
Development of automated computational methods
for the redesign of protein dynamics using

biomolecular simulations and machine learning

Dissertation

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
(Ph.D)

of the

Department of Computer Science,
Brunel University London

Submission date: 31 January 2025

 Supervisors:

 Doctor Alessandro Pandini

Author:

Namir Oues

 Doctor Sarath Dantu

 RDA:

 Professor Yongmin Li

Declaration

 2

Declaration

I declare that this thesis is my original work and has been completed solely by me, Namir

Oues. The research contained within has not been submitted for any other degree or

qualification award. Some parts of the work have been published previously and are explicitly

acknowledged in the text where relevant. All material sources have been appropriately cited,

and full references are provided.

Publications

 3

Publications

This is a list of publications lead-authored and co-authored by the author of this thesis during

the PhD time frame:

Oues N., Dantu S.C., Patel R.J., Pandini A., MDSubSampler: A posteriori sampling of

important protein conformations from biomolecular simulations, Bioinformatics, Volume 39,

Issue 7, July 2023, btad427, https://doi.org/10.1093/bioinformatics/btad427

Oues N., Pandini A., MDAutoMut: A Toolkit for an automated workflow of redesigning protein

dynamics through mutation engineering. Manuscript in preparation.

Hossein Nezhad F., Oues N., Meli M., Pandini A., MDGraphEmb: A toolkit for encoding

molecular dynamics simulations with graph embedding”. Manuscript under review with

requested revisions.

Abstract

 4

Abstract

Proteins are responsible for almost all biological mechanisms, and their three-dimensional

structures and dynamics define their function. In recent years, outstanding advances have

been made in protein design. However, redesigning protein dynamics to achieve desired

properties or states remains a significant challenge in computational protein design. This

thesis addresses this gap by introducing three novel toolkits—MDSubSampler, MDAutoMut,

and MDAutoPredict—developed to integrate biomolecular simulations with machine learning

for the automated redesign of protein dynamics.

MDSubSampler is designed to preprocess and a posteriori subsample molecular dynamics

simulations, preserving critical dynamic information while reducing noise and data complexity.

Its application demonstrates effective noise reduction and compatibility with machine learning

workflows, validated using adenylate kinase as a model system. MDAutoMut automates

mutation generation, simulation, and analysis, facilitating systematic identification of mutations

that have a desired impact on protein dynamics. This toolkit successfully identifies mutations

on adenylate kinase structure shifting dynamics towards a closed conformation, validated by

literature benchmarks. MDAutoPredict extends the workflow by using machine learning

models to predict conformational states from molecular dynamics data, offering an adaptable

framework for dynamic state prediction.

These contributions represent an advance in computational protein design, providing scalable,

automated solutions for mutation engineering and dynamic prediction. The toolkits are

modular, extensible, and integrated with well-consolidated libraries, ensuring broad

applicability across protein engineering challenges. This research highlights the potential of

combining biomolecular simulations with machine learning to redesign protein dynamics and

sets the stage for future innovations in computational biology.

Acknowledgements

 5

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Alessandro Pandini, for giving

me the opportunity to work on this project. I am deeply thankful for his continuous support,

patience, and guidance throughout my PhD. His feedback and advice at every stage of the

project were invaluable, and his encouragement, even during challenging times, meant a great

deal to me.

I would also like to thank Dr. Sarath Dantu for his help and thoughtful suggestions, as well as

his input on the technical and theoretical aspects of this work, which played an important role

in its completion.

My thanks extend to Dr. Ferdoos Hossein Nezhad for being both a supportive colleague and

a great friend during difficult times, as well as for their feedback and advice on various parts

of the project.

I am grateful to Dr. Arianna Fornili and Dr. Massimiliano Meli for their helpful feedback and

advice during the preparation of my first publication. Their input significantly improved the

work.

Last but not least, I would like to thank deeply my husband, Alexandros Peitsinis, for his love,

patience, and support, which have been a source of strength throughout this journey, but also

my family and friends for their unwavering support and encouragement.

This PhD is supported by a scholarship from Brunel University London EPSRC DTP (grant no.

EP/T518116/1). This project made use of time on HPC granted via the UK High-End

Computing Consortium for Biomolecular Simulation, HECBioSim (http://hecbiosim.ac.uk),

supported by EPSRC (grant no. EP/R029407/1).

Table of Contents

 6

Table of Contents
Declaration ... 2

Publications .. 3

Abstract .. 4

Acknowledgements .. 5

Table of Contents ... 6

Table of Figures ... 8

1 Introduction .. 10

1.1 Research questions ... 11
1.2 Aims and Objectives .. 12
1.3 Novel contribution to science ... 13
1.4 Novel toolkits .. 14
1.5 Thesis overview ... 15

2 Literature Review ... 17

2.1 Protein structure ... 18
2.2 Protein function .. 22
2.3 Protein dynamics ... 23

2.3.1 Experimental techniques ... 24
2.3.2 Computational techniques ... 25
2.3.3 Molecular Dynamic Simulations (MD) ... 27
2.3.4 Computational analysis of protein dynamics through MD 34
2.3.5 Enhanced sampling techniques... 35
2.3.6 MD simulations data in machine learning.. 36

2.4 Protein design, engineering, and redesign .. 36
2.4.1 Protein engineering, redesign, and mutation engineering 37
2.4.2 Computational tools for protein design .. 38
2.4.3 PyRosetta for mutation engineering .. 40

2.5 Challenges in redesigning protein dynamics ... 41
2.6 Summary .. 42

3 Methods ... 44

3.1 Case study: adenylate kinase (ADK) ... 44
3.2 Generation of MD simulations data ... 45

3.2.1 Unbiased simulations ... 46
3.2.2 MD data for MDSubSampler ... 46
3.2.3 MD data for MDAutoMut .. 47
3.2.4 MD data for MDAutoPredict ... 50

3.3 Data analysis and validation .. 50
3.4 MDAnalysis .. 54
3.5 PyRosetta ... 57
3.6 GMXAPI ... 58
3.7 Deployment of MDAM on ARCHER2 .. 59
3.8 Containers – Docker .. 63
3.9 Wrapping the toolkits with Poetry .. 64
3.10 Summary .. 65

4 Design, implementation, and testing ... 66

4.1 MDSubSampler tool ... 66

Table of Contents

 7

4.1.1 Software design and core components ... 66
4.1.2 Functionality ... 71
4.1.3 Software implementation and accessibility ... 73
4.1.4 Testing .. 78

4.2 MDAutoMut tool ... 82
4.2.1 Software design and core components ... 82
4.2.2 Functionality ... 86
4.2.3 Software implementation and accessibility ... 89
4.2.4 Testing .. 92

4.3 MDAutoPredict tool .. 95
4.3.1 Software design and core components ... 95
4.3.2 Functionality ... 96
4.3.3 Software implementation and accessibility ... 97
4.3.4 Testing .. 97

4.4 Summary .. 98

5 Results ... 100

5.1 MDSubSampler results .. 100
5.1.1 Scenario: random sampling for size reduction .. 100
5.1.2 Scenario: pocket sampling for ensemble docking ... 102
5.1.3 Scenario: sampling by most frequently observed conformations 104
5.1.4 Advanced scenario: machine learning prediction ... 105

5.2 Validation of MD simulations for proof-of-concept... 108
5.2.1 Rationale for generation and validation of MD data for MDAM 108
5.2.2 Data integrity and trajectory validation .. 109

5.3 MDAutoMut results .. 118
5.3.1 Mutation workflow .. 118
5.3.2 System preparation and simulation workflow .. 120
5.3.3 Full MDAM workflow .. 121

5.4 MDAutoPredict results ... 131
5.4.1 Target variable definition .. 131
5.4.2 Machine Learning performance ... 132

5.5 Summary .. 138

6 Summary, conclusions, and further work .. 139

6.1 Summary .. 139
6.2 Conclusions.. 140
6.3 Current limitation and future development of this research study 142
6.4 Addressing the research questions ... 143
6.5 Lessons learned and future recommendations ... 145

Bibliography ... 147

Appendix I .. 163

Appendix II ... 164

Appendix III .. 168

Appendix IV .. 169

Appendix V ... 188

Table of Figures

 8

Table of Figures

Figure 2.1 Hierarchy of concepts in chapter two. ... 17

Figure 2.2 Structure of an amino acid. ... 19

Figure 2.3 Four levels of protein structure. ... 21

Figure 2.4 General workflow of a molecular dynamics simulation. .. 26

Figure 3.1 Structural representation of the open and closed conformations of ADK. 45

Figure 3.2 Structural representation of wild-type ADK showing with mutations 48

Figure 3.3 Table summary of the MD simulations generated using JADE2 and ARCHER2 51

Figure 3.4 Simplified representation of the three tools ... 55

Figure 3.5 MDAnalysis class structure, highlighting the relationships between key classes 56

Figure 3.6 Overview of software tools and libraries used in this thesis 58

Figure 4.1 Class diagram of MDSS, showing relationships among main classes 68

Figure 4.2 Overview of MDSS’s data flow. .. 72

Figure 4.3 MDSS’s pyproject.toml file. ... 74

Figure 4.4 Summary description of an example scenario ... 76

Figure 4.5 Parser help interface on Linux command line with options 76

Figure 4.6 Hierarchy of files (modules) in MDSS library as is shown on GitHub page. 77

Figure 4.7 Class and module diagram of MDAM .. 83

Figure 4.8 A simplified version of the entire workflow of MDAM .. 84

Figure 4.9 Synthetic distribution for desired dynamics in ADK. .. 88

Figure 4.10 MDAM’s pyproject.toml file. ... 90

Figure 4.11 Parser help interface for MDAM library. ... 91

Figure 4.12 Structural illustration of ADK highlighting the domains and mutations. 92

Figure 5.1 RMSD distribution for random sampling at 2.5% of the total trajectory frames . 101

Figure 5.2 Presentation of results for “Random sampling for size reduction” scenario 102

Figure 5.3 Summary result for “Uniform sampling of pocket opening 103

Figure 5.4 Summary results for “Weighted sampling of pocket openings 104

Figure 5.5 Transformation of subsampled trajectory data ... 106

Figure 5.6 Approximate view of the conformational space representation 106

Figure 5.7 Confusion matrices for the three machine learning models. 107

Figure 5.8 Time series RMSD analysis of ADK Cα atoms. . .. 110

Figure 5.9 Density distribution of RMSD values for WT and DM systems. 110

Figure 5.10 RMSF analysis of Cα atoms in ADK. ... 111

Figure 5.11 Time series Rg analysis for ADK. .. 112

Figure 5.12 Rg density distribution for ADK. ... 112

 9

Figure 5.13 Distance distribution between residues P127 and G55 in ADK. 113

Figure 5.14 COM Distance distribution for ADK between the WT and the DM. 114

Figure 5.15 Example energy and temperature profiles for the DM Structure 115

Figure 5.16 PCA Projections for WT and DM. ... 116

Figure 5.17 Right: Porcupine plots of PC1 and PC2... 117

Figure 5.18 Information and log file for the mutation workflow of MDAM. 119

Figure 5.19 Log file for mdprep workflow in MDAM. .. 120

Figure 5.20 Hierarchy of directories generated by the MDAM mdprep workflow 121

Figure 5.21 Log file for the full MDAM workflow for the proof-of-concept analysis. 122

Figure 5.22 Hierarchical organisation of output directories and files 123

Figure 5.23 COM Distance distribution for the V135G mutant .. 124

Figure 5.24 COM Distance distribution for the V142G mutant .. 124

Figure 5.25 COM Distance distribution for the V135K mutant ... 125

Figure 5.26 Results from the double mutation systematic approach.................................... 126

Figure 5.27 Results from the double mutation systematic approach.................................... 127

Figure 5.28 COM Distance distribution for V135L_V142L .. 128

Figure 5.29 Results for the heuristic approach for double mutations. 128

Figure 5.30 Visualisation of the heuristic search process for double mutations. 129

Figure 5.31 A heat map of Bhattacharyya distances for all double mutations 130

Figure 5.32 Approximate conformational space representation for ADK 132

Figure 5.33 Confusion matrices for all machine learning models tested 135

Figure 5.34 Precision-Recall (PR) curves for the Random Forest and Decision Tree 136

Figure 5.35 Calibration curve for the Random Forest model. .. 137

Introduction

 10

1 Introduction

Proteins are essential macromolecules responsible for nearly all biological processes, acting

as catalysts, transporters, signalling molecules, and more. Their ability to perform such diverse

functions derives from their three-dimensional, physico-chemical, and dynamic properties.

Structural changes allow proteins to transition between functional states, enabling processes

like enzymatic activity, molecular recognition, and signalling. Understanding protein dynamics

is fundamental to explaining biological functions and critical for advancing fields such as drug

design, synthetic biology, and disease prevention.

While experimental techniques such as X-ray crystallography and Nuclear Magnetic

Resonance (NMR) spectroscopy are used to study protein structures, they face limitations in

capturing the protein dynamic behaviour at the atomistic level [1]. Molecular dynamics (MD)

simulations have become a widely used computational approach to overcome these

limitations, offering atomistic-level details on protein motions over time [2], [3]. However, the

large and complex MD trajectories present significant challenges for analysis. The data are

often noisy, and due to their high dimensionality, it is challenging to identify functionally

relevant conformations that are generally a subset of the phase space accessible to the protein

[4]. Researchers currently rely on combinations of tools, approaches, and methods, as no

unified analysis strategy exists for efficiently removing the noise, increasing the signal, and

determining the important conformations of these large trajectories.

Most proteins fold into specific three-dimensional structures determined by their amino acid

sequences, and these folded states are connected to proteins’ biological functions. Even small

changes in the sequence, such as single mutations, can dramatically impact protein dynamics,

potentially disrupt their function and leading to disease. On the contrary, targeted mutations

can enhance protein stability or improve function, offering strategies for therapeutic and

engineering applications. Therefore, understanding the impact of mutations on protein

dynamics is crucial in the computational protein design field.

The field of computational protein design has achieved remarkable success, as confirmed by

the 2024 Nobel Prize in Chemistry award [5]. However, despite these advancements, the

redesign of protein dynamics remains an unexplored area in protein design. Although several

strategies have been developed to optimise active sites and sequences, these approaches

mainly focus on static protein structures, often overlooking their dynamics. Multistate design

has provided some insights into improving protein properties, but there is currently no unified

Introduction

 11

analysis strategy to automate the redesign of protein dynamics. This thesis aims to contribute

to addressing this critical gap.

Despite advancements in machine learning (ML) and deep learning (DL), existing methods for

predicting atomistic and molecular properties of protein systems lack integration with MD [6],

[7]. They would benefit from the availability of automated workflows. Current techniques offer

valuable insights but fail to provide a single, adaptable, and expandable tool that seamlessly

combines data preprocessing, mutational analysis, and predictive modelling.

This research addresses some of these gaps by developing a new methodological approach

based on three novel computational tools—MDSubSampler (MDSS), MDAutoMut (MDAM),

and MDAutoPredict (MDAP). These tools are designed and implemented to address specific

aspects of the challenge: MDSS focuses on efficient data preprocessing of MD data, MDAM

enables systematic mutation analysis, and MDAP provides dynamic prediction capabilities.

Together, these tools aim to establish a comprehensive and automated framework for

advancing the computational protein design of MD.

1.1 Research questions

The research questions in this thesis aim to advance methods and tools in protein redesign

through automated simulation and evaluation of the effect of mutations on protein dynamics.

The first step is to preprocess the data used in this study. The second step is developing the

method to achieve the study’s goal. The last step is extending the method to a more advanced

approach to help solve different research problems. The following research questions were

considered when designing the solution approach for this thesis.

1. Processing MD simulation data:

How can the volume of MD simulation data be effectively managed to enable its use

in automated workflows without exceeding computational resource limitations? At the

same time, how can the complexity of these data formats be addressed to ensure easy

integration into ML/DL pipelines?

To address this question, a robust and adaptable MD processing framework is required

to systematically reduce noise while preserving critical simulation information and

reformatting the data into ML/DL-compatible structures.

Introduction

 12

2. Automating protein dynamics redesign:

How can computational strategies be developed to fine-tune protein dynamics through

targeted mutations, and how can these workflows be automated, integrated with

existing computational libraries, and scaled effectively using high-performance

computing (HPC) resources?

Redesigning protein dynamics through targeted mutations requires a unified, scalable

computational strategy. This strategy involves developing an automated framework

capable of generating, simulating, and analysing mutations to identify those that can

achieve desired protein properties. Furthermore, scaling these workflows on HPC

platforms is essential to efficiently process the extensive simulations and mutation

datasets.

3. Predictive modelling for protein dynamics

How can the automated workflow be extended to perform predictions in combination

with ML/DL pipelines, and which ML models are most appropriate for predictive tasks

in protein dynamics?

ML provides transformative opportunities to analyse protein dynamics by making

predictions from MD simulation data. Additionally, benchmarking several ML models

for tasks like conformational state prediction will evaluate how ML can be applied within

this context.

1.2 Aims and Objectives

Aim

This research aims to deliver an innovative framework for integrating biomolecular simulations

with predictive computational methods, redesigning protein dynamics, and advancing protein

engineering and design.

Objectives

1. Develop and validate a toolkit for preprocessing and subsampling MD

simulation data:

Introduction

 13

Design, implement, and test the MDSS toolkit to efficiently process MD simulation data,

reducing noise while preserving the distribution of key geometric properties. This tool

will ensure that MD data can be transformed into ML-compatible formats, enabling

advanced predictive analyses.

2. Automate the analysis of mutations’ impact on protein dynamics:

Design, implement, and test MDAM, a toolkit to automatically generate, simulate, and

compare wild-type and mutant protein dynamics. This tool will facilitate evaluating how

specific mutations can impact protein dynamics. MDAM will implement automated

workflows to identify optimal solutions to the problem of redesigning protein dynamics.

3. Explore and integrate machine learning techniques for predictive modelling in

protein design:

Design, implement, and test MDAP, an ML framework for predicting protein states of a

protein system using MD data processed with MDSS. The objective includes

benchmarking several ML models to identify the best-suited approaches for

conformational state prediction. MDAP offers an extendable and adaptable framework

that can use MD simulation data for supervised learning predictions with a target

variable describing conformational or state properties.

1.3 Novel contribution to science

This thesis presents a transformative framework for redesigning protein dynamics and

addresses some of the critical limitations in MD simulations and computational protein design.

The heart of this contribution lies in developing three novel, integrated toolkits – MDSS,

MDAM, and MDAP. These toolkits provide a cohesive solution to the challenges associated

with large-scale MD data preprocessing, mutation analysis, and predictive modelling of protein

dynamics. Together, they form a unified workflow that is customisable and scalable and

designed to advance protein redesign methods through the seamless integration of

computational and ML approaches.

The MDSS toolkit introduces a posteriori efficient subsampling of large MD simulation

trajectories, ensuring important information is preserved while reducing data complexity and

noise. MDAM automates the generation and analysis of mutations, allowing researchers to

Introduction

 14

systematically and heuristically identify their specific effects on protein dynamics. Finally,

MDAP leverages advanced ML techniques to predict dynamic behaviour, providing an

extensible framework for data-driven exploration of protein functions. A foreseeable extension

of this approach includes state-prediction capabilities, where the most promising mutations

identified by MDAM are tested for their ability to generate desired states, as annotated by

MDAP.

These contributions fill long-standing gaps in computational biology by providing easy-to-use,

open-source tools validated through rigorous adenylate kinase (ADK) enzyme testing.

Integrating these toolkits into established libraries and software (e.g. GROMACS [2],

MDAnalysis [8], PyRosetta [9]) ensures their accessibility and applicability to various research

problems.

1.4 Novel toolkits

MDSubSampler

MDSS is an object-oriented Python library designed to preprocess MD simulation data. The

tool can perform a posteriori subsampling of MD trajectories while ensuring that critical

information of the data is preserved. MDSS uses statistical sampling methods and dissimilarity

measures to evaluate the sampling. Specifically, the sampling is evaluated by assessing the

distance between distributions of original and sample trajectories for relevant geometric

properties. The tool efficiently identifies the most important conformations in large trajectories

by reducing the noise and increasing the signal.

MDSS is validated using the ADK example system, successfully identifying critical open and

closed conformational states of the protein’s LID domain. Root Mean Square Deviation

(RMSD) distribution analysis demonstrated its ability to capture essential dynamics while

significantly reducing data size, ensuring compatibility with ML workflows.

MDAutoMut

MDAM automates the evaluation of mutation impacts on protein dynamics. This toolkit runs in

an automated workflow for generating simulations, mutation engineering, and evaluating

protein dynamics in MD simulation data. The simulation engine can prepare and simulate the

wild type and mutants, and it is performed by integration with GROMACS via the gmxapi

Python interface. Mutation engineering is done for single, double, or multiple mutations by

Introduction

 15

integrating with PyRosetta. Finally, the evaluation of dynamics is done by assessing the

distribution of properties that capture the system’s dynamics, and it is performed by integration

with MDSS. The goal is to find mutations that have the desired impact on the system’s

dynamics.

MDAM is validated with a proof-of-concept study on the ADK system. The protein provides a

clear example of protein dynamics since it has two distinct states (open and closed). Given

two positions in the ADK structure, the goal is to identify which mutations can increase

sampling of close ADK state when scanning across all 20 different amino acids. The change

in ADK dynamics is evaluated by assessing relevant properties that describe ADK’s closure.

The proof-of-concept is done on known mutations from the literature that can achieve ADK’s

closure. MDAM provides a framework for systematic and heuristic scanning for the space

search. Its modular design allows seamless integration with MDSS and MDAutoPredict tools.

MDAutoPredict

MDAP is a predictive modelling framework that uses ML to analyse MD data generated by

MDAM and processed by MDSS. The tool can predict protein conformational states using MD

simulation data as inputs. The toolkit provides a framework with several ML techniques to

identify which is more appropriate for specific research problems involving MD trajectories.

MDAP is tested on the ADK as an example system. It performs ML classification prediction of

the system’s states (e.g., open, closed). While this thesis focuses on validating the toolkit with

a simple example scenario, the tool can expand into more complex workflows.

1.5 Thesis overview

This work is divided into six chapters, including Chapter 1. Below is a description of the

remaining five chapters.

Chapter 2 provides a literature review and establishes the theoretical foundations of protein

structure, dynamics, and function. It explores key experimental and computational methods

essential to computational protein design, including MD simulations and ML approaches. The

limitations of existing tools in redesigning protein dynamics are acknowledged.

Chapter 3 features the methods used in this research. It describes ADK as a model protein

system used in this study. The protocols for generating MD simulations for testing the three

Introduction

 16

tools are also described. Additionally, the chapter discusses the tools’ use of high-performance

computing resources for scalability and their implementation in Docker environments for

reproducibility.

Chapter 4 contains the design, implementation, and testing of the three novel toolkits

developed in this research: MDSS, MDAM and MDAP. It also highlights the modularity and

user-friendly structure, ensuring accessibility to researchers with different expertise.

Chapter 5 shows the results by demonstrating the toolkit’s application on the example system

(ADK). MDSS demonstrates its effectiveness in subsampling large trajectories a posteriori

without information loss. MDAM’s capabilities are validated through a proof-of-concept

mutation study that shifts the sampling of the ADK state from open to closed. MDAP is

evaluated for its prediction accuracy and uses MD simulation data to classify conformational

states.

Finally, Chapter 6 concludes the research work and discusses the results. Future directions

are suggested, especially future integrations of these tools with more complex packages and

workflows, setting the stage for further advances in computational protein design.

Literature Review

 17

2 Literature Review

This chapter provides a theoretical background on protein structure, dynamics, function, and

design. It examines how conformational flexibility enables proteins to perform complex

biological functions, beginning with protein structure and folding principles. The chapter

introduces MD simulations as a key computational tool for exploring protein dynamics at the

atomistic level, alongside enhanced sampling techniques and ML approaches for analysing

conformational changes.

The discussion then progresses to protein design methods, examining traditional approaches

and recent advances in multistate design and computational tools for predicting mutational

impact on protein properties. The chapter concludes by addressing the current challenges in

redesigning protein dynamics, highlighting the limitations of existing methods and the need for

new strategies to better account for protein dynamics.

The following diagram (Figure 2.1) illustrates the flow of topics covered in this chapter, moving

from the foundational aspects of protein structure to redesigning protein dynamics. Short

summaries of each subsection are reported below.

Figure 2.1 Hierarchy of concepts in chapter two. The interplay between protein structure, dynamics, and function
and its implications for protein design and engineering. Protein structure forms the basis for biological function, as
shown by the unidirectional arrow, while protein dynamics serve as a bridge between structure and function,
represented by the bidirectional arrows. Experimental and computational approaches (dashed arrows) provide
insights into protein dynamics, which inform protein design, engineering, and redesign. The challenges in
redesigning protein dynamics, highlighted in the yellow box, stem from the complexities of modelling conformational
flexibility and its impact on protein function.

Literature Review

 18

2.1 Protein structures. This section provides an overview of protein structures, discussing

how proteins fold from linear amino acid sequences into complex, three-dimensional

conformations. It explores the traditional classification in structural levels—primary, secondary,

tertiary, and quaternary—and how folding and stability are critical for protein function.

2.2. Protein function. This section describes how proteins utilise their structure and flexibility

to perform specific biological functions. It explains how conformational changes enable

proteins to interact with other molecules and to sample different functional states.

2.3 Protein dynamics. This section examines the conformational changes and their roles in

biological functions. Both experimental and computational techniques are introduced, with

emphasis on MD simulations. An overview of enhanced sampling techniques and an

explanation of MD integration with ML approaches are presented.

2.4 Protein design, engineering, and redesign. This section introduces protein design and

engineering, covering both template-based and de novo approaches and focusing on recent

advancements in multistate design. It provides an overview of the computational tools

developed for protein design and structural prediction, mutation impact assessment, and

stability optimisation. The section sets the scene for this research work by identifying the

critical gap in the current methodologies: redesigning protein dynamics.

2.5 Challenges in redesigning protein dynamics. The section provides an overview of the

challenges and limitations when redesigning protein dynamics due to current limitations in

modelling the impact of mutations on the conformational flexibility of biomolecules.

2.1 Protein structure

Proteins are biomolecules, often referred to as the workhorses of the cell. They are involved

in various cellular functions, from providing structural support and catalysing metabolic

reactions to facilitating immune responses and transmitting signals between cells [10], [11]. A

protein’s ability to perform complex functions efficiently is closely linked to its three-

dimensional structure. Specifically, to perform their functions, proteins typically fold into

specific three-dimensional shapes and undergo structural changes [12], [13].

Changes in protein structure, whether caused by mutations, environmental factors or other

perturbations, can impact their stability, dynamics, and function [14]. These changes may

result in subtle shifts that affect functional dynamics, more pronounced changes that

Literature Review

 19

compromise protein stability, or, in severe cases, lead to misfolding and aggregation [15], [16].

Understanding the dynamic behaviour of proteins, especially mutational impact, is crucial to

advance drug design, biotechnology, and the development of treatments for these diseases

[17], [18].

Figure 2.2 Structure of an amino acid. Left: highlighting the amino group, carboxyl group, and variable R group
attached to the α-carbon. Top-Right: Formation of a peptide bond between two amino acids, where a molecule of
water (H₂O) is released. Bottom-Right: A sequential combination of three amino acids forms a polypeptide chain
with a repeating backbone structure.

Chemically, proteins are linear polymers made of amino acids connected by peptide bonds

(Figure 2.2). The order in which amino acids are arranged defines the resulting three-

dimensional structure, which determines the protein’s function [13]. However, it is known that

functional adaptation and modulation can also be influenced by factors beyond the isolated

protein structure, such as environmental signals and molecular interactions [19]. While many

proteins adopt well-defined three-dimensional structures, others, such as intrinsically

disordered proteins, lack a stable structure under physiological conditions but still perform

important biological functions [20], [21]. In addition, a rare class of proteins, known as

metamorphic proteins, can adopt multiple stable conformations, enabling them to perform their

functions depending on their environment or interaction with other molecules [22]. These

proteins represent a small but significant exception to the general principle of one stable

structure per protein.

Amino group R group. Carboxyl group
 (side chain)

Combination of amino acids 1, 2, 3

Amino acid 1 Amino acid 2 Amino acid 3

Literature Review

 20

Before being chemically connected to form the polypeptide chain, amino acids are composed

of an alpha carbon atom attached to an amino group (which is typically protonated as -NH₃⁺

under physiological conditions), a carboxyl group (which is typically deprotonated as -COO⁻

under physiological conditions), and a unique side chain referred to as the R group (Figure

2.2). Once integrated into the polypeptide chain through peptide bonds, the amino acid

becomes known as an amino acid residue. In this process, the amino and carboxyl groups

join to form the peptide bond as a byproduct through a condensation reaction (Figure 2.2),

while the R group remains free. Each amino acid is characterised by a distinct side chain

called R group. The specific properties of the R group, such as its size, shape, and

physicochemical properties, including polarity, charge, and hydrophobicity, are fundamentally

important for the protein structure.

Four levels are commonly used to interpret protein structure—primary, secondary, tertiary, and

quaternary—which helps in understanding their behaviour at the atomic level [10] (Figure 2.3).

The amino acid sequence, the primary structure, contains much information required for a

protein to attain its final shape and function [23]. In some cases, however, interactions with

partner molecules or cellular components are also necessary for the protein to reach its native

state [13].

Secondary structures arise from local hydrogen bonds between amino acids. The most

common structures are alpha helices and beta sheets [10]. The alpha helix is a right-handed

structure, stabilised by hydrogen bonds formed between the backbone atoms of every fourth

amino acid, with side chains extending outward and completing one turn approximately every

3.6 residues [23]. In contrast, beta sheets consist of extended beta strands linked by hydrogen

bonds between adjacent strands, forming a sheet-like structure where side chains alternate

above and below the plane [10].

The tertiary structure represents the complete three-dimensional arrangement of a protein,

stabilised by a combination of interactions, including hydrophobic interactions, hydrogen

bonds, ionic interactions, and van der Waals forces [13], [24]. A complex interplay of these

forces drives the folding process leading to this structure: while hydrophobic interactions drive

initial chain collapse, the specific native structure emerges through the progressive formation

of hydrogen bonds, optimal packing achieved by van der Waals interactions, and

establishment of ionic bonds, with their relative contributions varying by local protein

environment [10].

Literature Review

 21

Finally, Proteins composed of multiple polypeptide chains adopt a quaternary structure, where

individual subunits interact to function as a single, cohesive complex [23].

Figure 2.3 Four levels of protein structure—primary, secondary, tertiary, and quaternary. This work is licensed under
the Creative Commons Attribution-Share Alike 3.0 Unported License (CC BY-SA 3.0) [25].

Proteins made of a single polypeptide chain fold to form their primary, secondary, and tertiary

structures. In contrast, those composed of multiple polypeptide chains form their structures

before assembling into a quaternary structure [13] (Figure 2.3). The folding process typically

progresses through a series of intermediate states represented as a folding funnel, where from

a large available set of unfolded conformations, the protein progresses to a limited number of

intermediate states to finally reach a very small subset of native folded conformations [13]. In

this model, proteins move from a high-energy, unfolded state toward a more stable, low-energy

Literature Review

 22

conformation. Proper folding is essential for protein function, as misfolding can lead to

dysfunctional proteins and is associated with diseases [15], [16].

While significant progress has been made in protein folding, accurately predicting how a

protein will fold has long been a major challenge in structural biology, often referred to as the

“protein folding problem” [24]. However, recent breakthroughs have significantly advanced the

field. In 2024, David Baker was honoured with the Nobel Prize in Chemistry [5] for his

innovative work in computational protein design. He shared the award with Demis Hassabis

and John Jumper, who were recognised for developing AlphaFold [11], an AI model that has

revolutionised the prediction of protein structures. These achievements represent a paradigm

shift, marking a new era in which computational approaches and AI-driven technologies rapidly

advance our ability to understand and manipulate protein structure and function.

2.2 Protein function

The function of a protein depends not only on its static three-dimensional structure but also

on its dynamic behaviour, which plays a critical role in modulation. These dynamic changes,

ranging from subtle local fluctuations to large conformational changes, enable proteins to

interact with other molecules, respond to environmental changes, and transition between

functional states [12].

For example, enzymes undergo conformational changes during catalysis, essential for

substrate binding, chemical transformation, and product release [26], [27], [28]. These

structural changes optimise the active site geometry for each step of the catalytic cycle [26],

[27], [28]. Similarly, membrane receptors undergo structural adaptations upon ligand binding,

triggering intracellular signalling cascades that facilitate cellular communication [26], [27], [28].

Various cellular processes exemplify the connection between dynamics and function.

Adenylate kinase, a key enzyme in cellular energy homeostasis, alternates between open and

closed conformations to facilitate substrate binding and product release [29]. Another classic

example is haemoglobin, which switches between tense and relaxed states to modulate

oxygen affinity, enabling efficient oxygen transport under different physiological conditions

[30].

Understanding protein dynamics is, therefore, fundamental to elucidating protein function in

living systems, as these movements directly connect structure to biological activity.

Literature Review

 23

2.3 Protein dynamics

Studying protein dynamics is crucial for understanding the range of conformational changes

proteins undergo as they perform their biological functions [31]. As proteins carry out their

roles, they adopt distinct structural conformations known as functional states. These functional

states are associated with specific biological roles or activities [32]. Dynamic movements

between these states are directly linked to key functional events, such as substrate binding,

signalling, and allosteric regulation [33], [34].

Unveiling proteins’ dynamical properties is essential for identifying important functional states,

the pathways connecting them, and the energetic barriers they need to overcome for transition

between states [35].

Protein movements occur across different timescales [36]. Rapid, local fluctuations in atomic

positions—such as bond vibrations—occur on the scale of femtoseconds (10⁻¹⁵ seconds) to

picoseconds (10⁻¹² seconds) [37]. Bond vibrations occur in femtoseconds, while side-chain

rotations occur in picoseconds [37]. These small, fast movements are critical for maintaining

structural flexibility at the atomic level and contribute to protein entropy [38]. On a slower

timescale, nanosecond (10⁻⁹ seconds) to microsecond (10⁻⁶ seconds) conformational

changes, such as loop motions and collective domain movements, play key roles in protein

function, including substrate binding and enzyme catalysis [39], [40]. Surface loop motions

typically occur in nanoseconds, while domain movements usually take microseconds [40].

Even larger, slower structural transitions—such as those involved in protein folding, allosteric

regulation, or complex ligand binding events—occur over milliseconds (10⁻³ seconds) to

seconds or longer [41], [42]. Protein folding can take anywhere from microseconds to seconds,

depending on the protein size and complexity [43].

Both experimental techniques and computational methods have been developed to study

protein dynamics across these timescales [44]. Classical MD simulations, in particular, can

capture these motions at the atomic level, providing insight into how proteins function over

time [45]. Modern MD simulations can now span the pico- to millisecond range, allowing

researchers to simulate fast local fluctuations and slower, functionally relevant conformational

changes [45]. These approaches offer a detailed view of protein behaviour that is difficult to

capture solely through experimental methods.

Literature Review

 24

2.3.1 Experimental techniques

Experimental techniques are key in studying protein dynamics, offering valuable structural

information about proteins [46]. One of the most widely used methods is X-ray crystallography,

which provides high-resolution snapshots of protein structures in their crystallised form [47].

This technique allows researchers to determine the arrangement of atoms within a protein,

yielding detailed insights into its three-dimensional structure [47]. However, X-ray

crystallography is limited in capturing the scale of dynamic movements that proteins undergo

in their natural, solution-based environment, as crystallisation often locks proteins in a single,

static conformation [47].

In contrast, nuclear magnetic resonance (NMR) spectroscopy provides insights into the

flexibility and dynamics of proteins in solution [48]. NMR is beneficial for studying

conformational changes and molecular motions over various timescales (picoseconds to

seconds), offering a more dynamic view of protein behaviour than crystallography [48]. Various

NMR experiments (relaxation measurements, residual dipolar couplings, chemical shift

analysis) can probe different aspects of protein dynamics [49]. However, NMR has limitations,

particularly when studying larger systems, as the signals become more challenging to resolve

[50].

Cryo-electron microscopy (cryo-EM) has revolutionised structural biology, enabling the

visualisation of large protein complexes in various conformational states at near-atomic

resolution [1]. Cryo-EM can capture proteins in multiple conformational states by imaging

many individual molecules, providing insights into conformational heterogeneity [1]. However,

while cryo-EM excels at revealing different conformational states, it cannot directly observe

the transitions between states or capture fast atomic-level dynamics [1].

Despite the strengths of these techniques, a critical limitation is that none of them can provide

detailed information on protein dynamics at the atomistic level, nor can they fully capture the

energetics of these dynamic processes [1]. While techniques like NMR or cryo-EM can offer

glimpses of protein movements, they cannot reconstruct the complete free energy landscape

required to fully understand transitions between functional states at the atomic level [46].

Therefore, experimental techniques often combine with computational methods, such as

molecular dynamics simulations, to provide a more comprehensive view of protein dynamics

and energetics [51].

Literature Review

 25

2.3.2 Computational techniques

Computational techniques have been developed to study protein dynamics at various levels

of resolution and timescales. Quantum Mechanics (QM) and Molecular Mechanics (MM)

methods combine quantum mechanical calculations for specific regions (typically active sites)

with classical molecular mechanics for the rest of the system [52]. This hybrid approach

enables the study of chemical reactions and electronic interactions while maintaining

computational feasibility [52]. QM/MM is particularly valuable for investigating enzyme

mechanisms, chemical bond breaking/formation, and electronic effects in catalysis [52].

However, its high computational cost limits QM regions to typically 50-200 atoms, with

simulation timescales rarely exceeding picoseconds [52].

Coarse-grained (CG) simulations reduce computational complexity by grouping atoms into

larger units, such as representing amino acid residues with one or a few interaction sites [53].

Popular CG models include MARTINI, SIRAH, and elastic network models (ENMs) [54], [55],

[56]. This simplification enables the simulation of larger systems (hundreds of proteins) and

longer timescales (microseconds to milliseconds), allowing the study of large-scale

conformational changes [53], [56]. However, CG models sacrifice atomic detail and may miss

important local interactions [53]. Additionally, they tend to smooth the free energy landscape,

which can obscure finer details of energy barriers and local minima important for specific

biological processes [53].

Through stochastic sampling, Monte Carlo (MC) simulations explore protein conformational

space [57]. Unlike MD, MC methods generate new configurations through random moves and

accept or reject moves based on the Metropolis criterion [57]. These methods can easily

overcome energy barriers and are particularly useful for equilibrium properties [58]. However,

MC methods do not provide direct dynamic information and may struggle with complex

collective motions [59].

MD simulations provide atomistic detail and temporal evolution by numerically solving

Newton’s equations of motion [60]. Modern MD simulations cover timescales from

femtoseconds to microseconds (specialised hardware can reach milliseconds) and provide

atomic-resolution trajectories [60]. They use physics-based force fields (e.g., AMBER [61],

[62], CHARMM [63], OPLS [64], GROMOS [65], can incorporate various environmental

conditions, and enable calculation of thermodynamic and kinetic properties [66]. A visual

summary of this typical MD simulation pipeline is shown in Figure 2.4.

Literature Review

 26

Enhanced sampling techniques such as Replica Exchange, Metadynamics, and Umbrella

Sampling complement traditional MD by improving the exploration of conformational space

and calculating free energy landscapes [67]. These methods help overcome the limitations of

standard MD in sampling rare events and crossing high energy barriers, providing access to

longer timescale phenomena and thermodynamic properties that might be otherwise

inaccessible [67]. However, the price to pay for these methods is that it is generally challenging

to define appropriate collective variables or temperature ranges for effective exchange, and

reconstructing the free energy landscape a posteriori requires careful compensation for biases

and potential artefacts introduced by these techniques [67].

Figure 2.4 General workflow of a molecular dynamics simulation. The pipeline begins with system and topology
preparation, solvation and ion addition, followed by energy minimisation, thermal (NVT) and pressure (NPT)
equilibration steps, and a production run. The resulting trajectory is then analysed to extract dynamic and structural
properties. The workflow shown is general but is presented here with reference to the file formats used by
GROMACS, which is the selected simulation engine for this research.

Literature Review

 27

2.3.3 Molecular Dynamic Simulations (MD)

MD simulations are a widely used computational technique for studying the time-dependent

behaviour of molecular systems. They simulate the interactions between particles, typically

atoms or molecules, and provide detailed insight into proteins’ dynamics and conformational

changes over time.

In MD simulations, the motion of particles is determined by solving Newton’s second law of

motion, which states that the force 𝐹𝑖 acting on a particle 𝑖 is equal to the product of its mass

𝑚𝑖 and its acceleration 𝛼𝑖 [3]:

𝐹𝑖 = 𝑚𝑖 × 𝛼𝑖 = 𝑚𝑖 ×
𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
 (2.1)

Where 𝑟𝑖 represents the position of the particle at the time 𝑡. The force 𝐹𝑖 is defined as the

negative gradient of the potential energy function 𝑈 in relation to the position of the particle

[3]:

𝐹𝑖 = −∇𝑖𝑈(𝑟1, 𝑟2, … 𝑟𝑁)

 (2.2)

This potential energy function defines all interactions between atoms in the system [3]. The

classical mechanics approximation enables the simulation of large molecular systems over

biologically relevant timescales by solving these equations for all particles in the system [68].

MD captures both the local, fast movements (such as bond vibrations) and larger-scale

motions (such as protein folding or conformational transitions) by progressively adjusting the

positions and velocities of atoms over very short timesteps (typically on the order of

femtoseconds, 10-15 seconds) [68]. The accuracy of an MD simulation depends on the

underlying force field used to define these potential energy functions and their parameters,

the numerical integration scheme used to solve Newton’s equations of motion, and the applied

thermodynamic conditions such as temperature, pressure, and boundary conditions [68].

2.3.3.1 Force fields

Force fields provide a mathematical framework to describe the potential energy of a molecular

system [69]. The potential energy function 𝑈(𝑟) includes contributions from bonded and non-

bonded interactions [69].

Literature Review

 28

𝑈(𝑟) = 𝑢𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑢𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

 (2.3)

This can be expanded as:

𝑈(𝑟) = ∑ 𝑘𝑏 (𝑟 − 𝑟𝑖)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃 (𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑉𝑛 (1 + cos (𝑛𝜑 − 𝛾)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ 4𝜀

𝑝𝑎𝑖𝑟𝑠

[(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] + ∑

𝑝𝑎𝑖𝑟𝑠

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

(2.4)

Bonded interactions: In a molecular system, they describe how atoms connected by

chemical bonds interact. These include bond stretching, angle bending, and torsional

(dihedral) rotations. Bond stretching occurs when the distance between two bonded atoms

changes from its equilibrium value. This is typically modelled using Hooke’s Law as a harmonic

potential:

𝑈𝑏𝑜𝑛𝑑 (𝑟) = ∑ 𝑘𝑏 (𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

 (2.5)

The bond length is represented by 𝑟, with 𝑟0 denoting the equilibrium bond length and 𝑘𝑏 being

the force constant that describes the stiffness of the bond. Angle bending, which involves

changes in the bond angles between three atoms, is modelled similarly to bond stretching.

𝑈𝑎𝑛𝑔𝑙𝑒 (𝜃) = ∑ 𝑘𝜃 (𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

 (2.6)

Where 𝜃 is the bond angle, 𝜃0 is the equilibrium bond angle, and 𝑘𝜃 is the corresponding force

constant. Torsional (dihedral) interactions arise when atoms rotate around a bond. The

torsional potential energy is periodic, accounting for rotations around bonds:

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 (𝜑) = ∑ 𝑉𝑛 (1 + cos (𝑛𝜑 − 𝛾)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

 (2.7)

Where 𝜑 is the torsional angle, 𝑉𝑛 is the barrier height, 𝑛 is the periodicity, and 𝛾 is the phase

shift.

Non-bonded interactions: In a molecular system, these refer to forces between atoms that

are not directly bonded but still influence each other through spatial proximity. Non-bonded

interactions comprise van der Waals forces and electrostatic interactions.

Literature Review

 29

Van der Waals forces are short-range attractive or repulsive forces between atoms. These are

represented by the Lennard-Jones potential, which includes a repulsive term to prevent atoms

from collapsing and an attractive term at longer distances:

𝑈𝑣𝑑𝑊 (𝑟𝑖𝑗) = 4ε [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

]

 (2.8)

Here, 𝑟𝑖𝑗 represents the distance between atoms 𝑖 and 𝑗, ε is the depth of the potential (defining

the strength of the interaction), and 𝜎 is the distance at which the potential is zero.

Electrostatic interactions describe the forces between charged particles and are calculated

using Coulomb’s law:

𝑈𝑒𝑙𝑒𝑐 (𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 (2.9)

Here, 𝑞𝑖 and 𝑞𝑗 represent the charges on atoms 𝑖 and 𝑗, respectively, while 𝑟𝑖𝑗 denotes the

distance between them. This term is significant in defining how molecules interact, especially

in biological systems where long-range electrostatic interactions are important.

Force field in use: AMBER ff99SB*-ILDN

Several force fields have been developed for MD simulations, each optimised for different

molecular systems. Among the most widely used are AMBER [61], CHARMM [63] and

GROMOS [65]. The AMBER force field used for this research is the AMBER ff99SB*-ILDN

[70] variant.

The original AMBER ff99 [71] force field was designed to accurately describe the behaviour of

proteins, nucleic acids and other biomolecules by carefully parameterising the bonded and

non-bonded interactions. However, as computational techniques and experimental data

evolved, it became clear that specific dihedral parameters required refinement, particularly in

describing the flexibility of the protein backbone [71].

To address these issues, the AMBER ff99SB force field [71] was introduced, improving the

accuracy of protein backbone dihedrals by modifying the torsion potentials for the crucial φ

(phi) and ψ (psi) angles. Further modifications led to the development of AMBER ff99SB*-

ILDN [70], which incorporates both improved backbone torsion refinements and ILDN

Literature Review

 30

corrections for side chain rotamer distributions of isoleucine, leucine, aspartate, and

asparagine residues.

The AMBER ff99SB*-ILDN force field was selected for this research because it provides high

accuracy in modelling backbone dynamics and side chain behaviour, which is particularly

important for protein folding and protein-ligand interactions studies [70]. Its wide adoption and

extensive examples of published applications were additional reasons for adopting it.

When selecting force field parameters, several key factors must be considered: the chemical

environment (aqueous solution, membrane interface, or crystalline state), specific interaction

requirements (such as metal ions or post-translational modifications), and simulation

conditions (temperature, pressure, pH, salt concentration) [72]. Parameters should be

validated against experimental data, including structural properties from X-ray crystallography

or NMR and dynamic properties from spectroscopic measurements. For protein simulations,

ff99SB*-ILDN parameters have been extensively validated across these conditions,

particularly for standard amino acids in physiological environments [73].

2.3.3.2 Integration methods

Newton’s equation of motion in MD simulations determines how the system evolves [74].

Particle positions and velocities are updated incrementally, with the selected integration

method affecting both the accuracy and stability of the results [74].

Several integration methods are commonly applied in MD simulations, such as the Verlet

algorithm [75], the Velocity Verlet algorithm [76], and the Leap-frog method [77], [78]. The

Verlet algorithm updates positions based on previous positions and forces, though it does not

calculate velocities directly, which can sometimes be a limitation. By contrast, the Velocity

Verlet method updates positions and velocities at each timestep. In this study, the Leap-frog

integration method, a variation of the Verlet algorithm, was selected for its combination of

accuracy and computational efficiency.

The Leap-frog method updates velocities and positions at alternating timesteps, effectively

“leaping” over itself. This approach offers a time-reversible solution that remains

computationally stable, even when using larger timesteps, such as 1-2 femtoseconds.

Specifically, the method performs the following:

1. Updates velocities first at half-time steps:

Literature Review

 31

𝑢𝑖 (𝑡 +
𝛥𝑡

2
) = 𝑢(𝑡) + 𝛼𝑖(𝑡)

𝛥𝑡

2

(2.10)

Where 𝑢𝑖 is the velocity of particle 𝑖, 𝛼𝑖 is the acceleration derived by the forces acting

on the particle, and 𝛥t is the timestep.

2. Positions are updated using the velocities from step 1:

𝑟𝑖(𝛥 + 𝛥𝑡) = 𝑟𝑖(𝑡) + 𝑢𝑖 (𝑡 +
𝛥𝑡

2
) 𝛥𝑡

(2.11)

Where 𝑟𝑖 represents the position of particle 𝑖.

These equations are applied iteratively throughout the simulation, with the choice of timestep

being crucial for accuracy.

In MD simulations, the rapid vibrations of hydrogen bonds typically occur on the scale of 10

femtoseconds. A very small timestep, around 0.5 femtoseconds, is often required to capture

these motions accurately. However, constraining these bond lengths to their equilibrium values

can increase the timestep without losing accuracy. Algorithms like SHAKE [79], RESPA [80]

and LINCS [81] are commonly used to apply these constraints. In this thesis, the LINCS

algorithm was chosen to manage bond constraints because of its effectiveness in large

biomolecular systems, as well as its speed and reliability. Compared to SHAKE, LINCS

performs faster, especially when multiple bonds need to be constrained at once, and it is the

default algorithm for constraints in GROMACS [2] simulations.

The LINCS algorithm determines the positions of atoms in constrained bonds following each

integration step. It then iteratively adjusts these positions using a matrix-based method to

ensure that bond length constraints are satisfied throughout the simulation.

2.3.3.3 Thermodynamics conditions

In MD simulations, thermodynamic conditions regulate the system’s temperature, pressure,

and volume, influencing its time evolution. Thermodynamic ensembles are used to simulate

specific physical boundary conditions. The canonical ensemble (NVT) maintains a fixed

number of particles (N), constant volume (V), and steady temperature (T), with thermostats

employed to control the system’s temperature. This ensemble is typically applied when precise

temperature control is necessary, but changes in volume are not required. Common

Literature Review

 32

thermostats include the Langevin thermostat [82], Berendsen [83], and V-rescale [84]

algorithms.

The isothermal-isobaric ensemble (NPT) maintains a fixed number of particles (N), constant

pressure (P), and steady temperature (T) by using a thermostat and a barostat. The NPT

ensemble is often used in biological simulations as it reflects physiological conditions,

providing a more realistic environment for studying protein dynamics and interactions.

Pressure control is achieved through barostats such as Berendsen [83] or Parrinello-Rahman

[85]. In this research, both NVT and NPT ensembles were employed sequentially. Initial

system equilibration used the Berendsen thermostat to achieve target temperature efficiency

rapidly. The production simulations utilised the V-rescale thermostat [84] for accurate sampling

while maintaining system stability. The pressure was controlled using the Parrinello-Rahman

[85] barostat.

2.3.3.4 Solvation

In MD simulations, selecting an appropriate solvation model is essential for accurately

capturing the interactions between biomolecules and their solvent. Describing intermolecular

interactions when mediated or shielded by the solvent is also critical. Two main approaches

have been proposed over the years: explicit and implicit water models.

Explicit solvation models represent each water molecule individually with its coordinates and

degrees of freedom, providing detailed and realistic solvent-solute interactions. Standard

explicit water models include TIP3P [86], a three-site model with a rigid structure; TIP4P [86],

a four-site model with improved electrostatic representation; and SPC [87], the Simple Point

Charge model.

This research employed the TIP3P water model due to its computational efficiency while

accurately reproducing water’s physical properties. The model was also selected because it

is the reference model used for AMBER force field [88] parametrisation. It is a well-established

and extensively validated model for simulating globular proteins.

Implicit solvation models treat water as a continuous medium characterised by a dielectric

constant, offering reduced computational demands and faster simulation times. These models

enable efficient free energy calculations using Generalized Born [89] and Poisson-Boltzmann

[90]. However, implicit models cannot capture detailed solute-solvent interactions, such as

specific hydrogen bonding patterns or local solvent structure effects.

Literature Review

 33

2.3.3.5 Periodic boundary conditions

In MD simulations, the behaviour of biomolecules is typically studied in a finite simulation box

[91]. However, real biological systems exist in infinite environments where molecules can

move freely without encountering artificial boundaries [91]. To mimic this infinite behaviour,

periodic boundary conditions (PBC) are employed [91]. PBC eliminate artificial boundaries by

creating a system where molecules leaving one side of the box re-enter from the opposite

side, ensuring particles exist in a continuous environment [91].

The shape of the simulation box significantly impacts PBC implementation. The box must be

large enough to prevent interactions between a molecule and its periodic image, which can

create artificial surface effects [91]. A minimum distance of approximately 10 Å is typically

maintained between the solute and box boundary to prevent these self-interactions [86]. While

cubic boxes offer simplicity in implementation, truncated octahedral geometries can be more

efficient for spherical solutes by reducing the required solvent volume and, thus, computational

cost [92]. For this research, a cubic box was selected based on system requirements and

setup compatibility.

To ensure realistic simulations under PBC, accurate treatment of non-bonded interactions is

critical. Efficient calculation of these interactions is essential for simulating large systems over

biologically relevant timescales.

In MD simulations, non-bonded interactions, including van der Waals and electrostatic forces,

are typically evaluated within a defined cut-off distance [93]. Interactions within this cut-off

(typically around 10–12 Å in biomolecular simulations) are computed explicitly using the

Lennard-Jones potential for van der Waals interactions and Coulomb’s law for electrostatics

[93]. However, long-range electrostatic interactions beyond the cut-off are not ignored; instead,

they are efficiently approximated using the PME method [94], which decomposes

electrostatics into short-range (real space) and long-range (reciprocal space) components.

PME ensures that periodic boundary effects are handled accurately and that electrostatic

interactions are correctly reproduced across the infinite lattice of periodic images.

In this study, a cut-off distance of 10 Å was used for both van der Waals and short-range

Coulombic interactions, in accordance with the default settings recommended for the AMBER

ff99SB*-ILDN force field [70]. This cut-off value balances computational efficiency with

Literature Review

 34

accuracy, ensuring the reliability of the interactions simulated while leveraging PME to account

for long-range electrostatics.

2.3.3.6 Particle Mesh Ewald (PME)

Long-range electrostatic interactions in MD simulation systems with PBC are computed using

the PME method [94]. PME can decompose the electrostatic interactions into short-range and

long-range components [95]. The short-range interactions are calculated directly in real space

within a cutoff distance, while the long-range interactions are processed in reciprocal space

using Fourier transforms [95].

The electrostatic potential 𝜑(𝑟𝑖) for a particle 𝑖 is influenced by the positions and charges of

all other particles 𝑗 in the system and their periodic images [96]. This can be expressed as:

𝜑(𝑟𝑖) = ∑ ∑ 𝑞𝑖

𝑁

𝑗=1

(
1

|𝑟𝑖 − 𝑟𝑗 + 𝑘𝐿|
)

𝑘

 (2.12)

Here, 𝑘 represents the vectors corresponding to the periodic images, and 𝑟𝑖 − 𝑟𝑗 denotes the

distance between particles 𝑖 and 𝑗 [96].

This thesis used PME to ensure accurate and efficient computation of electrostatic

interactions, enabling realistic simulations of biomolecular dynamics in periodic boundary

conditions.

2.3.4 Computational analysis of protein dynamics through MD

Understanding protein dynamics is essential for studying biomolecular function, which often

relies on the flexibility and motion of atomic structures. MD simulations offer a robust

computational approach to examining these dynamics at the atomistic level, providing detailed

insights into the conformational landscape that proteins explore over time [45]. MD simulations

capture protein dynamics as an ensemble of atomistic configurations, or "conformations",

where each conformation represents a snapshot of the protein structure, collectively providing

a probabilistic view of its dynamic states [97].

These conformational ensembles can calculate several geometric properties to interpret

protein dynamics [98]. The root-mean-square deviation (RMSD) measures structural similarity

to a reference structure, while the radius of gyration (Rg) indicates the protein’s spatial

Literature Review

 35

distribution and compactness [93]. The centre of mass (COM) tracks overall protein position

and movement, and the root-mean-square fluctuation (RMSF) quantifies the local flexibility of

specific residues [93]. Interatomic distances provide a means to monitor specific interactions

and conformational changes [93].

Statistical measures can be employed to analyse distributions from different simulation

ensembles to determine the significance of changes in these properties, particularly when

comparing different conditions or mutations [99]. In this work, the following statistical methods

were used: Kullback-Leibler divergence [100], Bhattacharyya distance [101], and Pearson

correlation [102]. They enable quantitative comparisons between property distributions and a

practical way to estimate distances between distributions and, in turn, to estimate distances

in dynamical behaviour between simulations [99].

2.3.5 Enhanced sampling techniques

Sampling the conformational space when using MD simulations is challenging due to the high

dimensionality of protein systems and the substantial energy barriers in the energy landscape

[103]. Proteins often become trapped in local minima, making it difficult to efficiently sample

all relevant conformational states. Standard MD simulations may take a long time to explore

the entire conformational landscape, especially for transitions that occur on slow timescales,

such as protein folding, binding, or conformational changes [103]. To address these limitations,

several enhanced sampling techniques were developed over the years to accelerate the

exploration of conformational space and allow simulations to overcome these energy barriers

[103].

Among the most widely used enhanced sampling techniques are Umbrella Sampling [103],

Replica Exchange Molecular Dynamics (REMD) [103], and Metadynamics [103]. These

methods bias the system to promote exploration of less frequently sampled regions of the

energy landscape.

Umbrella sampling employs a series of biasing potentials, known as "windows", along a

reaction coordinate to improve sampling over energy barriers [104]. REMD runs multiple

system replicas at different temperatures, enabling exchanges that improve sampling

efficiency by allowing higher-temperature replicas to overcome energy barriers [105].

Metadynamics introduces a time-dependent bias to a set of chosen degrees of freedom,

known as collective variables (CVs) [106]. These CVs represent key structural changes within

Literature Review

 36

the system and act as geometrical measures describing important protein structure changes.

Common CVs include RMSD, Rg or distances between specific atoms [107].

2.3.6 MD simulations data in machine learning

The integration of MD data into ML and DL pipelines offers significant opportunities but

presents several challenges [4], [108]. MD simulations generate vast amounts of high-

dimensional, complex, and noisy data that capture the detailed temporal evolution of molecular

systems [4]. This data often includes trajectories of atomic positions and velocities, which are

difficult to directly utilise in ML models as they are not in the tabular or tensor format commonly

accepted by ML software [108]. As a result, the first obstacle is transforming this raw data into

a form that can be processed by computational models, especially when considering the scale

of simulations, which can produce terabytes of data over relatively short periods.

ML/DL models can “learn” complex patterns in data [109], [110]. Identifying patterns within MD

datasets makes it possible to understand biomolecular dynamics in greater detail, predict

molecular interactions, or even discover new conformational states that might be difficult to

detect through traditional methods [108]. Additionally, applying ML and DL to MD data has the

potential to accelerate the analysis of protein folding, ligand-binding events, and other critical

molecular processes, making the simulations more predictive and informative [6], [7], [111].

However, due to the scale and complexity of MD outputs, there remains a significant gap in

the field: efficient methods to preprocess, simplify, and integrate this data into ML models [4].

Addressing this gap will significantly enhance our ability to leverage MD simulations in

computational biology.

2.4 Protein design, engineering, and redesign

Protein design is a well-established and rapidly advancing field, focusing on generating new

proteins or modifying existing ones to achieve desired structural, functional, or dynamic

properties. The transformative contributions of computational methods in this field were

recognised with the 2024 Nobel Prize in Chemistry [5]. By engineering protein sequences at

the molecular level, researchers can modify a protein’s function, stability and interactions

within biological systems. Generally, these modifications have primarily focused on optimising

static properties, such as stability and binding affinity, while overlooking dynamic behaviours,

which are equally essential for biological function [112]. Dynamic transitions between different

structural states are crucial for protein function, such as ligand binding, enzyme catalysis, and

allostery [113], [114].

Literature Review

 37

Protein design is generally classified into template-based and de novo approaches [115]. The

template-based design uses known protein structures as scaffolds to guide targeted

modifications, introducing mutations at specific residues to improve stability, binding affinity,

or catalytic activity [115]. In contrast, de novo design generates new protein sequences

capable of novel folds and functions [115].

While both template-based and de novo design have facilitated significant advancements,

they traditionally rely on single-state models that often do not account for the flexibility required

for complex biological tasks, including ligand binding and allosteric regulation. Recent

developments in multistate design (MSD) address this by incorporating structural flexibility,

enabling the design of proteins that transition between functional states, thus allowing for more

accurate predictions of binding specificity and conformational changes [116], [117], [118]. MSD

is especially beneficial for designing proteins intended for conformational shifts, such as

molecular switches or regulatory enzymes, where transitions between states are crucial for

function [119].

Furthermore, MSD methods such as those implemented in iCFN [116] and POMPd [117] allow

for optimisation across multiple conformational states, demonstrating improved stability and

functionality for complex systems where single-state models fall short. To enhance flexibility,

MSD with backbone ensembles utilises multiple conformational templates, which not only

refines the accuracy of stability predictions but also allows proteins to occupy stable positions

across energy landscapes, lowering the barriers for transitions [112], [120]. Despite this, MSD

approaches focus on managing multiple stable conformations rather than fully exploring

dynamic transitions across all functional states [121]. However, recent advancements, such

as ML-guided sequence-structure prediction in tools like RoseTTAFold, are beginning to

bridge these gaps, enhancing the potential for accurate, flexible protein design [118].

2.4.1 Protein engineering, redesign, and mutation engineering

Related to protein design, protein engineering aims to enhance specific protein attributes—

such as stability, activity, or specificity—by systematically modifying natural sequences, often

targeted mutations [122]. One prominent approach in protein engineering is mutation

engineering, where selected mutations are introduced to fine-tune properties like stability,

binding affinity, or catalytic efficiency [122]. These modifications optimise protein performance

in specific conditions, making protein engineering invaluable in therapeutic development and

industrial biotechnology [122]. However, while mutation engineering is effective for stabilising

Literature Review

 38

proteins or enhancing their interactions, it frequently relies on computational models that focus

on static structures [123]. While robust in assessing stability changes, many of these tools do

not fully capture dynamic interactions within the protein, limiting their ability to address the

conformational flexibility required for complex biological functions [124].

Protein redesign builds on these principles by targeting specific attributes—such as binding

affinity or thermal stability—while maintaining the protein’s core structure [125]. This approach

is beneficial for applications where proteins need to perform specific functions while

maintaining their structural integrity [125]. Although established methods for redesign have led

to significant gains in optimising static properties, they often overlook dynamic behaviours,

which are essential for proteins that operate through conformational changes across multiple

states [125]. Consequently, there remains a need for more comprehensive frameworks that

can account for dynamic flexibility in protein redesign, particularly for applications that require

a range of functional states [125].

2.4.2 Computational tools for protein design

Several tools to model sequence-structure relationships, predict mutation effects, and

optimise protein properties have been developed in computational protein design (CPD) [126].

These tools vary in approaches and capabilities, from energy-based calculations to ML

methods [127]. At the core of CPD is the Rosetta software [128] suite and its Python interface,

PyRosetta [9], which provide comprehensive platforms for protein structure prediction, design,

and analysis. Rosetta employs energy functions and sampling methods to explore

conformational space, evaluate mutation impacts, and perform de novo design [128].

PyRosetta extends these capabilities through accessible Python scripting, enabling

researchers to implement custom protocols for mutation engineering, stability assessment,

and backbone flexibility optimisation [9].

FoldX [129] and AlphaMissense [130] represent two complementary approaches for mutation

impact analysis. AlphaFold, a revolutionary DL-based tool that predicts high-resolution protein

structures from amino acid sequences, has transformed structural biology [11]. Building on

similar deep learning advances, AlphaMissense predicts the functional consequences of

mutations by analysing sequence conservation patterns and structural context. FoldX employs

empirical force fields to calculate changes in free energy (ΔΔG) upon mutation, providing

quantitative predictions of protein stability changes [131], [10]. While FoldX focuses on

thermodynamic stability [131], AlphaMissense provides broader insights into potential

Literature Review

 39

functional impacts, including effects on protein-protein interactions and catalytic activity [130].

Together, these tools enable a comprehensive assessment of stability and functional changes

in protein design.

Several tools specialise in predicting mutation-induced changes in protein flexibility. DynaMut

[14] and DUET [132] employ ML approaches combined with molecular modelling to assess

how mutations affect local and global protein effects. While these tools provide rapid

assessments of flexibility changes, they primarily focus on equilibrium stability rather than

tracking conformational transitions between states [14], [132]. Complementary to these

approaches, elastic network models like the Elastic Network Contact Model [133] (ENCoM)

use normal mode analysis (NMA) to simulate protein motions. ENCoM specifically examines

how mutations influence protein vibrational modes and flexibility patterns, offering insights into

potential changes in protein dynamics and stability at a more mechanistic level [133].

ML has transformed CPD by enabling predictions of protein dynamics and mutation effects

[134]. Early ML approaches, including neural networks (NN) and support vector machines

(SVMs), successfully classified mutation impacts using sequence and structural features

[135], [136]. More advanced deep learning techniques, particularly convolutional neural

networks (CNNs) for spatial pattern recognition and recurrent neural networks (RNNs) for

analysing and learning time-dependent information from simulations, have expanded the

scope of analysis [137], [138], [139]. These methods can identify subtle patterns in protein

conformational dynamics that traditional physics-based methods might miss [139]. Despite

their potential, ML methods remain constrained by the limited availability of high-quality,

experimentally validated training data, particularly for proteins with multiple conformational

states [140]. This scarcity of comprehensive dynamic data can affect prediction accuracy,

particularly when identifying and classifying distinct conformational states in proteins that

undergo significant structural changes [140].

ProteinMPNN [141] represents a significant advance in MPD through its message-passing

neural network architecture. The tool specialises in designing protein sequences that maintain

stability across multiple conformational states, a crucial requirement for proteins that undergo

functional transitions [141]. Unlike traditional single-state design approaches, ProteinMPNN

can simultaneously optimise sequences for multiple backbone conformations, considering the

complex energetic landscape required for conformational flexibility [141]. This capability has

enabled the design of proteins with engineered dynamic properties, including allosteric

regulators and molecular switches [119].

Literature Review

 40

Two significant advances have revolutionised structure prediction: AlphaFold3 [142] and

RoseTTAFold [143]. AlphaFold3, building on its predecessor AlphaFold2 [11], achieves high

accuracy in protein structure prediction through its advanced attention-based DL architecture

[142]. RoseTTAFold introduced a complementary approach with its three-track neural network

that simultaneously processes sequence, structure, and interface information, offering insights

into protein flexibility that complement AlphaFold3’s predictions [143].

These tools have become foundational for protein design, with recent adaptations employing

advanced techniques. Activation maximisation has been used for sequence optimisation,

enabling the identification of sequences that fold into specific target structures [144]. Inpainting

approaches have been applied for structural refinement, allowing for the completion of partial

protein structures or the design of sequences for predefined motifs [143]. Most recently,

denoising diffusion models, as implemented in RFdiffusion, have generated novel protein

structures and sequences with high success rates in designing functional proteins, including

protein-protein interfaces, catalytic sites, and complex assemblies [145]. Together, these

advancements represent a significant leap forward in the automated design of functional

proteins.

Despite their remarkable success in structure prediction, both tools face limitations in capturing

protein dynamics [146], [147]. They primarily generate static snapshots and cannot fully

account for conformational changes induced by mutations or environmental factors [147].

Understanding protein dynamics still requires integration with other computational tools or

experimental validation methods to capture the full range of protein flexibility [148].

2.4.3 PyRosetta for mutation engineering

PyRosetta represents a powerful platform for mutation engineering, providing a Python-based

interface to the comprehensive Rosetta molecular modelling suite [9]. It combines Rosetta's

energy functions and sampling algorithms with the flexibility of Python scripting, enabling

systematic exploration of mutation effects on proteins [9]. The tool employs a hierarchical

approach to mutation analysis: first, it utilises MC sampling, which incorporates the concept of

fragments to efficiently explore conformational space, followed by energy minimisation to

refine local geometry [9]. PyRosetta’s MC exploration minimises the search space

dimensionality by utilising predefined structural fragments, ensuring computational efficiency

while maintaining biologically relevant conformations [9]. Additionally, PyRosetta’s

implementation of the Rosetta energy function, which includes terms for various physical

Literature Review

 41

interactions, allows for a detailed assessment of how mutations influence local and global

protein properties [128].

The Rosetta Energy Function (REF) is fundamental to PyRosetta’s mutation engineering

capabilities. It combines physics-based and knowledge-based terms to evaluate protein

energetics [149]. This function integrates multiple components: van der Waals interactions,

hydrogen bonding, solvation effects, and torsional potentials [149]. PyRosetta calculates a

total energy score for each proposed mutation, where lower values indicate more favourable

conformations [149]. This scoring system enables quantitative assessment of mutation-

induced stability changes [149].

PyRosetta implements MC sampling to explore the conformational landscape of mutated

proteins. The algorithm systematically evaluates amino acid substitutions at targeted

positions, generating new accepted or rejected conformations based on the Metropolis

criterion [150]. This probabilistic approach favours energetically favourable states while

maintaining the ability to escape local energy minima, ensuring thorough exploration of

possible conformations [9] [128].

Side-chain optimisation utilises rotamer libraries to sample energetically favourable

conformations for mutated residues [128]. PyRosetta evaluates each potential rotamer based

on its interactions with neighbouring residues, optimising local geometry and overall structural

stability [128]. This systematic sampling ensures accurate modelling of side-chain positions,

which is critical for predicting mutation effects on protein structure and function [128].

The final refinement stage employs gradient-based energy minimisation to optimise the

mutated structure [128]. This process fine-tunes bond angles, torsions, and atomic positions

to resolve steric conflicts and optimise interactions around the mutation site [128]. Detailed

refinement is crucial for mutations affecting functional sites, such as binding interfaces or

catalytic centres [149]. Together, these computational steps provide a comprehensive

framework for predicting and analysing protein mutations’ structural and functional

consequences.

2.5 Challenges in redesigning protein dynamics

The redesign of protein dynamics presents unique challenges due to the complexity of protein

motion and conformational flexibility [151]. While traditional protein engineering has

successfully optimised static properties such as thermal stability or binding affinity, engineering

Literature Review

 42

dynamic behaviours requires understanding and controlling transitions between multiple

conformational states [151]. These transitions are essential for protein functions, including

allosteric regulation, signal transduction, and molecular recognition [151]. The challenge is

amplified by the need to effectively explore and capture the information in the conformational

landscape [152]. Significant computational resources are required to capture local fluctuations

and large-scale conformational changes occurring over biologically relevant timescales [153].

Despite significant advances in computational protein design, current tools remain

predominantly focused on static structure prediction rather than dynamic behaviour [154]. This

limitation stems from technical and practical constraints: simulating protein dynamics requires

extensive computational resources to capture motions across biologically relevant timescales

[153]. Recent studies highlight the critical need for new computational frameworks to integrate

dynamic behaviour into the protein design process, balancing structural stability and functional

flexibility [112].

2.6 Summary

This chapter has presented an integrated view of proteins, from structural fundamentals to the

frontier challenges of dynamic protein design. The chapter examined protein structure, folding

mechanisms, and conformational dynamics and established the essential relationship

between molecular structure, protein dynamics and biological function. The detailed

exploration of MD simulations highlighted two challenges: managing and analysing the vast

amounts of high-dimensional data generated from MD simulations and the difficulty in

transforming this complex MD trajectory data into formats suitable for ML and DL applications.

The review of protein design methodologies revealed a fundamental gap in the field: the lack

of automated computational tools that can directly redesign protein dynamics, as current

approaches primarily focus on static structural properties rather than dynamic behaviour.

Although recent advances in computational methods and AI-based approaches have

enhanced our understanding of protein structure and function, these fundamental challenges

continue to limit our ability to fully leverage computational approaches for dynamic protein

engineering. Integrating enhanced sampling techniques with ML offers promising directions

for addressing these gaps, enabling more sophisticated protein engineering applications that

can account for and control dynamic behaviour.

Literature Review

 43

The goal of this thesis is to address these gaps by developing novel computational approaches

that can effectively handle MD simulation data, facilitate its integration with ML methods, and

provide automated tools for redesigning protein dynamics and, therefore, modifying protein

function.

Methods

 44

3 Methods

In this chapter, the methods used in this research are discussed in detail. Section 3.1

introduces ADK as the case study, explaining its biological significance and dynamic

behaviour. Section 3.2 outlines the generation of MD simulation data, covering the setup of

unbiased simulations and the specific protocols and software used, such as AMBER and

GROMACS, along with a dedicated section on the MD data generated for each toolkit (MDSS,

MDAM, and MDAP). Section 3.3 describes the data analysis and validation processes,

focusing on key geometric properties, techniques used to confirm the simulations’ stability and

principal component analysis. Sections 3.4, 3.5 and 3.6 discuss the development of MDSS,

MDAM and MDAP by integrating components from MDAnalysis, PyRosetta and gmxapi.

Section 3.7 describes the deployment of the toolkits on ARCHER2, while 3.8 covers using a

Docker container to ensure reproducibility across different computing environments. Section

3.9 highlights the use of Poetry for managing dependencies and packaging the toolkits.

3.1 Case study: adenylate kinase (ADK)

ADK is a small enzyme of 214 amino acids and is essential for regulating energy homeostasis

within cells [155], [156]. It facilitates the reversible transfer of a phosphate group between two

adenosine diphosphate (ADP) molecules, producing adenosine triphosphate (ATP) and

adenosine monophosphate (AMP) [155]. The enzyme’s activity is important for maintaining

nucleotide balance in the cell, where AMP acts as a key regulator in cellular metabolism and

signals energy deficiency [157]. Small fluctuations in the ATP-to-ADP ratio can lead to

significant changes in AMP concentration, allowing ADK to function as a sensitive metabolic

sensor [157]. This mechanism operates within and between cells through connected enzymes

[157]. The coordination of energy transfer and nucleotide signalling by ADK, mainly via its

isoform network, is crucial for processes such as mitochondrial energy, muscle contraction,

and cell motility, among others [155]. Furthermore, mutations in ADK have been associated

with several diseases, including primary ciliary dyskinesia and reticular dysgenesis, further

highlighting the importance of the enzyme in human health [155].

The structural dynamics of ADK are defined by two key conformational states – open and

closed – making it an excellent model for testing computational tools when studying examples

of protein dynamics [158]. ADK consists of three main domains: CORE (res 1-29, 68-117, 161-

214), LID (res 118-160) and NMP (res 30-67), each of which plays a specific role in catalysis

(Figure 3.1) [159]. During the catalytic cycle, the CORE domain remains relatively stable, while

Methods

 45

the LID and NMP domains sometimes undergo significant conformational changes to facilitate

substrate binding and product release [158]. These large-scale domain movements are

essential to the functionality of ADK as they allow the enzyme to switch between open and

closed states during the nucleotide exchange reaction [158].

Figure 3.1 Structural representation of the open and closed conformations of ADK. The structure is showing the
core domain (grey), AMP binding domain (red), and LID domain (blue). Structural figures were visualised and
rendered using PyMOL [160].

Due to its extensive research history and availability of experimental data, ADK, with its clearly

defined dynamics (i.e. open and closed conformational states) (Figure 3.1), provides a sound

system for testing and validation of methods for the analysis of conformational dynamics from

molecular simulations and, in the current work, of ML models for prediction of conformational

states [161], [162], [163], [164], [165], [166], [158]. Therefore, this system was chosen to test

and validate the three tools that were designed and implemented in this research (MDSS,

MDAM, MDAP). Simulations were performed only on the unbound state to provide a more

manageable framework for interpreting sampling and mutational effects on the intrinsic

dynamics of the system. Details on the ability of apo ADK to sample closed conformational

states are discussed in the context of mutations that affect (or induce) a pre-existing

equilibrium between the two primary functional states.

3.2 Generation of MD simulations data

ADK was selected as a model system for testing and validation of MDSS, MDAM, and MDAP

due to its well-defined and studied dynamic behaviour.

AMP

binding

domain

Core

domain

LID

domain

Methods

 46

3.2.1 Unbiased simulations

To test all three tools, unbiased simulations were used to capture the intrinsic dynamics of

ADK in the apo form. By allowing the protein to freely explore its conformational landscape

without the influence of external forces (e.g. as used in some enhanced sampling techniques),

a more complex scenario was tested with a low chance for the system to make spontaneous

transitions between its two main conformational states - open and closed. The main goal was

to observe the protein’s behaviour under conditions typically used in the early stages of studies

and under conditions easily replicated for large-scale automatic scanning of mutational effects,

as presented in Chapter 4. As presented in the conclusions, MDSS and MDAP can be used

directly to process data generated from enhanced sampling techniques. At the same time,

code extension is required to incorporate advanced sampling techniques in the MDAM

workflow.

Starting from the open state, the system rarely sampled the close conformation. By capturing

and generating simulation data with only a minimal fraction of closed conformations, MDSS’s

ability to reduce the MD trajectories’ size while preserving important information on both states

could be strictly tested. The unbiased simulations provided a critical basis for evaluating how

effectively the tool preserved key conformational transitions during subsampling, particularly

the large-scale motions of the LID and NMP domains, which are essential to the ADK function.

Additionally, ADK’s conformational transitions provided a robust system for testing MDAM’s

ability to redesign dynamics through automated mutation engineering. Since sampling the

closed state is rarer than sampling the open state, the goal was to explore whether specific

mutations could shift the equilibrium to the closed state in an unbiased simulation.

3.2.2 MD data for MDSubSampler

AMBER was used to generate MD data for testing MDSS, and it is known for its robust and

accurate biomolecular simulations [167]. The ff14SB force field was chosen due to its proven

accuracy in modelling protein structure and dynamics, making it particularly suitable for

simulating ADK [167].

The work presented in the following section is based on previously published work [99] that

details the system preparation and simulations for testing MDSS.

Methods

 47

System Preparation

The ADK structure (PDB ID: 4AKE) was retrieved from the Protein Data Bank [168] and

solvated in a truncated octahedral water box with TIP3P water molecules, maintaining a 10 Å

buffer between the protein and the box edges [86]. Four sodium ions were added to neutralise

the protein charge. Energy minimisation was performed in two steps using 2500 cycles of

steepest descent and conjugate gradient each, initially with backbone constraints.

Unrestricted minimisation followed. The non-bonded cut-off for both steps was set to 8 Å.

Long-range electrostatic interactions were handled using the particle mesh Ewald (PME)

method under periodic boundary conditions [94].

Equilibration

The system was equilibrated in NVT and NPT ensembles for 100ps and 250ps, respectively,

with a Langevin thermostat [169] and a Berendsen barostat [83]. The temperature coupling

time was set to 1.0 ps, and the pressure coupling time was 0.5 ps. These steps ensured that

the system reached a stable thermodynamic state before the production phase.

Production

The production run lasted 1 μs with a time step of 2 fs, allowing extensive exploration of

conformational samples of the ADK system. To test the MDSS toolkit, five independent

replicas of the ADK system were generated at 1 μs starting with the open structure. Notably,

one of these replicas exhibited a degree of transition between the open and closed

conformational states, allowing an analysis of the LID and NMP domain movements. The

resulting bimodal distribution in RMSD (from open conformation) indicated a dominant

population of open conformations and a smaller closed sample, as expected by literature

evidence suggesting that ADK cannot thoroughly sample a close state in the apo form. This

information helped test MDSS’s ability to preserve critical structural transitions during

subsampling (see section 5.1). This dataset provided a valuable test case for assessing how

effectively the tool captures the dynamics of important proteins without losing important

information.

3.2.3 MD data for MDAutoMut

To test the MDAM toolkit, ADK was considered an ideal candidate due to its well-characterised

dynamic behaviour (open and closed states). Following that, an example of mutations that

could potentially alter ADK’s dynamics was found in a study by Song et al. [165]. The authors

Methods

 48

examined two sets of mutations: one on the LID domain and another on the AMP binding

domain (Figure 3.2). Their simulations suggested that these mutations allowed ADK to sample

the closed state directly [165]. To test the MDAM toolkit, one of these sets of mutations was

used to perform a proof-of-concept study: assuming the positions of these mutations are

known (135 and 142), MDAM would have to identify the correct amino acid changes (V135G,

V142G) that can have the desired impact of ADK’s structure (move ADK from open to closed

state).

However, Song et al. [165] used short simulations of 100 ns. Considering that much longer

simulations are typically required to observe an attempt at ADK’s closure, a decision was made

to validate the results of this study on longer timescales. This would create an internally

derived reference dataset to confirm the results by Song et al. [165].

The focus was on the LID domain mutations (V135G and V142G) because of the LID’s

flexibility and critical role in regulating ADK’s conformational state. These mutations were

selected to offer a clear, interpretable example of how changes in this region impact protein

closure, allowing for straightforward visual validation by an expert to assess whether the

mutations promote movement toward the closed state. Therefore, to assess how these

mutations affect the dynamic behaviour of the enzyme, simulations for the following four

structures were generated: wild-type ADK (WT), single mutant V135G, single mutant V142G,

double mutant V135G/V142G (DM).

Figure 3.2 Structural representation of wild-type ADK showing with mutations studied by Song et al. [165]. Position
of mutations A55G and A37G on the AMP domain (highlighted in red) and of V135G and V142G on the LID binding
domain (highlighted in blue) are indicated in yellow spheres. During MD simulations, these mutations were
suggested to promote ADK’s closure. Structural figures were visualised and rendered using PyMOL [160].

GROMACS [2] was used for the simulation setup due to its powerful Python interface, gmxapi

[2], which facilitates the simulation process automation within MDAM. This integration allowed

V142G

A55G

A37G

V135G

Methods

 49

the preparation, running and analysis of MD simulations directly from the toolkit, ensuring the

entire process could be automated. Automating simulations was critical for efficiently handling

many replicas and multiple mutations to minimise human intervention and improve scalability.

System Preparation

System preparation was done using GROMACS [2] via the gmxapi Python interface. The

AMBER99SB*-ILDN [70] force field was used, widely recognised for its accuracy in modelling

protein dynamics. This force field is known to perform well in protein-only simulations under

standard conditions and has been validated in numerous studies [70], [170], [171], [172]. The

ADK structure (PDB ID: 4AKE) was retrieved from the Protein Data Bank [168] and placed in

a cubic box solvated with TIP3P water molecules, ensuring a 10 Å distance between the

protein and the box edges. To ensure charge neutrality, four sodium ions (Na+) were added.

Energy minimisation was performed in three stages. The first minimisation used the steepest

descent algorithm with position restraints of 2000 kJ/mol/nm² for the heavy atoms of the

protein and ran for 50,000 steps. This allowed the system to relax while the protein backbone

remained stable. The second minimisation step used the same algorithm but with no positional

restraints, allowing further protein relaxation. A conjugate gradient with flexible constraints was

applied in the final minimisation step. This allowed the entire system to reach a convergence

criterion where the maximum force was reduced to less than 10 kJ/mol/nm² over 10,000 steps.

Temperature and pressure equilibration

Following energy minimisation, the system underwent equilibration to stabilise temperature

and pressure.

Temperature equilibration was performed in six steps under the NVT ensemble, gradually

increasing the system’s temperature from 200 K to 300 K. Positional restraints were applied

to ensure structural integrity while allowing the system to adapt to temperature changes. The

first step involved heating the system to 200 K with heavy atom position restraints of 2000

kJ/mol/nm², using the Berendsen thermostat [83] to couple the temperature of the protein and

solvent. The second step increased the temperature to 250 K, reducing positional restraints

to 1000 kJ/mol/nm². The system was subsequently heated to 300 K under the same restraints.

The restraints were progressively reduced in the final three steps (500 kJ/mol/nm², 250

kJ/mol/nm², and none), allowing complete relaxation at 300 K.

Methods

 50

Pressure equilibration followed under the NPT ensemble in two stages. In the first stage, the

system was equilibrated to 1 bar using the Berendsen barostat [83], with position constraints

of 210 kJ/mol/nm² enforced on the protein’s heavy atoms. This step was run for 500 ps to

ensure initial stabilisation. In the second stage, the constraints were maintained, and the

system was further equilibrated for 500 ps using the Parrinello-Rahman barostat [85].

Additionally, the V-rescale thermostat [84] was employed during this stage to ensure accurate

temperature coupling, with a coupling constant of 0.1 ps applied to both the protein and solvent

groups. This approach ensured that the system achieved thermal and pressure stability before

production.

Production

Both 1000 ns (i.e., 1 μs) and 300 ns simulations were conducted to evaluate the effects of

selected mutations on the LID domain’s closure dynamics. Specifically, five replicas for each

structure (WT, V135G, V142G, and the DM) were run at 1 μs on the JADE2 supercomputer

[173]. Given the computational intensity of the 1 μs simulations, particularly concerning data

storage and analysis, ten additional replicas for each structure were created at 300 ns on the

ARCHER2 [174] supercomputer. These shorter simulations allowed for broader sampling and

aligned with the study by Song et al. [165], facilitating an accurate assessment of mutation-

induced changes in ADK dynamics.

3.2.4 MD data for MDAutoPredict

To test MDAP, the second replica of the 1000 ns of the DM (generated on JADE2) was used

(Figure 3.3). This specific replica exhibited a clear bimodal distribution in its conformational

states, capturing both open and closed conformations of ADK (see section 5.2). This feature

made it ideal for training and testing MDAP, as the objective was to evaluate its capability to

train a predictor of protein state labels (open, closed, or intermediate) from MD trajectories.

By selecting a trajectory that had sampled both conformational states, a robust dataset for

developing and validating the ML based predictions was ensured, facilitating the exploration

of how effectively the tool can classify and differentiate between distinct structural states.

3.3 Data analysis and validation

Methods

 51

After generating the MD simulations, the next step was to ensure the integrity and reliability of

this data. This goal is achieved through a series of tests and analysis steps that confirm that

the system behaves as expected under biological conditions.

Trajectory concatenation and preprocessing

The first task was to transfer the simulation data from the supercomputers (JADE2 and

ARCHER2) to external drives in the Brunel University system. This process enabled efficient

local processing and analysis. Once the data was securely transferred, the next step involved

concatenating the multiple trajectory files (e.g., part1.xtc, part2.xtc, part3.xtc) into a single,

continuous dataset using GROMACS. The 24h limit on HPC queues meant that each

simulation required multiple restarts. The concatenation was done to ensure a smooth and

comprehensive simulation analysis.

Figure 3.3 Table summary of the MD simulations generated using JADE2 and ARCHER2 supercomputers.
Simulations were performed for the WT, V135G, V142G, and DM systems. JADE2 simulations had longer
trajectories (1 μs per replica), while ARCHER2 simulations used 30 ns trajectories across 10 replicas to explore
short-term dynamics. All simulations used a 2 fs timestep and saved data at 1 ps intervals.

Then, water molecules and ions were removed to reduce computational time during analysis

and focus exclusively on the protein structure and its dynamics. All subsequent analyses were

optimised to focus on conformational changes in the protein.

Figure 3.3 lists the replicas and trajectories, providing an overview of the different runs, their

durations, and the structures simulated in each case.

Visual inspection with VMD and PyMOL

To inspect the behaviour of the system during the simulation, visual inspection tools such as

Visual Molecular Dynamics (VMD) [175] and PyMOL [160] were used to check the trajectory

manually. This step helped ensure that the protein maintained a folded structure and

Methods

 52

underwent natural conformational changes without signs of distortions. The .gro and .xtc files

generated from the processed trajectories were loaded into these visualisation tools and

enabled detailed observation of protein movements and potential issues, ensuring visual

coherence of protein behaviour.

Key geometric properties

After visual inspection confirmed that the simulations appeared structurally sound, the focus

shifted to analysing key geometric properties:

• Root Mean Square Deviation (RMSD): RMSD was calculated focusing only on the

C-alpha atoms. This measurement is crucial for assessing how much the protein’s

structure deviates from a reference conformation, in this case, the starting

conformation, over time. A stable RMSD indicates that the protein remains properly

folded and exhibits the expected conformational changes.

• Radius of Gyration (Rg): Calculating the Rg provided insights into the protein’s

compactness during the simulation. This property is fundamental to confirm that the

protein has not unfolded or collapsed, as such events would indicate that the simulation

does not accurately represent the protein’s natural state in this case.

• Root Mean Square Fluctuation (RMSF): The RMSF was used to determine which

protein regions, such as loops or active sites, had the greatest flexibility. This property

is crucial for understanding local fluctuations in the protein.

• Distance Between Two Key Residues: Specific distances between functionally

important residues were measured. These distances helped validate whether key

residues involved in protein function are in the expected relative position.

• Centre of Mass Distance (COM Distance): The distance between the COM of the

LID and AMP binding domain (AMPbd) was calculated to track large-scale domain

movements during the simulation. This analysis provided insights into the relative

positioning of these domains, which are critical to ADK’s functionality, particularly in

understanding how the protein switches between open and closed conformations.

In addition to geometric properties, their distributions were studied. Specifically, overlapping

distribution plots were generated for all properties after the concatenation of all replicas for the

WT and the DM. The plots included both simulated structures (WT and DM) to compare the

Methods

 53

system’s behaviour before and after the set of mutations was introduced to the LID domain of

ADK. Thus, broader trends were observed, as well as differences in the dynamic behaviour of

both structures and additional insights beyond individual measurements.

Energy and temperature checks

Monitoring the energy and temperature of the system over time was a crucial part of the

validation process, ensuring that the system remained thermodynamically stable and behaved

realistically. The energy diagrams captured relative changes in potential, kinetic, and total

energy during the simulation. To validate the stability of the simulation, two key measures were

applied:

• The calculation of the standard deviation as a percentage of the mean helped analyse

the relative fluctuation in energy values ((SD of values/average of values) x 100). This

determined the extent of energy fluctuations in the system and ensured that they

remained within an acceptable range.

• Another approach to measuring energy fluctuations was to calculate the interquartile

range (IQR) and compare it to the median ((Q3 – Q1) / median x 100). A result below

0.5% indicated minimal changes and confirmed the stability of the energy profile.

Likewise, the temperature was monitored to ensure it remained close to the target value of

300K, as expected from the thermostat settings. The average temperature was checked to

ensure it remained close to this target with minimal fluctuations (preferably within 0.6% of the

target temperature). Large temperature deviations would have suggested simulation problems

or distortions, so the goal was to maintain stable thermal behaviour throughout the simulation.

Principal Component Analysis (PCA)

PCA was used to extract collective variables describing the largest amplitude motions. PCs

are generally considered a good approximation of putative functional motions. By derivation,

they are ranked by decreasing variance, with the first components capturing most of the

system’s conformational variability. The projection of the simulation data onto the top

components can generally show the most critical conformational changes, such as domain

opening and closing, like in this study. Additionally, a porcupine plot (see Figure 5.16) was

generated as part of the analysis to visualise the collective movements, highlighting key

structural changes observed in the simulation data (i.e. opening and closing of ADK).

Methods

 54

The main objective of this analysis was to extract easy-to-interpret collective variables

associated with the known (and expected) conformational changes. Analysis of the distribution

of motions along the PCs was also used to confirm whether a bimodal distribution is observed

in the simulation, describing the two functional states (open and closed). PCA was

instrumental in extracting and confirming collective motions and measuring the extent to which

the mutations affected global dynamics. The bimodal distribution was particularly evident when

projecting the simulation data along the first principal component (PC1), which captures the

primary conformational change corresponding to the lid closing-to-opening motion. The lid

RMSD also demonstrated this bimodal behaviour, reinforcing the observation of distinct

conformational states along the direction of the structural transition described by PC1.

Further analysis with VMD and PyMOL

Beyond the initial visual inspections, VMD and PyMOL were also used to examine the

structural changes over the filtered trajectory accounting for only single PCs, one at a time.

Comparing these projections and filtered trajectory for the WT vs DM, it was possible to show

how specific mutations affected the conformational change.

Conclusion of data validation workflow

This strategy ensured that all aspects of the MD simulations were thoroughly validated. By

combining automated checks of geometric properties with manual visual inspection in VMD

and PyMOL, validation of the reference data used for testing the MDAM toolkit was completed

successfully. All data analysis steps, and plotting were performed using R [176], and the code

is included in Appendix V. PCA was performed with GROMACS.

3.4 MDAnalysis

MDSS was built on top of MDAnalysis, a well-established Python library for analysing MD

simulations [8]. This library provides a comprehensive framework for reading, manipulating,

and analysing large-scale MD datasets, making it an ideal foundation for MDSS. The

integration of MDSS with MDAnalysis forms the basis for the automated workflows developed

in this project. These workflows were further extended and integrated into the MDAM and

MDAP toolkits, enabling a seamless pipeline for subsampling, mutation redesign, and

predictive modelling of protein dynamics.

Methods

 55

Figure 3.4 Simplified representation of the three tools MDSubSampler, MDAutoMut, and MDAutoPredict and their
integration with external Python libraries (e.g., MDAnalysis, gmxapi, PyRosetta, sklearn). The figure highlights the
core internal modules of each toolkit (e.g., protein_data.py, mutation_workflow.py, learner.py), illustrating the
modular architecture and functional components of the workflow. The MDSubSampler, shown in orange under
MDAutoMut and MDAutoPredict, indicates its foundational role in building these toolkits. This is a simplified
depiction of the full design, as the complete implementation involves additional classes and modules.

Figure 3.4 provides an overview of the modular design and its core components to illustrate

the relationships between the developed toolkits and their integration with existing Python

libraries. This figure demonstrates how each toolkit builds upon and interacts with external

libraries and internal modules, forming a cohesive computational framework for protein

dynamics analysis and prediction.

The MDAnalysis library uses the NumPy package and treats atoms, residues, and trajectories

as objects, making it highly efficient for extracting detailed structural information from MD

simulations. The heart of MDAnalysis is the Universe class, which represents the entire

simulation system, including topology and trajectory files. The Universe class enables easy

extraction of atomic coordinates and other geometric properties using several built-in methods

and attributes.

The Universe contains an AtomGroup object that represents all the atoms in the system

and organises them into higher biological groupings such as Residue and Segment. This

design reflects the hierarchical structure of proteins, where atoms form residues and residues

are combined to form segments. Each atom belongs to a residue, and each residue is part of

a segment. MDAnalysis’s design aimed to embed biochemical concepts directly into its class

structure, making it highly intuitive for protein modelling and analysis (Figure 3.4).

Methods

 56

Figure 3.5 MDAnalysis class structure, highlighting the relationships between key classes such as Universe,
AtomGroup, Residue, Segment, Reader and Writer classes that enable reading and writing trajectories. The ability
to seamlessly integrate MDSS and MDAM into MDAnalysis highlights the strength and versatility of this library, by
leveraging its modular design. The figure was taken from Michaud-Agrawal et al. [8], © Wiley Periodicals, Inc.

MDSS leverages these structural representations by using MDAnalysis to select and analyse

specific groups of atoms within a protein trajectory. The library’s functionality is extended to

perform a posteriori subsampling operations to protein trajectories, where it selects a subset

of frames from the simulation, ensuring that the distribution of important geometric properties

(e.g. RMSD) is consistent between the original and subsampled trajectory. The Universe

class selection capabilities allow users to focus on specific atoms or residues and precisely

analyse critical regions such as the LID and NMPbd domains in ADK.

A key feature of MDAnalysis is the TimeStep object, which provides access to individual

trajectory frames, including the coordinates of atoms and unit cell dimensions. This feature is

crucial for navigating the trajectory, allowing users to jump between frames or select specific

points in time for detailed analysis. The Reader class, responsible for reading trajectory files,

works with the TimeStep object and facilitates extracting and analysing specific frames.

MDSS and MDAM rely on this functionality to retrieve the most relevant snapshots of protein

dynamics for their respective tasks.

The combination of MDAnalysis and MDSS enables MDAM to efficiently prepare and simulate

the data, engineer mutations into the protein structure (single or multiple) and compare the

dynamics between WT and Mutants by comparing distributions of geometric properties.

Methods

 57

3.5 PyRosetta

PyRosetta [9] was used in the MDAM workflow for the mutation engineering process within

the Mutation module. PyRosetta is a Python-based interface for the Rosetta software suite

designed for high-resolution protein structure prediction, design and mutation analysis [9]. It

provides powerful tools for manipulating protein structures at the atomic level, including the

ability to introduce mutations, optimise rotamers, and calculate energetics using all-atom force

fields [9].

In the MDAM workflow, PyRosetta [9] can perform targeted mutations (single, double or

multiples) on the inputted protein structure. It is responsible for introducing new residues at

selected positions and assessing their impact on the protein’s overall structure. PyRosetta [9]

facilitates this process using the fa_standard all-atom force field. This force field is

optimised for energy calculations of all atoms and includes contributions from van der Waals

interactions, electrostatics, solvation effects, and hydrogen bonds [149]. The fa_standard

force field ensures that the mutations are energetically favourable and do not cause

destabilising structural changes, making it suitable for mutation analysis [149].

The mutation process in MDAM begins with extracting a specific frame from the MD

simulation, which is then converted into a pose object. This pose represents the 3D protein

structure in PyRosetta [9]. The ChemicalManager is used to access the required residue

types, while the ResidueFactory creates new residues that replace the original target

residues at specific positions [128]. Once a mutation is introduced, PyRosetta’s

PackRotamersMover optimises the side chain conformations (rotamers), ensuring the new

residue fits into the protein structure without steric clashes or other unfavourable interactions

[128].

Following the rotamer optimisation, the scoring function fa_scorefxn, part of the

fa_standard force field, can evaluate the energetic impact of the mutation on the protein

[149]. This scoring function provides a quantitative measure of the effect of the mutation and

can assess how it affected the stability and dynamics of the protein [149]. While the score

provides a general indication of structural stability, protein dynamics between WT and mutant

structures are compared using MDSS. Specifically, a comparison of the distribution of relevant

geometric properties between the WT and each mutant determined whether the mutations

promoted the desired conformational shifts in the protein.

Methods

 58

In the proof-of-concept study, MDAM was tested with two specific single mutations (V135G

and V145G) and a double mutant (V135G/V145G) in the LID domain of ADK to investigate

how these mutations can affect ADK’s dynamics. This proof-of-concept was performed to

validate the performance of the library. However, MDAM is a general-purpose toolkit designed

to handle any set of mutations, where the user enters a list of mutations that the toolkit should

handle. Depending on the user’s preference, the toolkit can flexibly apply these mutations in

single or multiple modes and introduce the mutations sequentially or simultaneously.

Once the mutations are applied, the toolkit generates the simulations for the mutated

structures. It then compares the dynamics between the WT and each mutant until the desired

change in dynamics is achieved. Additionally, MDAM includes a heuristic scanning approach

that iteratively narrows the mutation search space by excluding ineffective candidates based

on intermediate results. This strategy focuses computational resources on promising

mutations, efficiently identifying those that shift protein dynamics toward a desired state (e.g.

promoting closure in the LID domain).

Tool/Library Version License
MDAnalysis 2.7.0 GPL-2.0
PyRosetta 4 (2024.01 Release) Free for academic use
gmxapi 0.4.2 LGPL-2.1
GROMACS 2022.6 LGPL-2.1
MDSubSampler 0.0.8 GPL-3.0-only
Seaborn 0.13.2 BSD-3-Clause
Dictances 1.5.3 MIT
Matplotlib 3.6.2 PSF
Numpy 1.23.5 BSD-3-Clause
Pandas 1.5.2 BSD-3-Clause
pytest 7.2.0 MIT
pytest-mock 3.10.0 MIT
psutil 5.9.4 BSD-3-Clause
Scikit-learn 1.2.2 BSD-3-Clause
Setuptools 69.0.3 MIT
Black 22.10.0 MIT
IPykernel 6.23.1 BSD-3-Clause
Jupyter 1.0.0 BSD-3-Clause

Figure 3.6 Overview of software tools and libraries used in this thesis, including their versions and licenses. This
table ensures compliance with software usage guidelines, such as for PyRosetta installation. A license was
obtained for necessary components.

3.6 GMXAPI

The gmxapi [177] Python interface played a central role in automating the preparation and

simulation of the MD data within the MDAM workflow. Specifically, using gmxapi [177], the

Methods

 59

simulation process – from system preparation to mutation analysis – was fully automated,

ensuring efficient execution and minimal manual intervention. The mdprep.py module (Figure

3.4) supported the entire workflow, which was used to prepare the system and generate

simulations automatically for the WT and each mutated structure.

The mdprep.py module, designed as a standalone script, automates the system preparation

and simulation generation for MDAM workflow. This module covers all aspects of system

setup, including solvation, ions addition, energy minimisation, temperature and pressure

equilibration, and production. The mdprep.py is versatile enough to run independently in a

Python interface or seamlessly integrate with gmxapi. A standard preparation protocol (see

section 3.2.3) was implemented, but MDAM can be easily customised to offer different

strategies for system preparation.

When a mutation is inserted in the protein structure, mdprep.py can automatically prepare the

system for a new round of simulations. This process includes generating the input files needed

to run the simulations and applying the protocol described in section 3.2.3, ensuring

consistency across all simulation runs.

Using gmxapi also facilitates efficient resource management by allowing simulations to be

submitted to HPC queues for parallel execution or paused depending on the real-time analysis

of the simulation results. This flexibility in managing simulations significantly reduces the

burden of conducting large-scale mutation studies, especially when testing multiple ADK

mutants in parallel.

3.7 Deployment of MDAM on ARCHER2

Given the computational cost of running MDAM on large sets, particularly in preparing and

generating MD simulations, it was necessary to deploy the tool on a dedicated HPC facility.

Through HecBioSim (EPSRC grant EP/X035603/1), allocation access was provided to the

EPCC supercomputer ARCHER2. Deployment was designed ad-hoc for it.

Initial testing on local systems revealed significant limitations in laboratory equipment and

personal laptops. The high memory demands, and computing power needed to efficiently

simulate MD trajectories for the WT and multiple mutants made local resources unsuitable. In

contrast, the ARCHER2 supercomputer’s CPU-focused architecture optimised for software

like GROMACS provided an ideal platform for deploying MDAM. Utilising ARCHER2 enabled

Methods

 60

the large-scale analysis of mutation effects on protein dynamics, which would not have been

possible with local resources.

The overall goal of deploying MDAM on ARCHER2 was to redesign protein dynamics by

systematically introducing multiple mutations into the protein structure while employing a

heuristic approach to efficiently explore and identify the mutation that produced the desired

effect on protein dynamics. By automating the simulation process, MDAM could efficiently test

the impact of each mutation, evaluating how well they induced the targeted dynamic changes.

Given the intensive computational requirements of generating these simulations, ARCHER2’s

processing capabilities allowed MDAM to run these tasks much faster and more efficiently

than on local systems.

The steps to deploy MDAM on ARCHER2 were as follows:

1. Initial Setup: ARCHER2 provides multiple disk partitions, including the home directory

for persistent storage of user files and the working directory for high-performance,

temporary storage needed during computational tasks. The home directory has limited

space and is intended for configuration files and essential data. In contrast, the working

directory offers significantly more space and is optimised for large-scale computational

tasks. Given the space constraints in the home directory, the Python environment and

its dependencies were installed in the working directory. To accommodate this setup,

the .local directory (used for storing user-installed Python packages) and the ".cache"

directory (used for caching downloaded dependencies) were moved to the working

directory. Symbolic links were created from these directories back to the home

directory, ensuring seamless functionality while utilising the expanded storage capacity

of the working directory.

➢ cd $HOME

➢ mkdir /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs .

➢ mkdir /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home

➢ mv .local /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home

➢ mv .cache /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home/.local .

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home/.cache .

2. Environment Creation: A Python virtual environment was created to install and

manage the required software packages. These included key libraries for MD

Methods

 61

simulations and ML, such as MDAnalysis, gmxapi and PyRosetta. Since MDAM

integrates these libraries into its workflow, setting up this environment was critical to

ensure smooth execution on ARCHER2.

➢ module load PrgEnv-gnu

➢ module load cray-python

➢ python -m venv --system-site-packages /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev

➢ source /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate

➢ python -m pip install ipython seaborn scikit-learn mdanalysis

3. Installing gmxapi and PyRosetta: The installation process involved loading the

appropriate GROMACS module and running the PyRosetta installer to ensure all

dependencies were configured correctly.

➢ source /work/y07/shared/apps/core/gromacs/2022.4/bin/GMXRC

➢ pip install --no-cache-dir gmxapi

➢ pip install pyrosetta-installer

➢ ipython

➢ import pyrosetta_installer

➢ pyrosetta_installer.install_pyrosetta(type='MinSizeRel')

4. Job Submission: Test jobs were submitted after setting up the environment to ensure

that the MDAM workflow could run smoothly on ARCHER2. A simple job submission

script was written to run a Python test script to ensure the environment was configured

correctly, and the job ran successfully on a single node with a CPU. The python_test.py

script validated the deployment by loading a protein structure into MDAM’s

environment.

 submission_script.sh

#!/bin/bash --login

#SBATCH --job-name=python_test

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

#SBATCH --time=00:10:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=standard

Methods

 62

module load cray-python

source /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate

python python_test.py

 python_test.py

from mdam.protein import Protein

pdbfilename = "4AKE.pdb"

p = Protein(pdbfilename, pdbfilename, pdbfilename)

An MDSS and MDAM zip file was downloaded from the GitHub repository to the home

directory in ARCHER2. After extracting the files, the required Python scripts (mdprep.py,

mutation.py, mdautomut_workflow.py) were created in the home directory. These

scripts were essential for managing the workflow within MDAM, including MD preparation,

mutation engineering, and simulation production.

The successful deployment of MDAM on ARCHER2 demonstrated that the tool could be

executed efficiently on high-performance computing resources, enabling large-scale

automation of protein dynamics redesign. This deployment highlights the potential to explore

multiple mutations and their impact on dynamics at a system level, which would be unfeasible

with standard computing resources.

However, demonstrating successful deployment does not inherently confirm the correctness

of the tool’s results. To ensure accuracy, additional validation steps were implemented. These

included benchmarking MDAM’s outputs against known experimental data and simulated

results from smaller-scale systems to verify consistency and correctness. This dual approach

establishes the deployment’s feasibility and validity by showing that MDAM can run effectively

at scale and confirming that it produces scientifically reliable results.

Distribution and availability

To ensure accessibility for future users, the MDSS library [99], which is a critical component

of this workflow, is openly available under the GPL-3.0 license at its GitHub repository:

https://github.com/alepandini/MDSubSampler.

MDAM is hosted on GitHub (https://github.com/alepandini/MDAutoMut) and is going to be

publicly available at time of submission of the associated manuscript.

Methods

 63

MDAP, while not currently open source, is actively being developed to make it publicly

accessible upon publication of relevant manuscript. The code for MDAP is provided in

Appendix IV.

In addition, all submission scripts necessary for running the tool on ARCHER2 after

deployment are included in Appendix II.

3.8 Containers – Docker

Running MDSS with all its dependencies presented significant challenges, especially when

switching operating systems (lab machine-Linux, personal laptop-MacOS). The different ways

these operating systems handle libraries such as MDAnalysis and NumPy made maintaining

compatibility difficult. Ensuring the correct versions of these dependencies and managing

environment-specific variations often resulted in conflicts that hindered the toolkit’s testing

progress. Given the large volume of MD trajectories to be processed, maintaining a consistent

design was critical to implementing and testing the toolkit.

To solve this problem, a Docker container [178] was employed to package MDSS and its

dependencies in a single, self-sufficient environment, and it is made available as part of the

software package. Docker allows the user to create a container that encapsulates the

operating system, necessary libraries and the application itself. This approach guarantees

platform consistency and allows the software to operate smoothly regardless of the underlying

system.

Using Docker brought several benefits: First, it eliminated the need to manually install

dependencies, which was particularly beneficial when configuring multiple machines (lab

machines, personal laptops). Second, by isolating the software environment from the host

system, Docker reduced the risk of version conflicts and made the entire pipeline more

manageable. It also made the results easier to reproduce because users could pull the same

container and get identical results without additional configuration. The container is specifically

designed to handle the MDSS workflow.

The Docker image was built using a Dockerfile that defined the necessary steps to set up

the environment, including installing MDSS and other required libraries. Users could easily

interact with the container through the command line, making the setup user-friendly and

adaptable to various computational environments.

Methods

 64

Further details on the Docker container configuration and instructions on how to use it with

MDSS can be found in the MDSS GitHub repository, available at

https://github.com/alepandini/MDSubSampler.

3.9 Wrapping the toolkits with Poetry

Since MDSS and MDAM are Python-based toolkits, managing dependencies was essential

for ensuring smooth development and distribution. Poetry [179] was used to package the

libraries and make them pip-installable, a tool specifically designed for managing Python

dependencies and packaging Python projects. Poetry helped to efficiently organise all the

required libraries, maintain compatibility across environments, and streamline the packaging

process for both toolkits.

By defining all dependencies in a single pyproject.toml file, Poetry simplified the setup

and ensured consistency. Additionally, it facilitated the creation of isolated virtual

environments, preventing conflicts with system-wide packages or other projects. Users can

easily install the libraries from the Python Package Index (PyPI) using the pip install command.

To set up and run MDSS and MDAM with Poetry, users can follow these steps:

➢ poetry install # Install dependencies and create the virtual

environment

➢ poetry build # Build the package

➢ poetry shell # Activate the virtual environment

These commands ensure proper installation, packaging, and environment setup. Detailed

instructions for both toolkits can be found in the respective GitHub repositories (see section

3.8 for links).

MDAP has been developed to demonstrate a proof-of-concept, extending MDAM into an ML

pipeline capable of predicting conformational states for a given molecular system. Future work

will focus on refining this tool and packaging it as a standalone toolkit for broader use and

integration into research workflows.

Methods

 65

3.10 Summary

This chapter presented the methods and tools used to develop, test, and validate the MDSS,

MDAM, and MDAP toolkits. It detailed the protocol for setting up MD simulations using ADK

as a case study, including the generation of unbiased simulations and analysis to ensure the

reliability of the data. The chapter also described integrating software such as MDAnalysis,

PyRosetta, and gmxapi and deploying the toolkits on ARCHER2 for scalability. Docker

containers and Poetry were employed for environment management and distribution to ensure

reproducibility and ease of use.

Design, implementation, and testing

 66

4 Design, implementation, and testing

The design, implementation, and testing of the three novel tools that were developed in this

thesis are presented in this chapter: MDSubSampler (MDSS), MDAutoMut (MDAM) and

MDAutoPredict (MDAP). By providing a concise overview of design, implementation, and

testing, the chapter provides a compact and clear framework for understanding how these

tools collectively address the complexities of managing large-scale MD data, automatically

redesigning protein dynamics, and integrating MD simulations into managing the ML

framework to perform predictions of MD properties. First, the software design and core

components of each tool are introduced, followed by the functionality, software implementation

and accessibility. Finally, the approach to testing each toolkit is shown.

4.1 MDSubSampler tool

MDSS was designed to address the need for modular tools to subsample large MD datasets

and preprocess them for ML/DL workflows. MD trajectories are recorded in a structured format

that inherits the convention for data recording from the early times of molecular simulation

studies and is not designed to be directly used in ML/DL pipelines. Additionally, the large

volume of recent long timescale trajectories makes them challenging to analyse, and this type

of analysis can be computationally intensive. They generally have a low signal/noise ratio.

MDSS is designed for a posteriori subsampling large MD trajectories. Specifically, the toolkit

can extract important protein conformations, reduce data size, and remove noise while

preserving key structural information. Additionally, MDSS can reformat MD data for ML/DL

purposes and can be used to compare protein dynamics between different trajectories by

calculating similarity scores between values of dynamics descriptors using statistical methods.

The work presented in this chapter is based on previously published work by Oues et al. [99]

that details the design, implementation and testing of MDSS.

4.1.1 Software design and core components

MDSS is an object-oriented modular Python library. Built on top of the MDAnalysis framework

[8], it performs subsampling of large MD trajectories, reformatting data for ML pipelines, and

enables comparison of time-dependent descriptors of protein dynamics across simulations.

The toolkit is built around four core Python classes: ProteinData, ProteinProperty,

Design, implementation, and testing

 67

ProteinSampler, and Dissimilarity. Each of these classes serves a specific role within

the framework, and they contain specialised subclasses to model different properties and

processes associated with molecular dynamics data. The class diagram in Figure 4.1 shows

the relationships between the core classes and their subclasses.

ProteinData class

The ProteinData class is central to the toolkit and handles protein structure, topology, and

MD trajectory data. It is a wrapper class for low-level MDAnalysis [8] types. The class contains

a dictionary for storing references to various property objects (see below), each representing

a specific time-dependent calculated property (e.g., RMSD, Rg, PCs) along the MD trajectory.

By organising MD data via the ProteinData class, MDSS enables efficient property value

mapping to trajectory frames and easy manipulation of property values across frames.

ProteinProperty class and subclasses

The ProteinProperty class and its subclasses provide the framework for computing and

storing properties that can capture time-dependent measures of protein dynamics. The

primary subclasses include GeometricalProperty and PCAProperty.

The GeometricalProperty subclasses calculate key geometric properties such as RMSD,

COMDistance, and RadiusOfGyration. These properties enable the analysis of structural

stability, compactness, and relationships between domains within the protein. By tracking

these properties across trajectory frames, GeometricalProperty can provide insights into

conformational changes and functional movements within the protein system.

The RMSD property measures the average positional deviation of atoms from a reference

structure, helping to monitor significant conformational changes over time. For example, RMSD

is valuable for observing the extent of structural changes during an MD trajectory. The

COMDistance property tracks the distance between the centre of masses of specific groups

within the protein, for example, between different domains or between a protein and a ligand.

This measure helps study relative movements within the protein and functionally relevant

interactions. Additional properties such as RadiusOfGyration and DihedralAngles

provide further insights into the protein’s compactness, geometric orientation, and secondary

structure transitions, making MDSS applicable to different protein dynamics analyses.

Design, implementation, and testing

 68

Figure 4.1 Class diagram of MDSS, showing relationships among main classes (ProteinData, ProteinProperty, etc.)
and their multiplicities, with symbols indicating the number of instances each class can be linked to in relation to
others. The figure was taken from the MDSS’s paper by Oues et al. [99].

On the other hand, PCAProperty implements Principal Component Analysis (PCA), a

dimensionality reduction technique. PCA identifies the principal directions or components in

which the variance of atomic motion is highest, thereby isolating the dominant, slower

collective motions within the protein system. These slow, large-scale movements often

describe significant conformational transitions, such as the shifting between open and closed

states of protein domains. The implementation of PCA in scikit-learn is used in the MDSS

framework to perform the analysis and then to project MD trajectories onto these principal

components (PCs). This projection captures the protein’s key conformational transitions over

time and analyses the movements most likely associated with functional changes. These

essential protein movements are often the most relevant to understanding protein functional

dynamics.

Within MDSS, ProteinData objects organise and manage MD trajectories, providing a

structured way to associate specific trajectory frames with different calculated properties. A

key feature of ProteinData objects is their dictionary attribute, which contains references to

ProteinProperty objects. Each ProteinProperty object records property values across

trajectory frames, allowing for straightforward mapping between calculated property values

and their corresponding time frames. As the values for different properties can be mapped to

the same trajectory information, any selection, subsampling or extraction of specific frames

can be easily applied to the associated property value vectors. This modularity of the software

Design, implementation, and testing

 69

provides flexibility in analysis and enables the extraction of meaningful samples from large

MD datasets.

ProteinSampler class and subclasses

Sampling strategies implemented in MDSS are encapsulated in subclasses of

ProteinSampler, which serve the critical purpose of selecting frames and their associated

property values from MD simulations. These strategies are essential to adapt the sampling

process to different research objectives, such as identifying important conformational states

or analysing specific system properties. Specifically, MDSS offers flexibility by allowing users

to select the appropriate sampling technique depending on the research problem. The library

is designed with a hierarchy of classes, with ProteinSampler being the main sampler class,

and different sampling strategies, including RandomSampler, StratifiedSampler,

UniformSampler, WeightedSampler, and BootstrappingSampler to represent

subclasses. In this context, sampling is done a posteriori (i.e. on the trajectory data after the

simulation has been completed as an analysis strategy). This differs from the sampling of the

conformational space that is done during the simulation.

The RandomSampler selects frames using a random approach. Combined with the

Dissimilarity class, it can ensure that the distribution of relevant properties (e.g., RMSD)

is preserved between the original and sampled trajectory. This technique is suitable for

reducing data size without information loss. To ensure that the sample trajectories preserve

the system’s structural information, MDSS provides distance metrics (e.g., Bhattacharyya

distance) that help determine the minimum sample size required to capture the distributions

of relevant properties (see the Dissimilarity class below).

In contrast, the UniformSampler is designed to ensure uniform coverage of a selected

property across the value ranges. For example, if a property relates to the opening of a protein

pocket, consistent sampling ensures that frames representing the full range of pocket opening

states are included. This method is useful when the goal is to explore the conformational

landscape of a protein uniformly across a collective variable, as it can provide a balanced

representation of different states (if the original sampling spans the state transition along the

collective variable).

The StratifiedSampler provides a more structured approach by dividing the trajectory

into subsets based on predefined state labels or discrete conditions and then sampling

proportionally from each subset. This stratification ensures that the protein ’s user-defined

Design, implementation, and testing

 70

group of frames (or state) is adequately represented in the final sample. This approach is

valuable when different conformational states are present in the trajectory and can be labelled,

as stratified sampling can recover each state proportionally, providing an equally

representative view of the protein’s dynamic behaviour across the defined groups (or states).

The WeightedSampler follows a probability-based approach and assigns selection

probabilities based on the frequency or importance of conformational states. This method is

ideal when certain states, such as rare or functionally critical conformations, are of research

interest. By prioritising these states through increased weights, this sampling strategy ensures

that important frames are well represented, and important features of the dataset are

preserved that might otherwise be lost in random sampling.

Finally, the BootstrappingSampler involves repeated sampling with replacement,

generating multiple subsamples from the original dataset. This method is suitable for statistical

analysis and cross-validation because it enables the creation of robust estimates for property

distributions. Additionally, it is possible to estimate confidence intervals for the dynamic

properties by assessing variability between bootstrapping samples. This has not been

demonstrated in the current study, but it is an implemented feature to benefit MDSS’s users.

ProteinSampler objects in MDSS are created with a specific ProteinProperty object as

a reference, facilitating subsampling across trajectory frames based on particular properties.

Each ProteinSampler object returns subsampled ProteinProperty objects, capturing a

compressed yet representative set of data points. Once subsampling is complete, MDSS

allows users to save property values and their corresponding trajectory frames to an output

file. This feature ensures accessibility to sampled data regardless of the original trajectory,

supporting downstream analysis and integration with other tools.

Dissimilarity class

In MDSS, the sampling of trajectory frames is guided by the distribution of associated

properties. The primary objective is to compare a property distribution between the original

and the sampled set. To achieve this, metrics for calculating distances between distributions

are essential, and the Dissimilarity class and its subclasses play an important role in this

process.

The Dissimilarity class implements well-established distance measures, enabling users

to quantitatively evaluate how well the subsampled dataset retains the statistical properties of

Design, implementation, and testing

 71

the original distribution. These metrics include the Bhattacharyya distance [101], which

quantifies the degree of overlap between probability distributions, the Kullback-Leibler

divergence [180], which measures divergence from one distribution to another, and the

Pearson correlation distance [102], which assesses linear correlation. By applying these

distance metrics, users can optimise sampling strategies to ensure that the subsampled data

accurately reflects the dynamics of the original simulation.

PropertyPlot class

In addition, MDSS has a PropertyPlot class for visual comparison of distributions, allowing

users to visualise both the original and subsampled data in a comparison framework. The

class is built on top of matplotlib Python library. The graphical representation generated by

MDSS provides immediate insight into how the subsampled data matches the overall

trajectory. This visualisation complements the quantitative metrics of the dissimilarity class and

provides users with a comprehensive toolkit for numerical and graphical assessment of protein

dynamics.

Utility functions

In addition to its primary classes, MDSS includes a utility module that supports important tasks

throughout the toolkit’s workflow. This module provides functions for file I/O, data

transformation, mathematical operations, and command-line argument parsing.

Logging and configuration

MDSS includes a logging module (log_setup.py) that captures workflow steps, warnings,

and errors to support efficient debugging and process tracking. Additionally, configuration

management is made easier by parser utilities that process command-line input and custom

settings. This modular design with logging and configuration support ensures ease of use,

reproducibility, and the flexibility to adapt to different analysis workflows.

4.1.2 Functionality

MDSS facilitates the efficient handling and analysis of large MD trajectories and provides a

streamlined process for a posteriori subsampling, property calculation, and data preparation

for ML and DL applications. Figure 4.2 shows the data flow within MDSS, highlighting both the

input files and the resulting outputs generated from an MD trajectory. The toolkit accepts inputs

Design, implementation, and testing

 72

such as MD trajectories, reference structure, atom selection criteria, geometric property

specification, sample size or range, and dissimilarity measure. The user can tailor the

sampling and analysis in MDSS to meet specific research objectives, targeting the protein’s

different structural features or dynamic properties.

Figure 4.2 Overview of MDSS’s data flow. The MDSS toolkit takes MD trajectory data along with user-defined
inputs, such as geometric properties and sampling parameters, and outputs data in various formats. These outputs
are tailored for different applications, from statistical analysis and visualisation to machine learning integration.

Input files and parameters

MDSS accepts user inputs that guide property calculations, subsampling strategies and output

generation:

1. MD trajectory file(s) (.xtc): This file includes the atomic coordinates for each simulation

frame and serves as the primary dataset for property calculations.

2. Reference structure file (.pdb, .gro): This file provides the initial (or reference) protein

structure, used to calculate metrics like RMSD.

3. Atom selection: allows users to specify regions of interest within the protein, such as

specific residues or domains, enabling focused analysis on areas relevant to the

research question.

4. Geometric properties: defines which properties to calculate (e.g. RMSD,

COMDistance, RadiusOfGyration). Users can choose properties based on their

relevance to the protein’s dynamics and intended analysis.

5. Sampling strategy and size: This specifies the subsampling method (e.g.

RandomSampling) and the sample size of the target trajectory.

Design, implementation, and testing

 73

6. Dissimilarity measure: a metric (e.g. Bhattacharyya distance) for comparing property

distributions between sampled and original data, ensuring that subsamples retain

essential dynamic features.

The tool also accommodates the case when precalculated frame-dependent property files are

available. This feature is useful when users reanalyse or compare existing data without

recalculating properties, saving time and computational resources.

Output options

MDSS generates multiple output files, allowing users to choose the appropriate formats for

their specific research goals. Outputs are optional, so users can specify which files they need

and in which formats. Here is a breakdown of the output options:

1. .dat files store calculated property values for each frame, allowing post-processing and

evaluation of subsampling by checking the distributions of these properties. The

properties can capture the system’s dynamics.

2. .png files include visual representations of property distributions, useful for quickly

assessing sampling accuracy and comparing subsampled data against the original

trajectory.

3. .json and .txt files contain statistical summaries of the calculated properties, including

distribution metrics and distances.

4. .xtc trajectory files represent subsampled trajectories, allowing further analysis in other

tools or workflows that require the trajectory directly.

5. .npy files contain compressed data for ML/DL workflows. MDSS offers the choice of

having the MD data transformed into the appropriate format for ML/DL and splits the

data into learning and testing sets (70% learning - 30% testing).

4.1.3 Software implementation and accessibility

MDSS is an open-source Python library, is hosted on GitHub

(https://github.com/alepandini/MDSubSampler), and primarily developed within Visual Studio

Code [181]. The project is built with git version control to ensure a robust, well-documented

development process. MDSS is an installable Python package deployed using the Poetry

package manager [179], which streamlines installation, resolves dependencies, and promotes

reproducibility across computational environments.

https://github.com/alepandini/MDSubSampler

Design, implementation, and testing

 74

Poetry facilitates ease of setup by managing all dependencies in the pyproject.toml file

(Figure 4.3), simplifying the process of deploying MDSS as a Python package. This approach

not only ensures that all required libraries are easily accessible but also guarantees

consistency across different systems where MDSS might be installed.

Figure 4.3 MDSS’s pyproject.toml file. This configuration file defines the MDSS project settings and dependencies
within the Poetry environment, streamlining the installation process and ensuring consistency across systems.
Poetry manages both the primary dependencies for MDSS’s core functions and additional dependencies for
optional features, enhancing reproducibility and ease of use.

To further support accessibility and reproducibility, MDSS is also packaged within a Docker

container, enabling users to deploy the toolkit in a self-contained, isolated environment. The

Docker container includes all necessary dependencies and configurations, eliminating

compatibility issues and ensuring that MDSS operates consistently across various

computational systems, regardless of the underlying platform. This containerisation approach

allows users to run MDSS with minimal setup, which is particularly valuable for those without

Design, implementation, and testing

 75

extensive experience in configuring Python environments. The repository on GitHub provides

instructions to users on how to use Docker for the project.

The MDSS environment is designed for compatibility with Python version 3.9 (or later), and it

incorporates a suite of essential dependencies to support protein dynamics analysis and

subsampling within MD simulations. Key dependencies include MDAnalysis (version 2.1.0 or

later) [8], which handles protein structure and trajectory management, and NumPy for efficient

numerical processing of MD data. The dictances package is employed for calculating various

statistical distances, supporting the subsampling accuracy assessments, while scikit-learn

helps with PCA and integration with ML/DL pipelines. Pandas, Matplotlib and Seaborn

packages are included to support different parts of the toolkit’s analysis.

The toolkit is developed to satisfy three distinct user groups: novice users with minimal

software development experience can utilise pre-prepared scenario scripts, advanced users

can operate through a Unix-like command-line interface and scientific software developers

can leverage reusable Python library classes for their projects.

Novice users

For beginners, MDSS offers predefined “scenario recipes” or scripts that cover a variety of use

cases. These scripts are provided as standalone Python files, ready to be run independently,

and as interactive Jupyter Notebooks. The Notebooks offer a flexible, easily customised

template, allowing new users to explore different sampling strategies and analyses without

extensive programming knowledge. All scenarios are stored in a dedicated cookbook folder

on GitHub, where the community can contribute additional examples or improvements. Figure

4.4 presents an example scenario that illustrates the sampling process for size reduction with

minimal information loss, comparing RMSD distributions of the original and subsampled

trajectories.

Design, implementation, and testing

 76

Figure 4.4 Summary description of an example scenario: Random sampling for size reduction, where different
subsample sizes are extracted to preserve the information in the distribution of values for a reference property. The
two plots compare the distributions of RMSD over the coordinates of all Cα atoms in the original and subsampled
trajectory for sample sizes of 0.25% and 2.5%. The distance between the sampled and original distributions was
calculated using Bhattacharyya distance: 0.574 (for 0.25%) and 0.057 (for 2.5%). A subset of 2.5% is the smallest
sample for which the shape and peak location of the distribution of RMSD is preserved. Example structures for an
open and closed conformation of ADK are reported in the top right of the second plot. Distribution plots were
generated with R [176] and protein structure images with PyMol [160]. The figure was taken from the
MDSubSampler paper by Oues et al. [99].

Advanced users

Advanced users, such as structural biologists, can leverage a Unix-like command-line

interface, which provides greater flexibility and control over the data processing workflow.

 Figure 4.5 Parser help interface on Linux command line with options and required user arguments.

This interface supports detailed configuration options, allowing users to specify the sampling

method, geometric properties, and dissimilarity measures. An built-in parser help command

Design, implementation, and testing

 77

lists all available options and guides users through the setup, ensuring accessibility for users

with moderate command-line experience. Figure 4.5 demonstrates the help interface for

navigating these options.

Scientific software developers

MDSS supports further development and customisation, making it valuable and practical for

scientific software developers. The toolkit provides a range of reusable Python library classes

that form a flexible foundation for building new tools or extending MDSS’s functionality within

custom workflows. Developers can download the source files (tarball file) from GitHub and

modify them using an IDE like Visual Studio Code [181]. Figure 4.6 illustrates the modular

structure of MDSS, detailing the organisation of classes and modules, which facilitates easy

navigation and customisation.

Figure 4.6 Hierarchy of files (modules) in MDSS library as is shown on GitHub page.

Licensing and contribution

MDSS is released under the GPL-3.0 license, ensuring its status as an open-source and

community-accessible toolkit. Users are free to use, alter, and distribute the software, if any,

under this license, provided that any derivative works remain open source under the same

license. This approach encourages collaborative development and supports contributions

from the research community.

Design, implementation, and testing

 78

Researchers and developers are encouraged to participate in the project on GitHub by adding

to the codebase, reporting bugs, and making suggestions for enhancements. The README file

offers thorough documentation, installation guidelines, and usage examples to ensure a

seamless onboarding process. MDSS’s open-source nature aligns with its objective of

enabling reproducible and scalable analysis of MD data.

4.1.4 Testing

The functionality and performance of MDSS were tested to validate its core modules and

workflow, including subsampling accuracy, property calculations, and output handling. The

goal was to ensure that MDSS could effectively handle large MD data and produce reliable,

meaningful subsamples while preserving essential information about the system’s dynamics.

Testing focused on two key areas: first, verification of each sampling strategy’s accuracy, and

second, validation of calculated properties and dissimilarity measures.

Testing was conducted using MD trajectories of the ADK system, a model system with well-

defined conformational states. This system was selected due to its distinct open and closed

states, which allowed for complete testing of MDSS’s ability to capture and represent dynamic

conformational changes across sampled datasets.

Initially, three scenarios were designed to test the tool. Each scenario represents a user case,

demonstrating the toolkit’s ability to address different research questions. These scenarios

were created as user-friendly “recipes” that users can run directly, allowing for flexible testing

of various aspects of MDSS’s functionality. In addition to these standalone scripts, each

scenario was also implemented as a Jupyter Notebook, enhancing accessibility and

interactivity for all types of users.

Scenario 1: Subsampling for distribution similarity of RMSD

This scenario tested MDSS’s ability to select the smallest subset of frames that retained the

RMSD distribution of the original trajectory. The case is helpful for MD users seeking to reduce

data volume without compromising structural information.

1. Purpose: This scenario was designed to subsample an MD trajectory containing

different global protein conformations. The goal was to find the smallest subset of

frames that retained a similar RMSD distribution to the original data.

Design, implementation, and testing

 79

2. Sampling strategy: Random sampling captured frames representative of the protein’s

entire conformational range.

3. Workflow:

 The tool first reads the trajectory and topology files and sets up the RMSD

calculation for the entire trajectory.

 Random subsampling is performed at different sample sizes (0.25%, 0.5%, 1%,

2.5%, 5%, 10%, 20%, 25%, 50%.) specified by the user.

 MDSS computes the RMSD distribution for each sample size and compares it to

the entire trajectory’s RMSD distribution using the Bhattacharyya distance as the

dissimilarity metric.

 The process iterates until a sample size produces a subsample with an RMSD

distribution similar to the original, as determined by a user-defined threshold.

This scenario demonstrated MDSS’s ability to preserve critical information of a trajectory

through random subsampling, achieving significant data reduction while maintaining

distributional similarity.

Scenario 2: Uniform sampling of pocket opening states

The second scenario explored MDSS’s capability to capture a specific range of conformational

states within a protein’s binding pocket, particularly in systems where pocket geometries vary

significantly.

1. Purpose: This scenario aims to obtain a subset of frames representing a broad range

of pocket opening geometries by sampling frames that varied in RMSD relative to an

open or closed reference state.

2. Sampling strategy: Uniform random sampling is applied to ensure even coverage of

the range of pocket conformations observed in the full trajectory.

3. Workflow:

 MDSS reads the trajectory, topology, and selection criteria, specifying residues

within the binding pocket.

 A reference structure establishes a baseline RMSD value for the open (or closed)

state.

 MDSS calculates the RMSD distribution for pocket conformations in the full

trajectory and stratifies the frames into intervals based on RMSD values.

 Uniform random sampling selects frames from each interval, ensuring a

proportional representation across the full range of pocket conformations.

Design, implementation, and testing

 80

This scenario validated MDSS’s ability to selectively capture structural diversity within a region

of interest, demonstrating that MDSS could provide a representative subset of frames that

covered the conformational landscape of the binding pocket.

Scenario 3: Weighted sampling based on conformational state frequency

In this scenario, MDSS’s weighted sampling capabilities were tested to ensure an equal

representation of all conformational states within the trajectory, including those less frequently

observed. This approach is useful for users interested in capturing diverse frames that evenly

span the conformational landscape rather than focusing solely on dominant states.

1. Purpose: By applying weighted sampling, the goal is to reduce the bias towards

frequently occurring conformations and instead select a subset of frames that provides

equal representation across the trajectory’s conformational space.

2. Sampling Strategy: Weights are inversely proportional to the frequency of frames in

each conformational state, ensuring that less frequent conformations are sampled

more often than dominant ones.

3. Workflow:

 The trajectory and topology files are loaded, and RMSD values are calculated for

each frame.

 MDSS analyses the RMSD distribution and generates a weighting vector where

less frequent RMSD bins are assigned higher weights.

 Using this weighting vector, MDSS performs weighted sampling to select frames,

resulting in a subsample that balances the representation of all conformational

states, regardless of their original frequency.

This scenario demonstrates MDSS’s flexibility in achieving a balanced representation of

conformational states, making it particularly useful for studies requiring equal sampling of rare

and common conformations.

Following the testing of MDSS through the initial three scenarios, additional advanced

workflows were implemented in the cookbook to address more complex sampling and

subsampling requirements. These advanced scenarios extend MDSS’s utility by focusing on

hierarchical subsampling and ML applications.

Design, implementation, and testing

 81

Advanced scenario: Machine learning prediction

In this scenario, MDSS was tested for its capability to reformat MD data and directly use them

as inputs within ML workflows. This scenario demonstrates how subsampled MD trajectory

data can be prepared for predictive modelling, enabling researchers to classify or predict

specific protein conformations based on calculated properties. The workflow outlines a

complete pipeline that takes subsampled data, applies ML algorithms, and evaluates model

performance, showcasing MDSS’s utility in ML contexts where MD data is used as input.

1. Purpose: This scenario illustrates the application of ML to predict specific

conformational states within an MD trajectory using subsampled data as input. It

enables researchers to classify conformations or states based on key structural

features, facilitating the identification of patterns within protein dynamics.

2. In this example, the target prediction focuses on protein states categorised as “Open”,

“Closed” and “Noise” based on two geometric properties: the RadiusOfGyration

and the DistanceBetweenAtoms. Labels for these states were defined based on

expert knowledge (see section 5.1.3), with thresholds derived from density plots of

these properties (Figure 5.6) This manual labelling serves as the ground truth for

evaluating ML models.

3. Workflow:

 Data preparation: The input data for this scenario consists of a pre-processed

subsampled dataset of RMSD values (ml_input.npy) and a corresponding

target label file (target50.csv) indicating the conformational states (Figure 5.6).

A posteriori subsampling was performed using a random sampling strategy,

ensuring that the dataset remained representative of the trajectory while reducing

data volume. The Rg and inter-residue distance values were analysed to define

the protein states, and density plots were used to visually confirm the separation

of open, closed, and noise regions in the conformational space.

 ML model training: Three ML models, Logistic Regression (LR), Random Forest

(RM), and Support Vector Machine (SVM), were implemented and trained on the

subsampled data. The data was divided into two sets: 30% for testing and 70% for

training.

 Model evaluation: Each model was evaluated using standard classification metrics:

o Accuracy score: Assesses the percentage of correct predictions on the test set.

o Confusion matrix: This matrix displays the classification model’s performance

by showing true positives, false positives, true negatives, and false negatives.

Design, implementation, and testing

 82

o Cohen’s Kappa score: Evaluates the agreement between predicted and actual

labels, adjusting for chance agreement.

o Classification report: Provides detailed metrics, including precision, recall, and

F1-score for each class.

 Results saving: Model performance metrics were saved for further analysis, and

trained models were saved using joblib for later use.

4.2 MDAutoMut tool

MDAM is a modular Python library developed to rationally redesign protein dynamics through

mutation scanning. The tool aims to identify mutations that have the desired impact on protein

dynamics. Mutation scanning is performed either systematically or through a heuristic

approach. The toolkit is suitable for single, double, or multiple mutation scanning.

The work presented in the following section details the design, implementation and testing of

MDAM.

4.2.1 Software design and core components

MDAM is designed as a fully automated, modular Python library that combines mutation

engineering, generation of MD simulations, and evaluation of changes in protein dynamics.

The tool is structured to explore and then identify mutations that have a desired impact on

protein dynamics. Specifically, the tool can create workflows with mutation scanning until the

system samples the desired dynamics in the system. The toolkit contains two core classes:

Protein and Mutation, and Figure 4.7 displays the class (i.e. module) diagram of the tool.

The tool imports ProteinData from the MDSS library.

Protein class

The Protein class uses the MDAnalysis framework [8] to load and manage the protein data

based on the user’s input files, including .xtc, .pdb or .gro formats. This class encapsulates

structural and simulation data, allowing users to use pre-existing trajectory files or dynamically

generate data within the MDAM workflow.

Design, implementation, and testing

 83

Figure 4.7 Class and module diagram of MDAM, depicting its integration with MDSS and modular approach for
mutation engineering and dynamic simulation in MD workflows.

Mutation class

The Mutation class facilitates mutation engineering in MDAM, using PyRosetta [9] to

introduce mutations while ensuring structural stability. Users provide a list of mutations in an

input file, specifying the target residue positions and desired amino acid substitutions. The

output_mode option allows mutations to be applied individually (single) or in combinations

(multiple), enabling comprehensive testing of different mutation scenarios. When initialising a

Mutation class object, users select the reference structure to insert the desired mutation

from a protein trajectory frame (defaulting to the last frame if unspecified), which is then

extracted and converted into a PyRosetta Pose object for mutation operations.

The method replaces the target residue for each mutation, repacks side chains, and calculates

a full-atom energy score before and after mutation to assess structural stability. Specifically,

the new residue is first generated using PyRosetta’s ChemicalManager within the

fa_standard force field for full-atom calculations and is substituted at the target position.

The method then repacks neighbouring side chains to refine local conformations, using the

default scoring function within the same force field to ensure stability.

Workflows

MDAM includes three modular workflow scripts: mutation_workflow.py,

mdprep_workflow.py, and mdautomut_workflow.py. While the

mutation_workflow.py and mdprep_workflow.py scripts are designed to function

independently as standalone workflows, the mdautomut_workflow.py integrates all

modules from MDAM, facilitating the fully automated method for rationally redesigning protein

dynamics.

Design, implementation, and testing

 84

The mdprep_workflow.py script prepares the protein system for MD simulations. This

workflow manages essential steps such as solvation, in addition, and energy minimisation,

creating a simulation-ready structure. Users can customise parameters, including force field

selection and other simulation parameters (currently in the form of a .mdp file), allowing

flexibility in adapting the workflow to various protein systems and research objectives.

The mutation_workflow.py script supports targeted mutation engineering by enabling the

insertion of single, double, or multiple mutations. Utilising PyRosetta [9], this script offers

control over mutation engineering, allowing users to specify desired amino acid changes to

target specific changes in the system’s dynamics. The flexibility to perform single and multiple

mutations makes this workflow suitable for exploring various mutational impacts.

The mdautomut_workflow.py script provides an integrated end-to-end pipeline, combining

system preparation, mutation engineering, and evaluation of change in dynamics within a

single workflow. This script automates the entire mutational scanning process, aiming to

identify the impact of specified mutations on protein dynamics.

Figure 4.8 A simplified version of the entire workflow of MDAM, showing the step-by-step process of system
preparation, mutation engineering, and dynamic simulation for the rational redesign of protein dynamics. The
decision point depends on the acceptance criterion, or the predefined threshold and it can either end the loop or
continue exploring more mutations until the desired dynamics are achieved.

Figure 4.8 illustrates a simplified version of a workflow within MDAM, outlining the sequential

steps from system preparation to mutation engineering and dynamic simulation. The flow

starts by preparing the protein system for MD simulations for the WT, introducing mutations,

simulating the mutants, and then comparing the WT with each mutant to check if the desired

Design, implementation, and testing

 85

dynamics are achieved. A simple acceptance criterion or a predefined threshold is used to

enable the automation of the scanning process. This simplified workflow is easily extendable

due to MDAM’s module structure.

Utility functions

In addition to the core classes and workflow scripts, MDAM includes a set of utility — modules

args_utils.py, file_io.py, mutation_utils.py, protein_utils.py — that

support essential tasks within the workflow. These modules handle command-line argument

parsing, file management, mutations-specific operations and protein structure manipulation,

providing the flexibility and customisation needed for efficient mutation screening and analysis

of protein dynamics.

Property and dissimilarity calculations

To assess how mutations affect protein dynamics, MDAM integrates with MDSS for property

calculation and comparison between wild-type (WT) (or target property) and mutated

structures. Specifically, it calculates and compares geometrical properties between WT

against each mutant, enabling a quantitative assessment of how each mutation impacts

protein dynamics. Using MDSS’s Property and GeometricProperty modules, MDAM can

compute key properties such as RMSD, RadiusOfGyration, and COMDistance, which can

serve as indicators of changes in protein conformations.

MDAM can apply MDSS’s Dissimilarity module for each mutant to quantify differences

between WT and mutant property distributions. This dissimilarity analysis uses statistical

measures (e.g., Bhattacharyya distance) to evaluate the impact of mutations, allowing the

toolkit to identify those mutations that most effectively alter the protein’s dynamics.

Additionally, the plotting.py module visualises the differences in distributions for the

selected properties between the WT (or target property) and each mutant, representing

mutation effects on dynamics.

Logging and configuration

The log_setup.py module provides real-time logging across the full MDAM workflow,

capturing each step and recording warnings or errors encountered during execution. The logs

offer users detailed insights into each step’s progress and status, enabling efficient

troubleshooting and validation of results.

Design, implementation, and testing

 86

4.2.2 Functionality

MDAM provides a flexible and user-friendly interface for mutation-based analysis of protein

dynamics. The toolkit is designed with modular workflows and customisable options, allowing

researchers to define specific mutations, configure MD simulations and assess changes in

dynamics through properties.

Mutations and mode

To begin the analysis, users define a list of target mutations in an input file, specifying the

position and the amino acid change. MDAM supports single, double or multiple mutations,

enabling users to test a range of mutation scenarios systematically. Through the

output_mode setting, users control whether mutations are applied individually or in

combinations, providing flexibility in exploring all mutation impacts on protein dynamics.

Simulation configuration

In MDAM, the entire simulation configuration process is automated into a stepwise script.

Users predefine the steps and parameters before execution of this script. Once the mutations

are defined, users configure the MD simulation parameters within MDAM. The toolkit provides

options for customising the parameters for system preparation and production of MD data.

The preparation process begins with force field selection during the pdb2gmx step, where

users can choose from several forcefields, such as AMBER [71] or CHARMM [64], depending

on the system choice. Additionally, they can specify the water model, such as TIP3P [86], to

solvate the box.

Following that, users define the simulation box type, such as cubic or truncated octahedron,

and set the distance between the protein and the edges of the box to ensure adequate

solvation. The system is then solvated, and ions are added to neutralise the system’s charge.

Researchers can also adjust the ionic concentration, controlling the electrostatic environment.

Furthermore, users can configure the energy minimisation steps by adjusting parameters to

control the algorithm used and the convergence criteria and define the strength of positional

restraints on the protein. Similarly, users define the choices for the temperature and pressure

equilibration (NVT and NPT ensembles). In each stage, users can control the duration,

thermostat settings and barostat options through .mdp files. Finally, the length of the simulation

is defined before it goes into the production phase.

Design, implementation, and testing

 87

For the proof-of-concept validation of the MDAM toolkit, pre-configured .mdp files and all

necessary parameters for the ADK system are provided, including forcefield selection and

simulation settings (see section 3.2.3).

Mutation scanning workflows: systematic and heuristic approaches

MDAM supports two primary mutation scanning workflows: systematic and heuristic. These

approaches address different research needs, balancing thorough exploration and

computational efficiency. The terms “systematic” and “heuristic” are defined in this context to

differentiate the workflows: The systematic workflow involves a complete exploration of the

mutation list, testing every possible mutation. In contrast, the heuristic workflow is tailored for

scenarios where the mutation space is too large for exhaustive exploration, requiring selective

prioritisation of mutations for testing.

The systematic workflow best suits smaller mutation sets where exhaustive exploration is

feasible. MDAM generates and evaluates all possible mutations across specified positions in

this approach. For instance, a single mutation scan mutates a target position to all 20 standard

amino acids. In contrast, for double mutations, every pairwise combination of amino acids

across two positions is tested. This approach is ideal for obtaining detailed insights into

specific mutations’ influence on protein dynamics. However, as the number of mutation sites

increases, the computational demand grows exponentially, making systematic scanning

challenging for larger trajectories or multiple mutation sites.

To address these limitations, MDAM includes an adaptive heuristic workflow that reduces the

search space through a selective and iterative exclusion strategy. This approach is beneficial

for complex systems with many potential mutations or limited computational resources. The

heuristic workflow uses a table of mutation combinations. For example, starting with a random

pair of mutations (e.g., AA, AG, GA), MDAM evaluates their effects on dynamics. If a

combination (e.g., AG) fails to produce the desired outcome, the tool excludes all mutations

involving amino acid “A” at the first position from further testing. This exclusion strategy

systematically narrows the search to focus on promising mutations, rapidly filtering out

ineffective combinations. As a result, the heuristic approach accelerates the identification of

impactful mutations, making it a practical choice for larger mutation sets.

Synthetic distribution as a target for desired dynamics

A critical feature of MDAM is its ability to guide the mutation evaluation towards sampling

specific dynamic states, which may not naturally occur in the WT. MDAM provides a feature

Design, implementation, and testing

 88

that allows the user to specify a desired distribution for the values of a selected MDSS property

and use this distribution as the target for redesigning protein dynamics. A synthetic distribution

of the target CV representing the desired dynamics in ADK was generated to test this

functionality in a proof-of-concept study. Specifically, the goal was to sample a closed state in

ADK, represented by a specific value of the COMDistance between its LID and AMPbd

domains.

The synthetic distribution was generated by introducing a second peak to the COMDistance

histogram, corresponding to values expected for the closed state alongside the existing peak

for the open state observed in the WT (Figure 4.9). This artificial bimodal distribution mimicked

the dynamics of a protein system with both open and closed states, allowing a direct

comparison of the mutants’ dynamics with the target.

Figure 4.9 Synthetic distribution for desired dynamics in ADK. The COMDistance density distribution of the WT
(green) for ADK system, representing the natural dynamic state with a single peak corresponding to the open
conformation. The synthetic target distribution (purple) was generated by introducing a second peak corresponding
to the desired closed conformation. This artificial bimodal distribution mimics a system with both open and closed

states, enabling a direct comparison of mutant dynamics to the target. Representative structural snapshots of the
open (top) and closed (bottom) conformations are overlaid on the density plots.

Reducing combinational complexity

To further manage combinatorial complexity, MDAM’s heuristic workflow can group amino

acids into functionally similar clusters, reducing the overall number of combinations while

maintaining diversity within the mutational landscape. Since testing all 400 combinations for

Design, implementation, and testing

 89

two positions would be computationally intensive, this grouping method simplifies the search

space. Each cluster represents a set of amino acids with shared physicochemical properties,

such as size, polarity, or charge. For instance, small nonpolar amino acids (like A, G, V, and

P) are represented by a single amino acid, such as Alanine, commonly used in mutagenesis

studies. This approach ensures that key characteristics are still sampled while focusing

computational resources on representative amino acids.

By combining functional grouping and adaptive exclusion, MDAM makes exploring large

mutational landscapes feasible and ensures efficient and targeted mutation scanning.

Comparison of dynamics

To automatically assess how mutations affect protein dynamics, MDAM calculates specific

properties (user’s choice) for the WT and all mutants and then compares their property

distributions. The selected properties should capture key aspects of the protein’s structural

and dynamic behaviour. The primary objective is to measure how closely each mutant’s

property distribution aligns with the desired target dynamics. This comparison can be carried

out by either using the WT distribution as a reference or, in cases where a specific target

dynamic state is desired, by comparing it to a predefined target distribution.

The overlap between the WT (or target) and mutant distributions is measured via distance

metrics from MDSS. MDAM allows users to define a threshold for reference when calculating

the distance between distributions. Suppose the calculated distance for a mutant is below the

threshold. In that case, the mutation (or set of mutations) produces dynamics that closely

resemble the desired state (e.g. the closed state of ADK).

When the distance between the WT or target and mutant distributions meets the specified

threshold, MDAM identifies these mutations as those with the desired effect on protein

dynamics. By iteratively scanning through each mutation or combination of mutations and

comparing their impact on dynamics, the toolkit narrows down on specific changes that drive

the protein towards the targeted dynamics.

4.2.3 Software implementation and accessibility

MDAM was developed as an open-source Python library, with the project structured and

managed through GitHub (https://github.com/alepandini/MDAutoMut) and developed primarily

within Visual Studio Code [181]. The toolkit is organised to facilitate reproducibility and ease

Design, implementation, and testing

 90

of installation by leveraging the Poetry [179] package manager. Poetry enables streamlined

management of dependencies, ensuring that MDAM can be easily set up with all required

libraries across different environments. The configuration of dependencies is specified within

the pyproject.toml file (Figure 4.10), simplifying the installation process and maintaining

consistency in the software environment.

The MDAM environment requires Python version 3.9.1 or later, and it integrates multiple

dependencies essential for mutation scanning and generation of MD simulations. The primary

dependencies include gmxapi version 0.4.2 for interfacing with GROMACS, PyRosetta, and

MDAnalysis. Additionally, MDSS supports property and dissimilarity calculations, while the

seaborn library facilitates data visualisation, particularly in the analysis of property

distributions. PyRosetta, which requires a specific license, was obtained and installed to

enable mutation modelling.

Figure 4.10 MDAM’s pyproject.toml file. This configuration file defines the MDAM project settings and
dependencies within the Poetry environment, streamlining the installation process and ensuring consistency across
systems. Poetry manages both the primary dependencies for MDAM’s core functions and additional dependencies
for optional features, enhancing reproducibility and ease of use.

Usage and example command-line workflow

MDAM contains a command-line interface that allows users to define mutation lists, configure

MD parameters, and initiate mutational scanning workflows directly. An example command-

line workflow is illustrated in Figure 4.11, which demonstrates selecting specific input

parameters, setting up the environment, and generating desired outputs. The figure highlights

Design, implementation, and testing

 91

the key steps, from defining mutations to initiating simulations, making it accessible for novice

and experienced users.

Figure 4.11 Parser help interface for MDAM library. The Linux command line contains options and required user
arguments for both mdprep.py and mutation.py workflows.

Licensing and contribution

MDAM is released under the GPL-3.0 license, ensuring the toolkit remains open-source and

accessible to the broader scientific community. This license allows researchers and

developers to freely use, modify, and distribute the software while requiring that any derivative

work remains open source under the same license, allowing collaborative improvement of the

toolkit.

Design, implementation, and testing

 92

The project is hosted on GitHub, and researchers and developers are encouraged to report

issues, suggest improvements, and contribute directly to the codebase. A README file provides

detailed installation instructions, usage guidelines, and examples to help new users get

started.

4.2.4 Testing

MDAM’s capability to identify mutations that impact protein dynamics was tested through a

proof-of-concept study conducted using ADK as a model system (see section 3.2.3). ADK is

known for its significant dynamic allostery, with distinct open and closed states facilitated by

the flexible LID and AMP-binding (AMPbd) domains. This example was chosen because

ADK's dynamic behaviour has been extensively studied, providing detailed experimental

insights into the effects of specific mutations on the protein’s conformational states. Song et

al. [165] demonstrated how LID domain mutations, such as VAL135GLY and VAL142GLY,

enhance interactions with the AMPbd domain, shifting ADK towards a more closed

conformation (Figure 4.12). These specific mutations were set as a “target” dynamic outcome

within the scanning process, enabling an evaluation of whether MDAM could identify these

known mutations among all 20 other possible changes in each position.

Figure 4.12 Structural illustration of ADK highlighting the domains and mutations. The left structure shows the WT
in the open apo state, with the core domain in grey, the AMP-binding domain (AMPbd) in red, and the LID domain
in blue. The right structure depicts the identified LID mutations (V135G and V142G, marked in magenta spheres),
which enhance interactions between the LID and AMPbd domains, favouring a closed conformation. Additional
mutations on the AMPbd domain (A37G and V55G, marked in yellow spheres) were included for completeness but
were not the focus of this study. This representation demonstrates the successful identification of dynamic state-
altering mutations using MDAM, validated by experimental findings from Song et al. [165].

AMP

binding

domain

Core

domain
LID

domain
V135G

V142G

V55G

A37G

Design, implementation, and testing

 93

In this scenario, the MDAM toolkit scanned with two specific positions in the LID domain,

VAL135 and VAL142, but without prior knowledge of the exact mutation required at each

position. By employing systematic and heuristic scanning approaches, MDAM aimed to find

mutations that produced the desired conformational shift towards a closed state, mimicking

the findings of Song et al. [165].

MDAM’s mutation scanning process was optimised, and combinational complexity was

reduced by grouping amino acids into five categories based on shared physicochemical

properties: small non-polar, large non-polar, polar uncharged, positively charged, and

negatively charged. This categorisation allowed for a focused selection of representative

amino acids from each group, minimising the number of combinations while retaining a diverse

range of mutational effects. Selecting one representative amino acid per group reduced the

complexity from 20 x 20 = 400 to 5 x 5 = 25 combinations, making the scan computationally

feasible.

The following representatives were chosen for each group:

 Group 1 (Small non-polar): Glycine (G)

Glycine is a small, flexible amino acid commonly used in mutagenesis studies because

it can introduce conformational flexibility.

 Group 2 (Large non-polar): Leucine (L)

Leucine, a frequently occurring amino acid, represents typical hydrophobic

characteristics and is often found in protein cores.

 Group 3 (Polar uncharged): Serine (S)

Serine is small and polar, often used in mutagenesis studies for its ability to participate

in hydrogen bonding while remaining uncharged.

 Group 4 (Positively charged): Lysine (K)

Lysine has a long side chain and basic properties, making it a typical representative in

studies exploring charge effects on protein structure and dynamics.

 Group 5 (Negatively charged): Aspartic Acid (D)

Due to its small size and charge, Aspartic acid is frequently used as a representative

acidic amino acid in mutagenesis studies.

Design, implementation, and testing

 94

Using these representative amino acids, the toolkit explored a manageable subset of the

mutation landscape while capturing key physicochemical variations. This approach helped to

perform the proof-of-concept study, where the objective was to identify known mutations (e.g.,

GLY substitutions) within the LID domain that induce a shift towards the closed conformation.

This systematic reduction allowed for thorough exploration and computational efficiency,

ensuring that the most impactful mutations could be identified effectively.

For both the systematic and heuristic scanning processes, a list of potential mutations at the

VAL135 and VAL145 positions was prepared to identify the set of mutations favouring the

target closed conformation of ADK. Each scanning approach was set up to evaluate these

mutations by generating the new mutated structures, running MD simulations, and comparing

the dynamics of each mutant with the WT of ADK and the synthetic target distribution Each

mutation was evaluated based on the COMDistance property between the LID and AMP-

binding domain. This measure typically shows a bimodal distribution representing these two

conformations (open and closed state of ADK) (Figure 4.9).

Systematic scanning approach

In the systematic approach, MDAM iteratively evaluated all 25 combinations of the chosen

representative amino acids (GLY, LEU, SER, LYS, and ASP) at the VAL135 and VAL142

positions. The COMDistance between the of LID and AMPbd domains was calculated and

compared to the synthetic target distribution for each combination. This target distribution

represented a bimodal pattern characteristic of a transition to the closed state, with peaks

reflecting both open and closed conformations (Figure 4.9). MDAM used the Bhattacharyya

distance to quantify the similarity between each mutant's COMDistance distribution and this

property’s WT or target distribution. Mutations producing a Bhattacharyya distance below the

0.05 threshold were successful, indicating that the induced dynamics closely matched the

desired closed conformation.

Heuristic scanning approach

In the heuristic approach, MDAM applied an adaptive selection strategy to streamline the

scanning process further. MDAM initially tested random pairings of these residues at both

positions, starting with the five representative amino acids. Based on the Bhattacharyya

distance outcome, the heuristic approach eliminated less promising combinations (those with

distances well above the 0.05 threshold), thereby reducing the search space and focusing on

combinations that showed potential alignment with the target distribution. This iterative

Design, implementation, and testing

 95

exclusion strategy allowed for more efficient exploration of the mutation landscape,

accelerating the identification of impactful mutations while maintaining computational

feasibility.

4.3 MDAutoPredict tool

MDAP is a standalone toolkit developed to perform predictions using MD trajectories and ML

methods. It uses a simplified representation of proteins as input data—Cartesian coordinates

(x, y, z) of atoms—and generates frame-level predictions. MDAP can fully integrate with both

MDSS and MDAM frameworks while also functioning independently for property prediction

tasks.

MDAP’s core contribution lies in its implementation of a modular, reusable Python package

that integrates ML with MD workflows. The tool provides functionality to handle noisy MD data,

streamline the prediction pipeline, and evaluate the effectiveness of ML methods for property

prediction.

4.3.1 Software design and core components

MDAP is implemented as a modular Python toolkit that contains two primary classes:

MDTrajLearner and MLProperty.

MDTrajLearner class

The MDTrajLearner class manages the ML pipeline. It generates input features by

transforming trajectory data into a 2D matrix representation, trains ML models on this data,

and evaluates their performance. The input features are derived from space atoms' Cartesian

coordinates (x, y, z), representing the protein's conformations. The matrix representation

ensures compatibility with standard ML workflows while maintaining flexibility for future

integration with alternative data representations, such as graph embeddings.

The generate_and_save_matrix method integrates with the MDSS ProteinData class

(see section 4.1.1) and can convert MD trajectory data into a flattened matrix format, where

each row corresponds to a frame, and the columns capture the spatial arrangement of atoms.

This matrix is saved in .npy format, allowing efficient reuse in subsequent analyses. The

train_and_test method can train user-specified ML models and store the trained model

Design, implementation, and testing

 96

as a binary object. Performance metrics such as accuracy, confusion matrices, and

classification reports are logged and saved for further evaluation.

MLProperty class

The MDTrajLearner class extends the ProteinProperty class in MDSS, enabling ML

predictions to label trajectory frames or return predicted values for the desired properties. It

incorporates a trained ML model to predict frame-level properties directly from the input data.

The calculate_property method applies the model to predict property values for all

frames, storing the results in the property_vector attribute. The class also provides

functionality for assigning and exporting labels to trajectory frames.

Thanks to the modularity of these two classes, the MDAP toolkit can operate independently

or be wholly integrated with other tools like MDAM and MDSS. The design allows users to test

different ML methods, preprocess noisy trajectory data, and annotate frames with predicted

labels, all within a cohesive framework.

4.3.2 Functionality

MDAP is a supervised ML tool that analyses the trajectory data of MD simulations to build a

predictive model. It can classify protein conformational states into distinct categories based

on their structural features. The tool provides a flexible ML framework for classifying protein

conformational states or other properties from MD simulations.

MDAP takes pre-processed trajectory data and structural labels as input. The output (i.e. the

target variable) consists of predicted conformational states.

Data transformation

MDAP leverages MDSS to preprocess MD trajectories into an ML-compatible format. MDSS's

ProteinData module can transform trajectories from 3D atomic coordinate matrices into 2D

tabular datasets. In this representation, rows correspond to trajectory frames, while columns

encapsulate cartesian coordinates, making the data readily usable for supervised learning

algorithms.

Target variable definition

Design, implementation, and testing

 97

Labels for conformational states are derived through a density-based clustering approach (see

section 5.4.1). This method projects the trajectory data onto a two-dimensional principal

component analysis (PCA) space, where high-density regions correspond to free energy

minima associated with biologically relevant conformational states (e.g., open, closed,

intermediate) (Figure 5.33). Frames outside these clusters are classified as non-states,

ensuring comprehensive labelling of the trajectory.

Supervised classification framework

MDAP’s classification framework is modular and extensible, allowing researchers to integrate

and apply several ML models to their data. The methods.py module provides a dictionary-

based structure for quickly adding new classifiers, enabling users to adjust the toolkit to their

specific research questions and systems.

4.3.3 Software implementation and accessibility

MDAP was developed as an object-oriented Python library integrated with well-established

packages such as MDAnalysis, numpy, scikit-learn, joblib, and MDSS. MDAP was developed

and tested using Visual Studio Code [181] and was packaged with Poetry [179]. MDAP is

compatible with Python 3.9.

Usage and example workflow

The workflow.py script allows users to easily modify input paths, model parameters, and

output settings. Its modular design ensures ease of use and extensibility to integrate additional

ML models or features, ensuring that MDAP can adapt to different research questions.

Licensing and Contribution

MDAP is currently being finalised for open-source release. Once complete, the GitHub

repository will be made public, allowing users to contribute to its development. The repository

will include the codebase, detailed documentation, and example workflows to guide users in

applying MDAP to their research.

4.3.4 Testing

Design, implementation, and testing

 98

The functionality and performance of MDAP were validated to ensure its robustness and

reliability in analysing MD trajectories and predicting protein conformational states. Testing

focused on evaluating MDAP's ability to classify conformational states using supervised ML

models, ensuring the tool could handle complex datasets effectively and provide accurate

predictions.

The testing was initially conducted using the second replica of DM (1 μs) on ADK (see 3.2.4

and 3.3) generated for the MDAM testing. The trajectory was subsampled at 40 ps intervals

to produce a manageable dataset of 25,001 frames while maintaining a representative view

of the system's conformational dynamics (open and closed state of ADK).

Six machine learning models were selected for comparison: Decision Tree, Random Forest,

Gradient Boosting, Support Vector Machine (SVM), Logistic Regression, and Multilayer

Perceptron (MLP). These techniques, which involve tree-based, ensemble, linear, and Neural

Network-based techniques, were selected for their effectiveness in classifying ML predictions.

They offer a balanced performance evaluation across different datasets.

The trajectory dataset was split into training (70%) and testing (30%). Each model was trained.

Standard metrics like precision, recall, and F1 Scores were used to compare their

performances. This comparison evaluated the models' capacity to categorise dominant and

transitional conformational states in detail.

The outputs from MDAP were validated through comprehensive visual and statistical

evaluations, including confusion matrices, calibration curves and precision-recall graphs.

These validation steps provided critical insights into the reliability and confidence of the

models, ensuring that MDAP's predictions aligned with the underlying biological dynamics.

MDAP was demonstrated as a flexible and reliable tool for analysing protein conformational

states in MD datasets by integrating diverse ML methods and rigorous evaluation metrics.

4.4 Summary

This chapter presented the design, implementation, and testing of MDSS, MDAM, and MDAP.

By integrating these toolkits into a unified framework, the chapter demonstrated how these

tools address key challenges in subsampling and preprocessing MD data, rational redesign of

protein dynamics through mutation scanning, and applying ML to predict protein states. The

combined approach highlights how design, implementation, and testing ensure robust,

Design, implementation, and testing

 99

reproducible, and scalable workflows. These tools collectively form a reliable pipeline that

advances the field of computational protein engineering by automating the process of

redesigning protein dynamics.

Results

 100

5 Results

This chapter presents the research findings, focusing on the MD simulations conducted on

ADK, the model protein system. The results are structured into four key sections. The first

section presents the results from MDSS, a tool developed to perform a posteriori subsampling

of MD trajectories while preserving relevant geometric properties. The second section focuses

on the validation data generated as part of the proof-of-concept study for the MDAM

framework, which demonstrates the dynamic behaviour of the ADK system for the WT and

other mutants. The results for MDAM are presented in the third section, particularly its

automated workflows for introducing mutations and assessing their impact on protein

dynamics. Finally, the fourth section provides the results for MDAP by performing a

classification prediction of protein states.

5.1 MDSubSampler results

Three use-case scenarios are presented to demonstrate the potential uses of MDSS: random

sampling for size reduction, pocket sampling for ensemble docking and sampling by most

frequently observed conformations. An example of an advanced scenario was implemented,

machine learning prediction, to demonstrate the tool’s expansion into more complicated

workflows. The testing of MDSS was conducted using a 1 µs trajectory with a timestep of 2 fs,

resulting in datasets comprising approximately 100,000 frames. Chapter 3 (section 3.2.2)

provides information regarding the simulations. The simulation could sample both ADK states,

so the trajectory contains frames with a close protein conformation.

5.1.1 Scenario: random sampling for size reduction

In this scenario, MDSS was tested for its ability to perform random subsampling of MD

trajectory data, specifically focusing on preserving the RMSD distribution of Cα atoms in a

protein structure. The goal was to identify the smallest subset of frames that retained the key

structural features of the original trajectory while reducing dataset size.

The RMSD over Cα atoms was calculated for each frame of the ADK trajectory relative to a

reference structure (open conformation after minimisation and thermalisation in the solvent of

the crystallographic structure). All frames were superimposed onto the reference structure

before computing RMSD to remove rigid roto-translation and estimate structural variability only

from intrinsic dynamics. The distribution of the RMSD value of Cα atoms along the full

Results

 101

trajectory of the ADK system, comprised of 100,000 frames, reveals a bimodal distribution

indicative of two dominant conformations: a closed state and an open state of the ADK LID

domain (Figure 5.1). The preservation of the bimodal RMSD distribution is critical because it

reflects the dynamic transition between the open and closed conformations of the ADK LID

domain, which are functionally significant for substrate binding and product release.

Figure 5.1 RMSD distribution for random sampling at 2.5% of the total trajectory frames (100,000 frames reduced
to 2,500 frames). The comparison between the full trajectory (orange) and the subsampled set (purple)
demonstrates that 2.5% preserves the bimodal distribution of RMSD values corresponding to the two dominant
conformational states of the ADK protein. These states are identified as the “closed” (RMSD ~7.05 Å) and “open”
(RMSD ~3.00 Å) conformations of the ADK lid domain. The Bhattacharyya distance used to quantify the similarity
between distributions is minimal (0.057), confirming that the subsample successfully retains the key structural
dynamics of the original trajectory while achieving significant data reduction.

The performance of the random sampling technique for size reduction was accessed through

the following: subsets of the trajectory were selected at varying sizes (0.25%, 0.5%, 1%, 2.5%,

5%, 10%, 20%, 25%, and 50% of the total 100,000 frames). The distributions of RMSD values

for each subset were compared to the full trajectory using Bhattacharyya distance as a

dissimilarity metric. The Bhattacharyya distance is a statistical metric that measures the

difference (i.e. similarity) between two probability distributions. Lower values of the measure

indicate greater similarity between the two distributions.

The comparison across all subsets highlights a trend: as the sample size increases, the RMSD

distribution of the subsampled data progressively converges with that of the reference (i.e. full)

trajectory (Figure 5.2). While smaller subsets such as 0.25% and 0.5% (250 and 500 frames,

Results

 102

respectively) showed notable dissimilarity (Bhattacharyya distance values of 0.574 and 0.337,

respectively), larger sample sizes displayed reduced dissimilarity (Figure 5.2). Specifically, a

2.5% sample size (2,500 frames) achieved a Bhattacharyya distance of 0.057, indicating

preservation of the bimodal RMSD distribution with both peaks for open and closed states

while maintaining a substantial reduction in data size (Figures 5.1, 5.2). Given the

computational cost and storage requirements of handling 100,000 frames, reducing the

dataset to 2.5% (2,500 frames) offers an excellent advantage for downstream analyses, such

as ML pipelines or ensemble docking studies, without compromising structural accuracy.

Figure 5.2 Presentation of results for “Random sampling for size reduction” scenario: The distributions of RMSD
are compared over the coordinates of Cα atoms between the original and subsampled trajectories of the following
sample sizes: 0.25%, 0.5%, 1%, 2.5%, 5%, 10%, 20%, 25%, and 50%. The Bhattacharyya distance was the
dissimilarity measure selected to calculate the difference between the two distributions for each sample size. A
sample of 2.5% is the smallest subset for which the shape and peak location of the distribution of RMSD is
preserved.

5.1.2 Scenario: pocket sampling for ensemble docking

The second scenario evaluated the ability of MDSS to capture structural diversity in a protein’s

binding pocket, ensuring even representation of conformations across the range of pocket

Results

 103

openings. This scenario could be useful in ensemble docking studies, where an accurate

representation of pocket geometries enables effective ligand binding analyses.

The RMSD values of Cα atoms for the binding pocket LID (residues 120-160) were calculated

for all frames of the ADK’s trajectory after fitting to the reference structure. The resulting RMSD

distribution revealed a continuous range of conformational states, from the fully closed to the

open lid. Uniform sampling was done by dividing the range of RMSD values into 200 intervals,

and 10% of the frames within each interval were selected randomly. This uniform sampling

strategy ensured that the subset of frames proportionally covered the entire range of pocket

openings.

The effectiveness of this approach was validated by comparing the RMSD distributions of the

subsampled trajectory and the original full trajectory. As shown in Figure 5.3, the RMSD

histogram of the subsampled set (purple) equally spans the range of values in the original

trajectory (orange) (Bhattacharyya distance is 0.127), confirming the proportional

representation of the pocket conformations. The result demonstrates that the uniform

sampling method effectively preserves the structural representations within the binding pocket

while reducing the dataset size. Such equal sampling of pocket geometries is beneficial for

ensemble docking analyses, where accurate and diverse conformations are essential for

predicting ligand-binding interactions [182].

Figure 5.3 Summary result for “Uniform sampling of pocket opening for ensemble docking” scenario. RMSD over
the Cα atoms of the ADK LID was calculated for all frames. The range of RMSD values from closed to open state
was divided into 200 intervals, and for each interval, a random sample of 10% of frames was selected. This set of
frames equally samples the range of possible openings for the protein's binding site. The difference between the
sampled and original distributions was calculated using Bhattacharyya distance.

Results

 104

5.1.3 Scenario: sampling by most frequently observed conformations

The third scenario evaluated MDSS’s ability to generate a representative subsample that

captures dominant and less frequent conformational states within an MD trajectory. By

prioritising frames based on the frequency of reference property, this approach allows for a

more balanced representation of the trajectory’s structural states, removing any bias toward

the most frequent confirmation.

Figure 5.4 Summary results for “Weighted sampling of pocket openings for ensemble docking” scenario. RMSD
values for ADK LID opening were calculated for each frame. The range of values was then discretised in 100 bins,
and frequency counts were recorded for each bin and used as a weight for each frame. The resulting set of frames
was 10% of the original trajectory and was extracted by weighted random sampling. This set contains random
structures selected from the most frequently observed conformations in the original trajectory. As a result, an
enrichment of the close conformations was generated compared to unweighted random sampling.

The RMSD values of Cα atoms in the binding pocket LID (residues 120-160) were calculated

for each frame relative to a reference structure. These RMSD values were then discretised

into 100 bins, where the frequency of each bin represented the number of frames with RMSD

values in that range. A weighting vector was generated based on these frequencies, which

informed the weighted random sampling process. This method ensures that frames are

selected proportionally across all conformational states, regardless of their frequency in the

original trajectory.

Results

 105

Using weighted random sampling, 10% of the total frames (10,000 out of 100,000) were

selected. This strategy successfully enriched the representation of less frequent

conformations—particularly the closed state—while maintaining the dominant conformations,

such as the open state. Compared to unweighted random sampling, which tends to favour the

most frequent conformations, the weighted approach achieved a more balanced distribution

of states, as shown in Figure 5.4.

The RMSD histograms illustrate the following: both open and closed conformations are

equally represented in the subsampled trajectory, demonstrating the effectiveness of the

weighted strategy in avoiding bias. The effectiveness of the weighted sampling strategy was

further quantified with a Bhattacharyya distance value of 0.067 for a 10% sample size,

indicating a strong alignment between the weighted subsample and the original RMSD

distribution. Comparatively, smaller sample sizes (e.g., 2.5% with 0.116) showed more

significant dissimilarity, highlighting the importance of sample size in achieving a balanced

representation of both states.

5.1.4 Advanced scenario: machine learning prediction

This scenario demonstrates the ability of MDSS to prepare subsampled trajectory data for ML

workflows, enabling the prediction and classification of protein conformational states. The goal

is to offer a combined solution to sample and reshape frame coordinates to a suitable format

for ML tasks. The workflow begins with subsampled trajectory frames saved as NumPy arrays,

which are then reshaped from their original 3D format (atoms × Cartesian coordinates ×

frames) into a 2D tabular format. In this transformation, each row represents a trajectory frame

(F1, F2, …, Fn), while the columns correspond to the atomic Cartesian coordinates that serve

as features for the ML models (Figure 5.5).

The input data, therefore, consists of atomic coordinates extracted from the trajectory, which

capture the structural state of the protein at each frame in the format of single observations

over a series of variables (the cartesian coordinates in this case). To enable supervised

learning, a target variable was added to represent the conformational state of the protein

(Figure 5.6). For the purpose of this scenario, a simple state label was created for each frame.

These labels were generated using a combination of geometrical information and expert

choices, to avoid a trivial ML task where there is linear dependency between input and output

variable.

Results

 106

Figure 5.5 Transformation of subsampled trajectory data into a machine learning-compatible format. The input
matrix consists of atomic Cartesian coordinates for each trajectory frame (F1, F2, ..., Fn), while the target variable
corresponds to the manually labelled protein states: Open (O), Closed (C), and Noise (N).

First a conformation space was created using two informative variables for the process: Rg

and distance between two key residues (G55 and P127). Then density analysis was performed

on the space to detect high-density region putative to be minima in the conformational space

(see Figure 5.6). Frames in the high-density region corresponding to higher Rg and distance

values were labelled as the open state (O), frames with lower values were categorised as the

closed state (C), and all remaining frames were assigned as noise (N). This manual labelling

process effectively translates the complex protein dynamics into three clearly defined states

that can be predicted using ML.

Figure 5.6 Approximate view of the conformational space representation using Radius of Gyration (y-axis) and
distance between two key residues (x-axis). The open state (O) corresponds to larger Rg and distance values,
forming a distinct cluster in the upper region. The closed state (C) forms a separate cluster in the lower region, with
reduced Rg and distance values. Frames scattered outside these clusters are labelled as noise (N).

Results

 107

Given a target label, a model was trained on 70% of the frames and tested on the remaining

30%. The evaluation performance for all three ML methods used was done through

assessment of accuracy, Cohen’s Kappa scores, and confusion matrices to assess their ability

to classify the protein conformational states.

Cohen’s Kappa score is a statistical metric used to assess the level of agreement between

predicted and actual labels while adjusting for the likelihood of chance agreement. A score of

1 signifies perfect agreement, whereas a score of 0 indicates no agreement beyond what is

expected by chance. This metric provides a more robust evaluation than accuracy alone,

particularly for imbalanced datasets or multi-class problems such as the classification of

protein conformational states.

Logistic Regression (LR):

LG achieved an accuracy of 76.72% and a Cohen’s Kappa score of 0.62, providing a reliable

baseline for comparison. However, the confusion matrix (Figure 5.7, top) highlights challenges

in correctly classifying the Open and Noise states due to their overlapping structural

properties. While the model successfully identifies the Closed state, it frequently misclassifies

frames between the other two states.

Figure 5.7 Confusion matrices for the three machine learning models—Logistic Regression (top), Random Forest
(middle), and Support Vector Machine (bottom)—were used to predict protein conformational states. Each matrix
shows the distribution of actual and predicted labels for the Open (O), Closed (C), and Noise (N) states. The best
performance is achieved by the Random Forest model, as it is correctly classifying most frames with minimal
misclassification.

Results

 108

Random Forest (RF):

The RF model delivered the best performance, achieving an accuracy of 91.31% and a

Cohen’s Kappa score of 0.85, indicating close agreement with the ground truth labels. The

confusion matrix (Figure 5.7, middle) shows excellent classification across all three states,

with minimal misclassification of frames between Open, Closed, and Noise states. This result

reflects the model's robustness in capturing complex, non-linear relationships within the

feature space.

Support Vector Machines (SVM):

The SVM classifier achieved an accuracy of 81.85% and a Cohen’s Kappa score of 0.69. The

confusion matrix (Figure 5.7, bottom) reveals that the model performs well for the Closed state,

accurately distinguishing it from the other two states. However, it struggles to differentiate

between the Open and Noise states, leading to misclassifications where structural properties

overlap.

5.2 Validation of MD simulations for proof-of-concept

The following section presents the results of the MD simulations conducted on the ADK

system, including the WT, single mutants V135G and V142G and the double mutant (DM)

V135G_V142G. The results highlight the structural differences induced by the mutations and

their subsequent impact on protein dynamics. The primary objective was to assess whether

these mutations facilitate the sampling of the closed state. The evaluation was carried out

through an examination of geometric properties.

5.2.1 Rationale for generation and validation of MD data for MDAM

The generation and validation of MD simulations were crucial for evaluating the MDAM toolkit.

The goal was to provide a validated reference dataset and use it to test MDAM’s ability to

evaluate the dynamic impact of mutations in ADK automatically. The choice of mutants and

the decision to run microsecond simulations builds upon a study by Song et al. [165], which

relied on relatively short simulation timescales (100 ns). Simulations on a longer timescale

would better verify that specific mutations (V135G, V145G) impact ADK's closure.

While initial simulations were conducted for 300 ns trajectories across 10 replicas, these did

not capture the closure of ADK in any replicas. Therefore, only the results from the 1000 ns

Results

 109

trajectories are reported in this section. These extended simulations allowed for a more

complete sampling of ADK’s open and closed states, with ADK’s closure being observed only

in the second replica of the DM simulation. This extension enabled comparisons between WT,

single mutants, and DM, validating the effect of mutations in ADK’s closure.

5.2.2 Data integrity and trajectory validation

The integrity of the generated trajectories was first validated using gmx check -f to ensure

that the files were not corrupted or that there were no data inconsistencies. Additionally, visual

inspection with VMD [175] confirmed dynamical changes without anomalous disruptions.

These validations established reliable MD data datasets for further dynamic analyses.

Geometric properties: assessing dynamics

The geometric properties of the system were analysed to validate its dynamic behaviour and

assess the closure of ADK. Properties evaluated include RMSD, RMSF, Rg, the distance

between key residues (P127 and G55), and the COM Distance. For the time series plots, a

single replica per structure (WT, V135G, V142G, DM) was used to illustrate representative

behaviour over the simulation time.

Trajectories from all five replicas of 1000 ns simulations across all four structures were

concatenated and compared for distribution plots. An exception was made for the COM

Distance analysis, where only the second replica of the 1000 ns simulations for WT and DM

was used to generate the density plot. This combined approach provided a complete view of

the system’s stability and dynamic sampling through time series and distribution analysis.

1. RMSD: Calculations were performed on the Cα atoms of the protein to measure

deviations from the initial structure. As shown in Figure 5.8, the time series analysis

revealed that the WT, single mutants and DM systems stabilised after the equilibration

phase. While the WT exhibited relatively consistent RMSD values throughout the

simulation, the DM demonstrated higher fluctuations at specific points, indicating

increased sampling of conformational variability. This behaviour suggests that the DM

has a greater propensity to explore distinct conformational states, which is consistent

with its role in promoting domain closure in ADK.

Results

 110

Figure 5.8 Time series RMSD analysis of ADK Cα atoms. The plot shows the smooth-running average of RMSD
throughout the simulation for the WT (red), single mutants V135G (blue) and V142G (green), and the double mutant
(DM) V135G/V142G (purple). While all systems stabilise after equilibration, the DM exhibits higher RMSD values
intermittently, reflecting increased conformational flexibility.

Figure 5.9 Density distribution of RMSD values for WT and DM systems. The plot compares the RMSD distributions
for WT (blue) and DM (red). The WT system shows a unimodal distribution centred around 3 Å. In comparison, the
DM system displays a bimodal distribution with peaks at 3 Å and 7 Å, indicating sampling of both open and closed
states.

The density plot in Figure 5.9 highlights the distinct dynamic behaviour of the WT and

DM systems. The WT trajectory exhibits a narrow unimodal distribution, centred

around ~3.00 Å, indicating a stable open-state conformation throughout the simulation.

Results

 111

In contrast, the DM shows a bimodal distribution, with peaks near ~3.00 Å and ~7.00

Å. This bimodal behaviour reflects the DM’s ability to sample both open and closed

states, suggesting that the combined V135G and V142G mutations (i.e. DM) facilitate

transitions to the closed-state conformation. These results provide evidence that the

mutations promote the closure of ADK, which is consistent with the study’s objectives

[165].

2. RMSF: Calculations were performed on the Cα atoms of the protein to evaluate the

flexibility of individual residues within the ADK structure. As shown in Figure 5.10, the

RMSF analysis highlights regions of increased flexibility, particularly in the LID

(residues 120–160) and AMPbd (residues 30–60) domains, which are functionally

important for ADK closure. WT and DM display similar overall flexibility patterns, with

peaks in the same regions. However, the DM shows slightly higher fluctuations in the

LID domain, consistent with its enhanced capacity to transition into the closed

conformation. This increased flexibility in the LID domain is likely a key factor driving

the observed differences in the dynamic behaviour between the two systems. The

single mutants, V135G and V142G, exhibit intermediate flexibility, with V142G showing

slightly more significant fluctuations than V135G.

Figure 5.10 RMSF analysis of Cα atoms in ADK. The plot displays residue-wise RMSF for WT (purple), single
mutants V135G (green) and V142G (blue), and double mutant (DM) V135G/V142G (red). Peaks in the LID
(residues 120–160) and AMPbd (residues 30–60) domains indicate higher flexibility, with the single mutants
showing moderate increases in LID fluctuations. At the same time, the DM exhibits the most pronounced flexibility,
facilitating conformational transitions.

Results

 112

3. Radius of Gyration (Rg): Calculations were done to evaluate the compactness of the

ADK structure throughout the simulations. The time series data in Figure 5.11 confirm

that all four systems maintain consistent Rg values, with no significant collapse or

expansion observed during the trajectories. This stability in Rg suggests that the

overall structural integrity of the protein is preserved across all variants.

Figure 5.11 Time series Rg analysis for ADK. The plot shows Rg values over time for WT (green), single mutants
V135G (red) and V142G (blue), and the double mutant (DM) V135G/V142G (purple). Stable values across all
systems indicate maintained structural compactness during the simulations.

Figure 5.12 Rg density distribution for ADK. The plot compares Rg distributions for WT (blue) and DM (red). The
WT exhibits a unimodal distribution centred near 19.5 Å, while the DM shows a broader, bimodal distribution,
indicating increased conformational diversity.

Results

 113

The WT exhibits a unimodal Rg distribution centred near ~19.5 Å, indicative of a stable

and predominantly compact state throughout the simulation (Figure 5.12). In contrast,

the DM shows a broader, bimodal distribution with peaks near ~19 Å and a secondary

peak around ~17 Å. Therefore, the DM's ability to sample a more diverse range of

conformational states is consistent with occasional structural rearrangements and

domain movements that facilitate transitions toward the closed conformation.

4. Distance between key residues: The distance between two key residues, P127 (on

the LID domain) and G55 (on the AMPbd domain), was calculated to evaluate ADK’s

closure mechanism. The distribution of these distances, shown in Figure 5.13,

highlights key differences between the variants.

Figure 5.13 Distance distribution between residues P127 and G55 in ADK. The plot compares the distributions of
distance between these two residues for WT (blue) and DM (red). The WT shows a unimodal distribution at ~27 Å,
while the DM displays a bimodal distribution with peaks at ~25 Å (open state) and ~5 Å (closed state).

The WT exhibits a unimodal distribution centred near ~25 Å, representing a

predominantly open conformation. In contrast, the DM shows a bimodal distribution,

with one peak near ~23 Å corresponding to the open state and a second peak near ~8

Å corresponding to the closed state.

5. COM Distance: The closure of ADK was assessed by calculating the COM Distance

between the LID (residues 120–160) and AMPbd (residues 30–60) domains. This

Results

 114

property is a robust indicator of the conformational state of ADK, as a reduction in COM

Distance correlates directly with the transition toward the closed state. As shown in

Figure 5.14, the WT maintains a consistent COM Distance, indicative of a

predominantly open state. In contrast, the DM displays a bimodal distribution with a

with two peaks, reflecting its ability to sample closed conformations.

Figure 5.14 COM Distance distribution for ADK between the WT and the DM. The plot compares the COM distance
between the LID and AMPbd domains for WT (blue) and DM (red). The WT exhibits a distribution centred near ~35
Å, consistent with an open state. In comparison, the DM shows a bimodal distribution with two peaks near ~33 Å
and ~22 Å, indicative of both open and closed states respectively. This plot was derived using only the second
replica of the 1000 ns simulations for WT and DM.

Energy and temperature stability

The stability of the simulations was assessed by analysing potential energy and system

temperature, using gmx eneconv and gmx energy to combine and extract data from energy

files. Across all structures and replicas, the system temperature remained steady at the target

level (~300 K), confirming the proper functioning of the thermostat. Similarly, total energy

exhibited no significant drifts or trends in any simulation, demonstrating energetic stability

throughout the trajectories.

Figure 5.15 illustrates the energy and temperature profiles for the second replica of the DM

structure. The total energy remains constant, with no evidence of instability, while the

Results

 115

temperature profile shows consistent values around ~300 K, confirming the reliability of the

simulation conditions.

Figure 5.15 Example energy and temperature profiles for the DM Structure (Second Replica). Left: Total energy,
confirming the energetic stability of the system. Right: The system's temperature profile demonstrates stable
temperature around the desired ~300 K. These results represent observations across all structures and replicas.

Advanced analysis: Principal Component Analysis (PCA)

PCA was performed to analyse the protein’s collective motions and distinguish differences in

the conformational sampling between the WT and the DM of ADK. PCA calculations were

carried out on concatenated trajectories of the Cα atoms, enabling the identification of key

motions captured by the first two principal components (PC1 and PC2). PC1 and PC2

explained approximately 63% of the total variance, with PC1 describing the primary motion of

domain closure and PC2 capturing the LID’s twisting movement during closure. The

projections of individual replicas onto the PC1-PC2 space are shown in Figure 5.17.

The density plots reveal distinct conformational sampling behaviours for WT and DM. The WT

primarily occupies a high-density region near the origin and exhibits limited movement toward

the closed state within the simulation timescale. In contrast, the DM displays broader

sampling, including direct transitions to the closed state, emphasising the mutations’ role in

facilitating ADK’s closure. These findings align with the results by Song et al. [165] even when

extending them to longer timescales.

Results

 116

Figure 5.16 PCA Projections for WT and DM. Density plots of the PC1-PC2 space show WT (blue) primarily
sampling open and intermediate conformations, while DM (magenta) samples closed states. Data is based on five
concatenated replicas for each structure.

Results

 117

Porcupine plots were generated to interpret further the motions captured by PC1 and PC2

(Figure 5.16, right). These plots visualise the direction and collective motions associated with

each PC:

• PC1: Captures the closing motion of the LID and AMPbd domains toward the catalytic

core of ADK, consistent with functional closure.

• PC2: Represents a twisting of the LID domain that happens during the closing motion.

Figure 5.16 (left) provides an approximate view of the conformational space sampled by the

WT and DM systems, aggregated across all five replicas. The density contours in the PC1-

PC2 space reveal key differences in sampling behaviour. The WT primarily occupies a high-

density region near the origin, representing the open and intermediate conformations. In

contrast, the DM shows a broader distribution, extending into regions associated with the

closed state. The secondary cluster observed for the DM reflects its ability to directly sample

the closed conformation, highlighting the impact of mutations in facilitating ADK closure. This

plot offers a qualitative perspective on how the mutations influence the conformational

landscape.

Figure 5.17 Right: Porcupine plots of PC1 and PC2. The plots illustrate the direction (arrows) and magnitude (length
of arrows) of motions associated with PC1 and PC2. PC1 captures domain closure, while PC2 depicts lateral shifts
of the LID domain. Left: Combined PCA Density for WT and DM Systems. The plot shows an approximate view of
the conformational space sampled by WT and DM in the PC1-PC2 projection. WT primarily samples the open state,
while DM exhibits broader sampling, including transitions to the closed states.

PC1
39.5%

PC2
24.0%

Results

 118

5.3 MDAutoMut results

This section provides the results from validating the MDAM toolkit, focusing on its ability to

automatically generate simulations, introduce mutations and evaluate their impact on ADK’s

protein dynamics. The impact of mutations was assessed by analysing the distributional

differences of COM Distance between each mutant and the WT and a target distribution for

COM Distance. This analysis used MDSS’s property and dissimilarity classes to quantify which

mutant approximates the desired dynamic behaviour.

MDAM includes functionality to quickly generate distribution plots for visualising results, which

are saved in the output folder for immediate analysis. However, for this thesis, the plots were

refined and enhanced using R [176] to ensure a more polished presentation.

The proof-of-concept demonstrated the toolkit’s capability to identify mutations at specific

positions (135,142) that could influence ADK’s dynamics to approximate a target conformation

(closed conformation). Both single and double-mutation workflows were explored. Single

mutations systematically evaluated all 20 possible amino acid substitutions at positions 135

and 142 separately. For double mutations, the combinational complexity of testing all 400

possible pairs of amino acid substitutions was reduced by grouping amino acids into five

categories (e.g., minor non-polar, large non-polar, polar uncharged, positively charged,

negatively charged). Representative amino acids from each group were selected for

systematic testing, resulting in 25 combinations. Additionally, a heuristic approach was

employed to refine the search space further and focus on the most promising double mutants.

Short simulations of 50 and 200 ps were initially run to test the proof-of-concept. These short

simulations ensured that the tool could automate the mutation workflow and generate valid

outputs. Following the tool’s deployment on ARCHER2, the goal was to extend these

simulations to longer timescales, such as 500 ns or 1000 ns, for more robust validation of the

mutations’ impact on ADK’s closure.

5.3.1 Mutation workflow

The mutation workflow (Figure 3.4) (mutation_workflow.py) within MDAM was

implemented using PyRosetta. This automated process introduces one, two, or more

mutations through a defined list of target positions and substitutions. It simplifies mutation

Results

 119

generation and integrates seamlessly into the pipeline, ensuring consistency and

reproducibility across multiple systems.

Figure 5.18 Information and log file for the mutation workflow of MDAM. The top panel shows the WT for ADK
structure (left) and the generated V135G mutant structure (right). The bottom panel displays the logging output,
detailing the mutation at position 135 and the associated Rosetta energy calculations before and after the mutation,
emphasising its impact on structural stability.

The workflow modifies the structure for single mutations by substituting a specified amino acid

at the desired position in the PDB file. The changes are logged throughout the workflow,

providing a detailed record of the mutation, including the specific position, the substituted

amino acid, and any energy changes calculated by Rosetta. Figure 5.18 (top) shows this

Results

 120

example, where the single mutation V135G was introduced, and the modified PDB structure

was generated.

The system’s Rosetta energy was calculated before and after the mutation engineering to

assess the impact of each mutation. These energy values indicate the system’s stability

following the mutation. The results demonstrate the workflow’s ability to modify structures

while maintaining structural integrity efficiently. Figure 5.18 (bottom) shows the workflow’s

logging output sample, including the mutation details and corresponding energy calculations.

5.3.2 System preparation and simulation workflow

The system preparation and simulation workflow (Figure 3.4) (mdprep_workflow.py)within

MDAM utilises the gmxapi python interface from GROMACS software, automating the

preparation and production of MD simulations. This workflow follows a sequence of 10 steps,

ensuring the consistent preparation of the system with gradual thermalisation and equilibration

before the production phase (see section 3.2.3). For this test case, a predefined recipe,

detailed in the Methods chapter, was used to prepare and simulate the system.

Figure 5.19 Log file for mdprep workflow in MDAM. Details all the sequential steps, including energy minimisation
and equilibration is provided. The file represents only a sample of the full log.

Figure 5.19 provides a sample logging file overviewing the workflow’s sequential progression.

Additionally, the workflow’s execution generated a structured directory and subdirectory

system to organise all input, intermediate, and output files. Figure 5.20 provides a structured

view of the directories.

Results

 121

This pipeline not only automates the traditionally manual and error-prone steps of system

preparation but also ensures compatibility with subsequent analyses by following a

standardised recipe that can be adjusted. Additionally, the workflow was designed with a clear

structure and detailed logging, making it easy to debug and troubleshoot errors if they arise

during the preparation or simulation process.

Figure 5.20 Hierarchy of directories generated by the MDAM mdprep workflow, ensuring systematic management
of input, intermediate, and output files for streamlined analysis and debugging.

5.3.3 Full MDAM workflow

This section presents the outcomes of the complete MDAM workflow, including the systematic

exploration of single and double mutations and the heuristic approach for double mutants. By

integrating mutation engineering, system preparation, and MD simulations, the MDAM

workflow provides an efficient automated pipeline for identifying mutations that promote

desired conformational changes in ADK.

To demonstrate the complete workflow, an example of a log file is presented in Figure 5.21 for

the heuristic approach, capturing all steps involved in the analysis. A hierarchical

representation of the output directories and files is also shown in Figure 5.22 (left), and an

example of a mutation list used as input is presented on the right. In order to perform the proof-

of-concept, the results focus on evaluating the effectiveness of mutations by calculating the

COM Distance between the AMPbd and LID domains of ADK. Calculations were done with

Results

 122

the MDSS library. It then measured the distance between the distributions of COM Distance

for each mutant with WT and the target distribution (see section 4.2.2 and Figure 4.9).

Figure 5.21 Log file for the full MDAM workflow for the proof-of-concept analysis. The panel shows an example log
file, capturing all steps involved in the double mutation heuristic approach.

Due to the constraints of computational resources, the workflow was tested using an approach

based on a “dry run” where simulations are precalculated and the MDMA workflow is executed.

The simulations used in testing were derived from 500 ns trajectories (see section, chapter 3),

processed using a stride of 20 ps with GROMACS to produce 25,000 frames per trajectory for

all tested mutants, including the WT. As discussed in Chapter 4 (see section 4.2.4), to reduce

the combinational complexity, only 5 representative amino acids were used for the testing.

Therefore, 25 pairs of mutations were generated and evaluated for the double mutation

workflow.

Results

 123

Figure 5.22 Hierarchical organisation of output directories and files generated during the MDAM workflow. The right
panel includes a sample mutation list used as input for the analysis.

For this proof-of-concept, the focus was on ADK’s backbone conformational changes. In order

to accelerate calculations, the analysis was limited to Cα atoms only, as the transition between

open and closed states is predominantly a backbone-driven event. The results for all three

scenarios—single mutation, double mutation systematic, and double mutation heuristic—

provided below are on Cα atoms only.

Single mutation

The single mutation workflow systematically evaluated all 20 possible amino acid

substitutions, first at position 135 and then at position 142, to assess their impact on ADK’s

conformational dynamics. The COM Distance between the AMPbd and LID domains was

calculated on Cα atoms. The distribution of values was compared for all mutants against the

WT and the target distributions (see section 4.2.2).

Figure 5.23 illustrates the COM Distance density for the V135G mutant. The WT (red) exhibits

a unimodal distribution centred around ~35 Å, consistent with a predominantly open-state

conformation. The target distribution (blue), representing the desired protein dynamics,

reflects both open and closed conformation of ADK, with a bimodal pattern characterised by

peaks near ~25 Å and ~35 Å. For V135G (green), a subtle shift is observed toward shorter

COM distances, with a broadening towards more open conformations. This result suggests a

limited tendency for V135G to sample conformations closer to the closed state. The

Bhattacharyya distance of 0.23 between V135G and the target, compared to 0.09 for the WT,

indicates that this mutation alone did not achieve the desired target dynamics.

Results

 124

Figure 5.23 COM Distance distribution for the V135G mutant compared to the WT and target distributions. The WT
(red) exhibits a unimodal distribution centred at ~35 Å, representing a predominantly open-state conformation. The
target distribution (blue) is bimodal, reflecting both open (~ 35 Å) and closed (~ 25 Å) conformations.

Figure 5.24 COM Distance distribution for the V142G mutant compared to the WT and target distributions. The WT
(red) maintains a unimodal distribution centred at ~35 Å, while the target distribution (blue) is bimodal, reflecting
both open and closed conformations. The V142G mutant (green) is closer to the WT, and it fails to replicate the
bimodal target behaviour fully. The Bhattacharyya distance of 0.19 from the target indicates an incremental
improvement over V135G.

Results

 125

Similarly, Figure 5.24 shows the COM Distance density for the V142G mutant. Compared to

the V135G, the V142G behaves more like the WT, with a Bhattacharyya distance of 0.19 (i.e.

slightly better than V135G). Therefore, the V142G single mutation alone did not achieve the

desired closure of ADK.

Figure 5.25 COM Distance distribution for the V135K mutant compared to the WT and target distributions. Unlike
other single mutants, V135K (green) displays dual peaks at ~35 Å and ~25 Å, indicating its ability to sample both
open and closed states. The Bhattacharyya distance of 0.02 to the target (blue) reflects a high degree of overlap.
However, the closed-state sampling is more pronounced than in the target, suggesting an imbalance in its
dynamics. This result highlights the potential of V135K to modulate ADK dynamics partially, but it does not fully
achieve the equilibrium observed in the target distribution.

An interesting result emerged from the single mutation V135K, shown in Figure 5.25. Unlike

the other single mutants, V135K demonstrated the ability to sample the closed state directly,

with a distinct peak near ~25 Å in its COM Distance distribution. This behaviour aligns much

more closely with the target distribution, as indicated by a significantly lower Bhattacharyya

distance of 0.02 compared to the target. This result suggests that the substitution of Lysine at

position 135 induces a structural shift in ADK dynamics, enabling sampling of the closed state.

However, while V135K demonstrates the ability to sample both states, the closed-state

sampling dominates the distribution relative to the target. This imbalance indicates that the

mutation alone does not achieve the dynamic equilibrium observed in the target distribution.

These findings highlight the potential for single mutations, such as V135K, to modulate ADK

dynamics but also emphasise their limitations in achieving the balanced dynamics necessary

for full functional closure. However, a more detailed analysis of state transition is required to

Results

 126

have a conclusive view on this, but this is not part of the scope of this work and is more relevant

for a broader understanding of ADK’s dynamics.

These findings confirm that the single mutations V135G and V142G, as well as other

substitutions apart from V135K, are insufficient to induce the conformational shift required for

ADK closure. This result aligns with the study by Song et al. [165], which demonstrated that

ADK’s transition to the closed state is achieved through a combination of mutations,

specifically the DM (V135G_V142G), rather than individual amino acid changes. As such,

these insights from the single mutation workflow provide a foundation for exploring double

mutations and their potential impact on the dynamics to perform a complete framework for this

proof-of-concept.

Double mutation systematic approach

The systematic double mutation workflow tested combinations of amino acid substitutions at

positions 135 and 142, generating a ranked list of mutations. The COM Distance distributions

for each double mutant were compared against the WT and the target distributions to evaluate

their ability to approximate the desired closed-state dynamics of ADK. Figure 5.26 presents

the ranked list of mutations based on their Bhattacharyya distance to the target distribution,

highlighting the top-performing mutants.

Figure 5.26 Results from the double mutation systematic approach. Ranked list of some of the evaluated double
mutants sorted by their Bhattacharyya distance to the target COM Distance distribution, with V135G_V142G (DM)
achieving the lowest distance (0.01), indicating the closest match to the target.

After systematically scanning all 25 double mutants, the tool identified V135G_V142G (DM)

as the closest to the target, with a Bhattacharyya distance of 0.01. This result is particularly

significant as it aligns with Song’s et al. [165] study, which demonstrated that this specific DM

Results

 127

promotes ADK closure. The tool’s ability to correctly rank V135G_V142G as the top-

performing mutation serves as a successful proof-of-concept, validating the effectiveness of

the systematic approach in identifying mutations that induce the desired conformational

dynamics.

Figure 5.27 illustrates the COM Distance density for V135G_V142G. The WT distribution (red)

remains unimodal with a peak at ~35 Å, while the target distribution (blue) is bimodal, reflecting

open and closed states. The V135G_V142G mutant (green) achieves near-complete overlap

with the target, with peaks at ~25 Å and ~35 Å, capturing both conformational states. This is

also demonstrated with the Bhattacharyya distance of 0.01 between the DM and the target.

This result underscores the effectiveness of the systematic double mutation workflow in

identifying functionally significant mutations.

Figure 5.27 Results from the double mutation systematic approach. COM Distance distribution for V135G_V142G
compared to the WT (red) and target (blue). The V135G_V142G mutant (green) closely aligns with the target,
exhibiting a bimodal distribution with peaks near ~25 Å and ~35 Å.

In addition to V135G_V142G, the second-ranked mutant, V135L_V142L, also demonstrated

promising behaviour (Figure 5.28). The Bhattacharyya distance of 0.095 is slightly higher than

V135G_V142G, but it still aligned better with the target than other tested mutations. The COM

Distance density for V135L_V142L (green) displays a bimodal pattern, suggesting partial

sampling of both open and closed states, but there is no significant closure compared to

V135G_V142G.

Results

 128

Figure 5.28 COM Distance distribution for V135L_V142L compared to the WT (red) and target (blue). The
V135L_V142L mutant (green) approximates the target with a bimodal pattern but emphasizes the open state more
than the closed state, as reflected in its Bhattacharyya distance of 0.095.

These results demonstrate the MDAM toolkit’s performance in identifying mutations that have

the desired impact on ADK’s dynamics. While V135G_V142G represents the optimal mutation

for promoting closure, other candidates, such as V135L_V142L, demonstrate the potential for

alternative mutational strategies.

Double mutation heuristic approach

The heuristic approach employed a targeted search strategy to refine the mutation space by

focusing on promising double mutations while excluding combinations unlikely to meet the

desired target dynamics.

Iteration Mutation Pair Bhattacharyya Distance (Vs Target) Outcome

1 V135G_V142K 0.27803 Unsuccessful

2 V135S_V142G 0.24816 Unsuccessful

3 V135G_V142G 0.01021 Successful

4 V135K_V142V 0.02779 Successful

5 V135G_V142S 0.24816 Unsuccessful

 … … … …

Figure 5.29 Results for the heuristic approach for double mutations. The table is showing the iteration-by-iteration
evaluation of mutation pairs, their Bhattacharyya distances to the target, and their outcomes. Successful mutations
(e.g., V135K_V142V and V135G_V142G) are highlighted in green, while unsuccessful pairs exceed the
dissimilarity threshold (0.05).

Results

 129

This process began by randomly selecting an initial mutation pair from the mutations list. After

calculating its Bhattacharyya distance to the target distribution, the search iteratively moved

to neighbouring combinations by altering one mutation (at position 135) at a time while keeping

the other constant (at position 142). At each step, evaluated combinations were checked

against a user-defined dissimilarity threshold of 0.05. Combinations exceeding this threshold

were excluded, while successful mutations were retained and added to the output list of

“successful mutations” (Figure 5.29).

Figure 5.30 Visualisation of the heuristic search process for double mutations. A grid representing the evaluated
mutation space, with rows and columns corresponding to mutations at positions 135 and 142, respectively.
Evaluated combinations are marked with checkmarks, while excluded combinations (e.g., those with K at position
142) are highlighted in red. This representation illustrates how the heuristic search narrows the mutation space
iteratively by focusing on promising candidates.

Figure 5.30 illustrates the search process, with rows and columns representing possible

mutations at two positions (rows for position 135 and columns for position 142). The search

starts at a random pair (e.g., V135G_V142K) and moves iteratively to neighbouring pairs

based on proximity in the mutation space. The method starts with evaluation of the first random

pair V135G_V142K. The evaluation process shows that K in position 142 fails to meet the

user-defined dissimilarity threshold (0.05), hence all mutations with K at position 142 (shown

in red) are excluded. The process goes on until it finds mutations that have the desired impact

Results

 130

on the dynamics (highlighted in green) and saves them in an output list. This exclusion strategy

reduced the search space, directing computational resources toward more promising

mutations. This iterative process allowed the search to explore the mutation landscape

efficiently, narrowing the focus to high-performing mutations while avoiding redundant

evaluations

Figure 5.31 A heat map of Bhattacharyya distances for all double mutations evaluated during the heuristic search.
Lighter regions represent mutations with distributions closer to the target. The optimal mutation, V135G_V142G, is
highlighted with the smallest Bhattacharyya distance (0.01021), and V135K_V142V emerges as another strong
candidate with a distance of 0.02. Other promising candidates, such as V135L_V142G, are also visible, illustrating
the efficiency of the heuristic approach in identifying high-performing mutations.

Figure 5.31 presents a heat map of Bhattacharyya distances for all double mutants that were

evaluated during the heuristic search. Lighter regions in the heat map represent mutations

with distances closer to the target, highlighting promising candidates for further exploration.

Notably, V135G_V142G was identified as the top-performing mutation, with the smallest

Bhattacharyya distance of 0.01, confirming its ability to approximate the target dynamics. In

addition, V135K_V142V (single mutant V135K) emerged as another strong candidate with a

Bhattacharyya distance of 0.02 (as discussed in the single mutation workflow section). This

demonstrated that the heuristic approach can uncover alternative mutations beyond the

known optimal result. The heat map also highlights other interesting mutations, such as

Results

 131

V135L_V142G, with distributions that closely align with the target, suggesting additional

candidates worth investigating.

While this heuristic search approach provides a simplified framework to validate and test the

search process, it also provides flexibility. In this study, the search space for two positions (135

and 142) was defined by 35 possible double mutant combinations, and the primary criterion

applied was the Bhattacharyya dissimilarity threshold. However, the heuristic approach can

be extended to incorporate more complex criteria, such as additional exclusion rules,

prioritised mutation types, or libraries of predefined compatible or incompatible mutation pairs.

For example, integrating a plugin that provides prior knowledge of biologically or structurally

incompatible mutations would allow the search to exclude non-favourable candidates upfront,

further improving efficiency and precision. This adaptability ensures that the heuristic

approach can be tailored to diverse research needs while maintaining computational

efficiency. Different heuristic strategies can also be easily implemented in MDAM thanks to

the modular structure of the code.

5.4 MDAutoPredict results

The MDAP toolkit was validated by performing a supervised classification prediction. The goal

was to classify ADK’s protein conformational states into four categories: open (A), closed (B),

intermediate (I) and non-states (N). The results presented here evaluate MDAP’s performance

using a dataset derived from the second MD trajectory replica (R02) of 1 μs (1000 ns)

generated to validate MDAM. In order to perform the validation process quickly and due to

limited computer resources, R02 was subsampled at 40 ps intervals, resulting in 25,0001

frames. The testing process involved six ML models, focusing on accuracy, precision, recall

and computational efficiency.

5.4.1 Target variable definition

The labels of the four states were derived through a density-based analysis of the approximate

conformational space representation to perform the labelling exercise. This space was

constructed by projecting the trajectory data onto the first two principal components (PC1 and

PC2), revealing a two-dimensional free energy landscape. The density of points in this space

was calculated, with the expectation that high-density regions may be representative of

possible free energy minima. These minima were associated with the open (A), closed (B),

and intermediate (I) states based on prior literature and visual inspection of structural features.

Results

 132

Low-density regions were classified as non-states (N) for simplicity since the four labels

already fit the purpose of the validation process.

The plot in Figure 5.32 shows an approximate view of the conformational space. Each point

represents a conformation (i.e. each state)—the structural snapshots of the protein help in

understanding the biological interpretation of these associated conformations.

Figure 5.32 Approximate conformational space representation for ADK derived from the MD trajectory’s PCA. PCA
was used to identify high-density regions corresponding to free energy minima, representing the open (A), closed
(B), and intermediate (I) states. Low-density regions were classified as non-states (N). Each point represents a
sampled conformation, and structural snapshots illustrate the biological relevance of the identified states.

5.4.2 Machine Learning performance

Six machine learning models were tested to classify the labelled frames: Logistic Regression,

Random Forest, SVM, Decision Tree, Gradient Boosting, and Multilayer Perceptron (MLP).

The input dataset was split into training (70%) and testing (30%) sets to evaluate model

performance. The models were compared based on accuracy, precision, recall, and F1-score

metrics. Figure 5.34 shows the confusion matrices for all six models in a descending order of

the best performance.

Results

 133

Results

 134

Results

 135

Figure 5.33 Confusion matrices for all machine learning models tested, including Random Forest, Decision Tree,
Gradient Boosting, SVM, Logistic Regression, and MLP. Each matrix displays the classification performance across
the four states: open (A), closed (B), intermediate (I), and non-states (N). Correct classifications are represented
along the diagonal, while off-diagonal elements indicate misclassifications.

Results

 136

Among the models, the Random Forest classifier had the best performance with 96.36%. Its

confusion matrix highlights the model’s ability to accurately classify all four states with minimal

misclassification across categories accurately. The Random Forest model successfully

distinguished the intermediate state (I), which is often challenging due to its transitional nature,

and showed strong performance for both dominant states (A and B) and the non-state (N).

The weighted average F1-score for this model was 96%, making it the most reliable choice for

this dataset. The Decision Tree model followed closely, with an accuracy of 94.34% Its

confusion matrix revealed a comparable ability to classify the four states but with slightly higher

misclassification rates for the intermediate and non-state regions, reflecting its limitations in

handling less frequent categories.

The Gradient Boosting classifier reached an accuracy of 88.83%, demonstrating high

precision for dominant states (A and B) but struggling to correctly identify the intermediate (I)

and non-state (N) regions, as evident from its confusion matrix. The SVM achieved an

accuracy of 84.54% as indicated by its confusion matrix, which showed challenges in

classifying the non-state region and an inability to identify the intermediate state consistently.

The MLP and Logistic Regression models achieved accuracies of 81.14% and 76.96%

respectively, with their confusion matrices reflecting difficulties in classifying the intermediate

state and frequent misclassifications of the non-state region.

Figure 5.34 Precision-Recall (PR) curves for the Random Forest and Decision Tree models. The PR curves reflect
the precision and recall trade-offs, with Random Forest maintaining higher precision and recall for all states,
particularly the intermediate and non-states, compared to the Decision Tree. These results demonstrate the
superior classification capabilities of the Random Forest model.

Figure 5.34 shows the Precision-Recall (PR) for the top two ML methods that achieved the

highest performance: Random Forest and Decision Tree. The PR curve for the Random Forest

shows its precision and recall for the dominant states (A and B). It also performs well in

Results

 137

identifying the intermediate state, showcasing the model’s ability to handle rare and

transitional conformations effectively. While slightly less effective, the PR curve for the

Decision Tree model indicates robust precision for the dominant states. However, it shows

slight drops in recall for the intermediate and non-states, consistent with its higher

misclassification rates in these categories.

Furthermore, evaluation of the performance of the Random Forest model is achieved through

the interpretation of the calibration curve plot shown in Figure 5.35. The plot shows that the

model can produce well-calibrated probability predictions for each class. The diagonal dashed

line represents the ideal calibration, where predicted probabilities align perfectly with the

observed probabilities. The model demonstrates excellent calibration for the dominant states

(Class A: Open and Class B: Closed), with predicted probabilities closely following the

diagonal. Therefore, the model’s confidence in these predictions is consistent with the actual

values.

Figure 5.35 Calibration curve for the Random Forest model. The plot illustrates the relationship between predicted
probabilities and observed outcomes for each class: open (A), closed (B), intermediate (I), and non-state (N). The
curves for dominant states (A and B) align closely with the ideal diagonal line, indicating well-calibrated predictions.
Slight deviations for the intermediate state (I) and non-state (N) reflect minor overconfidence in these predictions.
Overall, the Random Forest model exhibits strong calibration across all states.

The calibration for the intermediate state (Class I) is slightly less consistent but still adequate

as the predicted probabilities align reasonably well with the observed data. However, for the

non-state (Class N), the curve deviates from the ideal line, indicating a slight overconfidence

in predictions for this class. Despite this deviation, the model’s overall calibration across all

four states is superior, confirming its capability to provide reliable probability estimates.

Results

 138

In conclusion, this work demonstrated the utility of MDAP in constructing predictive models for

state labels, building on the preprocessing capabilities of MDSS and the mutation analysis

framework of MDAM. The MDSS toolkit’s robust capabilities inspired the approach, and the

findings emphasise its potential for broader integration with other computational methods in

the field. Notably, the models struggled with I state label, a less represented class, which

reflects the dual challenge of sparse data representation and the intricate nature of non-

canonical intermediate states. These states require enhanced characterisation and refinement

in their original labelling to support more robust predictions. Addressing class imbalance

through targeted sampling strategies and advanced algorithms holds promise for improving

performance in such challenging cases. This work lays the foundation for further exploration

of automated tools and workflows in computational protein design, paving the way for more

comprehensive and scalable analyses of dynamic biomolecular systems.

5.5 Summary

This chapter presented the results of the MDSS, MDAM, and MDAP toolkits, highlighting their

ability to address key challenges in protein dynamics research. MDSS effectively reduced data

complexity while preserving critical information, MDAM validated mutation impacts on protein

dynamics, and MDAP demonstrated the potential for ML-based state classification. Together,

these tools provide a cohesive automated framework for the redesign of protein dynamics.

Summary, conclusions, and further work

 139

6 Summary, conclusions, and further work

This chapter provides a summary of this thesis and concludes with the key outcomes achieved

by developing an automated framework for redesigning protein dynamics. It highlights the

contributions of the MDSubSampler, MDAutoMut, and MDAutoPredict tools and their

integration into a unified workflow. Limitations of this research study are presented and

discussed. Additionally, suggestions for future work are provided, outlining how the outcomes

of this study can be expanded and applied to address challenges in protein engineering and

computational biology.

6.1 Summary

This thesis presented a comprehensive framework for addressing some of the challenges in

redesigning protein dynamics. The framework was designed by developing three novel

computational tools — MDSubSampler, MDAutoMut, and MDAutoPredict — each designed to

address a specific gap in the field.

The research followed a systematic approach to achieve the initial goal of this PhD:

contributing novel methodologies for redesigning protein function. Considering the relationship

between mutations, protein dynamics, and their functional outcomes, the study focused on

redesigning protein dynamics associated with function. Given the lack of automated methods

and unified strategies, the research aimed to develop a fully automated library with a flexible

design to integrate customisable workflows.

The first step was the development of MDSubSampler, a framework designed to clean,

prepare and reduce MD simulations by performing a posteriori subsampling of the data. It was

built as a user-friendly toolkit applicable to various research problems. Validation was

performed using simple example scenarios, demonstrating its adaptability and utility across

different applications. MDSubSampler facilitates faster and more efficient workflows by

providing cleaned input data, making it easier to deal with MD data when using automated

workflows like MDAutoMut. MDSubSampler also enabled property comparison within

MDAutoMut, supporting the assessment of whether a given mutation achieves the desired

dynamic behaviour.

Following the development of MDSubSampler, MDAutoMut was designed to automate

mutation analysis and directly record the effects of mutations on protein dynamics. Given the

Summary, conclusions, and further work

 140

computational cost when dealing with MD simulations and these fully automated workflows,

deploying the tool on a high-performance computing (HPC) system became a critical step.

Therefore, the toolkit was deployed and tested on ARCHER2. Validation of MDAutoMut

involved a proof-of-concept approach where specific positions and mutations (known from a

study that can change the dynamics of the example system used – ADK) were tested to

determine whether the toolkit could identify them automatically. However, the complexity of

searching the mutational space, even with just two positions, highlighted the need for a

heuristic approach, for which a simple demonstrative example was developed and tested.

Finally, MDAutoPredict was implemented as an extension tool of MDAutoMut to integrate ML

into the workflow. This tool was validated by benchmarking and testing various ML methods

to predict protein states. A proof-of-concept example was created with a state label for training

and testing. Designed with flexibility, MDAutoPredict can be adapted or extended to address

other research problems beyond state prediction, making it a versatile addition to the

automated library. It is foreseeable to use MDAutoPredict to generate the values of the target

variable for MDAutoMut redesign workflows in cases where the calculation of this can be too

expansive for an automated large-scale study (e.g. when a state label may require free energy

reconstruction to be calculated).

Together, the tools developed in this research study tackle some of the critical challenges in

protein design, forming a unified yet modular framework through a fully Python-based

interface.

6.2 Conclusions

This thesis demonstrates the successful development and application of the components for

a modular computational framework to redesign protein dynamics. The three tools—

MDSubSampler, MDAutoMut, and MDAutoPredict —offer the possibility of building workflows

for MD data preprocessing, automated mutation analysis, measurement of mutations’ impact

on dynamics, and prediction of protein states. Each tool addresses critical gaps in the

computational design of protein dynamics.

MDSubSampler’s ability to a posteriori extract representative subsets of trajectories has

proven essential for reducing noise, retaining biologically relevant information, and formatting

the MD data for ML/DL applications. This tool provides a flexible and general-purpose solution

that complements existing clustering methods, enabling workflows applicable to different

Summary, conclusions, and further work

 141

research problems. Additionally, MDSubSampler’s abilities extend to allow the evaluation of

protein dynamics through statistical methods. Its integration into MDAutoMut highlights its

importance as the foundational step in the full computational framework of this PhD research

work.

The development and validation of MDAutoMut contribute to addressing some of the

challenges of redesigning protein dynamics. One of the main challenges faced during the

validation of MDAutoMut was undersampling, particularly when studying the dynamic

behaviour of ADK. This system was chosen as an example for the toolkits’ validation due to

its literature-documented mutations that shift its structure towards the closed state. A clear

example of redesigning protein dynamics that could be used to perform the following proof-of-

concept: given the positions of two mutations on the ADK LID’s domain, the MDAutoMut toolkit

can identify the two mutations that have the desired impact on the system’s dynamics.

While the double mutation identified in the literature was expected to induce closure

consistently, it was observed that it only sampled the closed state more frequently than the

WT but not consistently across all simulations. This variability presents another limitation in

the tool’s validation process.

To overcome this challenge, the following validation approach was used: Short simulations (50

ps-500 ps) were initially generated to test the functionality of MDAutoMut and its components.

Then, longer simulations (300 ns, 500 ns, 1000 ns) were performed on HPC platforms,

allowing the system to adequately sample the desired closed state. Finally, the full workflow

of MDAutoMut was tested with these pre-calculated longer-timescale simulations. This testing

strategy was critical to demonstrating that, given sufficient data where the closure is observed,

MDAutoMut can effectively identify and analyse the relevant mutations.

The deployment of MDAutoMut on HPC, particularly ARCHER2, was essential to demonstrate

the tool’s scalability for larger and more complex systems. Given MD data’s computational

demands and the workflow's iterative nature, an HPC platform was the only feasible option.

However, deploying MDAutoMut on ARCHER2 came with some challenges, mainly due to the

need to install and configure multiple external libraries required by the workflow. An aspect of

automated mutation scanning not explored was identifying the residue’s position to change.

The current implementation of MDAutoMut can scale up the number of sites but still requires

identification of which sites to mutate from the user.

Summary, conclusions, and further work

 142

Building on the success of MDAutoMut, the extension into MDAutoPredict aimed to integrate

ML capabilities into the framework, enabling the predictions of protein states. MDAutoPredict

was validated with a simple example of ADK’s state prediction. The labelling exercise of the

target variable was done independently of the predictive model to prevent bias in the predictive

analysis.

When implementing MDAutoPredict, certain limitations need to be considered. The quality and

reliability of predictions are linked to the representativeness of the training data. Rare states,

such as the closed conformation of ADK, may not appear frequently enough in the dataset,

presenting challenges for generalisation. Therefore, the example data used for validation

contained a sampling of both open and closed states of the system to ensure efficient tool

testing.

In summary, this thesis presents a modular computational framework applicable to

computational protein design. While the framework’s validation highlighted challenges like

undersampling and data representativeness, it also demonstrated the tools’ potential to

facilitate workflows of rational protein design of dynamics.

6.3 Current limitation and future development of this research
study

The three toolkits’ design, implementation and testing lay the foundation for an automated

modular framework that can redesign protein dynamics. However, there is significant potential

for their extension and refinement to address more complex challenges in computational

protein design.

For MDSubSampler, future work could focus on extending its ability to evaluate also

physicochemical or energetic properties, aside from geometric or incorporating energy-based

criteria for selecting trajectory frames. This would improve its effectiveness in capturing

transitions important to protein function. Given its integration with MDAutoPredict,

MDSubSampler could be further refined to facilitate the preprocessing of trajectory data

specifically for ML workflows. For instance, expanding MDSubSampler to include automated

feature extraction tailored to ML models would reduce manual intervention and ensure optimal

input quality for predictive tasks. Additionally, combining MDSubSampler with clustering

approaches could offer a more robust framework for identifying and classifying conformational

Summary, conclusions, and further work

 143

states, supporting MDAutoPredict’s predictive capabilities and creating automated pipelines

for protein engineering applications.

For MDAutoMut, future work could focus on integrating advanced sampling strategies, such

as adaptive or enhanced sampling techniques, to address the challenge of undersampling and

improve the observation of rare but functionally important states. Refining the heuristic

mutation scanning process to handle more complex space searches, including cases involving

more than two mutations, would enhance the tool’s versatility and applicability. Optimising the

computational efficiency of the workflow would allow MDAutoMut to scale effectively, enabling

its application to larger protein systems and broader mutational spaces. Finally, a significant

development area would be the addition of methodology to scan putative position, possibly

through preliminary analysis using directly PyRosetta’s static design components to identify

candidate residue positions.

Future work on MDAutoPredict could expand its predictive capabilities to include tasks such

as predicting protein stability, ligand binding affinity, or allosteric site activity, potentially through

multi-task learning frameworks. A foreseeable extension of this framework would involve state

prediction, where MDAutoPredict is integrated with MDAutoMut to test the ability of identified

mutations to generate desired protein states. MDAutoPredict could refine the mutational

selection process by annotating mutations with their state-prediction outcomes, enabling a

more targeted approach to engineering protein dynamics and extending the application of

MDAutoMut to cases where state labels can only be generated costly by free energy

reconstruction. Additionally, incorporating enhanced sampling techniques and experimental

data could improve the diversity and representativeness of training datasets.

Making these toolkits available as open-source software is key to enabling the proposed

extensions. It allows collaboration, transparency, and adaptability, allowing the scientific

community to refine and expand their capabilities to address evolving challenges in protein

engineering. To this end, each tool is developed under GNU General Public Licence and has

been and will be made available at the stage of manuscript submissions.

6.4 Addressing the research questions

The research questions established in Chapter 1 were centred on automating the analysis and

redesign of protein dynamics, evaluating the role of mutation engineering on protein dynamics,

and leveraging machine learning for predicting system states. These questions were directly

Summary, conclusions, and further work

 144

addressed through the development and implementation of the three toolkits introduced in this

thesis:

• RQ1: Processing MD simulation data: How can the volume of MD simulation data

be effectively managed to enable its use in automated workflows without exceeding

computational resource limitations? At the same time, how can the complexity of these

data formats be addressed to ensure easy integration into ML/DL pipelines?

This question was addressed through the development of MDSubSampler, a toolkit

designed for rational a posteriori subsampling of trajectory data. MDSubSampler

implements statistical techniques to reduce the number of frames while preserving the

dynamic diversity of the system. In addition to this, MDSubSampler offers format

conversion and trajectory preparation functions compatible with downstream statistical

analysis and machine learning workflows. The evaluation in Chapter 5 demonstrated

that subsampled datasets maintained essential properties of the full trajectory, as

shown by RMSD distribution and Bhattacharyya distance metric.

• RQ2: Automating protein dynamics redesign: How can computational strategies be

developed to fine-tune protein dynamics through targeted mutations, and how can

these workflows be automated, integrated with existing computational libraries, and

scaled effectively using high-performance computing (HPC) resources?

This was fulfilled by the development of MDAutoMut, a pipeline that automates mutation

engineering, simulation preparation, execution, and trajectory comparison of dynamics.

The tool integrates with GROMACS and PyRosetta and is tailored for high-throughput

mutation scanning. By evaluating changes in geometric descriptors and PCA space,

MDAutoMut enables systematic comparison of mutant behaviour against the wild-type

system. Application to the ADK protein system showed that the pipeline could

reproduce experimentally known mutation effects and identify new candidates that shift

conformational behaviour.

• RQ3: Predictive modelling for protein dynamics: How can the automated workflow

be extended to perform predictions in combination with ML/DL pipelines, and which ML

models are most appropriate for predictive tasks in protein dynamics?

Summary, conclusions, and further work

 145

This question was explored through the implementation of MDAutoPredict, a toolkit for

prediction tasks on MD data using ML. Specifically, MDAutoPredict enables supervised

learning prediction of protein states. In the test case with ADK, ML classifiers such as

Decision Trees and Random Forests were trained to distinguish between open and

closed conformational states.

6.5 Lessons learned and future recommendations

Reflecting on the design and implementation of the automated pipeline presented in this

thesis, several practical insights emerged that may inform future developments of

computational workflows for protein dynamics redesign.

First, modularity proved to be a critical factor in enabling flexibility and scalability. The decision

to separate the pipeline into distinct components for data preparation (MDSubSampler),

dynamics redesign and MD simulation (MDAutoMut), and system state prediction

(MDAutoPredict) allowed each tool to be developed, tested, and refined independently. This

modular approach also facilitates integration with existing libraries and adaptation to new

systems or workflows.

Second, the importance of preprocessing and standardisation became increasingly evident. A

significant portion of development time was devoted to handling file format inconsistencies,

trajectory cleaning, and feature extraction. These steps, although often underestimated, had

a direct impact on the performance of MD analysis and ML models. Future pipelines would

benefit from adopting more standardised data transformation procedures and shared libraries

for input/output handling.

Third, while heuristic-based mutation analysis was effective in guiding exploration of dynamic

behaviour, there is potential to expand this approach through learning-driven design

strategies. For instance, reinforcement learning or optimisation algorithms could be employed

in future work to prioritise mutations based on dynamic responses or predictive uncertainty.

Fourth, sampling limitations emerged as a constraint on the performance of ML models,

particularly in distinguishing between states that were underrepresented in the simulation

data. Incorporating enhanced sampling techniques or active learning approaches could

improve coverage of conformational space and support more robust model training.

 146

Finally, although the pipeline was designed to be automated, domain knowledge remained

essential throughout the study. Expert input was necessary to define target variables, interpret

ML outputs, and assess biological relevance. This suggests that future developments should

aim not to remove human input entirely, but to structure it in a way that supports decision-

making within the automated workflow.

In summary, these lessons highlight the need for future automated pipelines to balance

efficiency and flexibility, leverage data-driven methods alongside domain expertise, and

incorporate feedback mechanisms to improve design outcomes iteratively. The integration of

such features may enable more generalisable and intelligent frameworks for protein dynamics

analysis and design.

Bibliography

 147

Bibliography

[1] Ł. Nierzwicki and G. Palermo, “Molecular Dynamics to Predict Cryo-EM: Capturing

Transitions and Short-Lived Conformational States of Biomolecules,” 2018, doi:

10.3389/fmolb.2021.641208.

[2] M. J. Abraham et al., “GROMACS: High performance molecular simulations through

multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1–2, pp. 19–

25, Sep. 2015, doi: 10.1016/J.SOFTX.2015.06.001.

[3] K. Zhou and B. Liu, Molecular Dynamics Simulation: Fundamentals and Applications.

Elsevier, 2022. doi: 10.1016/B978-0-12-816419-8.00001-5.

[4] E. Prašnikar, M. Ljubič, A. Perdih, and J. Borišek, “Machine learning heralding a new

development phase in molecular dynamics simulations,” Artificial Intelligence Review

2024 57:4, vol. 57, no. 4, pp. 1–36, Mar. 2024, doi: 10.1007/S10462-024-10731-4.

[5] “Press release: The Nobel Prize in Chemistry 2024 - NobelPrize.org.” Accessed: Jan.

31, 2025. [Online]. Available: https://www.nobelprize.org/prizes/chemistry/2024/press-

release/

[6] S. Gu et al., “Can molecular dynamics simulations improve predictions of protein-ligand

binding affinity with machine learning?,” Brief Bioinform, vol. 24, no. 2, pp. 1–16, Mar.

2023, doi: 10.1093/BIB/BBAD008.

[7] F. Noé, G. De Fabritiis, and C. Clementi, “Machine learning for protein folding and

dynamics,” Curr Opin Struct Biol, vol. 60, pp. 77–84, Feb. 2020, doi:

10.1016/J.SBI.2019.12.005.

[8] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, “MDAnalysis: A

toolkit for the analysis of molecular dynamics simulations,” J Comput Chem, vol. 32, no.

10, pp. 2319–2327, Jul. 2011, doi: 10.1002/JCC.21787.

[9] S. Chaudhury, S. Lyskov, and J. J. Gray, “PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta,” Bioinformatics, vol. 26,

no. 5, pp. 689–691, Jan. 2010, doi: 10.1093/BIOINFORMATICS/BTQ007.

[10] D. L. Nelson, M. Cox, and A. A. Hoskins, “Lehninger Principes of biochemistry,” p. 868,

2021, Accessed: Dec. 21, 2024. [Online]. Available:

https://www.bruna.nlhttps://www.bruna.nl/engelse-boeken/lehninger-principles-of-

biochemistry-9781319381493

[11] J. Jumper et al., “Highly accurate protein structure prediction with AlphaFold,” Nature

2021 596:7873, vol. 596, no. 7873, pp. 583–589, Jul. 2021, doi: 10.1038/s41586-021-

03819-2.

Bibliography

 148

[12] K. Henzler-Wildman and D. Kern, “Dynamic personalities of proteins,” Nature, vol. 450,

no. 7172, pp. 964–972, Dec. 2007, doi: 10.1038/NATURE06522.

[13] A. V. Finkelstein, N. S. Bogatyreva, D. N. Ivankov, and S. O. Garbuzynskiy, “Protein

folding problem: enigma, paradox, solution,” Biophysical Reviews 2022 14:6, vol. 14,

no. 6, pp. 1255–1272, Oct. 2022, doi: 10.1007/S12551-022-01000-1.

[14] C. H. Rodrigues, D. E. Pires, D. B. Ascher, I. RenéRen, R. Rachou, and F. Oswaldo

Cruz, “DynaMut: predicting the impact of mutations on protein conformation, flexibility

and stability,” Nucleic Acids Res, vol. 46, no. W1, pp. W350–W355, Jul. 2018, doi:

10.1093/NAR/GKY300.

[15] T. P. J. Knowles, M. Vendruscolo, and C. M. Dobson, “The amyloid state and its

association with protein misfolding diseases,” Nature Reviews Molecular Cell Biology

2014 15:6, vol. 15, no. 6, pp. 384–396, May 2014, doi: 10.1038/nrm3810.

[16] F. Chiti and C. M. Dobson, “Protein Misfolding, Amyloid Formation, and Human

Disease: A Summary of Progress Over the Last Decade,” Annu Rev Biochem, vol. 86,

pp. 27–68, Jun. 2017, doi: 10.1146/ANNUREV-BIOCHEM-061516-045115.

[17] D. D. Wang, L. Ou-Yang, H. Xie, M. Zhu, and H. Yan, “Predicting the Impacts of

Mutations on Protein-Ligand Affinity Based on Molecular Dynamics Simulations and

Machine Learning Methods,” Comput Struct Biotechnol J, vol. 18, pp. 439–454, Jan.

2020, doi: 10.1016/J.CSBJ.2020.02.007.

[18] Y. Peng, E. Alexov, and S. Basu, “Structural perspective on revealing and altering

molecular functions of genetic variants linked with diseases,” Int J Mol Sci, vol. 20, no.

3, Feb. 2019, doi: 10.3390/IJMS20030548.

[19] D. Thirumalai, C. Hyeon, P. I. Zhuravlev, and G. H. Lorimer, “Symmetry, Rigidity, and

Allosteric Signaling: From Monomeric Proteins to Molecular Machines,” Chem Rev, vol.

119, no. 12, pp. 6788–6821, Dec. 2018, doi: 10.1021/acs.chemrev.8b00760.

[20] P. E. Wright and H. J. Dyson, “Intrinsically disordered proteins in cellular signalling and

regulation,” Nat Rev Mol Cell Biol, vol. 16, no. 1, pp. 18–29, Dec. 2015, doi:

10.1038/NRM3920.

[21] V. N. Uversky, “Intrinsically disordered proteins and their ‘Mysterious’ (meta)physics,”

Front Phys, vol. 7, no. FEB, p. 416379, Feb. 2019, doi:

10.3389/FPHY.2019.00010/BIBTEX.

[22] A. F. Dishman and B. F. Volkman, “Design and discovery of metamorphic proteins,” Curr

Opin Struct Biol, vol. 74, p. 102380, Jun. 2022, doi: 10.1016/J.SBI.2022.102380.

[23] C. I. Branden and J. Tooze, “Introduction to Protein Structure,” Introduction to Protein

Structure, Mar. 2012, doi: 10.1201/9781136969898.

Bibliography

 149

[24] K. A. Dill and J. L. MacCallum, “The protein-folding problem, 50 years on,” Science, vol.

338, no. 6110, pp. 1042–1046, Nov. 2012, doi: 10.1126/SCIENCE.1219021.

[25] “File:Main protein structure levels en.svg - Wikimedia Commons.” Accessed: Jan. 20,

2025. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Main_protein_structure_levels_en.svg

[26] O. Rivoire, “A role for conformational changes in enzyme catalysis,” Biophys J, vol. 123,

no. 12, pp. 1563–1578, Jun. 2024, doi: 10.1016/J.BPJ.2024.04.030.

[27] D. Petrovic, V. A. Risso, S. C. L. Kamerlin, and J. M. Sanchez-Ruiz, “Conformational

dynamics and enzyme evolution,” J R Soc Interface, vol. 15, no. 144, Jul. 2018, doi:

10.1098/RSIF.2018.0330.

[28] C. Moreira, A. R. Calixto, J. P. Richard, S. Caroline, and L. Kamerlin, “The role of ligand-

gated conformational changes in enzyme catalysis,” 2019, doi: 10.1042/BST20190298.

[29] J. Kim, S. Moon, T. D. Romo, Y. Yang, E. Bae, and G. N. Phillips, “Conformational

dynamics of adenylate kinase in crystals,” Structural Dynamics, vol. 11, no. 1, p.

014702, Jan. 2024, doi: 10.1063/4.0000205.

[30] S. M. Salehi, M. Pezzella, A. Willard, M. Meuwly, and M. Karplus, “Water dynamics

around T0 vs R4 of hemoglobin from local hydrophobicity analysis,” J Chem Phys, vol.

158, no. 2, Jan. 2023, doi: 10.1063/5.0129990.

[31] M. D. Miller and G. N. Phillips, “Moving beyond static snapshots: Protein dynamics and

the Protein Data Bank,” Journal of Biological Chemistry, vol. 296, Jan. 2021, doi:

10.1016/J.JBC.2021.100749/ASSET/21D8CC6D-3302-468E-8F8F-

207E11235448/MAIN.ASSETS/GR4.JPG.

[32] R. Nussinov, Y. Liu, W. Zhang, and H. Jang, “Protein conformational ensembles in

function: roles and mechanisms,” RSC Chem Biol, vol. 4, no. 11, pp. 850–864, Nov.

2023, doi: 10.1039/D3CB00114H.

[33] S. H. A. Raza, R. Zhong, X. Yu, G. Zhao, X. Wei, and H. Lei, “Advances of Predicting

Allosteric Mechanisms Through Protein Contact in New Technologies and Their

Application,” Mol Biotechnol, vol. 66, no. 12, pp. 3385–3397, Dec. 2023, doi:

10.1007/S12033-023-00951-4/METRICS.

[34] G. Hu, P. Doruker, H. Li, and E. Demet Akten, “Editorial: Understanding Protein

Dynamics, Binding and Allostery for Drug Design,” Front Mol Biosci, vol. 8, p. 681364,

Apr. 2021, doi: 10.3389/FMOLB.2021.681364/BIBTEX.

[35] M. B. Kubitzki, B. L. de Groot, and D. Seeliger, “Protein Dynamics : From Structure to

Function,” From Protein Structure to Function with Bioinformatics: Second Edition, pp.

393–425, Apr. 2017, doi: 10.1007/978-94-024-1069-3_12.

Bibliography

 150

[36] P. J. Heckmeier, J. Ruf, C. Rochereau, and P. Hamm, “A billion years of evolution

manifest in nanosecond protein dynamics,” Proc Natl Acad Sci U S A, vol. 121, no. 10,

Sep. 2023, doi: 10.1073/pnas.2318743121.

[37] T. Hett et al., “Spatiotemporal Resolution of Conformational Changes in Biomolecules

by Combining Pulsed Electron−Electron Double Resonance Spectroscopy with

Microsecond Freeze-Hyperquenching,” Cite This: J. Am. Chem. Soc, vol. 143, pp.

6981–6989, 2021, doi: 10.1021/jacs.1c01081.

[38] D. Budday, S. Leyendecker, and H. Van Den Bedem, “Kinematic Flexibility Analysis:

Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion,” J Chem Inf

Model, vol. 58, no. 10, pp. 2108–2122, Feb. 2018, doi: 10.1021/acs.jcim.8b00267.

[39] C. Narayanan, D. N. Bernard, and N. Doucet, “Role of Conformational Motions in

Enzyme Function: Selected Methodologies and Case Studies,” Catalysts 2016, Vol. 6,

Page 81, vol. 6, no. 6, p. 81, May 2016, doi: 10.3390/CATAL6060081.

[40] G. Haran and H. Mazal, “How fast are the motions of tertiary-structure elements in

proteins?,” J Chem Phys, vol. 153, no. 13, Oct. 2020, doi: 10.1063/5.0024972.

[41] O. Bozovic et al., “Real-time observation of ligand-induced allosteric transitions in a

PDZ domain,” Proc Natl Acad Sci U S A, vol. 117, no. 42, pp. 26031–26039, Oct. 2020,

doi: 10.1073/PNAS.2012999117/-/DCSUPPLEMENTAL.

[42] A. A. A. I. Ali, A. Gulzar, S. Wolf, and G. Stock, “Nonequilibrium Modeling of the

Elementary Step in PDZ3 Allosteric Communication,” Journal of Physical Chemistry

Letters, vol. 13, no. 42, pp. 9862–9868, Oct. 2022, doi:

10.1021/ACS.JPCLETT.2C02821/SUPPL_FILE/JZ2C02821_SI_001.PDF.

[43] V. Muñoz and M. Cerminara, “When fast is better: protein folding fundamentals and

mechanisms from ultrafast approaches,” Biochemical Journal, vol. 473, no. 17, pp.

2545–2559, Sep. 2016, doi: 10.1042/BCJ20160107.

[44] M. Gruebele, “Protein Dynamics in Simulation and Experiment,” J Am Chem Soc, vol.

136, no. 48, pp. 16695–16697, Dec. 2014, doi: 10.1021/JA510614S.

[45] S. Sasidharan, V. Gosu, T. Tripathi, and P. Saudagar, “Molecular Dynamics Simulation

to Study Protein Conformation and Ligand Interaction,” Protein Folding Dynamics and

Stability: Experimental and Computational Methods, pp. 107–127, Jan. 2023, doi:

10.1007/978-981-99-2079-2_6.

[46] A. Son et al., “Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM,

and NMR Spectroscopy to Predict and Validate Protein Dynamics,” International

Journal of Molecular Sciences 2024, Vol. 25, Page 9725, vol. 25, no. 17, p. 9725, Sep.

2024, doi: 10.3390/IJMS25179725.

Bibliography

 151

[47] V. Timofeev and V. Samygina, “Protein Crystallography: Achievements and

Challenges,” Crystals 2023, Vol. 13, Page 71, vol. 13, no. 1, p. 71, Jan. 2023, doi:

10.3390/CRYST13010071.

[48] C. Charlier, S. F. Cousin, and F. Ferrage, “Protein dynamics from nuclear magnetic

relaxation,” Chem Soc Rev, vol. 45, no. 9, pp. 2410–2422, May 2016, doi:

10.1039/C5CS00832H.

[49] J. A. Purslow, B. Khatiwada, M. J. Bayro, and V. Venditti, “NMR Methods for Structural

Characterization of Protein-Protein Complexes,” Front Mol Biosci, vol. 7, no. 9, p.

502193, Jan. 2020, doi: 10.3389/FMOLB.2020.00009/BIBTEX.

[50] S. C. Chiliveri and M. V. Deshmukh, “Recent excitements in protein NMR: Large

proteins and biologically relevant dynamics,” Journal of Biosciences 2016 41:4, vol. 41,

no. 4, pp. 787–803, Oct. 2016, doi: 10.1007/S12038-016-9640-Y.

[51] T. Schlick et al., “Annual Review of Biophysics Biomolecular Modeling and Simulation:

A Prospering Multidisciplinary Field,” 2021, doi: 10.1146/annurev-biophys-091720.

[52] C. E. Tzeliou, M. A. Mermigki, and D. Tzeli, “molecules Review Review on the QM/MM

Methodologies and Their Application to Metalloproteins,” 2022, doi:

10.3390/molecules27092660.

[53] G. A. Voth, “Coarse-Graining of Condensed Phase and Biomolecular Systems,”

Coarse-Graining of Condensed Phase and Biomolecular Systems, Sep. 2008, doi:

10.1201/9781420059564.

[54] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The

MARTINI force field: coarse grained model for biomolecular simulations,” J Phys Chem

B, vol. 111, no. 27, pp. 7812–7824, Jul. 2007, doi: 10.1021/JP071097F.

[55] M. R. Machado, E. E. Barrera, F. Klein, M. Sónora, S. Silva, and S. Pantano, “The

SIRAH 2.0 Force Field: Altius, Fortius, Citius,” J Chem Theory Comput, vol. 15, no. 4,

pp. 2719–2733, Apr. 2019, doi: 10.1021/ACS.JCTC.9B00006.

[56] I. Bahar and A. J. Rader, “Coarse-grained normal mode analysis in structural biology,”

Curr Opin Struct Biol, vol. 15, no. 5, pp. 586–592, Oct. 2005, doi:

10.1016/J.SBI.2005.08.007.

[57] N. Awasthi, R. Shukla, D. Kumar, A. K. Tiwari, and T. Tripathi, “Monte Carlo Approaches

to Study Protein Conformation Ensembles,” Protein Folding Dynamics and Stability:

Experimental and Computational Methods, pp. 129–146, Jan. 2023, doi: 10.1007/978-

981-99-2079-2_7.

[58] J. Machta and R. S. Ellis, “Monte Carlo Methods for Rough Free Energy Landscapes:

Population Annealing and Parallel Tempering,” J Stat Phys, vol. 144, no. 3, pp. 541–

553, Aug. 2011, doi: 10.1007/S10955-011-0249-0/METRICS.

Bibliography

 152

[59] J. H. M. Van Gils et al., “Chapter 15 Monte Carlo for Protein Structures CHAPTER 15.

MONTE CARLO FOR PROTEIN STRUCTURES 15 Monte Carlo for Protein Structures

1,” 2023.

[60] G. Kumar, R. R. Mishra, and A. Verma, “Introduction to Molecular Dynamics

Simulations,” Lecture Notes in Applied and Computational Mechanics, vol. 99, pp. 1–

19, 2022, doi: 10.1007/978-981-19-3092-8_1.

[61] W. D. Cornell et al., “ A Second Generation Force Field for the Simulation of Proteins,

Nucleic Acids, and Organic Molecules J . Am . Chem . Soc . 1995 , 117 , 5179−5197 ,”

J Am Chem Soc, vol. 118, no. 9, pp. 2309–2309, Jan. 1996, doi: 10.1021/JA955032E.

[62] A. D. MacKerell, J. Wiórkiewicz-Kuczera, M. Karplus, and A. D. MacKerell, “An All-Atom

Empirical Energy Function for the Simulation of Nucleic Acids,” J Am Chem Soc, vol.

117, no. 48, pp. 11946–11975, 1995, doi:

10.1021/JA00153A017/SUPPL_FILE/JA11946A.PDF.

[63] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M.

Karplus, “CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations,” J Comput Chem, vol. 4, no. 2, pp. 187–217, Jun. 1983, doi:

10.1002/JCC.540040211.

[64] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the

OPLS all-atom force field on conformational energetics and properties of organic

liquids,” J Am Chem Soc, vol. 118, no. 45, pp. 11225–11236, Nov. 1996, doi:

10.1021/JA9621760/SUPPL_FILE/JA11225.PDF.

[65] W. F. Van Gunsteren and H. J. C. Berendsen, “The GROMOS Software for

(Bio)Molecular Simulation GROMOS87 Groningen Molecular Simulation (GROMOS)

Library Manual,” 1987.

[66] R. B. Best, “Atomistic Force Fields for Proteins,” Methods in Molecular Biology, vol.

2022, pp. 3–19, 2019, doi: 10.1007/978-1-4939-9608-7_1.

[67] Y. I. Yang, Q. Shao, J. Zhang, L. Yang, and Y. Q. Gao, “Enhanced sampling in molecular

dynamics,” Journal of Chemical Physics, vol. 151, no. 7, p. 70902, Aug. 2019, doi:

10.1063/1.5109531/197966.

[68] M. S. Badar, S. Shamsi, J. Ahmed, and Md. A. Alam, “Molecular Dynamics Simulations:

Concept, Methods, and Applications,” pp. 131–151, 2022, doi: 10.1007/978-3-030-

94651-7_7.

[69] P. E. M. Lopes, O. Guvench, and A. D. Mackerell, “Current Status of Protein Force

Fields for Molecular Dynamics Simulations,” Methods in Molecular Biology, vol. 1215,

pp. 47–71, 2015, doi: 10.1007/978-1-4939-1465-4_3.

Bibliography

 153

[70] K. Lindorff-Larsen et al., “Improved side-chain torsion potentials for the Amber ff99SB

protein force field,” Proteins, vol. 78, no. 8, pp. 1950–1958, Jun. 2010, doi:

10.1002/PROT.22711.

[71] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling,

“Comparison of multiple Amber force fields and development of improved protein

backbone parameters,” Proteins, vol. 65, no. 3, pp. 712–725, Nov. 2006, doi:

10.1002/PROT.21123.

[72] J. A. Harrison, J. D. Schall, S. Maskey, P. T. Mikulski, M. T. Knippenberg, and B. H.

Morrow, “Review of force fields and intermolecular potentials used in atomistic

computational materials research,” Appl Phys Rev, vol. 5, no. 3, p. 31104, Sep. 2018,

doi: 10.1063/1.5020808/123935.

[73] C. E. Cavender et al., “Structure-Based Experimental Datasets for Benchmarking of

Protein Simulation Force Fields,” 2023.

[74] C. R. A. Abreu and M. E. Tuckerman, “Multiple timescale molecular dynamics with very

large time steps: avoidance of resonances,” The European Physical Journal B 2021

94:11, vol. 94, no. 11, pp. 1–13, Nov. 2021, doi: 10.1140/EPJB/S10051-021-00226-4.

[75] L. Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties

of Lennard-Jones Molecules,” Physical Review, vol. 159, no. 1, pp. 98–103, 1967, doi:

10.1103/PhysRev.159.98.

[76] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation

method for the calculation of equilibrium constants for the formation of physical clusters

of molecules: Application to small water clusters,” J Chem Phys, vol. 76, no. 1, pp. 637–

649, Jan. 1982, doi: 10.1063/1.442716.

[77] W. F. Van Gunsteren and H. J. C. Berendsen, “A LEAP-FROG ALGORITHM FOR

STOCHASTIC DYNAMICS,” Mol Simul, vol. 1, no. 3, pp. 173–185, 1988, doi:

10.1080/08927028808080941.

[78] R. Hockney, “The potential calculation and some applications,” 1970.

[79] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the

cartesian equations of motion of a system with constraints: molecular dynamics of n-

alkanes,” J Comput Phys, vol. 23, no. 3, pp. 327–341, Mar. 1977, doi: 10.1016/0021-

9991(77)90098-5.

[80] M. Tuckerman, B. J. Berne, and G. J. Martyna, “Reversible multiple time scale

molecular dynamics,” J Chem Phys, vol. 97, no. 3, pp. 1990–2001, Aug. 1992, doi:

10.1063/1.463137.

Bibliography

 154

[81] B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, “LINCS: A linear constraint solver for

molecular simulations,” J Comput Chem, 1997, doi: 10.1002/(SICI)1096-

987X(199709)18:12.

[82] T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-

component model for distortive phase transitions,” Phys Rev B, vol. 17, no. 3, pp. 1302–

1322, 1978, doi: 10.1103/PhysRevB.17.1302.

[83] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak,

“Molecular dynamics with coupling to an external bath,” J Chem Phys, vol. 81, no. 8,

pp. 3684–3690, Oct. 1984, doi: 10.1063/1.448118.

[84] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity

rescaling,” J Chem Phys, vol. 126, no. 1, 2007, doi: 10.1063/1.2408420.

[85] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new

molecular dynamics method,” J Appl Phys, vol. 52, no. 12, pp. 7182–7190, 1981, doi:

10.1063/1.328693.

[86] W. L. Jorgensen et al., “Comparison of simple potential functions for simulating liquid

water,” JChPh, vol. 79, no. 2, pp. 926–935, 1983, doi: 10.1063/1.445869.

[87] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective

pair potentials,” Journal of Physical Chemistry, vol. 91, no. 24, pp. 6269–6271, 1987,

doi: 10.1021/J100308A038/ASSET/J100308A038.FP.PNG_V03.

[88] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and

testing of a general amber force field,” J Comput Chem, vol. 25, no. 9, pp. 1157–1174,

Jul. 2004, doi: 10.1002/JCC.20035.

[89] W. Clark Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, “Semianalytical

Treatment of Solvation for Molecular Mechanics and Dynamics,” J Am Chem Soc, vol.

112, no. 16, pp. 6127–6129, 1990, doi:

10.1021/JA00172A038/SUPPL_FILE/JA00172A038_SI_001.PDF.

[90] B. Honig and A. Nicholls, “Classical electrostatics in biology and chemistry,” Science,

vol. 268, no. 5214, pp. 1144–1149, 1995, doi: 10.1126/SCIENCE.7761829.

[91] M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids (Oxford Science

Publications) SE - Oxford science publications,” Oxford University Press, vol. 45, p.

408, 1989, Accessed: Jan. 17, 2025. [Online]. Available:

https://books.google.com/books/about/Computer_Simulation_of_Liquids.html?id=O32

VXB9e5P4C

[92] T. Cao, X. Ji, J. Wu, S. Zhang, and X. Yang, “Correction of diffusion calculations when

using two types of non-rectangular simulation boxes in molecular simulations,” J Mol

Bibliography

 155

Model, vol. 25, no. 1, pp. 1–10, Jan. 2019, doi: 10.1007/S00894-018-3910-

6/FIGURES/7.

[93] A. R. Leach, “Empirical Force Field Models: Molecular Mechanics,” Molecular

Modelling: Principles and Applications, pp. 165–252, 2001, Accessed: Dec. 21, 2024.

[Online]. Available:

https://books.google.com/books/about/Molecular_Modelling.html?id=kB7jsbV-uhkC

[94] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for

Ewald sums in large systems,” J Chem Phys, vol. 98, no. 12, pp. 10089–10092, Jun.

1993, doi: 10.1063/1.464397.

[95] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A

smooth particle mesh Ewald method,” J Chem Phys, vol. 103, no. 19, pp. 8577–8593,

Nov. 1995, doi: 10.1063/1.470117.

[96] A. Y. Toukmaji and J. A. Board, “Ewald summation techniques in perspective: a survey,”

Comput Phys Commun, vol. 95, no. 2–3, pp. 73–92, Jun. 1996, doi: 10.1016/0010-

4655(96)00016-1.

[97] S. Hayward, “A Retrospective on the Development of Methods for the Analysis of

Protein Conformational Ensembles,” Protein Journal, vol. 42, no. 3, pp. 181–191, Jun.

2023, doi: 10.1007/S10930-023-10113-9/FIGURES/3.

[98] J. Machine, L.-E. Zheng, S. Barethiya, E. Nordquist, and J. Chen, “Citation: molecules

Machine Learning Generation of Dynamic Protein Conformational Ensembles,” 2023,

doi: 10.3390/molecules28104047.

[99] N. Oues, S. C. Dantu, R. J. Patel, and A. Pandini, “MDSubSampler: a posteriori

sampling of important protein conformations from biomolecular simulations,”

Bioinformatics, vol. 39, no. 7, Jul. 2023, doi: 10.1093/BIOINFORMATICS/BTAD427.

[100] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, Mar. 1951, doi:

10.1214/aoms/1177729694.

[101] A. Bhattacharyya, “On a Measure of Divergence between Two Multinomial

Populations,” The Indian Journal of Statistics, vol. 7, no. 4, pp. 401–406, 1933,

Accessed: Apr. 08, 2023. [Online]. Available: https://www.jstor.org/stable/25047882

[102] K. Pearson, “VII. Note on regression and inheritance in the case of two parents,”

Proceedings of the Royal Society of London, vol. 58, no. 347–352, pp. 240–242, Dec.

1895, doi: 10.1098/RSPL.1895.0041.

Bibliography

 156

[103] R. Lazim, D. Suh, and S. Choi, “Advances in Molecular Dynamics Simulations and

Enhanced Sampling Methods for the Study of Protein Systems,” Int J Mol Sci, vol. 21,

no. 17, pp. 1–20, Sep. 2020, doi: 10.3390/IJMS21176339.

[104] J. Kästner, “Umbrella sampling,” Wiley Interdiscip Rev Comput Mol Sci, vol. 1, no. 6,

pp. 932–942, Nov. 2011, doi: 10.1002/WCMS.66.

[105] R. Qi, G. Wei, B. Ma, and R. Nussinov, “Replica exchange molecular dynamics: A

practical application protocol with solutions to common problems and a peptide

aggregation and self-assembly example,” Methods in Molecular Biology, vol. 1777, pp.

101–119, 2018, doi: 10.1007/978-1-4939-7811-3_5.

[106] G. Bussi, A. Laio, and P. Tiwary, “Metadynamics: A Unified Framework for Accelerating

Rare Events and Sampling Thermodynamics and Kinetics,” Handbook of Materials

Modeling, pp. 1–31, 2018, doi: 10.1007/978-3-319-42913-7_49-1.

[107] A. Laio and F. L. Gervasio, “Metadynamics: a method to simulate rare events and

reconstruct the free energy in biophysics, chemistry and material science,” Reports on

Progress in Physics, vol. 71, no. 12, p. 126601, Nov. 2008, doi: 10.1088/0034-

4885/71/12/126601.

[108] Y. Wang, J. M. Lamim Ribeiro, and P. Tiwary, “Machine learning approaches for

analyzing and enhancing molecular dynamics simulations,” Curr Opin Struct Biol, vol.

61, pp. 139–145, Apr. 2020, doi: 10.1016/J.SBI.2019.12.016.

[109] I. D. Mienye and T. G. Swart, “A Comprehensive Review of Deep Learning:

Architectures, Recent Advances, and Applications,” Information 2024, Vol. 15, Page

755, vol. 15, no. 12, p. 755, Nov. 2024, doi: 10.3390/INFO15120755.

[110] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges,

applications, future directions,” Journal of Big Data 2021 8:1, vol. 8, no. 1, pp. 1–74,

Mar. 2021, doi: 10.1186/S40537-021-00444-8.

[111] D. D. Wang, W. Wu, and R. Wang, “Structure-based, deep-learning models for protein-

ligand binding affinity prediction,” J Cheminform, vol. 16, no. 1, pp. 1–15, Dec. 2024,

doi: 10.1186/S13321-023-00795-9/FIGURES/8.

[112] N. A. Gonzalez, B. A. Li, and M. E. McCully, “The stability and dynamics of

computationally designed proteins,” Protein Engineering, Design and Selection, vol. 35,

Feb. 2022, doi: 10.1093/PROTEIN/GZAC001.

[113] K. Nam and M. Wolf-Watz, “Protein dynamics: The future is bright and complicated!,”

Structural Dynamics, vol. 10, no. 1, p. 14301, Jan. 2023, doi:

10.1063/4.0000179/2876350.

Bibliography

 157

[114] O. Beckstein, E. J. Denning, J. R. Perilla, and T. B. Woolf, “Zipping and unzipping of

adenylate kinase: atomistic insights into the ensemble of open<-->closed transitions,”

J Mol Biol, vol. 394, no. 1, pp. 160–176, Nov. 2009, doi: 10.1016/J.JMB.2009.09.009.

[115] B. Kuhlman and P. Bradley, “Advances in protein structure prediction and design,” Nov.

01, 2019, Nature Publishing Group. doi: 10.1038/s41580-019-0163-x.

[116] M. Karimi and Y. Shen, “iCFN: an efficient exact algorithm for multistate protein design,”

Bioinformatics, vol. 34, no. 17, pp. i811–i820, Sep. 2018, doi:

10.1093/BIOINFORMATICS/BTY564.

[117] J. Vucinic, D. Simoncini, M. Ruffini, S. Barbe, and T. Schiex, “Positive multistate protein

design,” Bioinformatics, vol. 36, no. 1, pp. 122–130, Jan. 2020, doi:

10.1093/BIOINFORMATICS/BTZ497.

[118] S. L. Lisanza et al., “Multistate and functional protein design using RoseTTAFold

sequence space diffusion,” Nature Biotechnology 2024, pp. 1–11, Sep. 2024, doi:

10.1038/s41587-024-02395-w.

[119] A. Pillai et al., “De novo design of allosterically switchable protein assemblies,” Nature,

vol. 632, no. 8026, pp. 911–920, Aug. 2024, doi: 10.1038/S41586-024-07813-2.

[120] Y. Bouchiba, J. Cortés, T. Schiex, and S. Barbe, “Molecular flexibility in computational

protein design: an algorithmic perspective,” Protein Engineering, Design and Selection,

vol. 34, pp. 1–7, Feb. 2021, doi: 10.1093/PROTEIN/GZAB011.

[121] J. A. Davey and R. A. Chica, “Multistate approaches in computational protein design,”

Protein Sci, vol. 21, no. 9, p. 1241, Sep. 2012, doi: 10.1002/PRO.2128.

[122] C. Ren, X. Wen, J. Mencius, and S. Quan, “Selection and screening strategies in

directed evolution to improve protein stability,” Bioresources and Bioprocessing 2019

6:1, vol. 6, no. 1, pp. 1–14, Dec. 2019, doi: 10.1186/S40643-019-0288-Y.

[123] V. Parthiban, M. M. Gromiha, M. Abhinandan, and D. Schomburg, “Computational

modeling of protein mutant stability: Analysis and optimization of statistical potentials

and structural features reveal insights into prediction model development,” BMC Struct

Biol, vol. 7, no. 1, pp. 1–9, Aug. 2007, doi: 10.1186/1472-6807-7-54/FIGURES/6.

[124] C. Lemay-St-Denis, N. Doucet, and J. N. Pelletier, “Integrating dynamics into enzyme

engineering,” Protein Engineering, Design and Selection, vol. 35, pp. 1–11, Feb. 2022,

doi: 10.1093/PROTEIN/GZAC015.

[125] F. Jiang et al., “A general temperature-guided language model to design proteins of

enhanced stability and activity,” Sci Adv, vol. 10, no. 48, p. eadr2641, Nov. 2024, doi:

10.1126/SCIADV.ADR2641.

[126] P. S. Huang, S. E. Boyken, and D. Baker, “The coming of age of de novo protein design,”

Nature, vol. 537, no. 7620, pp. 320–327, Sep. 2016, doi: 10.1038/NATURE19946.

Bibliography

 158

[127] J. Wang et al., “Scaffolding protein functional sites using deep learning,” Science

(1979), vol. 377, no. 6604, pp. 387–394, Jul. 2022, doi:

10.1126/SCIENCE.ABN2100/SUPPL_FILE/SCIENCE.ABN2100_DATA_S1_AND_S2.

ZIP.

[128] A. Leaver-Fay et al., “Rosetta3: An Object-Oriented Software Suite for the Simulation

and Design of Macromolecules,” Methods Enzymol, vol. 487, no. C, p. 545, 2011, doi:

10.1016/B978-0-12-381270-4.00019-6.

[129] R. Guerois, J. E. Nielsen, and L. Serrano, “Predicting changes in the stability of proteins

and protein complexes: a study of more than 1000 mutations,” J Mol Biol, vol. 320, no.

2, pp. 369–387, 2002, doi: 10.1016/S0022-2836(02)00442-4.

[130] J. Cheng et al., “Accurate proteome-wide missense variant effect prediction with

AlphaMissense,” Science (1979), vol. 381, no. 6664, Sep. 2023, doi:

10.1126/SCIENCE.ADG7492/SUPPL_FILE/SCIENCE.ADG7492_DATA_S1_TO_S9.Z

IP.

[131] J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano, “The FoldX

web server: an online force field,” Nucleic Acids Res, vol. 33, no. Web Server issue, Jul.

2005, doi: 10.1093/NAR/GKI387.

[132] D. E. V. Pires, D. B. Ascher, and T. L. Blundell, “DUET: a server for predicting effects of

mutations on protein stability using an integrated computational approach,” Nucleic

Acids Res, vol. 42, no. W1, pp. W314–W319, Jul. 2014, doi: 10.1093/NAR/GKU411.

[133] V. Frappier and R. J. Najmanovich, “A coarse-grained elastic network atom contact

model and its use in the simulation of protein dynamics and the prediction of the effect

of mutations,” PLoS Comput Biol, vol. 10, no. 4, 2014, doi:

10.1371/JOURNAL.PCBI.1003569.

[134] J. Fang, “A critical review of five machine learning-based algorithms for predicting

protein stability changes upon mutation,” Brief Bioinform, vol. 21, no. 4, pp. 1285–1292,

Jul. 2020, doi: 10.1093/BIB/BBZ071.

[135] J. Cheng, A. Randall, and P. Baldi, “Prediction of protein stability changes for single-site

mutations using support vector machines,” Proteins, vol. 62, no. 4, pp. 1125–1132, Mar.

2006, doi: 10.1002/PROT.20810.

[136] E. Capriotti, P. Fariselli, and R. Casadio, “A neural-network-based method for predicting

protein stability changes upon single point mutations,” Bioinformatics, vol. 20 Suppl 1,

no. SUPPL. 1, 2004, doi: 10.1093/BIOINFORMATICS/BTH928.

[137] N. Kumar and R. Srivastava, “Deep learning in structural bioinformatics: current

applications and future perspectives,” Brief Bioinform, vol. 25, no. 3, Mar. 2024, doi:

10.1093/BIB/BBAE042.

Bibliography

 159

[138] J. Kadupitiya, G. Fox, and V. Jadhao, “Simulating Molecular Dynamics with Large

Timesteps using Recurrent Neural Networks,” arXiv.org, 2020.

[139] A. W. Senior et al., “Improved protein structure prediction using potentials from deep

learning,” Nature 2020 577:7792, vol. 577, no. 7792, pp. 706–710, Jan. 2020, doi:

10.1038/s41586-019-1923-7.

[140] K. Tunyasuvunakool et al., “Highly accurate protein structure prediction for the human

proteome,” Nature 2021 596:7873, vol. 596, no. 7873, pp. 590–596, Jul. 2021, doi:

10.1038/s41586-021-03828-1.

[141] J. Dauparas et al., “Robust deep learning-based protein sequence design using

ProteinMPNN,” Science, vol. 378, no. 6615, pp. 49–56, Oct. 2022, doi:

10.1126/SCIENCE.ADD2187.

[142] J. Abramson et al., “Accurate structure prediction of biomolecular interactions with

AlphaFold 3,” Nature 2024 630:8016, vol. 630, no. 8016, pp. 493–500, May 2024, doi:

10.1038/s41586-024-07487-w.

[143] M. Baek et al., “Accurate prediction of protein structures and interactions using a three-

track neural network,” Science (1979), vol. 373, no. 6557, pp. 871–876, Aug. 2021, doi:

10.1126/SCIENCE.ABJ8754/SUPPL_FILE/ABJ8754_MDAR_REPRODUCIBILITY_C

HECKLIST.PDF.

[144] I. Anishchenko et al., “De novo protein design by deep network hallucination,” Nature

2021 600:7889, vol. 600, no. 7889, pp. 547–552, Dec. 2021, doi: 10.1038/s41586-021-

04184-w.

[145] J. L. Watson et al., “De novo design of protein structure and function with RFdiffusion.,”

Nature, vol. 620, no. 7976, pp. 1089–1100, Jul. 2023, doi: 10.1038/S41586-023-06415-

8.

[146] D. V. Laurents, “AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein

Structure, Dynamics and Function,” Front Mol Biosci, vol. 9, p. 906437, May 2022, doi:

10.3389/FMOLB.2022.906437/BIBTEX.

[147] S. K. Niazi, Z. Mariam, and R. Z. Paracha, “Limitations of Protein Structure Prediction

Algorithms in Therapeutic Protein Development,” 2024, doi:

10.3390/biomedinformatics4010007.

[148] J. Wang, J. L. Watson, and S. L. Lisanza, “Protein Design Using Structure-Prediction

Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models,” Cold

Spring Harb Perspect Biol, vol. 16, no. 7, Jul. 2024, doi:

10.1101/CSHPERSPECT.A041472.

Bibliography

 160

[149] R. F. Alford et al., “The Rosetta All-Atom Energy Function for Macromolecular Modeling

and Design,” J Chem Theory Comput, vol. 13, no. 6, pp. 3031–3048, Jun. 2017, doi:

10.1021/ACS.JCTC.7B00125.

[150] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation

of State Calculations by Fast Computing Machines,” J Chem Phys, vol. 21, no. 6, pp.

1087–1092, Jun. 1953, doi: 10.1063/1.1699114.

[151] S. Reardon, “Five protein-design questions that still challenge AI,” Nature, vol. 635, no.

8037, pp. 246–248, Nov. 2024, doi: 10.1038/D41586-024-03595-9.

[152] T. Oliwa and Y. Shen, “cNMA: a framework of encounter complex-based normal mode

analysis to model conformational changes in protein interactions,” Bioinformatics, vol.

31, no. 12, pp. i151–i160, Jun. 2015, doi: 10.1093/BIOINFORMATICS/BTV252.

[153] J. R. Allison, “Computational methods for exploring protein conformations,” Biochem

Soc Trans, vol. 48, no. 4, pp. 1707–1724, Aug. 2020, doi: 10.1042/BST20200193.

[154] A. B. Guo, D. Akpinaroglu, M. J. S. Kelly, and T. Kortemme, “Deep learning guided

design of dynamic proteins,” bioRxiv, Jul. 2024, doi: 10.1101/2024.07.17.603962.

[155] K. Fujisawa, “Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase

Isozymes: Physiological Roles and Diseases,” 2023, doi: 10.3390/ijms24065561.

[156] J. A. Brom, S. Samsri, R. G. Petrikis, S. Parnham, and G. J. Pielak, “1H, 13C, 15N

backbone resonance assignment of Escherichia coli adenylate kinase,” Biomol NMR

Assign, vol. 17, no. 2, pp. 235–238, Dec. 2023, doi: 10.1007/S12104-023-10147-

1/METRICS.

[157] P. Dzeja and A. Terzic, “Adenylate Kinase and AMP Signaling Networks: Metabolic

Monitoring, Signal Communication and Body Energy Sensing,” Int J Mol Sci, vol. 10,

no. 4, p. 1729, Apr. 2009, doi: 10.3390/IJMS10041729.

[158] J. Kim, S. Moon, T. D. Romo, Y. Yang, E. Bae, and G. N. Phillips, “Conformational

dynamics of adenylate kinase in crystals,” Structural Dynamics, vol. 11, no. 1, Jan.

2024, doi: 10.1063/4.0000205/3266828.

[159] V. V. H. Giri Rao and S. Gosavi, “In the Multi-domain Protein Adenylate Kinase, Domain

Insertion Facilitates Cooperative Folding while Accommodating Function at Domain

Interfaces,” PLoS Comput Biol, vol. 10, no. 11, p. e1003938, Nov. 2014, doi:

10.1371/JOURNAL.PCBI.1003938.

[160] Schrödinger LLC, “The PyMOL Molecular Graphics System, Version~1.8,” Nov. 2015.

[161] P. C. Whitford, O. Miyashita, Y. Levy, and J. N. Onuchic, “Conformational transitions of

Adenylate Kinase: switching by cracking,” J Mol Biol, vol. 366, no. 5, p. 1661, Mar. 2007,

doi: 10.1016/J.JMB.2006.11.085.

Bibliography

 161

[162] U. Olsson and M. Wolf-Watz, “Overlap between folding and functional energy

landscapes for adenylate kinase conformational change,” Nature Communications

2010 1:1, vol. 1, no. 1, pp. 1–8, Nov. 2010, doi: 10.1038/ncomms1106.

[163] H. D. Song and F. Zhu, “Conformational Dynamics of a Ligand-Free Adenylate Kinase,”

PLoS One, vol. 8, no. 7, p. e68023, Jul. 2013, doi: 10.1371/JOURNAL.PONE.0068023.

[164] E. Formoso, V. Limongelli, and M. Parrinello, “Energetics and Structural

Characterization of the large-scale Functional Motion of Adenylate Kinase,” Scientific

Reports 2015 5:1, vol. 5, no. 1, pp. 1–8, Feb. 2015, doi: 10.1038/srep08425.

[165] H. Song, Y. Wutthinitikornkit, X. Zhou, and J. Li, “Impacts of mutations on dynamic

allostery of adenylate kinase,” J Chem Phys, vol. 155, no. 3, Jul. 2021, doi:

10.1063/5.0053715.

[166] Z. lu Li, C. Mattos, and M. Buck, “Computational studies of the principle of dynamic-

change-driven protein interactions,” Structure, vol. 30, no. 6, pp. 909-916.e2, Jun. 2022,

doi: 10.1016/J.STR.2022.03.008.

[167] D. A. Case et al., “The Amber Biomolecular Simulation Programs,” J Comput Chem,

vol. 26, no. 16, p. 1668, Dec. 2005, doi: 10.1002/JCC.20290.

[168] H. Berman, K. Henrick, and H. Nakamura, “Announcing the worldwide Protein Data

Bank,” Nat Struct Biol, vol. 10, no. 12, p. 980, Dec. 2003, doi: 10.1038/NSB1203-980.

[169] R. J. Loncharich, B. R. Brooks, and R. W. Pastor, “Langevin dynamics of peptides: the

frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide,”

Biopolymers, vol. 32, no. 5, pp. 523–535, 1992, doi: 10.1002/BIP.360320508.

[170] D. R. Koes and J. K. Vries, “Evaluating Amber force fields using computed NMR

chemical shifts”, doi: 10.1002/prot.25350.

[171] P. Robustelli, S. Piana, and D. E. Shaw, “Developing a molecular dynamics force field

for both folded and disordered protein states,” Proc Natl Acad Sci U S A, vol. 115, no.

21, pp. E4758–E4766, May 2018, doi: 10.1073/PNAS.1800690115/-

/DCSUPPLEMENTAL.

[172] H. Lutz, V. Jaeger, T. Weidner, and B. L. De Groot, “Interpretation of Interfacial Protein

Spectra with Enhanced Molecular Simulation Ensembles,” 2018, doi:

10.1021/acs.jctc.8b00840.

[173] “JADE HPC UK.” Accessed: Dec. 29, 2024. [Online]. Available: https://www.jade.ac.uk/

[174] “ARCHER2 Hardware & Software.” Accessed: Dec. 29, 2024. [Online]. Available:

https://www.archer2.ac.uk/about/hardware.html?utm_source=chatgpt.com

[175] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J Mol

Graph, vol. 14, no. 1, pp. 33–38, Feb. 1996, doi: 10.1016/0263-7855(96)00018-5.

 162

[176] “R: The R Project for Statistical Computing.” Accessed: Jan. 18, 2025. [Online].

Available: https://www.r-project.org/

[177] M. E. Irrgang, J. M. Hays, and P. M. Kasson, “gmxapi: a high-level interface for

advanced control and extension of molecular dynamics simulations,” Bioinformatics,

vol. 34, no. 22, pp. 3945–3947, Nov. 2018, doi: 10.1093/BIOINFORMATICS/BTY484.

[178] MerkelDirk, “Docker,” Linux Journal, Mar. 2014, doi: 10.5555/2600239.2600241.

[179] “Poetry - Python dependency management and packaging made easy.” Accessed: Jan.

18, 2025. [Online]. Available: https://python-poetry.org/

[180] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, Mar. 1951, doi:

10.1214/aoms/1177729694.

[181] “Visual Studio Code - Code Editing. Redefined.” Accessed: Jan. 26, 2025. [Online].

Available: https://code.visualstudio.com/

[182] W. Evangelista Falcon, S. R. Ellingson, J. C. Smith, and J. Baudry, “Ensemble Docking

in Drug Discovery: How Many Protein Configurations from Molecular Dynamics

Simulations are Needed To Reproduce Known Ligand Binding?,” J Phys Chem B, vol.

123, no. 25, pp. 5189–5195, Jun. 2019, doi: 10.1021/ACS.JPCB.8B11491.

Appendix I

 163

Appendix I

This research was reviewed by the College of Engineering, Design and Physical Sciences

Research Ethics Committee, which confirmed that ethical review was not required. The

confirmation letter is included in this appendix.

Appendix II

 164

Appendix II

In this section the three submission scripts used on ARCHER2 to run MDAutoMut library are

provided. All three workflows (mutation_workflow.py, mdprep_workflow.py and

mdautomut_workflow.py) were tested and validated.

mutation_workflow.py

#!/bin/bash --login

#SBATCH --job-name=python_test

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

#SBATCH --time=24:00:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=standard

Load the Python module, ...

module load cray-python

PYTHONPATH

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/$USER

MDAM=MDAutoMut

MDSS=MDSubSampler

export

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH

echo $PYTHONPATH

activate virtual environment

source /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate

Run your Python program

prefix="$1"

python mutation_workflow.py \

 --traj="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.xtc" \

 --top="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.gro" \

 --pdb="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.pdb" \

 --frame-number="1" \

 --mutation-file="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/mutations_135.rtf" \

 --output-folder="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/mutation_results/" \

Appendix II

 165

 --output-mode="single" \

 --prefix="1001"

mdprep_workflow.py

#!/bin/bash --login

#SBATCH --job-name=mdprep_workflow

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=128

#SBATCH --cpus-per-task=1

#SBATCH --time=24:00:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=standard

Load the Python module, ...

module load cray-python

module load gromacs

PYTHONPATH

PREFIX="1001"

RESULTS_PREFIX="${PREFIX}_${SLURM_JOB_ID}"

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/$USER

MDAM=MDAutoMut

MDSS=MDSubSampler

OUTPUT_DIRECTORY=$WORK/MDAutoMut/system_prep_results

SYSTEM_NAME=4AKE

MUTATION_PATH=$WORK/MDAutoMut/mutation_results

MDP_PATH=$WORK/MDAutoMut/mdp_spc_files

export

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH

export GMXLIB=/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/Programs/gromacs-2022

export MPLCONFIGDIR=$WORK/config/matplotlib

echo $PYTHONPATH

echo $GMXLIB

echo $MPLCONFIGDIR

Capture the Slurm Job ID

JOB_ID=$SLURM_JOB_ID

echo "Job ID: $JOB_ID"

activate virtual environment

source /mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/pyenv/mddev/bin/activate

Run your Python program

python mdprep_workflow.py \

Appendix II

 166

 --prefix="$RESULTS_PREFIX" \

 --system-name="$SYSTEM_NAME" \

 --mutation="V135K" \

 --outpath-directory="$OUTPUT_DIRECTORY" \

 --pdb="$MUTATION_PATH/1001_V142K.pdb" \

 --spc216-gro="$MDP_PATH/spc216.gro" \

 --ions-mdp="$MDP_PATH/ions.mdp" \

 --em-1-mdp="$MDP_PATH/em_sd_posre_1.mdp" \

 --em-2-mdp="$MDP_PATH/em_sd_2.mdp" \

 --em-3-mdp="$MDP_PATH/em_cg_3.mdp" \

 --nvt-1-mdp="$MDP_PATH/eqv_posre2000_T200_1.mdp" \

 --nvt-2-mdp="$MDP_PATH/eqv_posre1000_T250_2.mdp" \

 --nvt-3-mdp="$MDP_PATH/eqv_posre1000_T300_3.mdp" \

 --nvt-4-mdp="$MDP_PATH/eqv_posre500_T300_4.mdp" \

 --nvt-5-mdp="$MDP_PATH/eqv_posre250_T300_5.mdp" \

 --nvt-6-mdp="$MDP_PATH/eqv_T300_6.mdp" \

 --npt-1-mdp="$MDP_PATH/eqp_T300_1.mdp" \

 --npt-2-mdp="$MDP_PATH/eqpadv_T300_2.mdp" \

 --prod-mdp="$MDP_PATH/prod_T300.mdp"

mdautomut_workflow.py

#!/bin/bash --login

#SBATCH --job-name=mdautomut_workflow

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=128

#SBATCH --cpus-per-task=1

#SBATCH --time=48:00:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=long

module load cray-python

module load gromacs

Environment setup

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

export MPICH_MAX_THREAD_SAFETY=multiple

export GMX_MAXBACKUP=-1

export GMX_ALLOW_CPT=1

PYTHONPATH

RESULTS_PREFIX="0801"

PREFIX_SLURM="${RESULTS_PREFIX}_${SLURM_JOB_ID}"

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/namir_oues

MDAM=MDAutoMut

MDSS=MDSubSampler

OUTPUT_DIRECTORY=$WORK/$MDAM/mdautomut_results

RESULTS_SUBFOLDER_SLURM="$WORK/$MDAM/mdautomut_workflow_results/$PREFIX_S

LURM"

RESULTS_SUBFOLDER="$WORK/$MDAM/mdautomut_workflow_results"

Appendix II

 167

MDP_PATH=$WORK/$MDAM/mdp_spc_files

MUTATION_FILE_PATH=$WORK/$MDAM/data/mutations_135_142.rtf

mkdir -p "$RESULTS_SUBFOLDER_SLURM"

mkdir -p "$RESULTS_SUBFOLDER"

export

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH

export GMXLIB=/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/Programs/gromacs-2022

export MPLCONFIGDIR=$WORK/config/matplotlib

echo $PYTHONPATH

echo $GMXLIB

echo $MPLCONFIGDIR

activate virtual environment

source /mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/pyenv/mddev/bin/activate

Capture the Slurm Job ID

JOB_ID=$SLURM_JOB_ID

echo "Job ID: $JOB_ID"

Run your Python program

python mdautomut_workflow.py \

--prefix="0801" \

--check-existing \

--output-mode="multiple" \

--system-name="4AKE" \

--mutation-file="$MUTATION_FILE_PATH" \

--pdb-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.pdb" \

--trajectory-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.xtc" \

--topology-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.gro" \

--outpath-dir="$RESULTS_SUBFOLDER" \

--mutation="WT" \

--mutation-subfolder="WT" \

--dissimilarity-threshold="0.05" \

--frame-number="1" \

--spc216-gro="$MDP_PATH/spc216.gro" \

--ions-mdp="$MDP_PATH/ions.mdp" \

--em1-mdp="$MDP_PATH/em_sd_posre_1.mdp" \

--em2-mdp="$MDP_PATH/em_sd_2.mdp" \

--em3-mdp="$MDP_PATH/em_cg_3.mdp" \

--nvt1-mdp="$MDP_PATH/eqv_posre2000_T200_1.mdp" \

--nvt2-mdp="$MDP_PATH/eqv_posre1000_T250_2.mdp" \

--nvt3-mdp="$MDP_PATH/eqv_posre1000_T300_3.mdp" \

--nvt4-mdp="$MDP_PATH/eqv_posre500_T300_4.mdp" \

--nvt5-mdp="$MDP_PATH/eqv_posre250_T300_5.mdp" \

--nvt6-mdp="$MDP_PATH/eqv_T300_6.mdp" \

Appendix III

 168

--npt1-mdp="$MDP_PATH/eqp_T300_1.mdp" \

--npt2-mdp="$MDP_PATH/eqpadv_T300_2.mdp" \

--prod-mdp="$MDP_PATH/prod_T300.mdp"

Appendix III

In this section the submission script used to generate data on ARCHER2 is provided below.

Due to time limitation of 24h on HPC queues a restart script was required to restart the

simulation multiple times.

archer_prod.sh

#!/bin/bash

#SBATCH --mail-user=namir.oues@brunel.ac.uk

#SBATCH --mail-type=ALL

#SBATCH --job-name=mdrun_test

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=128

#SBATCH --cpus-per-task=1

#SBATCH --time=24:00:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=standard

label=`basename $PWD`

mol=$label

runtyp="prod_T300"

job=$mol"_"$runtyp

Setup the environment

module load gromacs

Ensure the cpus-per-task option is propagated to srun commands

export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK

export OMP_NUM_THREADS=1

srun --distribution=block:block --hint=nomultithread gmx_mpi mdrun -s

$job.tpr -o $job.trr -g $job.log -e $job.edr -c $job.gro -cpo $job.cpt -x

$job.xtc >& mdrun_$job.log

archer_prod_restart.sh

#!/bin/bash

#SBATCH --mail-user=namir.oues@brunel.ac.uk

#SBATCH --mail-type=ALL

#SBATCH --job-name=mdrun_test

#SBATCH --nodes=1

Appendix IV

 169

#SBATCH --ntasks-per-node=128

#SBATCH --cpus-per-task=1

#SBATCH --time=24:00:00

#SBATCH --account=e280-Pandini

#SBATCH --partition=standard

#SBATCH --qos=standard

label=`basename $PWD`

mol=$label

runtyp="prod_T300"

job=$mol"_"$runtyp

job_restart="restart_"$mol"_"$runtyp

Setup the environment

module load gromacs

Ensure the cpus-per-task option is propagated to srun commands

export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK

export OMP_NUM_THREADS=1

srun --distribution=block:block --hint=nomultithread gmx_mpi mdrun -s

$job.tpr -o $job.trr -g $job.log -e $job.edr -c $job.gro -cpi $job.cpt -

cpo $job.cpt -x $job.xtc -noappend -nice 0 >& mdrun_$job_restart.log

Appendix IV

In this section the python code for the MDAutoPredict library is presented. The code was built

in a modular way; hence all classes/modules are presented in separate blocks.

learner.py

from log_setup import log

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

from methods import machine_learning_models

import joblib

import numpy as np

class MDTrajLearner:

 """

 Class for managing machine learning tasks on protein trajectory data

using ProteinData.

 Attributes

 protein_data : ProteinData

 An instance of the ProteinData class.

 performance : dict

Appendix IV

 170

 A dictionary to store the performance metrics of trained models.

 output_path : str

 Path where the trained model object is saved.

 """

 def __init__(self, protein_data):

 """

 Initialize the MDTrajLearner class.

 Parameters

 protein_data : ProteinData

 An instance of the ProteinData class.

 """

 self.protein_data = protein_data

 self.performance = {}

 self.output_path = None

 def generate_and_save_matrix(

 self, xtc_output_path, matrix_output_path, unit="nanometer"

):

 """

 Generate a matrix representation for learning and save it.

 Parameters

 xtc_output_path : str

 Path to save the intermediate trajectory in numpy format.

 matrix_output_path : str

 Path to save the final matrix representation.

 unit : str, optional

 Unit for coordinate conversion. Default is 'nanometer'.

 Returns

 numpy.ndarray

 The generated matrix representation.

 """

 trajectory_numpy = self.protein_data.cast_output_traj_to_numpy(

 outfilepath=xtc_output_path,

 subsampled_traj=self.protein_data.trajectory_data.trajectory,

 unit=unit,

)

 matrix_representation = self.protein_data.convert_numpy_to_2D(

 trajectory_numpy, outfilepath=matrix_output_path

)

 np.save(matrix_output_path, matrix_representation)

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"The matrix representation of the trajectory is saved at

{matrix_output_path}",

)

)

 return matrix_representation

 def train_and_test(

 self,

 ml_input_path,

Appendix IV

 171

 target_path,

 model_name,

 model_params,

 output_model_path,

):

 """

 Train and test a machine learning model on the provided data.

 Parameters

 ml_input_path : str

 Path to the numpy file containing the ML input data.

 target_path : str

 Path to the file containing target variable data.

 model_name : str

 Name of the machine learning method.

 model_params : dict

 Parameters for initializing the machine learning model.

 output_model_path : str

 Path to save the trained model as a binary file.

 Returns

 dict

 Performance metrics of the trained model.

 """

 # Step 1: Load the input matrix and target labels

 x = np.load(ml_input_path)

 target = np.genfromtxt(target_path, dtype=str, delimiter=",",

skip_header=0)

 log.info(

 "{:<15s} {:<80s}".format(

 "VALIDATION",

 f"Input matrix size: {x.shape}, Target size:

{len(target)}",

)

)

 # Step 2: Encode string labels into numerical values

 label_encoder = LabelEncoder()

 y = label_encoder.fit_transform(target)

 # Ensure alignment between input and target sizes

 if x.shape[0] != len(y):

 log.error(

 "{:<15s} {:<80s}".format(

 "ERROR",

 "Mismatch between input matrix and target sizes.",

)

)

 raise ValueError("Mismatch between input matrix and target

sizes.")

 # Step 3: Split data into training and testing sets

 x_train, x_test, y_train, y_test = train_test_split(

 x, y, test_size=0.3, random_state=25

)

 log.info(

Appendix IV

 172

 "{:<15s} {:<80s}".format(

 "STEPS",

 "Splitting the data into training and testing is done..",

)

)

 log.info(

 "{:<15s} {:<80s}".format(

 "VALIDATION",

 f"Training set size: {x_train.shape}, Testing set size:

{x_test.shape}",

)

)

 # Step 4: Initialize and train the model

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 "Training the model has started.",

)

)

 ModelClass = machine_learning_models[model_name]

 model = ModelClass(**model_params)

 model.fit(x_train, y_train)

 log.info(

 "{:<15s} {:<80s}".format(

 "RESULT",

 "Training the model is completed.",

)

)

 # Save the trained model

 joblib.dump(model, output_model_path)

 self.output_path = output_model_path

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"The model is saved at {output_model_path}",

)

)

 # Step 5: Evaluate the model

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 "The model evaluation has started.",

)

)

 y_pred = model.predict(x_test)

 accuracy = accuracy_score(y_test, y_pred)

 conf_mat = confusion_matrix(y_test, y_pred)

 report = classification_report(

 y_test, y_pred, target_names=label_encoder.classes_,

output_dict=True

)

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 "The model evaluation is completed.",

)

)

Appendix IV

 173

 log.info(

 "{:<15s} {:<80s}".format(

 "RESULT",

 f"Accuracy of the model: {accuracy:.4f}",

)

)

 log.info(

 "{:<15s} {:<80s}".format(

 "RESULT",

 "Confusion Matrix:",

)

)

 for i, row in enumerate(conf_mat):

 log.info(

 "{:<15s} {:<80s}".format(

 f"ROW {i}",

 f"{row.tolist()}",

)

)

 # Store performance metrics

 self.performance = {

 "accuracy": accuracy,

 "confusion_matrix": conf_mat.tolist(),

 "classification_report": report,

 }

 return self.performance

 def test_model(self, ml_input_path, target_path, model_path):

 """

 Test a pre-trained machine learning model and compute performance

metrics.

 Parameters:

 ml_input_path (str): Path to the numpy file containing the

test input data.

 target_path (str): Path to the file containing target

variable data.

 model_path (str): Path to the pre-trained model file.

 Returns:

 dict: Performance metrics of the tested model, including

y_true and y_pred.

 """

 # Step 1: Load test data and pre-trained model

 x_test = np.load(ml_input_path)

 target = np.genfromtxt(target_path, dtype=str, delimiter=",",

skip_header=0)

 model = joblib.load(model_path)

 # Encode target labels if necessary

 label_encoder = LabelEncoder()

 y_true = label_encoder.fit_transform(target) # Ensure numerical

encoding

 y_pred = model.predict(x_test) # Predictions should match the

encoding

 try:

 y_scores = (

Appendix IV

 174

 model.predict_proba(x_test)[:, 1]

 if hasattr(model, "predict_proba")

 else None

)

 except AttributeError:

 y_scores = None

 # Calculate performance metrics

 accuracy = accuracy_score(y_true, y_pred)

 conf_matrix = confusion_matrix(y_true, y_pred)

 class_report = classification_report(y_true, y_pred,

zero_division=0)

 # Decode labels back to original for human readability if needed

 decoded_y_true = label_encoder.inverse_transform(y_true)

 decoded_y_pred = label_encoder.inverse_transform(y_pred)

 return {

 "y_true": decoded_y_true,

 "y_pred": decoded_y_pred,

 "y_scores": y_scores,

 "accuracy": accuracy,

 "confusion_matrix": conf_matrix,

 "classification_report": class_report,

 }

evaluator.py

import os

import pandas as pd

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from sklearn.preprocessing import label_binarize

from plot import PerformancePlotting as p

class Evaluator:

 def __init__(self):

 self.accuracy_scores = {}

 self.classification_reports = {}

 def evaluate(self, model_name, y_test, y_pred, class_labels,

output_dir):

 """

 Evaluate model performance and generate confusion matrix plot.

 """

 # Calculate accuracy

 accuracy = accuracy_score(y_test, y_pred)

 print(f"{model_name} Accuracy: {accuracy:.4f}")

 # Generate classification report and confusion matrix

 report = classification_report(

 y_test, y_pred, target_names=class_labels, output_dict=True

)

 cm = confusion_matrix(y_test, y_pred)

 # Ensure the output directory exists

 os.makedirs(output_dir, exist_ok=True)

 # Save classification report to file

Appendix IV

 175

 report_path = os.path.join(

 output_dir, f"{model_name}_classification_report.txt"

)

 with open(report_path, "w") as f:

 f.write(classification_report(y_test, y_pred,

target_names=class_labels))

 print(f"Classification report saved at: {report_path}")

 # Plot and save the confusion matrix in the output directory

 p.plot_confusion_matrix(

 cm,

 class_labels,

 model_name,

 f"Confusion matrix: {model_name}",

 accuracy,

 output_dir,

)

 # Save confusion matrix as a CSV file

 self.save_confusion_matrix_to_csv(cm, class_labels, output_dir,

model_name)

 def save_confusion_matrix_to_csv(self, cm, class_labels, output_dir,

model_name):

 """

 Save confusion matrix to a CSV file.

 """

 os.makedirs(output_dir, exist_ok=True)

 cm_df = pd.DataFrame(cm, index=class_labels,

columns=class_labels)

 output_path = os.path.join(output_dir,

f"{model_name}_confusion_matrix.csv")

 cm_df.to_csv(output_path)

 print(f"Confusion matrix data saved at: {output_path}")

 def save_results(self):

 """

 Save evaluation results.

 """

 os.makedirs("results", exist_ok=True)

 accuracy_df = pd.DataFrame(

 list(self.accuracy_scores.items()), columns=["Model",

"Accuracy"]

)

 accuracy_df.to_csv(os.path.join("results",

"accuracy_scores.csv"), index=False)

 print("Accuracy scores saved to 'results/accuracy_scores.csv'")

 classification_reports_df = pd.concat(

 {

 k: pd.DataFrame(v).transpose()

 for k, v in self.classification_reports.items()

 },

 axis=0,

)

 classification_reports_df.to_csv(

 os.path.join("results", "classification_reports.csv")

)

 print("Classification reports saved to

'results/classification_reports.csv'")

Appendix IV

 176

 def load_labels(self, file_path, label_mapping=None):

 """

 Load labels from a file. Optionally map numeric labels to string

labels.

 Parameters:

 file_path (str): Path to the file containing labels.

 label_mapping (dict, optional): Mapping of numeric labels to

string labels.

 Returns:

 list: Loaded and optionally mapped labels.

 """

 try:

 # Load labels as a list

 with open(file_path, "r") as f:

 labels = [line.strip() for line in f]

 if not labels:

 raise ValueError(f"The file {file_path} is empty.")

 # If mapping is provided, map numeric labels to string labels

 if label_mapping:

 labels = [

 label_mapping[label] for label in labels if label in

label_mapping

]

 return labels

 except Exception as e:

 raise ValueError(f"Error reading or processing {file_path}:

{e}")

property.py

from log_setup import log

from mdss.property import ProteinProperty

class MLProperty(ProteinProperty):

 """

 MLProperty class for calculating and labeling properties using

machine learning predictions.

 Attributes

 model : object

 A trained machine learning model for making predictions.

 frame_labels : dict

 A dictionary mapping frame indices to predicted labels.

 predictions : list

 A list of predictions for all frames.

 """

 def __init__(self, protein_data, model, atom_selection="name CA"):

 """

 Initialize MLProperty with a trained machine learning model.

Appendix IV

 177

 Parameters

 protein_data : ProteinData

 An instance of the ProteinData class.

 model : object

 A trained machine learning model capable of making

predictions.

 atom_selection : str, optional

 Atom selection for property calculation. Default is 'name

CA'.

 """

 super().__init__(protein_data, atom_selection)

 self.model = model

 self.frame_labels = {}

 self.predictions = []

 def calculate_property(self, input_matrix=None):

 """

 Use the ML model to calculate a property for all frames.

 Parameters

 input_matrix : numpy.ndarray, optional

 Input data matrix where each row corresponds to a frame.

 If None, input_matrix is generated from protein_data.

 Returns

 list

 A list of predictions corresponding to each frame.

 """

 if self.model is None:

 log.error(

 "{:<15s} {:<80s}".format(

 "ERROR",

 "No model is loaded for predictions. Please use a

valid model.",

)

)

 raise ValueError(

 "No model is loaded for predictions. Please use model as

input."

)

 # Make predictions

 self.predictions = self.model.predict(input_matrix)

 self.property_vector = self.predictions

 self.frame_indices = list(range(len(self.predictions)))

 self._property_statistics()

 return self.predictions

 def label_frames(self, labels=None):

 """

 Assign labels to frames based on the model predictions.

 Parameters

 labels : list, optional

Appendix IV

 178

 List of labels to assign based on the predictions.

 If None, use the unique predictions as labels.

 Returns

 dict

 A dictionary mapping frame indices to their assigned labels.

 """

 if not self.predictions:

 log.error(

 "{:<15s} {:<80s}".format(

 "ERROR",

 "No predictions available. Run calculate_property()

first.",

)

)

 raise ValueError(

 "No predictions available. Run calculate_property()

first."

)

 unique_predictions = sorted(set(self.predictions))

 if labels is None:

 labels = unique_predictions

 else:

 if len(labels) != len(unique_predictions):

 log.error(

 "{:<15s} {:<80s}".format(

 "ERROR",

 "Number of labels does not match the unique

predictions.",

)

)

 raise ValueError(

 "The number of labels does not match the number of

unique predictions."

)

 label_map = {pred: label for pred, label in

zip(unique_predictions, labels)}

 self.frame_labels = {

 idx: label_map[pred]

 for idx, pred in zip(self.frame_indices, self.predictions)

 }

 log.info(

 "{:<15s} {:<80s}".format(

 "RESULT",

 "Frame labels assigned based on predictions.",

)

)

 return self.frame_labels

 def write_frame_labels(self, outfilepath):

 """

 Write the frame labels to a file.

 Parameters

Appendix IV

 179

 outfilepath : str

 Path to save the frame labels.

 """

 if not self.frame_labels:

 log.error(

 "{:<15s} {:<80s}".format(

 "ERROR",

 "No frame labels available. Run label_frames()

first.",

)

)

 raise ValueError("No frame labels available. Run

label_frames() first.")

 with open(outfilepath, "w") as f:

 for frame_idx, label in self.frame_labels.items():

 f.write(f"{frame_idx} {label}\n")

 log.info(

 "{:<15s} {:<80s}".format(

 "RESULT",

 f"Frame labels written to {outfilepath}",

)

)

plot.py

import matplotlib.pyplot as plt

import seaborn as sns

import os

import numpy as np

from sklearn.preprocessing import label_binarize

from sklearn.metrics import PrecisionRecallDisplay

from sklearn.preprocessing import label_binarize

from sklearn.calibration import calibration_curve

from sklearn.metrics import PrecisionRecallDisplay

from sklearn.metrics import (

 confusion_matrix,

 precision_recall_curve,

 roc_curve,

)

from log_setup import log

class PerformancePlotting:

 @staticmethod

 def plot_confusion_matrix(

 cm, class_labels, model_name, title, accuracy, output_dir

):

 """

 Plot and save the confusion matrix with counts and percentages in

all cells.

 Parameters:

 cm (array-like): Confusion matrix.

 class_labels (list): List of class labels.

 title (str): Title of the plot.

 accuracy (float): Model accuracy to display in the title.

 output_dir (str): Directory to save the plot.

 """

Appendix IV

 180

 # Ensure cm dimensions match class_labels

 assert (

 cm.shape[0] == cm.shape[1] == len(class_labels)

), f"Confusion matrix dimensions {cm.shape} and class labels

{len(class_labels)} do not match."

 # Calculate total samples for global normalization

 total = cm.sum()

 # Create annotation labels with counts and percentages for all

cells

 labels = np.empty_like(cm, dtype=object)

 for i in range(cm.shape[0]):

 for j in range(cm.shape[1]):

 count = cm[i, j]

 percentage = (count / total) * 100 if total > 0 else 0

 labels[i, j] = f"{count}\n({percentage:.1f}%)"

 # Plot the heatmap

 plt.figure(figsize=(8, 6))

 sns.heatmap(

 cm,

 annot=False, # Turn off default annotation

 fmt="",

 cmap="GnBu",

 xticklabels=class_labels,

 yticklabels=class_labels,

 cbar=True,

 linewidths=0.5,

 linecolor="gray",

)

 # Manually add text annotations

 for i in range(cm.shape[0]):

 for j in range(cm.shape[1]):

 count = cm[i, j]

 percentage = (count / cm.sum()) * 100 if cm.sum() > 0

else 0

 text = f"{count}\n({percentage:.1f}%)"

 plt.text(

 j + 0.5, # x-coordinate (column)

 i + 0.5, # y-coordinate (row)

 text,

 ha="center",

 va="center",

 color="black",

)

 # Add title and labels

 plt.title(f"{title}\nAccuracy: {accuracy:.4f}")

 plt.xlabel("Predicted")

 plt.ylabel("Actual")

 # Save the plot

 os.makedirs(output_dir, exist_ok=True)

 output_path = os.path.join(output_dir, f" {model_name}

_confusion_matrix.png")

 plt.savefig(output_path, dpi=300)

 plt.close()

Appendix IV

 181

 @staticmethod

 def plot_precision_recall(y_true, y_scores, model_name, output_dir,

prefix=None):

 """

 Precision-Recall Curve: Handle binary and multiclass

classification.

 Parameters:

 y_true (array): True labels.

 y_scores (array or None): Predicted probabilities or decision

scores.

 model_name (str): Name of the model.

 output_dir (str): Directory to save the plot.

 """

 # Skip plotting if y_scores is None

 if y_scores is None:

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"Skipping Precision-Recall Curve for {model_name}:

No probability scores provided..",

)

)

 return

 # Binarize labels for multiclass

 classes = np.unique(y_true)

 y_true_binarized = label_binarize(y_true, classes=classes)

 plt.figure(figsize=(8, 6))

 for i, class_name in enumerate(classes):

 if y_scores.ndim > 1:

 y_class_scores = y_scores[:, i]

 else:

 y_class_scores = y_scores

 precision, recall, _ = precision_recall_curve(

 y_true_binarized[:, i], y_class_scores

)

 display = PrecisionRecallDisplay(precision=precision,

recall=recall)

 display.plot(ax=plt.gca(), name=f"Class {class_name}")

 plt.title(f"Precision-Recall Curve for {model_name}")

 plt.xlabel("Recall")

 plt.ylabel("Precision")

 plt.legend(loc="best")

 file_name = (

 f"{prefix}_{model_name}_precision_recall_curve.png"

 if prefix

 else f"{model_name}_precision_recall_curve.png"

)

 plt.savefig(os.path.join(output_dir, file_name))

 plt.close()

 @staticmethod

Appendix IV

 182

 def plot_roc_curve(y_true, y_scores, model_name, output_dir,

prefix=None):

 """

 ROC Curve: Handle binary and multiclass classification.

 Parameters:

 y_true (array): True labels.

 y_scores (array or None): Predicted probabilities or decision

scores.

 model_name (str): Name of the model.

 output_dir (str): Directory to save the plot.

 """

 from sklearn.preprocessing import label_binarize

 from sklearn.metrics import RocCurveDisplay

 # Skip plotting if y_scores is None

 if y_scores is None:

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"Skipping ROC Curve for {model_name}: No probability

or decision scores provided.",

)

)

 return

 # Binarize labels for multiclass

 classes = np.unique(y_true)

 y_true_binarized = label_binarize(y_true, classes=classes)

 plt.figure(figsize=(8, 6))

 for i, class_name in enumerate(classes):

 if y_scores.ndim > 1:

 y_class_scores = y_scores[:, i]

 else:

 y_class_scores = y_scores

 fpr, tpr, _ = roc_curve(y_true_binarized[:, i],

y_class_scores)

 RocCurveDisplay(fpr=fpr, tpr=tpr).plot(

 ax=plt.gca(), name=f"Class {class_name}"

)

 plt.title(f"ROC Curve for {model_name}")

 plt.xlabel("False Positive Rate")

 plt.ylabel("True Positive Rate")

 plt.legend(loc="best")

 file_name = (

 f"{prefix}_{model_name}_roc_curve.png"

 if prefix

 else f"{model_name}_roc_curve.png"

)

 plt.savefig(os.path.join(output_dir, file_name))

 plt.close()

 @staticmethod

 def plot_calibration_curve(y_true, y_prob, model_name, output_dir,

prefix=None):

 """

Appendix IV

 183

 Calibration Curve: Handle binary and multiclass classification.

 Parameters:

 y_true (array): True labels.

 y_prob (array): Predicted probabilities for each class.

 model_name (str): Name of the model.

 output_dir (str): Directory to save the plot.

 """

 from sklearn.preprocessing import label_binarize

 # Binarize labels for multiclass

 classes = np.unique(y_true)

 y_true_binarized = label_binarize(y_true, classes=classes)

 plt.figure(figsize=(8, 6))

 for i, class_name in enumerate(classes):

 if y_prob.ndim > 1:

 y_class_prob = y_prob[:, i]

 else:

 y_class_prob = y_prob

 prob_true, prob_pred = calibration_curve(

 y_true_binarized[:, i], y_class_prob, n_bins=10

)

 plt.plot(prob_pred, prob_true, marker="o", label=f"Class

{class_name}")

 plt.plot(

 [0, 1], [0, 1], linestyle="--", color="gray",

label="Perfectly Calibrated"

)

 plt.title(f"Calibration Curve for {model_name}")

 plt.xlabel("Predicted Probability")

 plt.ylabel("True Probability")

 plt.legend(loc="best")

 file_name = (

 f"{prefix}_{model_name}_calibration_curve.png"

 if prefix

 else f"{model_name}_calibration_curve.png"

)

 plt.savefig(os.path.join(output_dir, file_name))

 plt.close()

 @staticmethod

 def generate_model_plots(y_true, y_pred, y_scores, model_name,

output_dir):

 """

 Generate and save all plots for a given model.

 Parameters:

 y_true (array): Ground truth labels.

 y_pred (array): Predicted labels by the model.

 y_scores (array): Predicted probabilities or decision scores.

 model_name (str): Name of the machine learning model.

 output_dir (str): Directory to save the plots.

 """

 os.makedirs(output_dir, exist_ok=True)

 PerformancePlotting.plot_confusion_matrix(

 y_true, y_pred, model_name, output_dir

Appendix IV

 184

)

 PerformancePlotting.plot_precision_recall(

 y_true, y_scores, model_name, output_dir

)

 PerformancePlotting.plot_roc_curve(y_true, y_scores, model_name,

output_dir)

 if y_scores is not None and len(np.unique(y_scores)) > 2:

 PerformancePlotting.plot_calibration_curve(

 y_true, y_scores, model_name, output_dir

)

 @staticmethod

 def plot_model_comparison(models, accuracies, output_dir,

prefix="comparison"):

 """

 Generates and saves a bar plot comparing model accuracies.

 Parameters:

 models (list): List of model names.

 accuracies (list): List of corresponding accuracies for the

models.

 output_dir (str): Directory to save the plot.

 prefix (str): Prefix for the output file name.

 """

 import os

 # Ensure output directory exists

 os.makedirs(output_dir, exist_ok=True)

 # Create and save the plot

 plt.figure(figsize=(10, 6))

 plt.bar(models, accuracies)

 plt.xlabel("Model")

 plt.ylabel("Accuracy")

 plt.title("Model Performance Comparison")

 plt.xticks(rotation=45)

 # Save the plot in the results folder

 comparison_plot_path = os.path.join(

 output_dir, f"{prefix}_models_accuracy_comparison.png"

)

 plt.savefig(comparison_plot_path)

 plt.close() # Close the plot to avoid displaying it

 log.info(

 "{:<15s} {:<80s}".format(

 "OUTPUT",

 f"Model performance comparison plot saved to

{comparison_plot_path}",

)

)

methods.py

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.neural_network import MLPClassifier

Appendix IV

 185

machine_learning_models = {

 "LogisticRegression": LogisticRegression,

 "RandomForest": RandomForestClassifier,

 "SVM": SVC,

 "DecisionTree": DecisionTreeClassifier,

 "GradientBoosting": GradientBoostingClassifier,

 "MLP": MLPClassifier,

}

log_setup.py

import logging

import os

from datetime import datetime

try:

 if not hasattr(logging, "configured"):

 here = os.path.abspath(os.path.dirname(__file__))

 log_dir = os.path.join(here, "logs")

 if not os.path.exists(log_dir):

 os.makedirs(log_dir)

 filename = datetime.now().strftime("log_%Y_%m_%d_%H_%M_%S.txt")

 filepath = os.path.join(log_dir, filename)

 print(f"Log file path: {filepath}")

 logging.basicConfig(

 filename=filepath,

 level=logging.INFO,

 format="%(asctime)s %(levelname)s %(message)s",

 filemode="w",

)

 logging.configured = True

except Exception as e:

 print(f"Error during logging setup: {e}")

log = logging.getLogger(__name__)

workflow.py

from log_setup import log

from mdss.protein_data import ProteinData

from learner import MDTrajLearner

from property import MLProperty

from evaluation import Evaluator

import numpy as np

import joblib

import os

prefix = "1912"

log.info(

Appendix IV

 186

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"Starting the machine learning workflow with prefix '{prefix}'",

)

)

Input files

trajectory_path = "data/R02_4AKE_DM_prod_T300_protein_dt40.xtc"

topology_path = "data/R02_4AKE_DM_prod_T300_protein.gro"

target_path = "data/R02_4AKE_DM_prod_T300_dt40_target_var.dat"

trajectory_to_predict = "data/R02_4AKE_DM_prod_T300_protein_dt200.xtc"

Output files

results_dir = "results"

if not os.path.exists(results_dir):

 os.makedirs(results_dir)

matrix_output_path = os.path.join(results_dir, f"{prefix}_matrix.npy")

trajectory_to_predict_matrix = os.path.join(

 results_dir, f"{prefix}_matrix_to_predict.npy"

)

Step 1: Initialize ProteinData and MDTrajLearners

protein_data = ProteinData(trajectory_path, topology_path)

learner = MDTrajLearner(protein_data)

Step 2: Generate and save matrix representation

log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 "Generating matrix representation of the trajectory.",

)

)

learner.generate_and_save_matrix(

 xtc_output_path=trajectory_path,

matrix_output_path=matrix_output_path

)

Initialize the Evaluator

evaluator = Evaluator()

Step 3: Train and test all machine learning models

models_to_test = [

 "LogisticRegression",

 "RandomForest",

 "SVM",

 "DecisionTree",

 "GradientBoosting",

 "MLP",

]

results = {}

label_mapping = {"0": "A", "1": "B", "2": "I", "3": "N"}

Load true labels

y_test = evaluator.load_labels(target_path)

for model_name in models_to_test:

 model_output_dir = os.path.join(results_dir,

f"{prefix}_{model_name}")

Appendix IV

 187

 os.makedirs(model_output_dir, exist_ok=True)

 model_output_path = os.path.join(model_output_dir, "model.joblib")

 if os.path.exists(model_output_path):

 log.info(

 "{:<15s} {:<80s}".format(

 "INPUT",

 f"Trained model for {model_name} already exists at

{model_output_path}. Skipping training.",

)

)

 # Load existing model

 loaded_model = joblib.load(model_output_path)

 y_pred = loaded_model.predict(np.load(matrix_output_path))

 # Evaluate and generate confusion matrix

 evaluator.evaluate(

 model_name=model_name,

 y_test=y_test,

 y_pred=y_pred,

 class_labels=list(label_mapping.values()),

 output_dir=model_output_dir,

)

 continue

 log.info(

 "{:<15s} {:<80s}".format(

 "STEPS",

 f"Training and testing with {model_name}.",

)

)

 # Define model-specific parameters

 model_params = {}

 if model_name == "RandomForest":

 model_params = {"n_estimators": 100, "random_state": 42,

"n_jobs": -1}

 elif model_name == "GradientBoosting":

 model_params = {"n_estimators": 100, "learning_rate": 0.1}

 elif model_name == "SVM":

 model_params = {"kernel": "rbf", "C": 1, "gamma": "scale"}

 elif model_name == "MLP":

 model_params = {"hidden_layer_sizes": (100,), "max_iter": 300}

 # Train and test the model

 performance = learner.train_and_test(

 ml_input_path=matrix_output_path,

 target_path=target_path,

 model_name=model_name,

 model_params=model_params,

 output_model_path=model_output_path,

)

 # Use predicted labels for evaluation

 y_pred = performance["predictions"] # Assuming 'predictions' holds

y_pred

 evaluator.evaluate(

 model_name=model_name,

 y_test=y_test,

Appendix V

 188

 y_pred=y_pred,

 class_labels=list(label_mapping.values()),

 output_dir=model_output_dir,

)

log.info(f"Workflow completed with prefix '{prefix}'")

Appendix V

The following R code was used to generate the plots for the figures presented in the thesis.

Kde2d_PV_replicas.R

parameters

nbin = 200

ncol = 200

input details

simprefix = "R01-R05_4AKE"

prefix = paste(simprefix, "_XX_prod_T300_", sep = '')

APC = 'PC1'

BPC = 'PC2'

functions

read_proj_xvg <- function(filename){

 filelines <- readLines(filename)

 filelines <- filelines[c(1:(length(filelines)-1))]

 df <- read.table(text = filelines, comment.char = "@", header = F)$V2

 return(df)

}

plot_image <- function(k_PC, col_fun, main_title, n_colours = ncol){

 col_vector = col_fun(n_colours)

 image(

 k_PC,

 col = col_vector,

 xlab = APC,

 ylab = BPC,

 xaxt = 'n',

 yaxt = 'n',

 main = main_title

)

 axis(1, seq(-10,10,2))

 axis(2, seq(-10,10,2))

 abline(h = seq(-10,10,0.5), lty = 3, col = 'lightgrey')

 abline(v = seq(-10,10,0.5), lty = 3, col = 'lightgrey')

 image(

 k_PC,

 col = col_vector,

 xlab = APC,

 ylab = BPC,

 main = simprefix,

 add = T

)

 contour(

 k_PC,

Appendix V

 189

 col = 'grey10',

 add = T

)

}

read values

APC_values <- read_proj_xvg(paste(prefix, APC, '_proj.xvg', sep =''))

BPC_values <- read_proj_xvg(paste(prefix, BPC, '_proj.xvg', sep =''))

calculate density

k_PC <- MASS::kde2d(APC_values, BPC_values, n = nbin)

sim names

sim_names <- c(

 paste("R0", c(1:5), "_4AKE_WT" , sep = ''),

 paste("R0", c(1:5), "_4AKE_DM" , sep = '')

)

sim_col <- c(

 rep("blue", 5),

 rep("magenta", 5)

)

plot

orange_palette <- colorRampPalette(c(rgb(1,1,1,0.2),"lightgoldenrod",

"goldenrod", "darkgoldenrod"), alpha = T)

par(mfrow=c(1,1))

plot_image(k_PC, orange_palette, simprefix)

multiplot

#par(mfrow=c(2,5))

for(i in c(1:10)){

 png(paste(sim_names[i], '_PC1-PC2.png',sep = ''), width = 1350, height

= 1050)

 par(cex = 2)

 i_vector <- c(1:50000) + ((i-1)*50000)

 plot_image(k_PC, orange_palette, sim_names[i])

 points(

 APC_values[i_vector],

 BPC_values[i_vector],

 pch = '.',

 col = sim_col[i]

)

 dev.off()

}

FA

target_distribution.R

library(ggplot2)

library(mclust)

set.seed(42)

peak1 <- rnorm(500000, mean = 2.4, sd = 0.1)

peak2 <- rnorm(4500005, mean = 3.55, sd = 0.4)

WT <- read.csv("R01_R05_4AKE_WT_prod_T300_COM.xvg", header = FALSE,

sep='')

target <- data.frame(Value = c(peak1, peak2), Group = "Target")

wt <- data.frame(Value = WT$V2, Group = "WT")

Appendix V

 190

target_vs_WT <-rbind(target, wt)

target_vs_WT$Value <- target_vs_WT$Value * 10

create_target_plot <- function(data, x_label, plot_title, file_name) {

 p <- ggplot(data, aes(x = Value, fill = Group)) +

 geom_density(alpha = 0.5, colour =NA) +

 labs(title = plot_title, x = x_label, y = "Density", fill =

"Structure") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 16, face =

"bold")) +

 scale_fill_manual(values = c("blue", "green"))

 ggsave(file_name, plot = p, width = 8, height = 6, dpi = 300)

}

create_target_plot(

 target_vs_WT,

 "COMDistance (Å)",

 "Target and WT for COMDistance",

 "target_distribution.png"

)

density_plots.py

library(ggplot2)

library(zoo)

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/V135G/R01_4AKE_V135G/xvg")

R01_V135G_rmsd <- read.table("R01_4AKE_V135G_prod_T300_rmsd.xvg",

skip=18, col.names = c("FRAME", "RMSD"))

R01_V135G_rmsf <- read.table("R01_4AKE_V135G_prod_T300_rmsf.xvg",

skip=27, col.names = c("res", "RMSF"))

R01_V135G_Rg <- read.table("R01_4AKE_V135G_prod_T300_Rg.xvg", skip=27)

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/V142G/R01_4AKE_V142G/xvg")

R01_V142G_Rg <- read.table("R01_4AKE_V142G_prod_T300_Rg.xvg", skip=27)

R01_V142G_rmsf <- read.table("R01_4AKE_V142G_prod_T300_rmsf.xvg",

skip=27, col.names = c("res", "RMSF"))

R01_V142G_rmsd <- read.table("R01_4AKE_V142G_prod_T300_rmsd.xvg",

skip=18, col.names = c("FRAME", "RMSD"))

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/WT/R01_4AKE_WT/xvg")

R01_WT_Rg <- read.table("R01_4AKE_WT_prod_T300_Rg.xvg", skip=27)

R01_WT_rmsf <- read.table("R01_4AKE_WT_prod_T300_rmsf.xvg", skip=27,

col.names = c("res", "RMSF"))

Appendix V

 191

R01_WT_rmsd <- read.table("R01_4AKE_WT_prod_T300_rmsd.xvg", skip=18,

col.names = c("FRAME", "RMSD"))

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/DM/R02_4AKE_DM/xvg")

R02_DM_rmsf <- read.table("R02_4AKE_DM_prod_T300_rmsf.xvg", skip=27,

col.names = c("res", "RMSF"))

R02_DM_rmsd <- read.table("R02_4AKE_DM_prod_T300_rmsd.xvg", skip=18,

col.names = c("FRAME", "RMSD"))

R02_DM_Rg <- read.table("R02_4AKE_DM_prod_T300_Rg.xvg", skip=27)

R01_WT_rmsd$Condition <- "WT"

R01_V135G_rmsd$Condition <- "V135G"

R01_V142G_rmsd$Condition <- "V142G"

R02_DM_rmsd$Condition <- "DM"

combined_rmsd <- rbind(

 data.frame(FRAME = R01_WT_rmsd$FRAME, RMSD = R01_WT_rmsd$RMSD,

Condition = "WT"),

 data.frame(FRAME = R01_V135G_rmsd$FRAME, RMSD = R01_V135G_rmsd$RMSD,

Condition = "V135G"),

 data.frame(FRAME = R01_V142G_rmsd$FRAME, RMSD = R01_V142G_rmsd$RMSD,

Condition = "V142G"),

 data.frame(FRAME = R02_DM_rmsd$FRAME, RMSD = R02_DM_rmsd$RMSD,

Condition = "DM")

)

rmsd_plot <- ggplot(combined_rmsd, aes(x = FRAME, y = RMSD, color =

Condition)) +

 geom_line(size = 0.8) +

 labs(title = "RMSD",

 x = "Frame",

 y = "RMSD (nm)",

 color = "Structures") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))

ggsave("rmsd_overlayed_plot.png", plot = rmsd_plot, width = 8, height =

6, dpi = 300)

#################### smooth running average RMSD #######################

Appendix V

 192

Define a function to plot RMSD with consistent x-axis labels and

smoothed averages

plot_rmsd_with_consistent_x <- function(data, smooth_window = 100,

file_name = "rmsd_consistent_xaxis_plot.png") {

Convert RMSD to Ångstroms (10x nanometers)

 data$RMSD <- data$RMSD * 10

 conditions <- unique(data$Condition)

 colors <- c("red", "blue", "green", "purple")

 png(file_name, width = 1200, height = 800, res = 150)

 plot(

 data$FRAME, data$RMSD, type = "n", # Empty plot

 xlab = "Frame", ylab = "RMSD (Å)",

 main = "RMSD",

 ylim = range(data$RMSD, na.rm = TRUE),

 xlim = range(data$FRAME, na.rm = TRUE),

 xaxt = "n" # Suppress default x-axis labels

)

 for (i in seq_along(conditions)) {

 condition_data <- subset(data, Condition == conditions[i])

 Plot raw RMSD data as faint dashed lines

 lines(condition_data$FRAME, condition_data$RMSD, col = colors[i], lwd

= 0.5, lty = 3)

 # Calculate and plot smoothed RMSD data

 smoothed_rmsd <- rollmean(condition_data$RMSD, smooth_window, fill =

NA)

 lines(condition_data$FRAME, smoothed_rmsd, col = colors[i], lwd = 2)

 }

 axis(

 side = 1, # Bottom axis

 at = seq(0, max(data$FRAME), by = 250000), # Tick positions

 labels = format(seq(0, max(data$FRAME), by = 250000), scientific =

FALSE) # Consistent number format

)

 legend(

Appendix V

 193

 "topright", legend = conditions, col = colors, lty = 1, lwd = 2,

 title = "Structure", bg = "white"

)

 dev.off()

}

Call the function to create the plot

plot_rmsd_with_consistent_x(

 combined_rmsd,

 smooth_window = 1000, # Adjust the window for smoothing as needed

 file_name = "rmsd_smooth_running_average.png"

)

#################### Radis of Gyration#######################

plot_rg_with_consistent_x <- function(data, smooth_window = 100,

file_name = "rg_consistent_xaxis_plot.png") {

 data$Rg <- data$Rg * 10

 conditions <- unique(data$Condition)

 colors <- c("red", "blue", "green", "purple")

 png(file_name, width = 1200, height = 800, res = 150)

 plot(

 data$FRAME, data$Rg, type = "n", # Empty plot

 xlab = "Frame", ylab = "Radius of Gyration (Å)",

 main = "Radius of Gyration",

 ylim = range(data$Rg, na.rm = TRUE),

 xlim = range(data$FRAME, na.rm = TRUE),

 xaxt = "n" # Suppress default x-axis labels

)

 for (i in seq_along(conditions)) {

 condition_data <- subset(data, Condition == conditions[i])

 lines(condition_data$FRAME, condition_data$Rg, col = colors[i], lwd =

0.5, lty = 3)

Appendix V

 194

 smoothed_rg <- rollmean(condition_data$Rg, smooth_window, fill = NA)

 lines(condition_data$FRAME, smoothed_rg, col = colors[i], lwd = 2)

 }

 axis(

 side = 1, # Bottom axis

 at = seq(0, max(data$FRAME), by = 250000), # Tick positions

 labels = format(seq(0, max(data$FRAME), by = 250000), scientific =

FALSE) # Consistent number format

)

 legend(

 "topright", legend = conditions, col = colors, lty = 1, lwd = 2,

 title = "Structure", bg = "white"

)

 dev.off()

}

plot_rg_with_consistent_x(

 combined_Rg,

 smooth_window = 1000,

 file_name = "rg_smooth_running_average.png"

)

#################### RMSF #######################

R01_WT_rmsf$Condition <- "WT"

R01_V135G_rmsf$Condition <- "V135G"

R01_V142G_rmsf$Condition <- "V142G"

R02_DM_rmsf$Condition <- "DM"

combined_rmsf <- rbind(

 data.frame(Residue = R01_V135G_rmsf$res, RMSF = R01_V135G_rmsf$RMSF,

Condition = "V135G"),

 data.frame(Residue = R01_V142G_rmsf$res, RMSF = R01_V142G_rmsf$RMSF,

Condition = "V142G"),

Appendix V

 195

 data.frame(Residue = R01_WT_rmsf$res, RMSF = R01_WT_rmsf$RMSF,

Condition = "WT"),

 data.frame(Residue = R02_DM_rmsf$res, RMSF = R02_DM_rmsf$RMSF,

Condition = "DM")

)

combined_rmsf$RMSF <- combined_rmsf$RMSF * 10

rmsf_plot <- ggplot(combined_rmsf, aes(x = Residue, y = RMSF, color =

Condition)) +

 geom_line(size = 0.8) +

 labs(title = "RMSF",

 x = "Residue",

 y = "RMSF (Å)",

 color = "Structures") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))

ggsave("rmsf_overlayed_plot.png", plot = rmsf_plot, width = 8, height =

6, dpi = 300)

#################### Rg density plot ##################

R01_V135G_Rg$Condition <- "V135G"

R01_V142G_Rg$Condition <- "V142G"

R01_WT_Rg$Condition <- "WT"

R02_DM_Rg$Condition <- "DM"

combined_Rg <- rbind(

 data.frame(FRAME = R01_V135G_Rg$V1, Rg = R01_V135G_Rg$V2, Condition =

"V135G"),

 data.frame(FRAME = R01_V142G_Rg$V1, Rg = R01_V142G_Rg$V2, Condition =

"V142G"),

 data.frame(FRAME = R01_WT_Rg$V1, Rg = R01_WT_Rg$V2, Condition = "WT"),

 data.frame(FRAME = R02_DM_Rg$V1, Rg = R02_DM_Rg$V2, Condition = "DM")

)

Rg_plot <- ggplot(combined_Rg, aes(x = FRAME, y = Rg, color = Condition))

+

Appendix V

 196

 geom_line(size = 0.8) +

 labs(title = "Radius of gyration",

 x = "Frame",

 y = "Radius of Gyration (nm)",

 color = "Structures") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))

ggsave("Rg_overlayed_plot.png", plot = Rg_plot, width = 8, height = 6,

dpi = 300)

####################### COMDistance density#####################

setwd("~/Dropbox/Thesis draft/figures/xvg_WT_DM_COM Distance")

R02_DM_COMDistance <- read.table("R02_4AKE_DM_prod_T300_COM.xvg", skip

=25)

R01_WT_COMDistance <- read.table("R01_4AKE_WT_prod_T300_COM.xvg",

skip=25)

R01_WT_COMDistance$Structure <- "WT"

R02_DM_COMDistance$Structure <- "DM"

 combined_COMDistance <- rbind(

 data.frame(COMDistance = R01_WT_COMDistance$V2, Structure =

R01_WT_COMDistance$Structure),

 data.frame(COMDistance = R02_DM_COMDistance$V2, Structure =

R02_DM_COMDistance$Structure)

)

 combined_COMDistance$COMDistance <- combined_COMDistance$COMDistance *

10

density_plot <- ggplot(combined_COMDistance, aes(x = COMDistance, fill =

Structure)) +

 geom_density(alpha = 0.5, adjust = 1) + # Adjust alpha for

transparency

 labs(title = "COMDistance: R02_WT_vs_R02_DM",

 x = "COMDistance (Å)",

 y = "Density",

 fill = "Structure") +

Appendix V

 197

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))

ggsave("COMDistance_angstrom.png", plot = density_plot, width = 8, height

= 6, dpi = 300)

ggplot(DM_COM, aes(x = value)) +

 geom_density(fill = "blue", alpha = 0.5) + # Adjust fill color and

transparency

 labs(title = "Density Plot of Value",

 x = "Value",

 y = "Density") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))

#########################density plots############################

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/DM/R01_R05_4AKE_DM/xvg")

R01_R05_DM_rmsd <- read.table("R01_R05_4AKE_DM_prod_T300_rmsd.xvg",

skip=1)

R01_R05_DM_Rg <- read.table("R01_R05_4AKE_DM_prod_T300_Rg.xvg", skip=1)

R05_DM_G55_P127 <- read.table("R01_R05_4AKE_DM_prod_T300_G55-P127.xvg",

skip=1)

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/WT/R01_R05_4AKE_WT/xvg")

R01_R05_WT_rmsd <- read.table("R01_R05_4AKE_WT_prod_T300_rmsd.xvg",

skip=1)

R01_R05_WT_Rg <- read.table("R01_R05_4AKE_WT_prod_T300_Rg.xvg", skip=1)

R05_WT_G55_P127 <- read.table("R01_R05_4AKE_WT_prod_T300_G55-P127.xvg",

skip=1)

R01_R05_DM_rmsd$Structure <- "DM"

R01_R05_WT_rmsd$Structure <- "WT"

R01_R05_DM_Rg$Structure <- "DM"

R01_R05_WT_Rg$Structure <- "WT"

R05_DM_G55_P127$Structure <- "DM"

R05_WT_G55_P127$Structure <- "WT"

Combine datasets for each property

combined_rmsd <- rbind(

Appendix V

 198

 data.frame(Time = R01_R05_DM_rmsd$V1, Value = R01_R05_DM_rmsd$V2,

Structure = R01_R05_DM_rmsd$Structure),

 data.frame(Time = R01_R05_WT_rmsd$V1, Value = R01_R05_WT_rmsd$V2,

Structure = R01_R05_WT_rmsd$Structure)

)

combined_Rg <- rbind(

 data.frame(Time = R01_R05_DM_Rg$V1, Value = R01_R05_DM_Rg$V2, Structure

= R01_R05_DM_Rg$Structure),

 data.frame(Time = R01_R05_WT_Rg$V1, Value = R01_R05_WT_Rg$V2, Structure

= R01_R05_WT_Rg$Structure)

)

combined_G55_P127 <- rbind(

 data.frame(Time = R05_DM_G55_P127$V1, Value = R05_DM_G55_P127$V2,

Structure = R05_DM_G55_P127$Structure),

 data.frame(Time = R05_WT_G55_P127$V1, Value = R05_WT_G55_P127$V2,

Structure = R05_WT_G55_P127$Structure)

)

combined_rmsd$Value <- combined_rmsd$Value * 10

combined_Rg$Value <- combined_Rg$Value * 10

combined_G55_P127$Value <- combined_G55_P127$Value * 10

Function to create and save density plots

create_density_plot <- function(data, x_label, plot_title, file_name) {

 p <- ggplot(data, aes(x = Value, fill = Structure)) +

 geom_density(alpha = 0.5, colour =NA) +

 labs(title = plot_title, x = x_label, y = "Density", fill =

"Structure") +

 theme_minimal() +

 theme(plot.title = element_text(hjust = 0.5, size = 14, face =

"bold"))

 ggsave(file_name, plot = p, width = 8, height = 6, dpi = 300)

}

RMSD Density Plot

create_density_plot(

Appendix V

 199

 combined_rmsd,

 "RMSD (Å)",

 "RMSD : R01_R05_WT_DM",

 "RMSD_density_comparison_angstrom.png"

)

Rg Density Plot

create_density_plot(combined_Rg, "Rg (Å)", "Rg : R01_R05_WT_DM",

"Rg_density_comparison_angstrom.png")

G55-P127 Distance Density Plot

create_density_plot(combined_G55_P127, "Distance between G55 and P127

(Å)", "dist_G55_P127 : R01_R05_WT_DM",

"G55_P127_distance_density_comparison_angstrom.png")

Density_Rg_Distance_target_labels.R

title: "R Notebook"

output: html_notebook

editor_options:

 chunk_output_type: console

0. Load packages and set paramters


```{r} 

library(MASS) 

library(DescTools) 

library(grDevices) 

library(sf) 

library(sp) 

 

data_file <- "MD05_ADK_protein_large_Rg-dG55P127.csv" 

out_file <- "MD05_ADK_protein_large_Rg-dG55P127_output.csv" 

target_var_file <- "MD05_ADK_protein_large_Rg-dG55P127_target_var.dat" 

png_file <- "MD05_ADK_protein_large_Rg-dG55P127.png" 

 

y_cutoff <- 1.765 

x_idx <- 2 



 

Appendix V 

 

 

 200 

y_idx <- 3 

``` 


1. Load data


```{r} 

d <- read.csv(data_file) 

``` 


2. Calculate density


```{r} 

d_kde <- kde2d(d[,x_idx], d[,y_idx], n = 500) 

``` 


3. Create contour


```{r} 

cnt_d_kde <- contourLines(d_kde) 

``` 


4. Annotate contour to data


```{r} 

n_cnt <- length(cnt_d_kde) 

cnt_levels <- sapply(cnt_d_kde, function(x){x$level}) 

ant <- sapply(c(1:n_cnt), function(i){ 

    i_cnt <- cnt_d_kde[[i]] 

    point.in.polygon(d[,x_idx], d[,y_idx], i_cnt$x, i_cnt$y)*i 

  } 

) 

d <- cbind(d, ant) 

d$highest <- apply(ant, 1, max) 

d$level <- sapply(d$highest, function(x){ 

  if(x == 0){ 

    0 

    }else{ 

    cnt_levels[x]}   

  } 



 

Appendix V 

 

 

 201 

) 

``` 


5. Annotate counter table


```{r} 

cnt_table <- data.frame(cnt_id = NA, level = cnt_levels, basin_id = NA) 

for(i in c(1:length(cnt_levels))){ 

  ave_y <- mean(d[d$highest == i, 2]) 

  if(ave_y >= y_cutoff){ 

    cnt_table[i, 'basin_id'] = 'A' 

    cnt_table[i, 'cnt_id'] = paste('A',cnt_table[i,'level'], sep = '_') 

    }else{ 

    cnt_table[i, 'basin_id'] = 'B' 

    cnt_table[i, 'cnt_id'] = paste('B',cnt_table[i,'level'], sep = '_') 

  } 

} 

 

 

``` 


6. Annotate data table with basin


```{r} 

d$basin <- 'N' 

d[d$highest %in% which(cnt_table$basin_id == 'A') ,'basin'] <- 'A' 

d[d$highest %in% which(cnt_table$basin_id == 'B') ,'basin'] <- 'B' 

``` 


7. Plot contour lines


```{r} 

rgb.palette <- 

colorRampPalette(c("yellow","gold","orange","red","darkred")) 

 plot(d[,c(x_idx,y_idx)], pch = '.', col = 'grey') 

  

for(i in c(1:n_cnt)){ 

  if(cnt_table[i, 'basin_id'] == 'A'){ 



 

Appendix V 

 

 

 202 

    points(d[d$highest == i ,c(x_idx,y_idx)], col 

=rgb.palette(9)[cnt_table[i,'level']])   

  } 

} 

for(i in c(1:n_cnt)){ 

  if(cnt_table[i, 'basin_id'] == 'B'){ 

    points(d[d$highest == i ,c(x_idx,y_idx)], col 

=rgb.palette(9)[cnt_table[i,'level']])   

  } 

} 

contour(d_kde, col = 'grey', add = T) 

 

``` 


8. Set possible target variables

8.1 Label points by basin


```{r} 

d$target_01 <- d$basin 

``` 


8.2 Label points by basin with depth level greater than 4


```{r} 

d$target_02 <- 0 

d[d$highest > 4, 'target_02'] <- 1 

``` 


8.3 Label points by two deeper region in each basin


```{r} 

d$target_03 <- 'N' 

A_deeper <- max(which(cnt_table$basin_id == 'A')) 

B_deeper <- max(which(cnt_table$basin_id == 'B')) 

d[d$highest == A_deeper, 'target_03'] <- 'A' 

d[d$highest == B_deeper, 'target_03'] <- 'B' 

``` 


Appendix V

 203

8.4 Label points by basin with depth level greater than 4 and

different basin label


```{r} 

d$target_04 <- 'N' 

d[d$highest > 4 & d$basin == 'A', 'target_04'] <- 'A' 

d[d$highest > 4 & d$basin == 'B', 'target_04'] <- 'B' 

``` 


9. Save data


```{r} 

write.csv(file = out_file, d, quote = F, row.names = F) 

 

write.table(file = target_var_file, d[, c('Time', "target_04")], 

row.names = F, quote = F) 

``` 


10. Graphs


```{r} 

par(las = 1) 

plot( 

  d[,c(x_idx,y_idx)],  

  pch = '.',  

  col = 'grey', 

  type = 'n', 

  xlim = c(0.5,4.5), 

  ylim = c(1.55,2.25), 

  xlab = 'Gly 55 - Pro 127', 

  ylab = expression(R[g]), 

  xaxt = 'n', 

  yaxt = 'n', 

  bty = 'l' 

) 

axis(1, seq(0, 5, 0.25)) 

axis(2, seq(1.5, 2.5, 0.05)) 

abline(v = seq(0, 5, 0.25), col = 'lightgray') 



 

Appendix V 

 

 

 204 

abline(h = seq(1.5, 2.5, 0.05), col = 'lightgray') 

points(d[,c(x_idx,y_idx)],  pch = '.',  col = 'grey50' ) 

contour(d_kde, col = SetAlpha('red', 1.5), lwd = 1.5, add = T, drawlabels 

= FALSE) 

``` 



```{r}  

png(file = png_file, width = 1000, height = 1200) 

par(las = 1) 

par(cex = 2) 

plot( 

  d[,c(x_idx,y_idx)],  

  pch = '.',  

  col = 'grey', 

  type = 'n', 

  xlim = c(0.5,4.5), 

  ylim = c(1.55,2.25), 

  xlab = 'Gly 55 - Pro 127 / nm', 

  ylab = expression(R[g] / nm), 

  xaxt = 'n', 

  yaxt = 'n', 

  bty = 'l' 

) 

axis(1, seq(0, 5, 0.5)) 

axis(2, seq(1.5, 2.5, 0.05)) 

abline(v = seq(0, 5, 0.5), col = 'lightgray') 

abline(h = seq(1.5, 2.5, 0.05), col = 'lightgray') 

points(d[,c(x_idx,y_idx)],  pch = '.',  col = 'grey50' ) 

points(d[d$highest > 4,c(x_idx,y_idx)],  pch = '.',  col = 'grey20' ) 

contour(d_kde, col = SetAlpha('red', 1.5), lwd = 1.5, add = T, drawlabels 

= FALSE) 

dev.off() 

``` 



```{r}  

# rgb.palette <- colorRampPalette( 

#   c("yellow","gold","orange","red","darkred"),  

#   alpha = T 



 

Appendix V 

 

 

 205 

# ) 

# color_vector <- 

as.vector(SetAlpha(rgb.palette(max(cnt_table[,'level'])), 0.3)) 

 

# for(i in c(1:n_cnt)){ 

#   if(cnt_table[i, 'basin_id'] == 'A'){ 

#     if (cnt_table[i,'level'] > 4){ 

#       points(d[d$highest == i ,c(x_idx,y_idx)], col 

=color_vector[cnt_table[i,'level']])   

#     } 

#   } 

# } 

# for(i in c(1:n_cnt)){ 

#   if(cnt_table[i, 'basin_id'] == 'B'){ 

#     if (cnt_table[i,'level'] > 4){ 

#       points(d[d$highest == i ,c(x_idx,y_idx)], col 

=color_vector[cnt_table[i,'level']])   

#     } 

#   } 

# } 

``` 


	Declaration
	Publications
	Abstract
	Acknowledgements
	Table of Contents
	Table of Figures
	1 Introduction
	1.1 Research questions
	1.2 Aims and Objectives
	1.3 Novel contribution to science
	1.4 Novel toolkits
	1.5 Thesis overview

	2 Literature Review
	2.1 Protein structure
	2.2 Protein function
	2.3 Protein dynamics
	2.3.1 Experimental techniques
	2.3.2 Computational techniques
	2.3.3 Molecular Dynamic Simulations (MD)
	2.3.3.1 Force fields
	2.3.3.2 Integration methods
	2.3.3.3 Thermodynamics conditions
	2.3.3.4 Solvation
	2.3.3.5 Periodic boundary conditions
	2.3.3.6 Particle Mesh Ewald (PME)

	2.3.4 Computational analysis of protein dynamics through MD
	2.3.5 Enhanced sampling techniques
	2.3.6 MD simulations data in machine learning

	2.4 Protein design, engineering, and redesign
	2.4.1 Protein engineering, redesign, and mutation engineering
	2.4.2 Computational tools for protein design
	2.4.3 PyRosetta for mutation engineering

	2.5 Challenges in redesigning protein dynamics
	2.6 Summary

	3 Methods
	3.1 Case study: adenylate kinase (ADK)
	3.2 Generation of MD simulations data
	3.2.1 Unbiased simulations
	3.2.2 MD data for MDSubSampler
	3.2.3 MD data for MDAutoMut
	3.2.4 MD data for MDAutoPredict

	3.3 Data analysis and validation
	3.4 MDAnalysis
	3.5 PyRosetta
	3.6 GMXAPI
	3.7 Deployment of MDAM on ARCHER2
	3.8 Containers – Docker
	3.9 Wrapping the toolkits with Poetry
	3.10 Summary

	4 Design, implementation, and testing
	4.1 MDSubSampler tool
	4.1.1 Software design and core components
	4.1.2 Functionality
	4.1.3 Software implementation and accessibility
	4.1.4 Testing

	4.2 MDAutoMut tool
	4.2.1 Software design and core components
	4.2.2 Functionality
	4.2.3 Software implementation and accessibility
	4.2.4 Testing

	4.3 MDAutoPredict tool
	4.3.1 Software design and core components
	4.3.2 Functionality
	4.3.3 Software implementation and accessibility
	4.3.4 Testing

	4.4 Summary

	5 Results
	5.1 MDSubSampler results
	5.1.1 Scenario: random sampling for size reduction
	5.1.2 Scenario: pocket sampling for ensemble docking
	5.1.3 Scenario: sampling by most frequently observed conformations
	5.1.4 Advanced scenario: machine learning prediction

	5.2 Validation of MD simulations for proof-of-concept
	5.2.1 Rationale for generation and validation of MD data for MDAM
	5.2.2 Data integrity and trajectory validation

	5.3 MDAutoMut results
	5.3.1 Mutation workflow
	5.3.2 System preparation and simulation workflow
	5.3.3 Full MDAM workflow

	5.4 MDAutoPredict results
	5.4.1 Target variable definition
	5.4.2 Machine Learning performance

	5.5 Summary

	6 Summary, conclusions, and further work
	6.1 Summary
	6.2 Conclusions
	6.3 Current limitation and future development of this research study
	6.4 Addressing the research questions
	6.5 Lessons learned and future recommendations

	Bibliography
	Appendix I
	Appendix II
	Appendix III
	Appendix IV
	Appendix V

