.0527
0.0000













0.1160
0.2442
0.2636
0.1933
0.1078
0.0628
0.0123













0.1105
0.2358
0.2589
0.1953
0.1135
0.0674
0.0186






· · ·

χ2,s







0

0

0

1

0

0

0













0.1278
0.2556
0.2556
0.1854
0.1102
0.0654
0.0000













0.1054
0.2248
0.2472
0.1977
0.1280
0.0782
0.0187













0.0991
0.2145
0.2408
0.1988
0.1339
0.0841
0.0288






· · ·

χ3,s







0

0

0

1

0

0

0













0.1208
0.2416
0.2416
0.1914
0.1102
0.0944
0.0000













0.0961
0.2055
0.2302
0.2017
0.1316
0.1053
0.0297













0.0886
0.1931
0.2217
0.2012
0.1386
0.1111
0.0457






· · ·
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Fig. 2. Energy consumption and harvested ofx1,s.
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Fig. 3. The energy consumption and energy harvested ofx2,s.

It is easy to see thatf(xs) satisfies (2) withα = 0.17.
The covariances of the measurement and process noise for
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Fig. 4. The energy consumption and energy harvested ofx3,s.
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Fig. 5. The energy stored in the three batteries at each moment.
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Fig. 6. Accumulated Errors forxi,s (i = 1, 2, 3) under differentWi,s and
Vi,s (i = 1, 2, 3).
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Fig. 7. Attack instant of thei-th node.
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Fig. 8. The statex1,s and its estimations with different̄ϕ1 values.

the i-th node are selected asVi,s = 0.25 andWi,s = 0.4,
respectively. The initial states and covariances are chosen as

x1,0 =





0.12
0.16
0.16



 , P1,0 = 0.015I,

x2,0 =





0.12
0.16
0.16



 , P2,0 = 0.015I,

x3,0 =





0.12
0.16
0.16



 , P3,0 = 0.015I

wherexi,s =
[
x1i,s x2i,s x3i,s

]T
(i = 1, 2, 3).

For nodei, suppose thatΦi = 5 (i.e., a maximum energy
storage capacity of5 units) and~i,0 = 1 (i.e., an initial energy
storage of1 unit). ui,s (the amount of energy harvested) is
assumed to obey the Poisson process:

Prob{ui,s = π} =
ςπ exp(−ς)

π!
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Fig. 9. The statex1,s and its estimations.
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Fig. 10. The statex2,s and its estimations.

with parameterς = 1. According to (14), Table I provides
values ofψi,s (i = 1, 2, 3) (the expectation of the successful
measurement transmission), along withχi,s (i = 1, 2, 3)
(the probability distribution of sensor energy levels). The
parameters̄ξi (i = 1, 2, 3) are ξ̄i = 0.10. Attack probabilities
are ϕ̄1 = 0.15, ϕ̄2 = 0.10, andϕ̄3 = 0.12.

TABLE II
ACCUMULATED ESTIMATION ERROR UNDERDIFFERENTς

Energy Harvesting Parameterς 0.2 0.5 1.0

Accumulated Estimation ErrorΩsum 190.767 110.024 40.781
Accumulated Estimation ErrorΩsum 180.534 110.953 40.464
Accumulated Estimation ErrorΩsum 190.685 100.004 40.835

The results of EEC bounds and gains are presented in
Figs. 2–13 and Table II. Figs. 2–4 display the values ofui,s
andΥi,~i,s

(i = 1, 2, 3). ~i,s is depicted in Fig. 5. Specifically,
to illustrate the influence of noise and the parameterς on the
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Fig. 11. The statex3,s and its estimations.

estimation performance, we define the accumulated error by

Ωsum ,

smax∑

s=0

eTs|ses|s.

Fig. 6 is presented to show the accumulated estimation error
obtained with varying noise covariances. It can be seen that
the greater the noise covariance, the larger the accumulated
estimation error. Table II presents the accumulated estimation
error under different values ofς . It is observed that, as
the parameterς increases, the accumulated estimation error
decreases, which conforms to the fact that estimation perfor-
mance can be naturally improved by harvesting more energy.

Fig. 7 shows the instant of attack for thei-th node. Fig. 8
presents the estimation error of node1 (i.e., e1,s|s) under
different values ofϕ̄1. It is observed that a larger̄ϕ1 (i.e.,
a higher probability of an attack occurring) leads to a larger
error, which conforms to that a greater success rate of a decep-
tion attack decreases the estimation performance. Figs. 9–11
depict state trajectories and estimates.

To verify the applicability of the proposed method, we
consider different topological cases, i.e.,

Θ =





−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2



 ,

and the state trajectories and estimates are given in Fig. 12.
Meanwhile, to demonstrate the effectiveness and advantages
of the proposed estimation algorithm, we have included a
comparative analysis with the existing method from [32], as
shown in Fig. 13. The results indicate that our approach
achieves better estimation performance under the same set-
tings, primarily because it explicitly accounts for the effects
of both attacks and energy harvesting in the theoretical design.

In conclusion, all simulations indicate the effectiveness of
the proposed state estimation approach.

V. CONCLUSION

We have researched into a topic of resilient estimation
within CNs equipped with EHSs whose measurements are
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Fig. 12. The state and their estimations under another topological cases.
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Fig. 13. The comparison with the existing literature.

transmitted over a network vulnerable to deception attacks. A
recursive resilient state estimation strategy has been proposed
to deal with parameter fluctuations caused by component
ageing and various reasons. Then, EEC bounds and estimator
gains have been computed recursively. An illustrative example
has been provided ultimately to demonstrate this strategy’s
efficacy. Future research directions include: 1) addressing the
fault estimator design issue in sensor networks with EHS, and
2) extending the framework to accommodate various cyber-
attacks, such as replay and denial-of-service attacks [45], [55]–
[57].
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