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Abstract 

Mutated KRAS is among the most frequent activating genetic alterations in cancer and drug 
discovery efforts have led to inhibitors that block its activity. To better understand oncogenic 25 
KRAS signaling and the cytostatic effects of drugs, we performed comprehensive dose-
dependent proteome-wide target deconvolution, pathway engagement and protein expression 
characterization of KRAS, MEK, ERK, SHP2 and SOS1 inhibitors in pancreatic (KRAS G12C, 
G12D) and lung cancer (KRAS G12C) cells. Analysis of the resulting 687,954 dose-response 
curves available online revealed both common and cell line-specific signaling networks 30 
dominated by oncogenic KRAS activity. Time-dose experiments separated early KRAS-MEK-
ERK from CDK-mediated signaling that cause cells to exit from the cell cycle. This transition to 
a quiescent state occurred without substantial proteome re-modelling but extensive changes of 
protein phosphorylation and ubiquitylation. The collective data highlights the complexity of 
KRAS signaling in cancer and places a large number of new proteins into this functional context. 35 
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Introduction 

It is well known that drugs often have more than one target and that the wiring of signaling 
pathways in cancer cells can be highly diverse leading to sometimes unexpected cellular drug 
effects (1–4). Proteomics approaches have drastically improved our understanding of the 
molecular and cellular mechanisms of action (MoA) particularly of cancer drugs and selective 5 
compounds are increasingly used as chemical probes to study the oncogenic signaling networks 
these drugs perturb (5–7). Understanding the consequences of drug perturbation of the RAS-
MEK-ERK axis as one of the most frequently activated pathways in cancer is particularly 
important. Several proteomics studies using drugs targeting key nodes within the MAPK 
pathway, such as ERK, MEK, and KRAS, and across different cellular contexts, have reported 10 
highly dynamic responses (8–10). A notable recent example is a study of the ERK regulated 
phosphoproteome in KRAS mutated pancreatic cancer cells suggesting that >4,600 
phosphorylation sites on >2,100 proteins are directly dependent on ERK activity, implying a 
broader role of ERK in cancer than hitherto appreciated (11). 

Given the many functions of ERK for healthy physiology, it is currently unclear if target-related 15 
toxicity of ERK inhibition can be adequately managed. In fact, ERK inhibitors have not yet 
moved beyond phase 1/2 clinical evaluation, in contrast to the approval of currently four MEK 
and two KRAS inhibitors. The latter have received much attention because oncogenic mutations 
in KRAS that decouple KRAS activity from upstream signals are detectable in ~10-20% of all 
cancer patients (according to The Cancer Genome Atlas database) with G12C being most 20 
prevalent in lung and G12D in pancreatic cancer (12). The approval of the two KRAS G12C 
drugs Sotorasib and Adagrasib, which covalently bind Cys12 and trap KRAS in its inactive state, 
has marked a milestone in KRAS drug discovery (13, 14). Such mutation-specific drugs are 
attractive because they limit the risk of side effects resulting from target engagement in healthy 
tissue that also rely on the KRAS pathway for normal function. A number of further modalities 25 
are being investigated including inhibitors of KRAS G12D, pan-KRAS inhibitors, compounds 
directed against active KRAS-GTP, KRAS degraders or drug combinations addressing upstream 
(EGFR, SHP2, SOS1) or downstream (MEK, ERK) members of the KRAS signaling network 
that may offer treatment options for a broader range of patients (15–18).  

However, the cellular MoAs of mutation-specific KRAS inhibitors have not yet been 30 
comprehensively characterized on a proteome-wide scale. In the present work, we addressed this 
gap by measuring the dose-response characteristics of target binding, pathway engagement and 
proteostasis of Sotorasib, Adagrasib, ARS-1620, MRTX1257 (KRAS G12C inhibitors) and 
MRTX1133 (KRAS G12D inhibitor), complemented by inhibitors targeting upstream (SHP2, 
SOS1) and downstream (MEK, ERK) proteins in two KRAS mutated pancreatic (KRAS G12C, 35 
G12D) and one lung cancer (KRAS G12C) cell lines. Analysis of the resulting 687,954 dose-
response curves highlighted a common core KRAS signaling signature as well as extensive 
differences between cell lines, placing hundreds of new proteins and their post-translational 
modifications (PTMs) into the functional context of KRAS signaling. Our data demonstrates that 
oncogenic KRAS activity dominates the output of MEK and ERK activity, largely decoupled 40 
from upstream receptor tyrosine kinase signaling, leading to exit of cells from the cell cycle and 
transitioning into a quiescent state. Remarkably, it appears that dynamic protein phosphorylation 
and ubiquitylation rather than protein expression changes are the main drivers of these processes 
which include inhibition of kinases, transcription factors and E1/E2 ubiquitin ligase activity. We 
anticipate that the molecular resources provided alongside this manuscript and available in 45 
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ProteomicsDB.org (19) will be of substantial utility for the scientific community for research on 
the KRAS signaling system and drugs to treat KRAS mutant cancer. 

 

Results 

Dose-dependent, proteome-wide characterization of KRAS signaling inhibitors 5 

The experimental approach and data compendium created in this study for the analysis of the 
cellular MoA of mutation-specific KRAS inhibitors and further drugs acting on the RAS-MEK-
ERK axis is shown in Figure 1. The distinguishing feature is the systematic measurement of the 
dose-response characteristics of drug action (characterized by potency (effective concentration to 
achieve 50% response; EC50) and response (curve fold change)) on a proteome-wide scale. 10 
Including the EC50 dimension is powerful because it enables deducing both, common as well as 
distinct responses in the same cellular system. We have previously termed this approach 
decryptE for protein expression and decryptM for PTMs (5, 20). Here, we applied both methods 
to characterize inhibitors targeting the RAS-MEK-ERK axis and extended the dose-response 
idea to reactive cysteine profiling for drug-target deconvolution of covalent KRAS inhibitors 15 
(decryptC) (fig. S1) (21). Statistical analysis of all dose-response data was performed by 
CurveCurator (22) followed by removing outliers or manual inspection if required (S2A; see 
materials and methods for details). We initially focused on the FDA-approved KRAS G12C 
inhibitors Sotorasib and Adagrasib, their pre-clinical derivatives ARS-1620 and MRTX1257 and 
the phase 1/2 KRAS G12D inhibitor MRTX1133 and then expanded to compounds targeting 20 
proteins up- and down-stream of KRAS (table S1). For cell line models, we chose the pancreatic 
cancer lines MiaPaCa-2 (KRAS G12C, homozygous) and ASPC1 (KRAS G12D, homozygous) 
as well as the lung cancer line NCI-H23 (KRAS G12C, heterozygous). These lines were 
phenotypically sensitive to KRAS inhibition and represent cancer entities with high clinical 
prevalence of KRAS G12C or G12D mutations (fig. S3; table S2). Collectively, the different 25 
decrypt data types covered 25,038 cysteine-containing peptides (cys-peptides), 69,729 phospho-
peptides, 13,093 ubiquitinylated peptides (ubi-peptides) and 8,505 proteins (fig. S1B; table S3-
6). Reproducibility of decryptM experiments was assessed by triplicate analysis of phospho-
proteomes in response to Sotorasib in MiaPaCa-2 cells showing that 80% of all EC50 values and 
curve fold changes were reproducible within a factor of two (fig. S4) (5). All data can be 30 
explored in ProteomicsDB (19) or via interactive html dashboards provided on Zenodo.org. 

 

DecryptC profiling demonstrates high target selectivity of clinical KRAS G12C inhibitors 

For in cellulo target deconvolution of the KRAS G12C inhibitors Sotorasib and Adagrasib, we 
applied competitive reactive cysteine profiling in two KRAS G12C and one KRAS G12D (as 35 
control) cell lines following 2 hours of drug incubation as previously described (21) but 
extending it here to full dose-response measurements (fig. S1A; table S1; table S3). Between 
12,500 and 18,600 cys-peptides were covered per cell line and both G12C inhibitors potently 
modified C12 of KRAS in the two G12C cell lines (30 nM and 39 nM for Sotorasib, 5nM and 14 
nM for Adagrasib in MiaPaCa-2 and NCI-H23 cells, respectively; Fig. 2A,B). These potencies 40 
were in line with cell viability data (EC50 of 2-7 nM) collected after 72 hours of drug incubation, 
confirming that the inhibition of KRAS is responsible for the observed phenotypic effect. (fig. 
S3; table S2). Elongation factor EEF1A2 (C31) was identified as a new but weak (1-3 µM) off-
target of Adagrasib, but not Sotorasib in all cell lines (Fig. 2C). Molecular docking provided a 
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rationale for an interaction between EEF1A2-Y86 and the nitrogen of the methylpyrrolidine ring 
of Adagrasib that does not exist in Sotorasib (Fig. 2D), that stabilizes complex formation 
between Adagrasib and EEF1A2. Further down-regulated cys-peptides were observed in G12C 
cell lines which were not regulated in the G12D line. These are likely not bona-fide off-targets 
but result from indirect effects such as loss of protein expression exemplified by two distinct cys-5 
peptides of the transcription factor ETV5 exhibiting equipotent downregulation and similar to 
KRAS G12C (fig. S5). The collective data shows that Adagrasib and Sotorasib are highly 
selective for binding to KRAS G12C in cells and thus qualify as chemical probes to study KRAS 
signaling. 

 10 

DecryptM profiling demonstrates highly selective pathway engagement of KRAS inhibitors 

To examine how mutant KRAS inhibition affects downstream signaling, we subjected Sotorasib, 
Adagrasib, ARS-1620 and MRTX1257 (targeting KRAS G12C), and MRTX1133 (targeting 
KRAS G12D) to decryptM profiling of the phosphoproteome using the same cell lines and 
timing as above (fig. S1A; table S1; table S4). The short treatment time ensured very few 15 
changes in protein expression levels (fig. S5A). In KRAS G12C cell lines, KRAS G12C drugs 
regulated fewer than 600 phospho-peptides (of >20,000 recorded in each experiment; Fig. 3A). 
In stark contrast, MRTX1133 regulated nearly 2,000 phospho-peptides in ASPC1 (KRAS 
G12D). Essentially no changes in the phospho-proteome were induced in Sotorasib- and 
Adagrasib-treated ASPC1 cells, demonstrating high selectivity of KRAS G12C inhibitors for 20 
engaging phosphorylation-regulated cellular processes within the chosen drug concentration 
range. This also means that, the aforementioned Adagrasib off-target EEF1A2 C31 (Fig. 2C,D) 
had no measurable impact on the phospho-proteome of these cell lines. 

As expected, KRAS inhibition led to abrogation of MAPK1/3 (ERK) activity, using its activation 
loop phosphorylation status as a proxy (Fig. 3B). No such effect was observed for KRAS G12C 25 
inhibitors in ASPC1 (KRAS G12D). The potency of MAPK1/3 inhibition closely mirrored the 
decryptC target engagement and cell viability data demonstrating that the drugs fully engaged 
the KRAS-MEK-ERK axis in cells and are responsible for the observed inhibition of cell growth 
(Fig. 3C; table S2). The pEC50 distributions shown in Figure 3D summarize the dose-response 
curves of all regulated phospho-peptides for each drug and cell line. It is apparent that drugs had 30 
different potencies, with MRTX1257 being the most potent (apex EC50 of 0.37 nM) and ARS-
1620 the least potent (apex EC50 of 398 nM) KRAS inhibitor. Again, these pEC50 values closely 
corresponded to the potency of reactive cysteine profiling (for G12C inhibitors, Fig. 3C) and cell 
viability data (Fig. 3E). Importantly, within each treatment, many phospho-peptides of known 
MAPK pathway members (KEGG: map04010; table S7) were regulated within a similar EC50 35 
range (Fig. 3D, boxplots). Following a guilt-by-association logic, we conclude that many 
phospho-peptides with EC50 values close to known KRAS pathway members may indeed 
themselves be functionally linked to the KRAS pathway. To define this group of phospho-
peptides, the data was filtered to include only those phospho-peptides that were within ±1 pEC50 
of the apex of each individual treatment in Figure 3D (fig. S6; see materials and methods for 40 
details).  

We next asked to what extent phospho-peptides were regulated by KRAS inhibitors in the same 
or different cell lines. Strikingly, nearly 94% of all phospho-peptides showed consistent 
regulation in response to Adagrasib and Sotorasib in MiaPaCa-2 cells (Fig. 3F). Pairwise 
comparison of all drug responses in all cell lines using the mean absolute error (MAE) of the 45 
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log2 curve fold change as a similarity metric, grouped the data by cell line, not by drug (Fig. 3G; 
fig. S7). This suggests that the different KRAS drugs act by essentially the same MoA in a given 
cell line but that the molecular composition and wiring of the KRAS pathway is substantially 
different between cell lines. 

 5 

Identification of a common KRAS core signaling signature connecting multiple cellular 
processes 

The very high target and pathway engagement specificity and selectivity of KRAS inhibitors 
observed above suggests that the 2,354 short-term (2-hour) drug-regulated phospho-peptides 
detected in the three cell lines (Fig. 4A) may be members of a wider oncogenic KRAS signaling 10 
network. Despite substantial response diversity between the three cell lines, a set of 241 
phospho-peptides was regulated in all cell lines regardless of cancer entity, G12C/G12D 
mutation or hetero-/homozygosity of the KRAS locus (Fig. 4A; fig. S8A; table S8; see materials 
and methods for details). In the following, we refer to these as the KRAS core signaling 
signature. These 241 phospho-peptides correspond to 252 phospho-sites on 196 proteins 15 
(canonical sequences of protein coding genes, fig. S8B). We compared our data at the phospho-
site level to the ERK compendium (8), a previously published study focused on the ERK-
dependent phospho-proteome (11), and all regulatory phospho-sites documented in 
PhosphoSitePlus (phosphosite.org). Despite a very large overlap of our data to these resources in 
terms of phospho-proteome coverage (71% overlap with the ERK compendium, 87% with the 20 
ERK-dependent phospho-proteome and 22% with PhosphoSitePlus; fig. S8C), the number of 
shared drug-regulated phospho-sites was relatively low (Fig. 4B). This discrepancy may be 
attributed to several factors: i) other resources called regulation on the basis of p-values from 
replicate experiments of high single-concentration drug treatments, whereas we employed dose-
response statistics; ii) not all cell lines used were the same; and iii) the drug treatment times were 25 
not identical. Still, 67% of the KRAS core signaling signature defined above was also contained 
in the ERK compendium and the ERK-dependent phosphoproteome, underscoring its robustness 
(Fig. 4B). 

Kinase motif enrichment analysis (23, 24) (phosphosite.org) of the KRAS core signaling 
signature highlighted ERK (SP/TP motif) and several members of the RSK, MNK and S6K 30 
families (basophilic motif) as the major kinases that likely phosphorylate these peptides (Fig. 4C; 
table S7). This is supported by the observation that several phospho-sites known to regulate the 
activity of these kinases were inhibited by the KRAS drugs (25)(according to phosphosite.org; 
Fig. 3B; fig. S9A). The very same kinases also dominated when performing kinase motif 
enrichment analysis with all short-term (2-hour) drug-regulated phospho-peptides (fig. S9B; 35 
table S7). About 51 % (n=124) of the peptides in the KRAS signaling signature were 
phosphorylated at a SP/TP site and several of these are annotated substrates of MAPK1 and 
MAPK3 including the transcription factor ERF (p-T562; fig. S9C)(26). Given the pronounced 
inhibition of MAPK1/3 activation loop phosphorylation by KRAS inhibitors, we hypothesized 
that many of the hitherto uncharacterized SP/TP motif-containing phosphorylation sites may be 40 
novel MAPK1/3 substrates. To test this, we performed in-vitro kinase assays using recombinant 
MAPK1, synthetic peptide substrates and monitored phosphorylation by a time-resolved parallel 
reaction monitoring (PRM) assay (table S9). Nine of the 19 tested candidates showed increased 
phosphorylation over time (Fig. 4D). Among the underlying proteins were the transcriptional 
regulator SMAG2 (S592), the nucleotide exchange factor TRIO (S2477) that controls RHO and 45 
RAC1 activity and ADAR (T601), a protein involved in RNA editing. Interestingly, USP10 
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(T74), a ubiquitin hydrolase that removes ubiquitin from target proteins such as p53 and CFTR 
(27, 28), was also among the potential novel direct MAPK1/3 substrates. In addition, for some of 
the new MAPK1/3 substrates (SPECC1L S868, TSC22D4 S279, ADAR T601 and PHF2 S625), 
previous studies have already indicated dependency on the activation state of the MAPK 
pathway and our kinase assays now provides direct evidence that MAPK1/3 can be the 5 
phosphorylating kinase (10, 29, 30). 

STRING protein interaction analysis of the 196 proteins underlying the KRAS core signaling 
signature revealed that about half of these proteins were not connected to each other or to KRAS 
(fig. S9D). Yet our data tightly connects them to the KRAS network. Many of these phospho-
proteins have diverse or poorly characterized functions suggesting that KRAS signaling extends 10 
far beyond well-researched biology and that such new avenues may be discovered on the basis of 
the data provided here. Functional enrichment analysis of the same proteins highlighted seven 
categories comprised of 106 proteins (Fig. 4E; table S7). Expectedly, these included well-known 
members of the MAPK pathway such as MAPK1/3 (p-Y187/p-Y204), DUSP16 (p-S501) and 
ARAF (p-T181) as well as the receptor tyrosine kinases (RTK) EGFR (p-T693), ERBB2 (p-15 
T701, p-S1054) and EPHA2 (p-S901). The latter represent described feedback signaling that is 
associated with resistance to KRAS inhibition (31–33). Important additional functional links 
could be established to Rho signaling, chromatin binding, mRNA binding, cadherin binding, 
mitotic cell cycle and localization to the nucleolus. Hence, the 2-hour drug treatment data already 
illuminates phenotypic drug responses long before they manifest visually under a microscope. 20 
This is exemplified by changes in cell shape in response to Sotorasib or MRTX1133 in 
MiaPaCa-2 or ASPC1 cells after 72 hours (Fig. 4F; fig. S10A,B; table S2) which aligns with the 
observed regulation of phospho-sites on several proteins involved in Rho signaling (34). Gene 
set enrichment analysis also uncovered a link to the nucleolus including altered phosphorylation 
levels of the cell proliferation marker MKI67 (p-S1533) and its recently identified interaction 25 
partner CCDC86 (p-S217)(35). Immuno-fluorescence microscopy showed that KRAS inhibition 
(24 hours) led to the loss of MKI67 signal indicating loss of nucleolar integrity in MiaPaCa-2 
and NCI-H23 cells (fig. S10C-E; table S2). To investigate if CCDC86 S217 phosphorylation 
may be functionally important, we expressed GFP-tagged CCDC86 WT, S217A and S217D in 
NCI-H23 cells. While cells expressing wild type or an Alanine mutant of the protein showed no 30 
phenotype, expression of the phospho-mimetic CCDC86 S217D drastically disrupted nucleolar 
integrity in 25% of cells 24 hours post-transfection (Fig. 4G; fig. S10F,G; table S2). The 
mechanism by which this happens is currently not clear but this very strong phenotype suggests 
that the phosphorylation status of CCDC86 S217 is of critical importance for nucleolar integrity 
and that this phospho-site is responsive to KRAS drugs. 35 

 

Mutant KRAS activity dominates the signaling output of MEK and ERK 

We next expanded decryptM profiling (2 hours) to inhibitors that act on targets upstream (SOS1, 
BI3406; SHP2, RMC4630) or downstream (MEK, Trametinib; ERK, Temuterkib) of KRAS (fig 
S2B; table S1, table S4) to investigate two main questions. First, does the additional data provide 40 
independent support for the KRAS core signaling signature? And yes, a total of 57% (NCI-H23), 
80% (MiaPaCa-2) and 86% (ASPC1) of the KRAS core signaling signature was also regulated 
by the additional drugs (fig. S11). Second, to what extent does hyper-active KRAS activity alone 
determine the output of downstream MEK and ERK activity independent of upstream input 
signals provided by receptor tyrosine kinase (RTKs) activity? Answering this question requires 45 
that the employed chemical probes are highly selective for their targets. This was already 
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established above for the KRAS inhibitors. The decryptM profiles of RMC4630, Temuterkib and 
Trametinib, however, showed bi-modal pEC50 distributions implying off-target/off-pathway 
effects (fig. S11). The ability of decryptM profiling to recognize such off-target/off-pathway 
effects, highlights the superiority of the dose-response approach over traditional experiments 
using a fixed, and often arbitrarily high drug concentration (fig. S12, S13A). Kinase motif 5 
enrichment suggested, and Kinobead selectivity profiling confirmed, AAK1 (Kd

app 11 nM) and 
GAK (Kd

app 155 nM) as off-targets of Temuterkib (fig. S13A-C; table S7,10) but no off-targets 
were found for Trametinib (1). To ensure high quality of the subsequent analysis, drug-regulated 
phospho-peptides were filtered such that they follow the pEC50 distribution of KRAS core 
signaling signature members (Fig. 5A; fig. S12; see materials and methods for details).  10 

Comparison of decryptM data collected for MiaPaCa-2 and ASPC1 cells in response to KRAS 
and MEK inhibition revealed a striking consistency of phospho-proteome responses (90.4% and 
91.8% respectively, Fig. 5B). Similarly strong consistencies were observed for KRAS and ERK 
inhibition (81.8% and 89.9% respectively; fig. S14). Hierarchically clustering the results of these 
pair-wise comparisons separated SOS1 and SHP2 inhibitor effects from those of KRAS, MEK 15 
and ERK inhibitors (Fig. 5C; fig. S14). In addition, unlike KRAS and MEK inhibition, SHP2 and 
SOS1 inhibition did not fully abrogate downstream MAPK3 (p-Y204) activity in MiaPaCa-2 
cells (Fig. 5D; fig. S15). Particularly SOS1 inhibition showed only weak pathway engagement 
illustrated by the regulation of only few phospho-peptides in MiaPaCa-2 and none in ASPC1 
cells (Fig. 5A). Consequently, cellular assays showed that neither SHP2 nor SOS1 inhibition had 20 
a substantial effect on cell viability (fig. S3; table S2). Together, this suggests that mutant KRAS 
largely (MiaPaCa-2) or almost completely (ASPC1) decouples the MAPK pathway from 
upstream signals and that mutant KRAS activity, therefore, dominates the signaling output of the 
downstream kinases MEK and ERK. 

 25 

Cell line-specific wiring of mutant KRAS signaling 

The remarkable consistency of phospho-proteome responses between KRAS vs. MEK and 
KRAS vs. ERK inhibition not only applied to the KRAS core signaling signature but also 
included many more phospho-peptides within the same cell line. As a result, the mutant KRAS-
controlled signaling network may extend beyond 800 potential members in MiaPaCa-2 cells, 700 30 
in NCI-H23 cells, and 1,900 in ASPC1 cells (fig. S16; table S8). At the same time, comparing 
decryptM profiles between cell lines showed that the response of the same phospho-peptide to 
inhibition of the same target protein can be very different. This is evident from comparing the 
consistency of phospho-peptide regulation induced by the same drug but in different cell lines. 
For instance, consistency for KRAS or MEK inhibition in ASPC1 vs. MiaPaCa-2 cells (51.6% 35 
and 53.1% respectively) was much lower than KRAS vs. MEK inhibition in MiaPaCa-2 and 
ASPC1 cells (> 90%; Fig. 5B,C; fig. S14). ASPC1 cells exhibited a particularly distinct response 
to KRAS, MEK, and ERK inhibition and many phospho-peptides showed consistent drug-
regulation for all three drugs, while several of these were never even detected in any other cell 
line (fig. S16B). More interestingly, many phospho-peptides were clearly drug-regulated in 40 
ASPC1 cells but not in any other cell line despite the fact that they were detected (Fig. 5E). 
Functional enrichment analysis of drug-regulated phospho-peptides performed separately for 
each cell line highlighted biological functions already found for the KRAS core signaling 
signature. For instance, Rho signaling was independently enriched in the data of all three cell 
lines but a particularly large number of phospho-peptides on related proteins were identified in 45 
ASPC1 cells suggesting a stronger connection between KRAS signaling and the regulation of the 
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actin cytoskeleton in ASPC1 compared to the other cell lines (fig. S16C; table S7). Similarly, the 
top 15 Kinase motifs were enriched similarly strongly in each cell line even though the 
underlying phospho-peptides were not necessarily the same (mainly MAPK and RPS6K motifs) 
even though the underlying phospho-peptides were not necessarily the same (fig. S16D, table 
S7). Despite substantial differences in the absolute number of regulated phospho-peptides, the 5 
proportion of proline-directed motifs (SP/TP; associated with MAPKs) was similar between the 
cell lines (Fig. 5A). In light of this data, we propose, that although the same underlying 
molecular mechanisms (i.e. inhibition of the RAS-MEK-ERK axis) drive the observed regulation 
of phospho-peptides in each cell line, the particular molecular wiring of that network depends on 
the presence, abundance and activity of cell line-specific factors such as certain kinases, 10 
phosphatases, guanine nucleotide exchange factors, GTPase-activating proteins or transcription 
factors (Fig. 5F). 

 

Two-dimensional decryptM distinguishes immediate KRAS pathway inhibition from 
adaptive cellular response 15 

KRAS inhibition was cytostatic in all tested cell lines but did not induce cell death (fig. S3; fig. 
S10). To shed light on the steps leading to this cellular adaptation, we added a kinetic component 
to decryptM profiling of Sotorasib in MiaPaCa-2 cells (dose-dependent treatment for 1, 2, 8, and 
16 hours; table S1). Between 271 and 401 phospho-peptides showed dose-dependent changes 
during the first 8 hours increasing to 1,075 after 16 hours (fig. S17A; table S4). We classified the 20 
550 phospho-peptides that were detected at all four time points into four categories (Fig. 6A; 
table S1; see materials and methods for details): The constant group (n=231) showed drug 
regulation at three or all four time points but always at 16 hours (e.g. the activity-inducing p-
S380 site on RPS6KA1) thus representing drivers of sustained drug response. The early group 
(n=50) showed regulation at 1 hour and/or 2 hours and/or 8 hours but not at 16 hours, possibly 25 
representing initiators of cellular adaptation, exemplified by BRD3 p-S281. For the sake of 
clarity, we combined these two groups to describe the immediate response of cells that is a direct 
consequence of KRAS inhibition. The intermediate group (n=69) showed regulation at 8 hours 
and 16 hours only, exemplified by the E3 ubiquitin ligase RNF168 p-T208 and the late group 
(n=200) showed regulation at 16 hours only and included the cell cycle regulator WEE1 (p-30 
T190). The two latter categories most likely represent the result of the adaptive response and 
were, therefore combined. t-SNE analysis nearly completely separated the immediate and 
adaptive responses (Fig. 6B). Practically all phospho-peptides of the KRAS core signaling 
signature belonged to the immediate response group (Fig. 6C). In contrast to a recently published 
study (11), this clear temporal distinction of drug-regulated phospho-peptides indicates that not 35 
all are the direct consequence of KRAS inhibition.  

As one might expect, kinase motif analysis for the immediate response showed enrichment for 
ERK as well as members of the RSK family (Fig. 6D; table S7). This is reflected by the full 
inhibition of activation loop phosphorylation of MAPK3 (p-Y204) at all time points (Fig. 6E). In 
contrast, the adaptive response enriched for motifs phosphorylated by the cell cycle-regulating 40 
kinases CDK1-6 (Fig. 6D; table S7). MAPKs and CDKs both phosphorylate SP/TP sites and we 
observed a shift in the population of drug-regulated SP/TP-containing phospho-peptides starting 
from 48% at 1 hour, increasing to 55% at 2 hours and 8 hours and reaching 75% at 16 hours of 
treatment (fig. S17A). In parallel, we observed down-regulation of protein abundance of Cyclin 
A (CCNA2; Fig. 6E, table S5) and CDC20 (relevant for M-phase progression; Fig. 6F) as well 45 
increased protein abundance of the cell cycle inhibitor CDKN1B (p27; relevant for G0/G1) 
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indicating exit from cell cycle (fig. S17B). FACS analysis of drug-treated MiaPaCa-2 (Fig. 6G) 
and NCI-H23 (fig. S17C) cells confirmed a decrease of cells in S- and G2-phase following 16 
hours of drug treatment and a concomitant increase of cells in G1 (table S2). Therefore, we 
conclude that the changes in phosphorylation levels in the adaptive response reflect the depletion 
of active CDK1-3 as a result of a shift in the underlying cell population rather than being a direct 5 
consequence of RAS-MEK-ERK signaling inactivation. Collectively, this also suggests that the 
phospho-peptides of the constant group are the functionally most important triggers of the 
adaptive cellular response which manifests by cells eventually exiting the cell cycle, entering a 
quiescent state, thus evading cell death. 

 10 

Post-translational protein modifications are the primary regulators of cellular adaptation 
to KRAS inhibition 

Cells changing from a proliferative to a resting state need to down-regulate many cellular 
processes in one concerted action and many of these could be traced in the 2D-decryptM data. 
Interestingly, only very few statistically significant changes were observed at the protein level 15 
(16 after 8 hours; 53 after 16 hours, fig. S17D; table S5) of the ~7,000 proteins monitored in the 
experiment even though the majority of cells had already arrested (Fig. 6G, fig. S17C). Down-
regulated proteins included ~10 transcription factors (including MYC, JUN, FOSL1 and SOX9) 
implying reduction of target gene transcription as described earlier (36), but without numerically 
large changes in protein levels of their target genes (fig S17B). Five cell cycle regulating proteins 20 
(CCNA2/Cyclin A2, CDC20, CDCA5 and UHRF1), and several negative regulators of RTK-
MAPK signaling axis (SPRY2/4, SPRY2, ERRFI1) were also down-regulated. Even fewer 
proteins showed a clear dose-dependent upregulation of protein abundance most notably the 
CDK inhibitor CDKN1B as well as AGO1, a key-player in post-transcriptional gene silencing, 
again pointing to cell cycle arrest and down-regulation of transcription.  25 

Our data strongly suggests that cellular adaptation to KRAS inhibition is primarily mediated by 
PTMs rather than protein expression. For example, dozens of phospho-peptides from chromatin-
modifying enzymes (Reactome HSA-3247509) and DNA repair proteins (Reactome HSA-
73894) were regulated in both, the immediate and adaptive responses (fig. S17E, table S7). The 
former includes several lysine acetyl transferases, methyltransferases and demethylases - 30 
enzymes that control the state of chromatin activity. Similarly, loss of phosphorylation on 
proteins important for DNA repair (such as BRCA2 p-S93, ATR p-S435 or TP53 p-S315) likely 
reflects reduced requirements for DNA repair activity in non-dividing cells. Many and often 
large changes in PTMs were also detected at all the levels that regulate proteostasis. Reduction in 
transcriptional activity leads to reduction of mRNA processing activity and we observed 35 
regulation of several phospho-proteins associated with this process such as NCBP1 (p-T21) and 
THOC5 (p-T328) (Fig. 4E). Similarly, changes in phosphorylation were detected on proteins 
important for translation (e.g. EIF4G1 p-S1231; Fig. 4E).  

Given the critical role of the ubiquitin system for cellular proteostasis, we investigated the 
ubiquitylation status of the proteome in response to 6 and 24 hours of KRAS inhibition by 40 
Sotorasib in MiaPaCa-2 cells. This analysis revealed ~800 ubi-peptides (of 13,000 monitored; 
fig. S18A-C; table S6) that were dynamically regulated by Sotorasib, mostly independent of their 
protein levels (Fig. 6H,I). We observed a dose-dependent increase in ubiquitylation levels of 
many proteins involved in ubiquitin conjugation as early as 6 hours, notably UBA1 (e.g. ubi-
K802, ubi-K528, ubi-K657), one of only two ubiquitin-activating (E1) enzymes found in humans 45 
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(Fig. 6J). Interestingly, the earliest changes occurred in both the catalytically active adenylation 
domain (AAD) as well as the catalytically active SCCH domain responsible for thio-ester bond 
formation, both critical for ubiquitin activation (37). The ubiquitin-modified lysine residues (ubi-
K528 and ubi-K635) are located inside the active sites of UBA1, possibly reflecting an auto-
ubiquitylation mechanism and leading to attenuation of enzymatic activity. Similarly, increased 5 
ubiquitylation was also observed near the catalytic residues of several E2 enzymes as well as 
residues that mediate interactions with E1 and E3 enzymes (e.g. UBE2N, UBE2S, and UBE2L3; 
fig. S18D,E). Lysine ubiquitylation near active site cysteine residues of E2 proteins was shown 
to impact protein function of the E2 protein UBE2S before (38) and a recent study suggested that 
such E1 and E2 ubiquitylation occurs by ‘random’ E3 ligase activity (39). However, our data 10 
clearly shows that the ubiquitylation events on E1 and E2 enzymes are dynamically regulated 
upon KRAS inhibition and the resulting cell cycle arrest. This suggests that attenuating the 
activity of the ubiquitin system is another and controlled step in the concerted action of cells to 
transition from a proliferative to a quiescent state. 

 15 

Conclusions 

KRAS has long been considered to be a critical driver of many cancers and the approval of 
Sotorasib and Adagrasib in 2021 and 2022 respectively have expanded the therapeutic options 
for patients with KRAS G12C-mutated, locally advanced or metastatic non-small cell lung 
cancer (NSCLC). Unfortunately, neither mutant KRAS inhibition nor degradation (15) typically 20 
kill cancer cells and clinical studies combining KRAS drugs with inhibitors targeting up- or 
downstream proteins (including EGFR, SHP2, SOS1, MEK and ERK) have also not yet achieved 
tumor cell eradication (NCT04975256, NCT04185883, NCT0418588 (40)). This study aimed to 
shed new light on the effects of KRAS inhibition by performing extensive, multi-dimensional 
and fully dose-resolved chemical proteomics in three KRAS mutant lung and pancreatic cancer 25 
cell lines. We demonstrated that KRAS inhibitors are highly selective which allows using them 
as chemical probes to study mutant KRAS-dependent signaling. The phospho-proteome data 
showed that KRAS mutations strongly decouple up- from downstream signaling such that SHP2 
or SOS1 inhibition has little to no effect on the KRAS pathway in KRAS mutant cell lines. 
Because the phospho-proteome responses of ERK and MEK inhibition were largely 30 
indistinguishable from KRAS inhibition, we conclude that the fate of these cancer cells is 
decided at the level of KRAS inhibition. The drugs and cellular models used here also enabled 
the definition of a KRAS core signaling signature with many new molecular players that operates 
in all cell lines and impacts the same major cellular processes.  

Importantly, we observed a clear distinction between immediate drug responses, predominantly 35 
reflecting KRAS signaling, and adaptive drug responses, which result from cells exiting the cell 
cycle. The anti-proliferative effect of KRAS inhibition is driven by the immediate regulation of 
PTMs, leading to the down-regulation of proteostasis and inhibition of cell cycle entry, which 
results in the observed accumulation of quiescent cells. This transition is mediated by changes on 
PTM-level rather than protein expression, and may not only allow cells to avoid the energy costs 40 
associated with substantial protein expression re-modeling, but may also enable cancer cells to 
return rapidly to a proliferative state when conditions improve. From a drug discovery point of 
view, this suggests that mutant KRAS inhibition or degradation may have to be combined with 
drugs that prevent the escape mechanism via exit from the cell cycle in order to kill the cancer 
cell. A very recent report suggests that targeting WEE1, PLK1 or CHK1 may be promising in 45 
this regard (41) and the molecular resource created by the current study (available in 
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ProteomicsDB (19)) and in the form of interactive dashboards, may help scientists to identify 
further such vulnerabilities for future exploitation. 
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Materials and methods summary 

Full details of the methodology are described in the supplementary materials and are summarized 
here as follows: Cell lines were treated with increasing concentrations of a drug for a fixed 
amount of time. Cells were then lysed, proteins extracted, and peptides generated by trypsin 
digestion. The peptides were stable isotope–labeled using TMT (42). Post-translationally 5 
modified peptides (phospho-peptides and ubi-peptides) and cysteine-containing peptides (cys-
peptides) were enriched by affinity-based methods. Full proteome, cys-peptides or PTM samples 
were analyzed by LC-MS/MS, and peptides and proteins identified and quantified using 
MaxQuant/Andromeda (43, 44) or ProteomeDiscoverer. Dose-response curves for each peptide 
were fitted to a sigmoidal curve model using CurveCurator (on the basis of TMT reporter ion 10 
intensities)(22), yielding drug EC50 values for each protein, cys- or PTM peptide, the size of each 
effect (curve fold change), as well as curve-fitting quality metrics. A set of filters was applied to 
extract regulated dose-response curves from each experiment. The dose-dependent regulated 
PTMs, cysteines or protein expression values were further analyzed to explore the MoA of the 
respective drugs and the specific responses of different cell lines. Regulated curves were 15 
functionally annotated using several knowledge bases.  
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Fig. 1: Proteome-wide characterization of KRAS signaling inhibitors by dose-response 
proteomics. Cells expressing different mutated KRAS proteins were treated with increasing 
concentrations of the respective drugs and the dose-response profiles of reactive cysteines (for 
target deconvolution, decryptC), phospho-peptides and ubi-peptides (for pathway engagement, 5 

decryptM) and proteins (for protein expression, decryptE) were determined. Drug response 
(relative to control; up-, down- or not-regulated) and potency (effective concentration to achieve 
50% response, EC50) were derived from fitted dose-response curves followed by statistical 
assessment using CurveCurator (see materials and methods for details).  
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Fig. 2 DecryptC profiling of clinical KRASG12C inhibitors in KRAS mutant lines. (A) 
Number of dose-response curves (y-axis) and potency (pEC50 = −logEC50, x-axis) of cys-
peptides following 2 hour treatment of MiaPaCa-2, NCI-H23 and ASPC1 cells with Sotorasib 
and Adagrasib. Targets of Sotorasib and/or Adagrasib are highlighted in color, all other cys-5 

peptides are displayed in grey. (B) Dose-response curves for the primary target KRAS G12C 
(C12) of Sotorasib and Adagrasib (2 hours). (C) Same as (B) but for the Adagrasib off-target 
EEF1A2. (D) Molecular docking of Adagrasib into the structure of EEF1A2. The left panel 
shows the orientation of Adagrasib within the overall protein structure. The right panel depicts 
molecular interactions of Adagrasib with amino acid residues of KRAS bringing the reactive 10 

enolate group into close proximity to C31 to enable its covalent modification. 
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Fig. 3: DecryptM profiling of KRAS inhibitors in mutant KRAS cell lines. (A) Number of 
identified and drug-regulated phospho-peptides in three mutant KRAS cell lines after short-term 
(2 hours) drug treatment. (B) Dose-response curves for MAPK1 pY187 activation loop 
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phosphorylation in the same cell lines and using the same drugs as in panel (A). (C) Summary of 
the potency of drug response at the level of cell viability (72 hours), KRAS C12 target binding (2 
hours), MAPK1 (Y187) activation loop phosphorylation (2 hours), phosphorylation of KEGG-
annotated MAPK pathway members (map04010; median pEC50) and all drug-regulated phospho-
peptides (apex pEC50, 2 hours). (D) Upper panels: distribution of drug potency (pEC50) 5 

determined for all regulated phospho-peptides in a given cell line and treated by a given drug. 
Numbers behind drug names indicate the number of regulated phospho-peptides detected in the 
experiment. Lower panels: Boxplots of pEC50 values for phospho-peptides on proteins annotated 
as MAPK pathway members; median indicated by black bar, the box indicates the interquartile 
range (IQR), its whiskers 1.5× IQR values. (E) Correlation analysis of log10(EC50) values 10 

determined for drug-induced cell viability (72 hours) and phospho-peptide abundance changes (2 
hours) either using regulated phospho-peptides from annotated MAPK pathway members only or 
the apex of the pEC50 distribution from all regulated phospho-peptides of each individual 
treatment (r: Pearson correlation coefficient). (F) Scatter plot comparing the log2 curve fold 
changes of phospho-peptides to Adagrasib and Sotorasib in MiaPaCa-2 cells. Dotted lines mark 15 

the boundaries of the applied CurveCurator log2 fold change cut-off (fc-values = ±0.45). Yellow 
areas contain phospho-peptides with consistent responses, grey areas contain phospho-peptides 
regulated by one of the conditions only. Percentages indicate the fraction of phospho-peptides in 
the regions highlighted by color. (G) Cluster map summarizing the data exemplified in panel F 
(orange box) for all KRAS drugs and cell lines based on hierarchical clustering of the mean 20 

absolute error (MAE) of log2 curve fold changes. 
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Fig. 4: Cellular processes impacted by a KRAS core signaling signature. (A) Venn diagram 
of drug-regulated phospho-peptides detected in MiaPaCa-2 (KRAS G12C), NCI-H23 (KRAS 
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G12C) and ASPC1 (KRAS G12D) cells defining a common KRAS core signaling signature of 
241 phospho-peptides. (B) Upset plot comparing data from the present study (252 phospho-sites 
on the 241 phospho-peptides that comprise the KRAS core signaling signature and all 2,290 
phospho-sites on the 2,354 phospho-peptides regulated by all KRAS drugs after 2 hours of 
treatment) to two published molecular resources of ERK signaling (the ERK-regulated phospho-5 

proteome, denoted as Klomp et al. and the ERK compendium (8, 11)). (C) Kinase motif 
enrichment analysis of down-regulated phospho-peptides from the KRAS core signaling 
signature. (D) Results of MAPK1 in vitro kinase assays using synthetic peptides representing 
putative MAPK1 substrates from the list of 241 phospho-peptides comprising the KRAS core 
signaling signature. For clarity, the response of the assay was scaled from 0 to 1. (E) Graphical 10 

representation of enriched biological processes of proteins underlying the KRAS core signaling 
signature. The size of the diamond node for each enriched term was scaled by the statistical 
significance of the enrichment analysis (adjusted p-val.). Protein nodes with more than one color 
in the halo map to more than one term. (F) Quantification of cell morphology features of 
MiaPaCa-2 cells in response to Sotorasib (72 hours). (G) Representative images of NCI-H23 15 

cells untransfected (control) or transfected with either GFP–CCDC86 WT, GFP–CCDC86 
S217A or GFP–CCDC86 S217D constructs (green) after 24 hours. Cells were also stained for 
MKI67 (red) and DNA (DAPI). Scale bar 5 µm. 
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Fig. 5: Cell line-specific KRAS signaling. (A) Number of drug-regulated phospho-peptides in 
response to BI3406 (SOS), RMC4630 (SHP2), Sotorasib (KRAS), Adagrasib (KRAS), 
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MRTX1133 (KRAS), Trametinib (MEK) and Temuterkib (ERK) after 2 hours of drug exposure 
in three mutant KRAS cell lines. The black part of each bar represents the number of phospho-
peptides containing an SP or TP phosphorylation motif. Numbers on the top of each bar specify 
the number of phospho-peptides in the white and black parts of a bar respectively. (B) Pairwise 
comparisons of drug responses (log2 curve fold change) of phospho-peptides for different 5 

combinations of drugs and cell lines. Yellow areas contain phospho-peptides with consistent 
responses, grey areas contain phospho-peptides regulated by one of the conditions only. Dotted 
lines mark the boundaries of statistical significance based on a CurveCurator log2 fold change 
cut-off (fc-values = ±0.45). Percentages indicate the fraction of phospho-peptides in the 
respective colored regions and n denotes the number of phospho-peptides in the plot. Orange 10 

data points mark phospho-peptides from the KRAS core signaling signature. MAE: mean 
absolute error of log2 curve fold changes. (C) Cluster map summarizing the analysis shown in 
(B) for all combinations of drugs and cell lines from (A). (D) Dose-response curves of MAPK3 
Y204 phosphorylation (activation loop) in response to 7 MAPK pathway modulating drugs. (E) 
Example dose-response curves of phospho-peptides that were significantly drug-regulated in one 15 

cell line (here ASPC1) but not in others. (F) Number of kinases, phosphatases (PP), guanine 
nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and transcription 
factors (TF) that showed drug-induced regulation of at least one phospho-peptide in the different 
cell lines upon KRAS inhibition.  
  20 
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Fig. 6: Temporal response of the proteome, phospho-proteome and ubiquitinome of 
MiaPaCa-2 cells to Sotorasib. (A) Example dose-response curves for phospho-peptides that 
showed constant (green), early (yellow), intermediate (blue) or late (red) response to 1-16 hours 
of Sotorasib treatment. (B) t-SNE plot of responses (abs. log2 curve fold change) of phospho-
peptides detected at all four time points and colored by the groups defined in (A). n denotes the 5 

number of phospho-peptides in the plot. (C) Same as (B) but highlighting members of the KRAS 
core signaling signature. (D) Kinase motif enrichment analysis of down-regulated phospho-
peptides from the constant/early groups (immediate response; left panel) or intermediate/late 
groups (adaptive response; right panel). (E) Dose-response curves of MAPK Y204 
phosphorylation (indicating kinase activity) and Cyclin A (CCNA2) protein abundance 10 

(indicating CDK activity) at the four time points. (F) Dose-response curve of protein abundance 
of the cell cycle regulating protein CDC20. (G) Barplot summarizing FACS-based cell cycle 
analysis data (propidium iodide staining) following different durations of Sotorasib treatment in 
MiaPaCa-2. (H+I) Scatter plot comparing protein abundance changes (16 hours) of proteins that 
show drug-regulated ubi-peptides at 6 hours and 24 hours respectively. Proteins of the ubiquitin 15 

conjugation system are highlighted in red. Dotted lines mark boundaries of statistical 
significance based on the applied CurveCurator log2 fold change cut-off (fc-values = ±0.45). 
Grey areas contain ubi-peptides or proteins regulated by one of the conditions only (J) Alphafold 
structure of UBA1 (46) (center panel) highlighting the adenylation domain (pink) and catalytic 
SCCH domain (orange) as well as drug-regulated ubiquitinylated lysine residues after 6 hours 20 

(green) or 24 hours (purple) of Sotorasib. Left top panel: dose-response curves of UBA1 K635 
ubiquitylation after 6 hours (light green) and 24 hours (purple) of Sotorasib. Left bottom panel: 
Magnified view of the catalytic domain highlighting drug-regulated ubiquitinylated K635 (green) 
in close proximity to the catalytic C632 residue based on Alphafold structure of UBA1. Right top 
panel: dose-response curves of UBA1 K528 ubiquitylation after 6 hours (light green) and 24 25 

hours (purple) of Sotorasib. Right bottom panel: magnified view of the co-crystal structure of 
UBA1 (PDB: 6DC6) (47), ATP(β,γ)+Mg (cyan and red) and ubiquitin (blue) highlighting drug-
regulated ubiquitinylated K528 in close proximity.  
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