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Abstract 
 
Proteins are responsible for almost all biological mechanisms, and their three-dimensional 

structures and dynamics define their function. In recent years, outstanding advances have 

been made in protein design. However, redesigning protein dynamics to achieve desired 

properties or states remains a significant challenge in computational protein design. This 

thesis addresses this gap by introducing three novel toolkits—MDSubSampler, MDAutoMut, 

and MDAutoPredict—developed to integrate biomolecular simulations with machine learning 

for the automated redesign of protein dynamics. 

 
MDSubSampler is designed to preprocess and a posteriori subsample molecular dynamics 

simulations, preserving critical dynamic information while reducing noise and data complexity. 

Its application demonstrates effective noise reduction and compatibility with machine learning 

workflows, validated using adenylate kinase as a model system. MDAutoMut automates 

mutation generation, simulation, and analysis, facilitating systematic identification of mutations 

that have a desired impact on protein dynamics. This toolkit successfully identifies mutations 

on adenylate kinase structure shifting dynamics towards a closed conformation, validated by 

literature benchmarks. MDAutoPredict extends the workflow by using machine learning 

models to predict conformational states from molecular dynamics data, offering an adaptable 

framework for dynamic state prediction. 

 
These contributions represent an advance in computational protein design, providing scalable, 

automated solutions for mutation engineering and dynamic prediction. The toolkits are 

modular, extensible, and integrated with well-consolidated libraries, ensuring broad 

applicability across protein engineering challenges. This research highlights the potential of 

combining biomolecular simulations with machine learning to redesign protein dynamics and 

sets the stage for future innovations in computational biology. 
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1 Introduction 
 
Proteins are essential macromolecules responsible for nearly all biological processes, acting 

as catalysts, transporters, signalling molecules, and more. Their ability to perform such diverse 

functions derives from their three-dimensional, physico-chemical, and dynamic properties. 

Structural changes allow proteins to transition between functional states, enabling processes 

like enzymatic activity, molecular recognition, and signalling. Understanding protein dynamics 

is fundamental to explaining biological functions and critical for advancing fields such as drug 

design, synthetic biology, and disease prevention. 

 
While experimental techniques such as X-ray crystallography and Nuclear Magnetic 

Resonance (NMR) spectroscopy are used to study protein structures, they face limitations in 

capturing the protein dynamic behaviour at the atomistic level [1]. Molecular dynamics (MD) 

simulations have become a widely used computational approach to overcome these 

limitations, offering atomistic-level details on protein motions over time [2], [3]. However, the 

large and complex MD trajectories present significant challenges for analysis. The data are 

often noisy, and due to their high dimensionality, it is challenging to identify functionally 

relevant conformations that are generally a subset of the phase space accessible to the protein 

[4]. Researchers currently rely on combinations of tools, approaches, and methods, as no 

unified analysis strategy exists for efficiently removing the noise, increasing the signal, and 

determining the important conformations of these large trajectories.  

 
Most proteins fold into specific three-dimensional structures determined by their amino acid 

sequences, and these folded states are connected to proteins’ biological functions. Even small 

changes in the sequence, such as single mutations, can dramatically impact protein dynamics, 

potentially disrupt their function and leading to disease. On the contrary, targeted mutations 

can enhance protein stability or improve function, offering strategies for therapeutic and 

engineering applications. Therefore, understanding the impact of mutations on protein 

dynamics is crucial in the computational protein design field.  

 
The field of computational protein design has achieved remarkable success, as confirmed by 

the 2024 Nobel Prize in Chemistry award [5]. However, despite these advancements, the 

redesign of protein dynamics remains an unexplored area in protein design. Although several 

strategies have been developed to optimise active sites and sequences, these approaches 

mainly focus on static protein structures, often overlooking their dynamics. Multistate design 

has provided some insights into improving protein properties, but there is currently no unified 
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analysis strategy to automate the redesign of protein dynamics. This thesis aims to contribute 

to addressing this critical gap.  

 
Despite advancements in machine learning (ML) and deep learning (DL), existing methods for 

predicting atomistic and molecular properties of protein systems lack integration with MD [6], 

[7]. They would benefit from the availability of automated workflows. Current techniques offer 

valuable insights but fail to provide a single, adaptable, and expandable tool that seamlessly 

combines data preprocessing, mutational analysis, and predictive modelling. 

 
This research addresses some of these gaps by developing a new methodological approach 

based on three novel computational tools—MDSubSampler (MDSS), MDAutoMut (MDAM), 

and MDAutoPredict (MDAP). These tools are designed and implemented to address specific 

aspects of the challenge: MDSS focuses on efficient data preprocessing of MD data, MDAM 

enables systematic mutation analysis, and MDAP provides dynamic prediction capabilities. 

Together, these tools aim to establish a comprehensive and automated framework for 

advancing the computational protein design of MD. 

 

1.1 Research questions 
 
The research questions in this thesis aim to advance methods and tools in protein redesign 

through automated simulation and evaluation of the effect of mutations on protein dynamics. 

The first step is to preprocess the data used in this study. The second step is developing the 

method to achieve the study’s goal. The last step is extending the method to a more advanced 

approach to help solve different research problems. The following research questions were 

considered when designing the solution approach for this thesis. 

 
1. Processing MD simulation data: 

 
How can the volume of MD simulation data be effectively managed to enable its use 

in automated workflows without exceeding computational resource limitations? At the 

same time, how can the complexity of these data formats be addressed to ensure easy 

integration into ML/DL pipelines? 

 
To address this question, a robust and adaptable MD processing framework is required 

to systematically reduce noise while preserving critical simulation information and 

reformatting the data into ML/DL-compatible structures. 
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2. Automating protein dynamics redesign: 

 
How can computational strategies be developed to fine-tune protein dynamics through 

targeted mutations, and how can these workflows be automated, integrated with 

existing computational libraries, and scaled effectively using high-performance 

computing (HPC) resources? 

 

Redesigning protein dynamics through targeted mutations requires a unified, scalable 

computational strategy. This strategy involves developing an automated framework 

capable of generating, simulating, and analysing mutations to identify those that can 

achieve desired protein properties. Furthermore, scaling these workflows on HPC 

platforms is essential to efficiently process the extensive simulations and mutation 

datasets. 

 
3. Predictive modelling for protein dynamics 

 
How can the automated workflow be extended to perform predictions in combination 

with ML/DL pipelines, and which ML models are most appropriate for predictive tasks 

in protein dynamics? 

 
ML provides transformative opportunities to analyse protein dynamics by making 

predictions from MD simulation data. Additionally, benchmarking several ML models 

for tasks like conformational state prediction will evaluate how ML can be applied within 

this context. 

 

1.2 Aims and Objectives 
 
Aim  
 
This research aims to deliver an innovative framework for integrating biomolecular simulations 

with predictive computational methods, redesigning protein dynamics, and advancing protein 

engineering and design. 

 
Objectives 

 
1. Develop and validate a toolkit for preprocessing and subsampling MD 

simulation data: 
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Design, implement, and test the MDSS toolkit to efficiently process MD simulation data, 

reducing noise while preserving the distribution of key geometric properties. This tool 

will ensure that MD data can be transformed into ML-compatible formats, enabling 

advanced predictive analyses. 

 
2. Automate the analysis of mutations’ impact on protein dynamics: 

 

Design, implement, and test MDAM, a toolkit to automatically generate, simulate, and 

compare wild-type and mutant protein dynamics. This tool will facilitate evaluating how 

specific mutations can impact protein dynamics. MDAM will implement automated 

workflows to identify optimal solutions to the problem of redesigning protein dynamics. 

 

3. Explore and integrate machine learning techniques for predictive modelling in 

protein design: 

 

Design, implement, and test MDAP, an ML framework for predicting protein states of a 

protein system using MD data processed with MDSS. The objective includes 

benchmarking several ML models to identify the best-suited approaches for 

conformational state prediction. MDAP offers an extendable and adaptable framework 

that can use MD simulation data for supervised learning predictions with a target 

variable describing conformational or state properties. 

 

1.3 Novel contribution to science 
 
This thesis presents a transformative framework for redesigning protein dynamics and 

addresses some of the critical limitations in MD simulations and computational protein design. 

The heart of this contribution lies in developing three novel, integrated toolkits – MDSS, 

MDAM, and MDAP. These toolkits provide a cohesive solution to the challenges associated 

with large-scale MD data preprocessing, mutation analysis, and predictive modelling of protein 

dynamics. Together, they form a unified workflow that is customisable and scalable and 

designed to advance protein redesign methods through the seamless integration of 

computational and ML approaches. 

 
The MDSS toolkit introduces a posteriori efficient subsampling of large MD simulation 

trajectories, ensuring important information is preserved while reducing data complexity and 

noise. MDAM automates the generation and analysis of mutations, allowing researchers to 
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systematically and heuristically identify their specific effects on protein dynamics. Finally, 

MDAP leverages advanced ML techniques to predict dynamic behaviour, providing an 

extensible framework for data-driven exploration of protein functions. A foreseeable extension 

of this approach includes state-prediction capabilities, where the most promising mutations 

identified by MDAM are tested for their ability to generate desired states, as annotated by 

MDAP. 

 
These contributions fill long-standing gaps in computational biology by providing easy-to-use, 

open-source tools validated through rigorous adenylate kinase (ADK) enzyme testing. 

Integrating these toolkits into established libraries and software (e.g. GROMACS [2], 

MDAnalysis [8], PyRosetta [9]) ensures their accessibility and applicability to various research 

problems. 

 

1.4 Novel toolkits 
 
MDSubSampler 

 
MDSS is an object-oriented Python library designed to preprocess MD simulation data. The 

tool can perform a posteriori subsampling of MD trajectories while ensuring that critical 

information of the data is preserved. MDSS uses statistical sampling methods and dissimilarity 

measures to evaluate the sampling. Specifically, the sampling is evaluated by assessing the 

distance between distributions of original and sample trajectories for relevant geometric 

properties. The tool efficiently identifies the most important conformations in large trajectories 

by reducing the noise and increasing the signal. 

 
MDSS is validated using the ADK example system, successfully identifying critical open and 

closed conformational states of the protein’s LID domain. Root Mean Square Deviation 

(RMSD) distribution analysis demonstrated its ability to capture essential dynamics while 

significantly reducing data size, ensuring compatibility with ML workflows. 

 
MDAutoMut 

 
MDAM automates the evaluation of mutation impacts on protein dynamics. This toolkit runs in 

an automated workflow for generating simulations, mutation engineering, and evaluating 

protein dynamics in MD simulation data. The simulation engine can prepare and simulate the 

wild type and mutants, and it is performed by integration with GROMACS via the gmxapi 

Python interface. Mutation engineering is done for single, double, or multiple mutations by 
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integrating with PyRosetta. Finally, the evaluation of dynamics is done by assessing the 

distribution of properties that capture the system’s dynamics, and it is performed by integration 

with MDSS. The goal is to find mutations that have the desired impact on the system’s 

dynamics.  

 
MDAM is validated with a proof-of-concept study on the ADK system. The protein provides a 

clear example of protein dynamics since it has two distinct states (open and closed). Given 

two positions in the ADK structure, the goal is to identify which mutations can increase 

sampling of close ADK state when scanning across all 20 different amino acids. The change 

in ADK dynamics is evaluated by assessing relevant properties that describe ADK’s closure. 

The proof-of-concept is done on known mutations from the literature that can achieve ADK’s 

closure. MDAM provides a framework for systematic and heuristic scanning for the space 

search. Its modular design allows seamless integration with MDSS and MDAutoPredict tools. 

 
MDAutoPredict 

 
MDAP is a predictive modelling framework that uses ML to analyse MD data generated by 

MDAM and processed by MDSS. The tool can predict protein conformational states using MD 

simulation data as inputs. The toolkit provides a framework with several ML techniques to 

identify which is more appropriate for specific research problems involving MD trajectories. 

 
MDAP is tested on the ADK as an example system. It performs ML classification prediction of 

the system’s states (e.g., open, closed). While this thesis focuses on validating the toolkit with 

a simple example scenario, the tool can expand into more complex workflows.  

 

1.5 Thesis overview 
 
This work is divided into six chapters, including Chapter 1. Below is a description of the 

remaining five chapters. 

 
Chapter 2 provides a literature review and establishes the theoretical foundations of protein 

structure, dynamics, and function. It explores key experimental and computational methods 

essential to computational protein design, including MD simulations and ML approaches. The 

limitations of existing tools in redesigning protein dynamics are acknowledged.  

 
Chapter 3 features the methods used in this research. It describes ADK as a model protein 

system used in this study. The protocols for generating MD simulations for testing the three 
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tools are also described. Additionally, the chapter discusses the tools’ use of high-performance 

computing resources for scalability and their implementation in Docker environments for 

reproducibility. 

 
Chapter 4 contains the design, implementation, and testing of the three novel toolkits 

developed in this research: MDSS, MDAM and MDAP. It also highlights the modularity and 

user-friendly structure, ensuring accessibility to researchers with different expertise. 

 
Chapter 5 shows the results by demonstrating the toolkit’s application on the example system 

(ADK). MDSS demonstrates its effectiveness in subsampling large trajectories a posteriori 

without information loss. MDAM’s capabilities are validated through a proof-of-concept 

mutation study that shifts the sampling of the ADK state from open to closed. MDAP is 

evaluated for its prediction accuracy and uses MD simulation data to classify conformational 

states. 

 
Finally, Chapter 6 concludes the research work and discusses the results. Future directions 

are suggested, especially future integrations of these tools with more complex packages and 

workflows, setting the stage for further advances in computational protein design. 
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2 Literature Review 
 
This chapter provides a theoretical background on protein structure, dynamics, function, and 

design. It examines how conformational flexibility enables proteins to perform complex 

biological functions, beginning with protein structure and folding principles. The chapter 

introduces MD simulations as a key computational tool for exploring protein dynamics at the 

atomistic level, alongside enhanced sampling techniques and ML approaches for analysing 

conformational changes. 

 
The discussion then progresses to protein design methods, examining traditional approaches 

and recent advances in multistate design and computational tools for predicting mutational 

impact on protein properties. The chapter concludes by addressing the current challenges in 

redesigning protein dynamics, highlighting the limitations of existing methods and the need for 

new strategies to better account for protein dynamics. 

 
The following diagram (Figure 2.1) illustrates the flow of topics covered in this chapter, moving 

from the foundational aspects of protein structure to redesigning protein dynamics. Short 

summaries of each subsection are reported below. 

 

           

Figure 2.1 Hierarchy of concepts in chapter two. The interplay between protein structure, dynamics, and function 
and its implications for protein design and engineering. Protein structure forms the basis for biological function, as 
shown by the unidirectional arrow, while protein dynamics serve as a bridge between structure and function, 
represented by the bidirectional arrows. Experimental and computational approaches (dashed arrows) provide 
insights into protein dynamics, which inform protein design, engineering, and redesign. The challenges in 
redesigning protein dynamics, highlighted in the yellow box, stem from the complexities of modelling conformational 
flexibility and its impact on protein function. 
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2.1 Protein structures. This section provides an overview of protein structures, discussing 

how proteins fold from linear amino acid sequences into complex, three-dimensional 

conformations. It explores the traditional classification in structural levels—primary, secondary, 

tertiary, and quaternary—and how folding and stability are critical for protein function.  

 
2.2. Protein function. This section describes how proteins utilise their structure and flexibility 

to perform specific biological functions. It explains how conformational changes enable 

proteins to interact with other molecules and to sample different functional states.  

 
2.3 Protein dynamics. This section examines the conformational changes and their roles in 

biological functions. Both experimental and computational techniques are introduced, with 

emphasis on MD simulations. An overview of enhanced sampling techniques and an 

explanation of MD integration with ML approaches are presented. 

 
2.4 Protein design, engineering, and redesign. This section introduces protein design and 

engineering, covering both template-based and de novo approaches and focusing on recent 

advancements in multistate design. It provides an overview of the computational tools 

developed for protein design and structural prediction, mutation impact assessment, and 

stability optimisation. The section sets the scene for this research work by identifying the 

critical gap in the current methodologies: redesigning protein dynamics.  

 
2.5 Challenges in redesigning protein dynamics. The section provides an overview of the 

challenges and limitations when redesigning protein dynamics due to current limitations in 

modelling the impact of mutations on the conformational flexibility of biomolecules. 

 

2.1 Protein structure  
 
Proteins are biomolecules, often referred to as the workhorses of the cell. They are involved 

in various cellular functions, from providing structural support and catalysing metabolic 

reactions to facilitating immune responses and transmitting signals between cells [10], [11]. A 

protein’s ability to perform complex functions efficiently is closely linked to its three-

dimensional structure. Specifically, to perform their functions, proteins typically fold into 

specific three-dimensional shapes and undergo structural changes [12], [13]. 

 

Changes in protein structure, whether caused by mutations, environmental factors or other 

perturbations, can impact their stability, dynamics, and function [14]. These changes may 

result in subtle shifts that affect functional dynamics, more pronounced changes that 
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compromise protein stability, or, in severe cases, lead to misfolding and aggregation [15], [16]. 

Understanding the dynamic behaviour of proteins, especially mutational impact, is crucial to 

advance drug design, biotechnology, and the development of treatments for these diseases 

[17], [18]. 

 

 

Figure 2.2 Structure of an amino acid. Left: highlighting the amino group, carboxyl group, and variable R group 
attached to the α-carbon. Top-Right: Formation of a peptide bond between two amino acids, where a molecule of 
water (H₂O) is released. Bottom-Right: A sequential combination of three amino acids forms a polypeptide chain 
with a repeating backbone structure. 

 
Chemically, proteins are linear polymers made of amino acids connected by peptide bonds 

(Figure 2.2). The order in which amino acids are arranged defines the resulting three-

dimensional structure, which determines the protein’s function [13]. However, it is known that 

functional adaptation and modulation can also be influenced by factors beyond the isolated 

protein structure, such as environmental signals and molecular interactions [19]. While many 

proteins adopt well-defined three-dimensional structures, others, such as intrinsically 

disordered proteins, lack a stable structure under physiological conditions but still perform 

important biological functions [20], [21].  In addition, a rare class of proteins, known as 

metamorphic proteins, can adopt multiple stable conformations, enabling them to perform their 

functions depending on their environment or interaction with other molecules [22]. These 

proteins represent a small but significant exception to the general principle of one stable 

structure per protein. 

Amino group       R group.        Carboxyl group 
       (side chain) 

Combination of amino acids 1, 2, 3 

Amino acid 1 Amino acid 2  Amino acid 3 
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Before being chemically connected to form the polypeptide chain, amino acids are composed 

of an alpha carbon atom attached to an amino group (which is typically protonated as -NH₃⁺ 

under physiological conditions), a carboxyl group (which is typically deprotonated as -COO⁻ 

under physiological conditions), and a unique side chain referred to as the R group (Figure 

2.2). Once integrated into the polypeptide chain through peptide bonds, the amino acid 

becomes known as an amino acid residue. In this process, the amino and carboxyl groups 

join to form the peptide bond as a byproduct through a condensation reaction (Figure 2.2), 

while the R group remains free. Each amino acid is characterised by a distinct side chain 

called R group. The specific properties of the R group, such as its size, shape, and 

physicochemical properties, including polarity, charge, and hydrophobicity, are fundamentally 

important for the protein structure.  

 
Four levels are commonly used to interpret protein structure—primary, secondary, tertiary, and 

quaternary—which helps in understanding their behaviour at the atomic level [10] (Figure 2.3). 

The amino acid sequence, the primary structure, contains much information required for a 

protein to attain its final shape and function [23]. In some cases, however, interactions with 

partner molecules or cellular components are also necessary for the protein to reach its native 

state [13]. 

 
Secondary structures arise from local hydrogen bonds between amino acids. The most 

common structures are alpha helices and beta sheets [10]. The alpha helix is a right-handed 

structure, stabilised by hydrogen bonds formed between the backbone atoms of every fourth 

amino acid, with side chains extending outward and completing one turn approximately every 

3.6 residues [23]. In contrast, beta sheets consist of extended beta strands linked by hydrogen 

bonds between adjacent strands, forming a sheet-like structure where side chains alternate 

above and below the plane [10]. 

 
The tertiary structure represents the complete three-dimensional arrangement of a protein, 

stabilised by a combination of interactions, including hydrophobic interactions, hydrogen 

bonds, ionic interactions, and van der Waals forces [13], [24]. A complex interplay of these 

forces drives the folding process leading to this structure: while hydrophobic interactions drive 

initial chain collapse, the specific native structure emerges through the progressive formation 

of hydrogen bonds, optimal packing achieved by van der Waals interactions, and 

establishment of ionic bonds, with their relative contributions varying by local protein 

environment [10]. 
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Finally, Proteins composed of multiple polypeptide chains adopt a quaternary structure, where 

individual subunits interact to function as a single, cohesive complex [23]. 

 

                                

Figure 2.3 Four levels of protein structure—primary, secondary, tertiary, and quaternary. This work is licensed under 
the Creative Commons Attribution-Share Alike 3.0 Unported License (CC BY-SA 3.0) [25]. 

 
Proteins made of a single polypeptide chain fold to form their primary, secondary, and tertiary 

structures. In contrast, those composed of multiple polypeptide chains form their structures 

before assembling into a quaternary structure [13] (Figure 2.3). The folding process typically 

progresses through a series of intermediate states represented as a folding funnel, where from 

a large available set of unfolded conformations, the protein progresses to a limited number of 

intermediate states to finally reach a very small subset of native folded conformations [13]. In 

this model, proteins move from a high-energy, unfolded state toward a more stable, low-energy 



 

Literature Review 

 

 

 22 

conformation. Proper folding is essential for protein function, as misfolding can lead to 

dysfunctional proteins and is associated with diseases [15], [16]. 

 
While significant progress has been made in protein folding, accurately predicting how a 

protein will fold has long been a major challenge in structural biology, often referred to as the 

“protein folding problem” [24]. However, recent breakthroughs have significantly advanced the 

field. In 2024, David Baker was honoured with the Nobel Prize in Chemistry [5] for his 

innovative work in computational protein design. He shared the award with Demis Hassabis 

and John Jumper, who were recognised for developing AlphaFold [11], an AI model that has 

revolutionised the prediction of protein structures. These achievements represent a paradigm 

shift, marking a new era in which computational approaches and AI-driven technologies rapidly 

advance our ability to understand and manipulate protein structure and function. 

                                

2.2 Protein function 
 
The function of a protein depends not only on its static three-dimensional structure but also 

on its dynamic behaviour, which plays a critical role in modulation. These dynamic changes, 

ranging from subtle local fluctuations to large conformational changes, enable proteins to 

interact with other molecules, respond to environmental changes, and transition between 

functional states [12]. 

 
For example, enzymes undergo conformational changes during catalysis, essential for 

substrate binding, chemical transformation, and product release [26], [27], [28]. These 

structural changes optimise the active site geometry for each step of the catalytic cycle [26], 

[27], [28]. Similarly, membrane receptors undergo structural adaptations upon ligand binding, 

triggering intracellular signalling cascades that facilitate cellular communication [26], [27], [28]. 

 
Various cellular processes exemplify the connection between dynamics and function. 

Adenylate kinase, a key enzyme in cellular energy homeostasis, alternates between open and 

closed conformations to facilitate substrate binding and product release [29]. Another classic 

example is haemoglobin, which switches between tense and relaxed states to modulate 

oxygen affinity, enabling efficient oxygen transport under different physiological conditions 

[30]. 

 
Understanding protein dynamics is, therefore, fundamental to elucidating protein function in 

living systems, as these movements directly connect structure to biological activity. 
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2.3 Protein dynamics 
 
Studying protein dynamics is crucial for understanding the range of conformational changes 

proteins undergo as they perform their biological functions [31]. As proteins carry out their 

roles, they adopt distinct structural conformations known as functional states. These functional 

states are associated with specific biological roles or activities [32]. Dynamic movements 

between these states are directly linked to key functional events, such as substrate binding, 

signalling, and allosteric regulation [33], [34]. 

 
Unveiling proteins’ dynamical properties is essential for identifying important functional states, 

the pathways connecting them, and the energetic barriers they need to overcome for transition 

between states [35]. 

 
Protein movements occur across different timescales [36]. Rapid, local fluctuations in atomic 

positions—such as bond vibrations—occur on the scale of femtoseconds (10⁻¹⁵ seconds) to 

picoseconds (10⁻¹² seconds) [37]. Bond vibrations occur in femtoseconds, while side-chain 

rotations occur in picoseconds [37]. These small, fast movements are critical for maintaining 

structural flexibility at the atomic level and contribute to protein entropy [38]. On a slower 

timescale, nanosecond (10⁻⁹ seconds) to microsecond (10⁻⁶ seconds) conformational 

changes, such as loop motions and collective domain movements, play key roles in protein 

function, including substrate binding and enzyme catalysis [39], [40]. Surface loop motions 

typically occur in nanoseconds, while domain movements usually take microseconds [40]. 

Even larger, slower structural transitions—such as those involved in protein folding, allosteric 

regulation, or complex ligand binding events—occur over milliseconds (10⁻³ seconds) to 

seconds or longer [41], [42]. Protein folding can take anywhere from microseconds to seconds, 

depending on the protein size and complexity [43]. 

 
Both experimental techniques and computational methods have been developed to study 

protein dynamics across these timescales [44]. Classical MD simulations, in particular, can 

capture these motions at the atomic level, providing insight into how proteins function over 

time [45]. Modern MD simulations can now span the pico- to millisecond range, allowing 

researchers to simulate fast local fluctuations and slower, functionally relevant conformational 

changes [45]. These approaches offer a detailed view of protein behaviour that is difficult to 

capture solely through experimental methods. 
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2.3.1 Experimental techniques 

 
Experimental techniques are key in studying protein dynamics, offering valuable structural 

information about proteins [46]. One of the most widely used methods is X-ray crystallography, 

which provides high-resolution snapshots of protein structures in their crystallised form [47]. 

This technique allows researchers to determine the arrangement of atoms within a protein, 

yielding detailed insights into its three-dimensional structure [47]. However, X-ray 

crystallography is limited in capturing the scale of dynamic movements that proteins undergo 

in their natural, solution-based environment, as crystallisation often locks proteins in a single, 

static conformation [47]. 

 
In contrast, nuclear magnetic resonance (NMR) spectroscopy provides insights into the 

flexibility and dynamics of proteins in solution [48]. NMR is beneficial for studying 

conformational changes and molecular motions over various timescales (picoseconds to 

seconds), offering a more dynamic view of protein behaviour than crystallography [48]. Various 

NMR experiments (relaxation measurements, residual dipolar couplings, chemical shift 

analysis) can probe different aspects of protein dynamics [49]. However, NMR has limitations, 

particularly when studying larger systems, as the signals become more challenging to resolve 

[50]. 

 
Cryo-electron microscopy (cryo-EM) has revolutionised structural biology, enabling the 

visualisation of large protein complexes in various conformational states at near-atomic 

resolution [1]. Cryo-EM can capture proteins in multiple conformational states by imaging 

many individual molecules, providing insights into conformational heterogeneity [1]. However, 

while cryo-EM excels at revealing different conformational states, it cannot directly observe 

the transitions between states or capture fast atomic-level dynamics [1]. 

 
Despite the strengths of these techniques, a critical limitation is that none of them can provide 

detailed information on protein dynamics at the atomistic level, nor can they fully capture the 

energetics of these dynamic processes [1]. While techniques like NMR or cryo-EM can offer 

glimpses of protein movements, they cannot reconstruct the complete free energy landscape 

required to fully understand transitions between functional states at the atomic level [46]. 

Therefore, experimental techniques often combine with computational methods, such as 

molecular dynamics simulations, to provide a more comprehensive view of protein dynamics 

and energetics [51]. 
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2.3.2 Computational techniques 

 
Computational techniques have been developed to study protein dynamics at various levels 

of resolution and timescales. Quantum Mechanics (QM) and Molecular Mechanics (MM) 

methods combine quantum mechanical calculations for specific regions (typically active sites) 

with classical molecular mechanics for the rest of the system [52]. This hybrid approach 

enables the study of chemical reactions and electronic interactions while maintaining 

computational feasibility [52]. QM/MM is particularly valuable for investigating enzyme 

mechanisms, chemical bond breaking/formation, and electronic effects in catalysis [52]. 

However, its high computational cost limits QM regions to typically 50-200 atoms, with 

simulation timescales rarely exceeding picoseconds [52]. 

 
Coarse-grained (CG) simulations reduce computational complexity by grouping atoms into 

larger units, such as representing amino acid residues with one or a few interaction sites [53]. 

Popular CG models include MARTINI, SIRAH, and elastic network models (ENMs) [54], [55], 

[56]. This simplification enables the simulation of larger systems (hundreds of proteins) and 

longer timescales (microseconds to milliseconds), allowing the study of large-scale 

conformational changes  [53], [56]. However, CG models sacrifice atomic detail and may miss 

important local interactions [53]. Additionally, they tend to smooth the free energy landscape, 

which can obscure finer details of energy barriers and local minima important for specific 

biological processes [53]. 

 
Through stochastic sampling, Monte Carlo (MC) simulations explore protein conformational 

space [57]. Unlike MD, MC methods generate new configurations through random moves and 

accept or reject moves based on the Metropolis criterion [57]. These methods can easily 

overcome energy barriers and are particularly useful for equilibrium properties [58]. However, 

MC methods do not provide direct dynamic information and may struggle with complex 

collective motions [59]. 

 
MD simulations provide atomistic detail and temporal evolution by numerically solving 

Newton’s equations of motion [60]. Modern MD simulations cover timescales from 

femtoseconds to microseconds (specialised hardware can reach milliseconds) and provide 

atomic-resolution trajectories [60]. They use physics-based force fields (e.g., AMBER [61],  

[62], CHARMM [63], OPLS [64], GROMOS [65], can incorporate various environmental 

conditions, and enable calculation of thermodynamic and kinetic properties [66]. A visual 

summary of this typical MD simulation pipeline is shown in Figure 2.4. 
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Enhanced sampling techniques such as Replica Exchange, Metadynamics, and Umbrella 

Sampling complement traditional MD by improving the exploration of conformational space 

and calculating free energy landscapes [67]. These methods help overcome the limitations of 

standard MD in sampling rare events and crossing high energy barriers, providing access to 

longer timescale phenomena and thermodynamic properties that might be otherwise 

inaccessible [67]. However, the price to pay for these methods is that it is generally challenging 

to define appropriate collective variables or temperature ranges for effective exchange, and 

reconstructing the free energy landscape a posteriori requires careful compensation for biases 

and potential artefacts introduced by these techniques [67]. 

 

                                                      
 

Figure 2.4 General workflow of a molecular dynamics simulation. The pipeline begins with system and topology 
preparation, solvation and ion addition, followed by energy minimisation, thermal (NVT) and pressure (NPT) 
equilibration steps, and a production run. The resulting trajectory is then analysed to extract dynamic and structural 
properties. The workflow shown is general but is presented here with reference to the file formats used by 
GROMACS, which is the selected simulation engine for this research. 
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2.3.3 Molecular Dynamic Simulations (MD) 

 
MD simulations are a widely used computational technique for studying the time-dependent 

behaviour of molecular systems. They simulate the interactions between particles, typically 

atoms or molecules, and provide detailed insight into proteins’ dynamics and conformational 

changes over time. 

 
In MD simulations, the motion of particles is determined by solving Newton’s second law of 

motion, which states that the force 𝐹𝑖 acting on a particle 𝑖 is equal to the product of its mass 

𝑚𝑖 and its acceleration 𝛼𝑖  [3]: 

 

𝐹𝑖 = 𝑚𝑖   ×  𝛼𝑖  = 𝑚𝑖  ×  
𝑑2𝑟𝑖(𝑡)

𝑑𝑡2  
                                       (2.1) 

  

 
Where 𝑟𝑖 represents the position of the particle at the time 𝑡. The force 𝐹𝑖 is defined as the 

negative gradient of the potential energy function 𝑈 in relation to the position of the particle 

[3]: 

 
𝐹𝑖 = −∇𝑖𝑈(𝑟1, 𝑟2, … 𝑟𝑁) 

 

                                       (2.2) 

This potential energy function defines all interactions between atoms in the system [3]. The 

classical mechanics approximation enables the simulation of large molecular systems over 

biologically relevant timescales by solving these equations for all particles in the system [68]. 

 
MD captures both the local, fast movements (such as bond vibrations) and larger-scale 

motions (such as protein folding or conformational transitions) by progressively adjusting the 

positions and velocities of atoms over very short timesteps (typically on the order of 

femtoseconds, 10-15 seconds) [68]. The accuracy of an MD simulation depends on the 

underlying force field used to define these potential energy functions and their parameters, 

the numerical integration scheme used to solve Newton’s equations of motion, and the applied 

thermodynamic conditions such as temperature, pressure, and boundary conditions [68]. 

 

2.3.3.1  Force fields 
 
Force fields provide a mathematical framework to describe the potential energy of a molecular 

system [69]. The potential energy function 𝑈(𝑟) includes contributions from bonded and non-

bonded interactions [69]. 
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𝑈(𝑟) = 𝑢𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑢𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

 

                                       (2.3) 

This can be expanded as: 

 

𝑈(𝑟) = ∑ 𝑘𝑏 (𝑟 − 𝑟𝑖)2

𝑏𝑜𝑛𝑑𝑠

+  ∑ 𝑘𝜃  (𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+  ∑ 𝑉𝑛 (1 + cos (𝑛𝜑 − 𝛾)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+  ∑ 4𝜀 

𝑝𝑎𝑖𝑟𝑠

[(
𝜎

𝑟𝑖𝑗
)

12

−  (
𝜎

𝑟𝑖𝑗
)

6

] + ∑  

𝑝𝑎𝑖𝑟𝑠

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
  

 

         

(2.4) 

Bonded interactions: In a molecular system, they describe how atoms connected by 

chemical bonds interact. These include bond stretching, angle bending, and torsional 

(dihedral) rotations. Bond stretching occurs when the distance between two bonded atoms 

changes from its equilibrium value. This is typically modelled using Hooke’s Law as a harmonic 

potential:  

 

𝑈𝑏𝑜𝑛𝑑 (𝑟) =  ∑ 𝑘𝑏 (𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

 

 

                                       (2.5) 

The bond length is represented by 𝑟, with 𝑟0 denoting the equilibrium bond length and 𝑘𝑏 being 

the force constant that describes the stiffness of the bond. Angle bending, which involves 

changes in the bond angles between three atoms, is modelled similarly to bond stretching.  

 

𝑈𝑎𝑛𝑔𝑙𝑒 (𝜃) =  ∑ 𝑘𝜃 (𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

 

 

                                       (2.6) 

Where 𝜃 is the bond angle, 𝜃0 is the equilibrium bond angle, and 𝑘𝜃 is the corresponding force 

constant. Torsional (dihedral) interactions arise when atoms rotate around a bond. The 

torsional potential energy is periodic, accounting for rotations around bonds: 

 

𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛  (𝜑) =  ∑ 𝑉𝑛 (1 + cos (𝑛𝜑 − 𝛾)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

                          (2.7) 

 

Where 𝜑 is the torsional angle, 𝑉𝑛 is the barrier height, 𝑛 is the periodicity, and 𝛾 is the phase 

shift. 

 
Non-bonded interactions: In a molecular system, these refer to forces between atoms that 

are not directly bonded but still influence each other through spatial proximity. Non-bonded 

interactions comprise van der Waals forces and electrostatic interactions. 
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Van der Waals forces are short-range attractive or repulsive forces between atoms. These are 

represented by the Lennard-Jones potential, which includes a repulsive term to prevent atoms 

from collapsing and an attractive term at longer distances: 

 

𝑈𝑣𝑑𝑊  (𝑟𝑖𝑗) = 4ε [(
𝜎

𝑟𝑖𝑗
)

12

−  (
𝜎

𝑟𝑖𝑗
)

6

] 
                              

                             (2.8) 

  

Here, 𝑟𝑖𝑗 represents the distance between atoms 𝑖 and 𝑗, ε is the depth of the potential (defining 

the strength of the interaction), and 𝜎 is the distance at which the potential is zero.  

 
Electrostatic interactions describe the forces between charged particles and are calculated 

using Coulomb’s law: 

 

𝑈𝑒𝑙𝑒𝑐  (𝑟𝑖𝑗) =  
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
                                          (2.9) 

 
Here, 𝑞𝑖 and 𝑞𝑗 represent the charges on atoms 𝑖 and 𝑗, respectively, while 𝑟𝑖𝑗 denotes the 

distance between them. This term is significant in defining how molecules interact, especially 

in biological systems where long-range electrostatic interactions are important.  

 
Force field in use: AMBER ff99SB*-ILDN 

 
Several force fields have been developed for MD simulations, each optimised for different 

molecular systems. Among the most widely used are AMBER [61], CHARMM [63] and 

GROMOS [65]. The AMBER force field used for this research is the AMBER ff99SB*-ILDN  

[70] variant. 

 
The original AMBER ff99 [71] force field was designed to accurately describe the behaviour of 

proteins, nucleic acids and other biomolecules by carefully parameterising the bonded and 

non-bonded interactions. However, as computational techniques and experimental data 

evolved, it became clear that specific dihedral parameters required refinement, particularly in 

describing the flexibility of the protein backbone [71]. 

 
To address these issues, the AMBER ff99SB force field [71] was introduced, improving the 

accuracy of protein backbone dihedrals by modifying the torsion potentials for the crucial φ 

(phi) and ψ (psi) angles. Further modifications led to the development of AMBER ff99SB*-

ILDN [70], which incorporates both improved backbone torsion refinements and ILDN 
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corrections for side chain rotamer distributions of isoleucine, leucine, aspartate, and 

asparagine residues. 

 
The AMBER ff99SB*-ILDN force field was selected for this research because it provides high 

accuracy in modelling backbone dynamics and side chain behaviour, which is particularly 

important for protein folding and protein-ligand interactions studies [70]. Its wide adoption and 

extensive examples of published applications were additional reasons for adopting it.  

 
When selecting force field parameters, several key factors must be considered: the chemical 

environment (aqueous solution, membrane interface, or crystalline state), specific interaction 

requirements (such as metal ions or post-translational modifications), and simulation 

conditions (temperature, pressure, pH, salt concentration) [72]. Parameters should be 

validated against experimental data, including structural properties from X-ray crystallography 

or NMR and dynamic properties from spectroscopic measurements. For protein simulations, 

ff99SB*-ILDN parameters have been extensively validated across these conditions, 

particularly for standard amino acids in physiological environments [73]. 

 

2.3.3.2  Integration methods 
 
Newton’s equation of motion in MD simulations determines how the system evolves [74]. 

Particle positions and velocities are updated incrementally, with the selected integration 

method affecting both the accuracy and stability of the results [74]. 

 
Several integration methods are commonly applied in MD simulations, such as the Verlet 

algorithm [75], the Velocity Verlet algorithm [76], and the Leap-frog method  [77], [78]. The 

Verlet algorithm updates positions based on previous positions and forces, though it does not 

calculate velocities directly, which can sometimes be a limitation. By contrast, the Velocity 

Verlet method updates positions and velocities at each timestep. In this study, the Leap-frog 

integration method, a variation of the Verlet algorithm, was selected for its combination of 

accuracy and computational efficiency. 

 
The Leap-frog method updates velocities and positions at alternating timesteps, effectively 

“leaping” over itself. This approach offers a time-reversible solution that remains 

computationally stable, even when using larger timesteps, such as 1-2 femtoseconds. 

Specifically, the method performs the following: 

 
1. Updates velocities first at half-time steps: 
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𝑢𝑖 (𝑡 +
𝛥𝑡

2
) = 𝑢(𝑡) + 𝛼𝑖(𝑡)

𝛥𝑡

2
 

(2.10) 

 
Where 𝑢𝑖 is the velocity of particle 𝑖, 𝛼𝑖  is the acceleration derived by the forces acting 

on the particle, and 𝛥t is the timestep. 

 
2. Positions are updated using the velocities from step 1: 

 

𝑟𝑖(𝛥 + 𝛥𝑡) = 𝑟𝑖(𝑡) + 𝑢𝑖 (𝑡 +
𝛥𝑡

2
) 𝛥𝑡 

(2.11) 

 
Where 𝑟𝑖 represents the position of particle 𝑖. 

 
These equations are applied iteratively throughout the simulation, with the choice of timestep 

being crucial for accuracy. 

 
In MD simulations, the rapid vibrations of hydrogen bonds typically occur on the scale of 10 

femtoseconds. A very small timestep, around 0.5 femtoseconds, is often required to capture 

these motions accurately. However, constraining these bond lengths to their equilibrium values 

can increase the timestep without losing accuracy. Algorithms like SHAKE [79], RESPA  [80] 

and LINCS [81] are commonly used to apply these constraints. In this thesis, the LINCS 

algorithm was chosen to manage bond constraints because of its effectiveness in large 

biomolecular systems, as well as its speed and reliability. Compared to SHAKE, LINCS 

performs faster, especially when multiple bonds need to be constrained at once, and it is the 

default algorithm for constraints in GROMACS [2] simulations. 

 
The LINCS algorithm determines the positions of atoms in constrained bonds following each 

integration step. It then iteratively adjusts these positions using a matrix-based method to 

ensure that bond length constraints are satisfied throughout the simulation. 

 

2.3.3.3  Thermodynamics conditions 
 
In MD simulations, thermodynamic conditions regulate the system’s temperature, pressure, 

and volume, influencing its time evolution. Thermodynamic ensembles are used to simulate 

specific physical boundary conditions. The canonical ensemble (NVT) maintains a fixed 

number of particles (N), constant volume (V), and steady temperature (T), with thermostats 

employed to control the system’s temperature. This ensemble is typically applied when precise 

temperature control is necessary, but changes in volume are not required. Common 
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thermostats include the Langevin thermostat [82], Berendsen [83], and V-rescale [84] 

algorithms.  

 
The isothermal-isobaric ensemble (NPT) maintains a fixed number of particles (N), constant 

pressure (P), and steady temperature (T) by using a thermostat and a barostat. The NPT 

ensemble is often used in biological simulations as it reflects physiological conditions, 

providing a more realistic environment for studying protein dynamics and interactions. 

Pressure control is achieved through barostats such as Berendsen [83] or Parrinello-Rahman 

[85]. In this research, both NVT and NPT ensembles were employed sequentially. Initial 

system equilibration used the Berendsen thermostat to achieve target temperature efficiency 

rapidly. The production simulations utilised the V-rescale thermostat [84] for accurate sampling 

while maintaining system stability. The pressure was controlled using the Parrinello-Rahman 

[85] barostat. 

 

2.3.3.4  Solvation 
 
In MD simulations, selecting an appropriate solvation model is essential for accurately 

capturing the interactions between biomolecules and their solvent. Describing intermolecular 

interactions when mediated or shielded by the solvent is also critical. Two main approaches 

have been proposed over the years: explicit and implicit water models. 

 
Explicit solvation models represent each water molecule individually with its coordinates and 

degrees of freedom, providing detailed and realistic solvent-solute interactions. Standard 

explicit water models include TIP3P [86], a three-site model with a rigid structure; TIP4P [86], 

a four-site model with improved electrostatic representation; and SPC [87], the Simple Point 

Charge model. 

 
This research employed the TIP3P water model due to its computational efficiency while 

accurately reproducing water’s physical properties. The model was also selected because it 

is the reference model used for AMBER force field [88] parametrisation. It is a well-established 

and extensively validated model for simulating globular proteins. 

 
Implicit solvation models treat water as a continuous medium characterised by a dielectric 

constant, offering reduced computational demands and faster simulation times. These models 

enable efficient free energy calculations using Generalized Born [89] and Poisson-Boltzmann 

[90]. However, implicit models cannot capture detailed solute-solvent interactions, such as 

specific hydrogen bonding patterns or local solvent structure effects. 
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2.3.3.5  Periodic boundary conditions 
 
In MD simulations, the behaviour of biomolecules is typically studied in a finite simulation box 

[91]. However, real biological systems exist in infinite environments where molecules can 

move freely without encountering artificial boundaries [91]. To mimic this infinite behaviour, 

periodic boundary conditions (PBC) are employed [91]. PBC eliminate artificial boundaries by 

creating a system where molecules leaving one side of the box re-enter from the opposite 

side, ensuring particles exist in a continuous environment [91]. 

 
The shape of the simulation box significantly impacts PBC implementation. The box must be 

large enough to prevent interactions between a molecule and its periodic image, which can 

create artificial surface effects [91]. A minimum distance of approximately 10 Å is typically 

maintained between the solute and box boundary to prevent these self-interactions [86]. While 

cubic boxes offer simplicity in implementation, truncated octahedral geometries can be more 

efficient for spherical solutes by reducing the required solvent volume and, thus, computational 

cost [92]. For this research, a cubic box was selected based on system requirements and 

setup compatibility. 

 
To ensure realistic simulations under PBC, accurate treatment of non-bonded interactions is 

critical. Efficient calculation of these interactions is essential for simulating large systems over 

biologically relevant timescales. 

 

In MD simulations, non-bonded interactions, including van der Waals and electrostatic forces, 

are typically evaluated within a defined cut-off distance [93]. Interactions within this cut-off 

(typically around 10–12 Å in biomolecular simulations) are computed explicitly using the 

Lennard-Jones potential for van der Waals interactions and Coulomb’s law for electrostatics 

[93]. However, long-range electrostatic interactions beyond the cut-off are not ignored; instead, 

they are efficiently approximated using the PME method [94], which decomposes 

electrostatics into short-range (real space) and long-range (reciprocal space) components. 

PME ensures that periodic boundary effects are handled accurately and that electrostatic 

interactions are correctly reproduced across the infinite lattice of periodic images. 

In this study, a cut-off distance of 10 Å was used for both van der Waals and short-range 

Coulombic interactions, in accordance with the default settings recommended for the AMBER 

ff99SB*-ILDN force field [70]. This cut-off value balances computational efficiency with 



 

Literature Review 

 

 

 34 

accuracy, ensuring the reliability of the interactions simulated while leveraging PME to account 

for long-range electrostatics. 

2.3.3.6  Particle Mesh Ewald (PME)  
 
Long-range electrostatic interactions in MD simulation systems with PBC are computed using 

the PME method [94]. PME can decompose the electrostatic interactions into short-range and 

long-range components [95]. The short-range interactions are calculated directly in real space 

within a cutoff distance, while the long-range interactions are processed in reciprocal space 

using Fourier transforms [95]. 

 
The electrostatic potential 𝜑(𝑟𝑖) for a particle 𝑖 is influenced by the positions and charges of 

all other particles 𝑗 in the system and their periodic images [96]. This can be expressed as: 

 

𝜑(𝑟𝑖) = ∑ ∑ 𝑞𝑖

𝑁

𝑗=1

(
1

|𝑟𝑖 − 𝑟𝑗 + 𝑘𝐿|
)

𝑘

 (2.12) 

 
Here, 𝑘 represents the vectors corresponding to the periodic images, and 𝑟𝑖 − 𝑟𝑗  denotes the 

distance between particles 𝑖 and 𝑗 [96]. 

 
This thesis used PME to ensure accurate and efficient computation of electrostatic 

interactions, enabling realistic simulations of biomolecular dynamics in periodic boundary 

conditions. 

 

2.3.4 Computational analysis of protein dynamics through MD  

 
Understanding protein dynamics is essential for studying biomolecular function, which often 

relies on the flexibility and motion of atomic structures. MD simulations offer a robust 

computational approach to examining these dynamics at the atomistic level, providing detailed 

insights into the conformational landscape that proteins explore over time [45]. MD simulations 

capture protein dynamics as an ensemble of atomistic configurations, or "conformations", 

where each conformation represents a snapshot of the protein structure, collectively providing 

a probabilistic view of its dynamic states [97].  

 
These conformational ensembles can calculate several geometric properties to interpret 

protein dynamics [98]. The root-mean-square deviation (RMSD) measures structural similarity 

to a reference structure, while the radius of gyration (Rg) indicates the protein’s spatial 
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distribution and compactness [93]. The centre of mass (COM) tracks overall protein position 

and movement, and the root-mean-square fluctuation (RMSF) quantifies the local flexibility of 

specific residues [93]. Interatomic distances provide a means to monitor specific interactions 

and conformational changes [93]. 

 
Statistical measures can be employed to analyse distributions from different simulation 

ensembles to determine the significance of changes in these properties, particularly when 

comparing different conditions or mutations [99]. In this work, the following statistical methods 

were used: Kullback-Leibler divergence [100], Bhattacharyya distance [101], and Pearson 

correlation [102]. They enable quantitative comparisons between property distributions and a 

practical way to estimate distances between distributions and, in turn, to estimate distances 

in dynamical behaviour between simulations [99]. 

 

2.3.5 Enhanced sampling techniques 

 
Sampling the conformational space when using MD simulations is challenging due to the high 

dimensionality of protein systems and the substantial energy barriers in the energy landscape 

[103]. Proteins often become trapped in local minima, making it difficult to efficiently sample 

all relevant conformational states. Standard MD simulations may take a long time to explore 

the entire conformational landscape, especially for transitions that occur on slow timescales, 

such as protein folding, binding, or conformational changes [103]. To address these limitations, 

several enhanced sampling techniques were developed over the years to accelerate the 

exploration of conformational space and allow simulations to overcome these energy barriers 

[103]. 

 
Among the most widely used enhanced sampling techniques are Umbrella Sampling [103], 

Replica Exchange Molecular Dynamics (REMD) [103], and Metadynamics [103]. These 

methods bias the system to promote exploration of less frequently sampled regions of the 

energy landscape. 

 
Umbrella sampling employs a series of biasing potentials, known as "windows", along a 

reaction coordinate to improve sampling over energy barriers [104]. REMD runs multiple 

system replicas at different temperatures, enabling exchanges that improve sampling 

efficiency by allowing higher-temperature replicas to overcome energy barriers [105]. 

Metadynamics introduces a time-dependent bias to a set of chosen degrees of freedom, 

known as collective variables (CVs) [106]. These CVs represent key structural changes within 
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the system and act as geometrical measures describing important protein structure changes. 

Common CVs include RMSD, Rg or distances between specific atoms [107]. 

2.3.6 MD simulations data in machine learning 

 
The integration of MD data into ML and DL pipelines offers significant opportunities but 

presents several challenges [4], [108]. MD simulations generate vast amounts of high-

dimensional, complex, and noisy data that capture the detailed temporal evolution of molecular 

systems [4]. This data often includes trajectories of atomic positions and velocities, which are 

difficult to directly utilise in ML models as they are not in the tabular or tensor format commonly 

accepted by ML software [108]. As a result, the first obstacle is transforming this raw data into 

a form that can be processed by computational models, especially when considering the scale 

of simulations, which can produce terabytes of data over relatively short periods. 

 
ML/DL models can “learn” complex patterns in data [109], [110]. Identifying patterns within MD 

datasets makes it possible to understand biomolecular dynamics in greater detail, predict 

molecular interactions, or even discover new conformational states that might be difficult to 

detect through traditional methods [108]. Additionally, applying ML and DL to MD data has the 

potential to accelerate the analysis of protein folding, ligand-binding events, and other critical 

molecular processes, making the simulations more predictive and informative [6], [7], [111]. 

However, due to the scale and complexity of MD outputs, there remains a significant gap in 

the field: efficient methods to preprocess, simplify, and integrate this data into ML models [4]. 

Addressing this gap will significantly enhance our ability to leverage MD simulations in 

computational biology. 

 

2.4 Protein design, engineering, and redesign 
 
Protein design is a well-established and rapidly advancing field, focusing on generating new 

proteins or modifying existing ones to achieve desired structural, functional, or dynamic 

properties. The transformative contributions of computational methods in this field were 

recognised with the 2024 Nobel Prize in Chemistry [5]. By engineering protein sequences at 

the molecular level, researchers can modify a protein’s function, stability and interactions 

within biological systems. Generally, these modifications have primarily focused on optimising 

static properties, such as stability and binding affinity, while overlooking dynamic behaviours, 

which are equally essential for biological function [112]. Dynamic transitions between different 

structural states are crucial for protein function, such as ligand binding, enzyme catalysis, and 

allostery [113], [114]. 
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Protein design is generally classified into template-based and de novo approaches [115]. The 

template-based design uses known protein structures as scaffolds to guide targeted 

modifications, introducing mutations at specific residues to improve stability, binding affinity, 

or catalytic activity [115]. In contrast, de novo design generates new protein sequences 

capable of novel folds and functions [115]. 

 
While both template-based and de novo design have facilitated significant advancements, 

they traditionally rely on single-state models that often do not account for the flexibility required 

for complex biological tasks, including ligand binding and allosteric regulation. Recent 

developments in multistate design (MSD) address this by incorporating structural flexibility, 

enabling the design of proteins that transition between functional states, thus allowing for more 

accurate predictions of binding specificity and conformational changes [116], [117], [118]. MSD 

is especially beneficial for designing proteins intended for conformational shifts, such as 

molecular switches or regulatory enzymes, where transitions between states are crucial for 

function [119]. 

 
Furthermore, MSD methods such as those implemented in iCFN [116] and POMPd [117] allow 

for optimisation across multiple conformational states, demonstrating improved stability and 

functionality for complex systems where single-state models fall short. To enhance flexibility, 

MSD with backbone ensembles utilises multiple conformational templates, which not only 

refines the accuracy of stability predictions but also allows proteins to occupy stable positions 

across energy landscapes, lowering the barriers for transitions [112], [120]. Despite this, MSD 

approaches focus on managing multiple stable conformations rather than fully exploring 

dynamic transitions across all functional states [121]. However, recent advancements, such 

as ML-guided sequence-structure prediction in tools like RoseTTAFold, are beginning to 

bridge these gaps, enhancing the potential for accurate, flexible protein design [118]. 

 

2.4.1 Protein engineering, redesign, and mutation engineering 

 
Related to protein design, protein engineering aims to enhance specific protein attributes—

such as stability, activity, or specificity—by systematically modifying natural sequences, often 

targeted mutations [122]. One prominent approach in protein engineering is mutation 

engineering, where selected mutations are introduced to fine-tune properties like stability, 

binding affinity, or catalytic efficiency [122]. These modifications optimise protein performance 

in specific conditions, making protein engineering invaluable in therapeutic development and 

industrial biotechnology [122]. However, while mutation engineering is effective for stabilising 
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proteins or enhancing their interactions, it frequently relies on computational models that focus 

on static structures [123]. While robust in assessing stability changes, many of these tools do 

not fully capture dynamic interactions within the protein, limiting their ability to address the 

conformational flexibility required for complex biological functions [124]. 

 
Protein redesign builds on these principles by targeting specific attributes—such as binding 

affinity or thermal stability—while maintaining the protein’s core structure [125]. This approach 

is beneficial for applications where proteins need to perform specific functions while 

maintaining their structural integrity [125]. Although established methods for redesign have led 

to significant gains in optimising static properties, they often overlook dynamic behaviours, 

which are essential for proteins that operate through conformational changes across multiple 

states [125]. Consequently, there remains a need for more comprehensive frameworks that 

can account for dynamic flexibility in protein redesign, particularly for applications that require 

a range of functional states [125].  

 

2.4.2 Computational tools for protein design 

 
Several tools to model sequence-structure relationships, predict mutation effects, and 

optimise protein properties have been developed in computational protein design (CPD) [126]. 

These tools vary in approaches and capabilities, from energy-based calculations to ML 

methods [127]. At the core of CPD is the Rosetta software [128] suite and its Python interface, 

PyRosetta [9], which provide comprehensive platforms for protein structure prediction, design, 

and analysis. Rosetta employs energy functions and sampling methods to explore 

conformational space, evaluate mutation impacts, and perform de novo design [128]. 

PyRosetta extends these capabilities through accessible Python scripting, enabling 

researchers to implement custom protocols for mutation engineering, stability assessment, 

and backbone flexibility optimisation [9]. 

 
FoldX [129] and AlphaMissense [130] represent two complementary approaches for mutation 

impact analysis. AlphaFold, a revolutionary DL-based tool that predicts high-resolution protein 

structures from amino acid sequences, has transformed structural biology [11]. Building on 

similar deep learning advances, AlphaMissense predicts the functional consequences of 

mutations by analysing sequence conservation patterns and structural context. FoldX employs 

empirical force fields to calculate changes in free energy (ΔΔG) upon mutation, providing 

quantitative predictions of protein stability changes [131], [10]. While FoldX focuses on 

thermodynamic stability [131], AlphaMissense provides broader insights into potential 
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functional impacts, including effects on protein-protein interactions and catalytic activity [130]. 

Together, these tools enable a comprehensive assessment of stability and functional changes 

in protein design. 

 
Several tools specialise in predicting mutation-induced changes in protein flexibility. DynaMut  

[14] and DUET [132] employ ML approaches combined with molecular modelling to assess 

how mutations affect local and global protein effects. While these tools provide rapid 

assessments of flexibility changes, they primarily focus on equilibrium stability rather than 

tracking conformational transitions between states [14], [132]. Complementary to these 

approaches, elastic network models like the Elastic Network Contact Model [133] (ENCoM) 

use normal mode analysis (NMA) to simulate protein motions. ENCoM specifically examines 

how mutations influence protein vibrational modes and flexibility patterns, offering insights into 

potential changes in protein dynamics and stability at a more mechanistic level [133]. 

 
ML has transformed CPD by enabling predictions of protein dynamics and mutation effects 

[134]. Early ML approaches, including neural networks (NN) and support vector machines 

(SVMs), successfully classified mutation impacts using sequence and structural features 

[135], [136]. More advanced deep learning techniques, particularly convolutional neural 

networks (CNNs) for spatial pattern recognition and recurrent neural networks (RNNs) for 

analysing and learning time-dependent information from simulations, have expanded the 

scope of analysis [137], [138], [139]. These methods can identify subtle patterns in protein 

conformational dynamics that traditional physics-based methods might miss [139]. Despite 

their potential, ML methods remain constrained by the limited availability of high-quality, 

experimentally validated training data, particularly for proteins with multiple conformational 

states [140]. This scarcity of comprehensive dynamic data can affect prediction accuracy, 

particularly when identifying and classifying distinct conformational states in proteins that 

undergo significant structural changes [140]. 

 
ProteinMPNN [141] represents a significant advance in MPD through its message-passing 

neural network architecture. The tool specialises in designing protein sequences that maintain 

stability across multiple conformational states, a crucial requirement for proteins that undergo 

functional transitions [141]. Unlike traditional single-state design approaches, ProteinMPNN 

can simultaneously optimise sequences for multiple backbone conformations, considering the 

complex energetic landscape required for conformational flexibility [141]. This capability has 

enabled the design of proteins with engineered dynamic properties, including allosteric 

regulators and molecular switches [119]. 
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Two significant advances have revolutionised structure prediction: AlphaFold3 [142] and 

RoseTTAFold [143]. AlphaFold3, building on its predecessor AlphaFold2 [11], achieves high 

accuracy in protein structure prediction through its advanced attention-based DL architecture 

[142]. RoseTTAFold introduced a complementary approach with its three-track neural network 

that simultaneously processes sequence, structure, and interface information, offering insights 

into protein flexibility that complement AlphaFold3’s predictions [143]. 

 
These tools have become foundational for protein design, with recent adaptations employing 

advanced techniques. Activation maximisation has been used for sequence optimisation, 

enabling the identification of sequences that fold into specific target structures [144]. Inpainting 

approaches have been applied for structural refinement, allowing for the completion of partial 

protein structures or the design of sequences for predefined motifs [143]. Most recently, 

denoising diffusion models, as implemented in RFdiffusion, have generated novel protein 

structures and sequences with high success rates in designing functional proteins, including 

protein-protein interfaces, catalytic sites, and complex assemblies [145]. Together, these 

advancements represent a significant leap forward in the automated design of functional 

proteins.  

 
Despite their remarkable success in structure prediction, both tools face limitations in capturing 

protein dynamics [146], [147]. They primarily generate static snapshots and cannot fully 

account for conformational changes induced by mutations or environmental factors [147]. 

Understanding protein dynamics still requires integration with other computational tools or 

experimental validation methods to capture the full range of protein flexibility [148]. 

 

2.4.3 PyRosetta for mutation engineering 

 
PyRosetta represents a powerful platform for mutation engineering, providing a Python-based 

interface to the comprehensive Rosetta molecular modelling suite [9]. It combines Rosetta's 

energy functions and sampling algorithms with the flexibility of Python scripting, enabling 

systematic exploration of mutation effects on proteins [9]. The tool employs a hierarchical 

approach to mutation analysis: first, it utilises MC sampling, which incorporates the concept of 

fragments to efficiently explore conformational space, followed by energy minimisation to 

refine local geometry [9]. PyRosetta’s MC exploration minimises the search space 

dimensionality by utilising predefined structural fragments, ensuring computational efficiency 

while maintaining biologically relevant conformations [9]. Additionally, PyRosetta’s 

implementation of the Rosetta energy function, which includes terms for various physical 
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interactions, allows for a detailed assessment of how mutations influence local and global 

protein properties [128]. 

 
The Rosetta Energy Function (REF) is fundamental to PyRosetta’s mutation engineering 

capabilities. It combines physics-based and knowledge-based terms to evaluate protein 

energetics [149]. This function integrates multiple components: van der Waals interactions, 

hydrogen bonding, solvation effects, and torsional potentials [149]. PyRosetta calculates a 

total energy score for each proposed mutation, where lower values indicate more favourable 

conformations [149]. This scoring system enables quantitative assessment of mutation-

induced stability changes [149]. 

 
PyRosetta implements MC sampling to explore the conformational landscape of mutated 

proteins. The algorithm systematically evaluates amino acid substitutions at targeted 

positions, generating new accepted or rejected conformations based on the Metropolis 

criterion [150]. This probabilistic approach favours energetically favourable states while 

maintaining the ability to escape local energy minima, ensuring thorough exploration of 

possible conformations [9] [128]. 

 
Side-chain optimisation utilises rotamer libraries to sample energetically favourable 

conformations for mutated residues [128]. PyRosetta evaluates each potential rotamer based 

on its interactions with neighbouring residues, optimising local geometry and overall structural 

stability [128]. This systematic sampling ensures accurate modelling of side-chain positions, 

which is critical for predicting mutation effects on protein structure and function [128]. 

 
The final refinement stage employs gradient-based energy minimisation to optimise the 

mutated structure [128]. This process fine-tunes bond angles, torsions, and atomic positions 

to resolve steric conflicts and optimise interactions around the mutation site [128]. Detailed 

refinement is crucial for mutations affecting functional sites, such as binding interfaces or 

catalytic centres [149]. Together, these computational steps provide a comprehensive 

framework for predicting and analysing protein mutations’ structural and functional 

consequences. 

 

2.5 Challenges in redesigning protein dynamics 
 
The redesign of protein dynamics presents unique challenges due to the complexity of protein 

motion and conformational flexibility [151]. While traditional protein engineering has 

successfully optimised static properties such as thermal stability or binding affinity, engineering 
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dynamic behaviours requires understanding and controlling transitions between multiple 

conformational states [151]. These transitions are essential for protein functions, including 

allosteric regulation, signal transduction, and molecular recognition [151]. The challenge is 

amplified by the need to effectively explore and capture the information in the conformational 

landscape [152]. Significant computational resources are required to capture local fluctuations 

and large-scale conformational changes occurring over biologically relevant timescales [153]. 

 
Despite significant advances in computational protein design, current tools remain 

predominantly focused on static structure prediction rather than dynamic behaviour [154]. This 

limitation stems from technical and practical constraints: simulating protein dynamics requires 

extensive computational resources to capture motions across biologically relevant timescales 

[153]. Recent studies highlight the critical need for new computational frameworks to integrate 

dynamic behaviour into the protein design process, balancing structural stability and functional 

flexibility [112]. 

 

2.6 Summary 
 
This chapter has presented an integrated view of proteins, from structural fundamentals to the 

frontier challenges of dynamic protein design. The chapter examined protein structure, folding 

mechanisms, and conformational dynamics and established the essential relationship 

between molecular structure, protein dynamics and biological function. The detailed 

exploration of MD simulations highlighted two challenges: managing and analysing the vast 

amounts of high-dimensional data generated from MD simulations and the difficulty in 

transforming this complex MD trajectory data into formats suitable for ML and DL applications. 

 
The review of protein design methodologies revealed a fundamental gap in the field: the lack 

of automated computational tools that can directly redesign protein dynamics, as current 

approaches primarily focus on static structural properties rather than dynamic behaviour. 

Although recent advances in computational methods and AI-based approaches have 

enhanced our understanding of protein structure and function, these fundamental challenges 

continue to limit our ability to fully leverage computational approaches for dynamic protein 

engineering. Integrating enhanced sampling techniques with ML offers promising directions 

for addressing these gaps, enabling more sophisticated protein engineering applications that 

can account for and control dynamic behaviour.  
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The goal of this thesis is to address these gaps by developing novel computational approaches 

that can effectively handle MD simulation data, facilitate its integration with ML methods, and 

provide automated tools for redesigning protein dynamics and, therefore, modifying protein 

function. 
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3 Methods 
 
In this chapter, the methods used in this research are discussed in detail. Section 3.1 

introduces ADK as the case study, explaining its biological significance and dynamic 

behaviour. Section 3.2 outlines the generation of MD simulation data, covering the setup of 

unbiased simulations and the specific protocols and software used, such as AMBER and 

GROMACS, along with a dedicated section on the MD data generated for each toolkit (MDSS, 

MDAM, and MDAP). Section 3.3 describes the data analysis and validation processes, 

focusing on key geometric properties, techniques used to confirm the simulations’ stability and 

principal component analysis. Sections 3.4, 3.5 and 3.6 discuss the development of MDSS, 

MDAM and MDAP by integrating components from MDAnalysis, PyRosetta and gmxapi. 

Section 3.7 describes the deployment of the toolkits on ARCHER2, while 3.8 covers using a 

Docker container to ensure reproducibility across different computing environments. Section 

3.9 highlights the use of Poetry for managing dependencies and packaging the toolkits. 

 

3.1 Case study: adenylate kinase (ADK) 
 
ADK is a small enzyme of 214 amino acids and is essential for regulating energy homeostasis 

within cells [155], [156]. It facilitates the reversible transfer of a phosphate group between two 

adenosine diphosphate (ADP) molecules, producing adenosine triphosphate (ATP) and 

adenosine monophosphate (AMP) [155]. The enzyme’s activity is important for maintaining 

nucleotide balance in the cell, where AMP acts as a key regulator in cellular metabolism and 

signals energy deficiency [157]. Small fluctuations in the ATP-to-ADP ratio can lead to 

significant changes in AMP concentration, allowing ADK to function as a sensitive metabolic 

sensor [157]. This mechanism operates within and between cells through connected enzymes 

[157]. The coordination of energy transfer and nucleotide signalling by ADK, mainly via its 

isoform network, is crucial for processes such as mitochondrial energy, muscle contraction, 

and cell motility, among others [155]. Furthermore, mutations in ADK have been associated 

with several diseases, including primary ciliary dyskinesia and reticular dysgenesis, further 

highlighting the importance of the enzyme in human health [155]. 

 
The structural dynamics of ADK are defined by two key conformational states – open and 

closed – making it an excellent model for testing computational tools when studying examples 

of protein dynamics [158]. ADK consists of three main domains: CORE (res 1-29, 68-117, 161-

214), LID (res 118-160) and NMP (res 30-67), each of which plays a specific role in catalysis 

(Figure 3.1) [159]. During the catalytic cycle, the CORE domain remains relatively stable, while 
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the LID and NMP domains sometimes undergo significant conformational changes to facilitate 

substrate binding and product release [158]. These large-scale domain movements are 

essential to the functionality of ADK as they allow the enzyme to switch between open and 

closed states during the nucleotide exchange reaction [158].  

 

               
 
Figure 3.1 Structural representation of the open and closed conformations of ADK. The structure is showing the 
core domain (grey), AMP binding domain (red), and LID domain (blue). Structural figures were visualised and 
rendered using PyMOL [160]. 

 
Due to its extensive research history and availability of experimental data, ADK, with its clearly 

defined dynamics (i.e. open and closed conformational states) (Figure 3.1), provides a sound 

system for testing and validation of methods for the analysis of conformational dynamics from 

molecular simulations and, in the current work, of ML models for prediction of conformational 

states [161], [162], [163], [164], [165], [166], [158]. Therefore, this system was chosen to test 

and validate the three tools that were designed and implemented in this research (MDSS, 

MDAM, MDAP). Simulations were performed only on the unbound state to provide a more 

manageable framework for interpreting sampling and mutational effects on the intrinsic 

dynamics of the system. Details on the ability of apo ADK to sample closed conformational 

states are discussed in the context of mutations that affect (or induce) a pre-existing 

equilibrium between the two primary functional states. 

 

3.2 Generation of MD simulations data 
 
ADK was selected as a model system for testing and validation of MDSS, MDAM, and MDAP 

due to its well-defined and studied dynamic behaviour.  

AMP 

binding 
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3.2.1 Unbiased simulations 

 
To test all three tools, unbiased simulations were used to capture the intrinsic dynamics of 

ADK in the apo form. By allowing the protein to freely explore its conformational landscape 

without the influence of external forces (e.g. as used in some enhanced sampling techniques), 

a more complex scenario was tested with a low chance for the system to make spontaneous 

transitions between its two main conformational states - open and closed. The main goal was 

to observe the protein’s behaviour under conditions typically used in the early stages of studies 

and under conditions easily replicated for large-scale automatic scanning of mutational effects, 

as presented in Chapter 4. As presented in the conclusions, MDSS and MDAP can be used 

directly to process data generated from enhanced sampling techniques. At the same time, 

code extension is required to incorporate advanced sampling techniques in the MDAM 

workflow.  

 
Starting from the open state, the system rarely sampled the close conformation. By capturing 

and generating simulation data with only a minimal fraction of closed conformations, MDSS’s 

ability to reduce the MD trajectories’ size while preserving important information on both states 

could be strictly tested. The unbiased simulations provided a critical basis for evaluating how 

effectively the tool preserved key conformational transitions during subsampling, particularly 

the large-scale motions of the LID and NMP domains, which are essential to the ADK function. 

 
Additionally, ADK’s conformational transitions provided a robust system for testing MDAM’s 

ability to redesign dynamics through automated mutation engineering. Since sampling the 

closed state is rarer than sampling the open state, the goal was to explore whether specific 

mutations could shift the equilibrium to the closed state in an unbiased simulation. 

 

3.2.2 MD data for MDSubSampler 

 
AMBER was used to generate MD data for testing MDSS, and it is known for its robust and 

accurate biomolecular simulations [167]. The ff14SB force field was chosen due to its proven 

accuracy in modelling protein structure and dynamics, making it particularly suitable for 

simulating ADK [167].  

 
The work presented in the following section is based on previously published work [99] that 

details the system preparation and simulations for testing MDSS.  
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System Preparation 

 
The ADK structure (PDB ID: 4AKE) was retrieved from the Protein Data Bank [168] and 

solvated in a truncated octahedral water box with TIP3P water molecules, maintaining a 10 Å 

buffer between the protein and the box edges [86]. Four sodium ions were added to neutralise 

the protein charge. Energy minimisation was performed in two steps using 2500 cycles of 

steepest descent and conjugate gradient each, initially with backbone constraints. 

Unrestricted minimisation followed. The non-bonded cut-off for both steps was set to 8 Å. 

Long-range electrostatic interactions were handled using the particle mesh Ewald (PME) 

method under periodic boundary conditions [94]. 

 
Equilibration 
 
The system was equilibrated in NVT and NPT ensembles for 100ps and 250ps, respectively, 

with a Langevin thermostat [169] and a Berendsen barostat [83]. The temperature coupling 

time was set to 1.0 ps, and the pressure coupling time was 0.5 ps. These steps ensured that 

the system reached a stable thermodynamic state before the production phase.  

 
Production 

 
The production run lasted 1 μs with a time step of 2 fs, allowing extensive exploration of 

conformational samples of the ADK system. To test the MDSS toolkit, five independent 

replicas of the ADK system were generated at 1 μs starting with the open structure. Notably, 

one of these replicas exhibited a degree of transition between the open and closed 

conformational states, allowing an analysis of the LID and NMP domain movements. The 

resulting bimodal distribution in RMSD (from open conformation) indicated a dominant 

population of open conformations and a smaller closed sample, as expected by literature 

evidence suggesting that ADK cannot thoroughly sample a close state in the apo form. This 

information helped test MDSS’s ability to preserve critical structural transitions during 

subsampling (see section 5.1). This dataset provided a valuable test case for assessing how 

effectively the tool captures the dynamics of important proteins without losing important 

information. 

 

3.2.3 MD data for MDAutoMut 

 
To test the MDAM toolkit, ADK was considered an ideal candidate due to its well-characterised 

dynamic behaviour (open and closed states). Following that, an example of mutations that 

could potentially alter ADK’s dynamics was found in a study by Song et al. [165]. The authors 
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examined two sets of mutations: one on the LID domain and another on the AMP binding 

domain (Figure 3.2). Their simulations suggested that these mutations allowed ADK to sample 

the closed state directly [165]. To test the MDAM toolkit, one of these sets of mutations was 

used to perform a proof-of-concept study: assuming the positions of these mutations are 

known (135 and 142), MDAM would have to identify the correct amino acid changes (V135G, 

V142G) that can have the desired impact of ADK’s structure (move ADK from open to closed 

state). 

 
However, Song et al. [165] used short simulations of 100 ns. Considering that much longer 

simulations are typically required to observe an attempt at ADK’s closure, a decision was made 

to validate the results of this study on longer timescales. This would create an internally 

derived reference dataset to confirm the results by Song et al. [165]. 

 
The focus was on the LID domain mutations (V135G and V142G) because of the LID’s 

flexibility and critical role in regulating ADK’s conformational state. These mutations were 

selected to offer a clear, interpretable example of how changes in this region impact protein 

closure, allowing for straightforward visual validation by an expert to assess whether the 

mutations promote movement toward the closed state. Therefore, to assess how these 

mutations affect the dynamic behaviour of the enzyme, simulations for the following four 

structures were generated: wild-type ADK (WT), single mutant V135G, single mutant V142G, 

double mutant V135G/V142G (DM). 

                                         

Figure 3.2 Structural representation of wild-type ADK showing with mutations studied by Song et al. [165]. Position 
of mutations A55G and A37G on the AMP domain (highlighted in red) and of V135G and V142G on the LID binding 
domain (highlighted in blue) are indicated in yellow spheres. During MD simulations, these mutations were 
suggested to promote ADK’s closure. Structural figures were visualised and rendered using PyMOL [160]. 

 
GROMACS [2] was used for the simulation setup due to its powerful Python interface, gmxapi 

[2], which facilitates the simulation process automation within MDAM. This integration allowed 
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the preparation, running and analysis of MD simulations directly from the toolkit, ensuring the 

entire process could be automated. Automating simulations was critical for efficiently handling 

many replicas and multiple mutations to minimise human intervention and improve scalability.  

 
System Preparation 

 
System preparation was done using GROMACS [2] via the gmxapi Python interface. The 

AMBER99SB*-ILDN [70] force field was used, widely recognised for its accuracy in modelling 

protein dynamics. This force field is known to perform well in protein-only simulations under 

standard conditions and has been validated in numerous studies [70], [170], [171], [172]. The 

ADK structure (PDB ID: 4AKE) was retrieved from the Protein Data Bank  [168] and placed in 

a cubic box solvated with TIP3P water molecules, ensuring a 10 Å distance between the 

protein and the box edges. To ensure charge neutrality, four sodium ions (Na+) were added. 

 
Energy minimisation was performed in three stages. The first minimisation used the steepest 

descent algorithm with position restraints of 2000 kJ/mol/nm² for the heavy atoms of the 

protein and ran for 50,000 steps. This allowed the system to relax while the protein backbone 

remained stable. The second minimisation step used the same algorithm but with no positional 

restraints, allowing further protein relaxation. A conjugate gradient with flexible constraints was 

applied in the final minimisation step. This allowed the entire system to reach a convergence 

criterion where the maximum force was reduced to less than 10 kJ/mol/nm² over 10,000 steps. 

 
Temperature and pressure equilibration 

 
Following energy minimisation, the system underwent equilibration to stabilise temperature 

and pressure. 

 
Temperature equilibration was performed in six steps under the NVT ensemble, gradually 

increasing the system’s temperature from 200 K to 300 K. Positional restraints were applied 

to ensure structural integrity while allowing the system to adapt to temperature changes. The 

first step involved heating the system to 200 K with heavy atom position restraints of 2000 

kJ/mol/nm², using the Berendsen thermostat [83] to couple the temperature of the protein and 

solvent. The second step increased the temperature to 250 K, reducing positional restraints 

to 1000 kJ/mol/nm². The system was subsequently heated to 300 K under the same restraints. 

The restraints were progressively reduced in the final three steps (500 kJ/mol/nm², 250 

kJ/mol/nm², and none), allowing complete relaxation at 300 K. 
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Pressure equilibration followed under the NPT ensemble in two stages. In the first stage, the 

system was equilibrated to 1 bar using the Berendsen barostat [83], with position constraints 

of 210 kJ/mol/nm² enforced on the protein’s heavy atoms. This step was run for 500 ps to 

ensure initial stabilisation. In the second stage, the constraints were maintained, and the 

system was further equilibrated for 500 ps using the Parrinello-Rahman barostat [85]. 

Additionally, the V-rescale thermostat [84] was employed during this stage to ensure accurate 

temperature coupling, with a coupling constant of 0.1 ps applied to both the protein and solvent 

groups. This approach ensured that the system achieved thermal and pressure stability before 

production. 

 
Production 

 
Both 1000 ns (i.e., 1 μs) and 300 ns simulations were conducted to evaluate the effects of 

selected mutations on the LID domain’s closure dynamics. Specifically, five replicas for each 

structure (WT, V135G, V142G, and the DM) were run at 1 μs on the JADE2 supercomputer 

[173]. Given the computational intensity of the 1 μs simulations, particularly concerning data 

storage and analysis, ten additional replicas for each structure were created at 300 ns on the 

ARCHER2 [174] supercomputer. These shorter simulations allowed for broader sampling and 

aligned with the study by Song et al. [165], facilitating an accurate assessment of mutation-

induced changes in ADK dynamics. 

 

3.2.4 MD data for MDAutoPredict 

 
To test MDAP, the second replica of the 1000 ns of the DM (generated on JADE2) was used 

(Figure 3.3). This specific replica exhibited a clear bimodal distribution in its conformational 

states, capturing both open and closed conformations of ADK (see section 5.2). This feature 

made it ideal for training and testing MDAP, as the objective was to evaluate its capability to 

train a predictor of protein state labels (open, closed, or intermediate) from MD trajectories. 

By selecting a trajectory that had sampled both conformational states, a robust dataset for 

developing and validating the ML based predictions was ensured, facilitating the exploration 

of how effectively the tool can classify and differentiate between distinct structural states. 

 

3.3 Data analysis and validation 
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After generating the MD simulations, the next step was to ensure the integrity and reliability of 

this data. This goal is achieved through a series of tests and analysis steps that confirm that 

the system behaves as expected under biological conditions. 

 
Trajectory concatenation and preprocessing 

 
The first task was to transfer the simulation data from the supercomputers (JADE2 and 

ARCHER2) to external drives in the Brunel University system. This process enabled efficient 

local processing and analysis. Once the data was securely transferred, the next step involved 

concatenating the multiple trajectory files (e.g., part1.xtc, part2.xtc, part3.xtc) into a single, 

continuous dataset using GROMACS. The 24h limit on HPC queues meant that each 

simulation required multiple restarts. The concatenation was done to ensure a smooth and 

comprehensive simulation analysis. 

           

Figure 3.3 Table summary of the MD simulations generated using JADE2 and ARCHER2 supercomputers. 
Simulations were performed for the WT, V135G, V142G, and DM systems. JADE2 simulations had longer 
trajectories (1 μs per replica), while ARCHER2 simulations used 30 ns trajectories across 10 replicas to explore 
short-term dynamics. All simulations used a 2 fs timestep and saved data at 1 ps intervals. 

 
Then, water molecules and ions were removed to reduce computational time during analysis 

and focus exclusively on the protein structure and its dynamics. All subsequent analyses were 

optimised to focus on conformational changes in the protein.  

 
Figure 3.3 lists the replicas and trajectories, providing an overview of the different runs, their 

durations, and the structures simulated in each case. 

 
Visual inspection with VMD and PyMOL 

To inspect the behaviour of the system during the simulation, visual inspection tools such as 

Visual Molecular Dynamics (VMD) [175] and PyMOL [160] were used to check the trajectory 

manually. This step helped ensure that the protein maintained a folded structure and 
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underwent natural conformational changes without signs of distortions. The .gro and .xtc files 

generated from the processed trajectories were loaded into these visualisation tools and 

enabled detailed observation of protein movements and potential issues, ensuring visual 

coherence of protein behaviour. 

 
Key geometric properties 

 
After visual inspection confirmed that the simulations appeared structurally sound, the focus 

shifted to analysing key geometric properties: 

 
• Root Mean Square Deviation (RMSD): RMSD was calculated focusing only on the 

C-alpha atoms. This measurement is crucial for assessing how much the protein’s 

structure deviates from a reference conformation, in this case, the starting 

conformation, over time. A stable RMSD indicates that the protein remains properly 

folded and exhibits the expected conformational changes. 

 
• Radius of Gyration (Rg): Calculating the Rg provided insights into the protein’s 

compactness during the simulation. This property is fundamental to confirm that the 

protein has not unfolded or collapsed, as such events would indicate that the simulation 

does not accurately represent the protein’s natural state in this case. 

 
• Root Mean Square Fluctuation (RMSF): The RMSF was used to determine which 

protein regions, such as loops or active sites, had the greatest flexibility. This property 

is crucial for understanding local fluctuations in the protein. 

 
• Distance Between Two Key Residues: Specific distances between functionally 

important residues were measured. These distances helped validate whether key 

residues involved in protein function are in the expected relative position. 

 
• Centre of Mass Distance (COM Distance): The distance between the COM of the 

LID and AMP binding domain (AMPbd) was calculated to track large-scale domain 

movements during the simulation. This analysis provided insights into the relative 

positioning of these domains, which are critical to ADK’s functionality, particularly in 

understanding how the protein switches between open and closed conformations. 

 
In addition to geometric properties, their distributions were studied. Specifically, overlapping 

distribution plots were generated for all properties after the concatenation of all replicas for the 

WT and the DM. The plots included both simulated structures (WT and DM) to compare the 
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system’s behaviour before and after the set of mutations was introduced to the LID domain of 

ADK. Thus, broader trends were observed, as well as differences in the dynamic behaviour of 

both structures and additional insights beyond individual measurements. 

 
Energy and temperature checks 

 
Monitoring the energy and temperature of the system over time was a crucial part of the 

validation process, ensuring that the system remained thermodynamically stable and behaved 

realistically. The energy diagrams captured relative changes in potential, kinetic, and total 

energy during the simulation. To validate the stability of the simulation, two key measures were 

applied: 

 
• The calculation of the standard deviation as a percentage of the mean helped analyse 

the relative fluctuation in energy values ((SD of values/average of values) x 100). This 

determined the extent of energy fluctuations in the system and ensured that they 

remained within an acceptable range. 

 
• Another approach to measuring energy fluctuations was to calculate the interquartile 

range (IQR) and compare it to the median ((Q3 – Q1) / median x 100). A result below 

0.5% indicated minimal changes and confirmed the stability of the energy profile. 

 
Likewise, the temperature was monitored to ensure it remained close to the target value of 

300K, as expected from the thermostat settings. The average temperature was checked to 

ensure it remained close to this target with minimal fluctuations (preferably within 0.6% of the 

target temperature). Large temperature deviations would have suggested simulation problems 

or distortions, so the goal was to maintain stable thermal behaviour throughout the simulation.  

 
Principal Component Analysis (PCA) 

 
PCA was used to extract collective variables describing the largest amplitude motions. PCs 

are generally considered a good approximation of putative functional motions. By derivation, 

they are ranked by decreasing variance, with the first components capturing most of the 

system’s conformational variability. The projection of the simulation data onto the top 

components can generally show the most critical conformational changes, such as domain 

opening and closing, like in this study. Additionally, a porcupine plot (see Figure 5.16) was 

generated as part of the analysis to visualise the collective movements, highlighting key 

structural changes observed in the simulation data (i.e. opening and closing of ADK). 
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The main objective of this analysis was to extract easy-to-interpret collective variables 

associated with the known (and expected) conformational changes. Analysis of the distribution 

of motions along the PCs was also used to confirm whether a bimodal distribution is observed 

in the simulation, describing the two functional states (open and closed). PCA was 

instrumental in extracting and confirming collective motions and measuring the extent to which 

the mutations affected global dynamics. The bimodal distribution was particularly evident when 

projecting the simulation data along the first principal component (PC1), which captures the 

primary conformational change corresponding to the lid closing-to-opening motion. The lid 

RMSD also demonstrated this bimodal behaviour, reinforcing the observation of distinct 

conformational states along the direction of the structural transition described by PC1. 

 
Further analysis with VMD and PyMOL 

 
Beyond the initial visual inspections, VMD and PyMOL were also used to examine the 

structural changes over the filtered trajectory accounting for only single PCs, one at a time. 

Comparing these projections and filtered trajectory for the WT vs DM, it was possible to show 

how specific mutations affected the conformational change.  

 
Conclusion of data validation workflow 

 
This strategy ensured that all aspects of the MD simulations were thoroughly validated. By 

combining automated checks of geometric properties with manual visual inspection in VMD 

and PyMOL, validation of the reference data used for testing the MDAM toolkit was completed 

successfully. All data analysis steps, and plotting were performed using R [176], and the code 

is included in Appendix V. PCA was performed with GROMACS.  

 

3.4 MDAnalysis 
 
MDSS was built on top of MDAnalysis, a well-established Python library for analysing MD 

simulations [8]. This library provides a comprehensive framework for reading, manipulating, 

and analysing large-scale MD datasets, making it an ideal foundation for MDSS. The 

integration of MDSS with MDAnalysis forms the basis for the automated workflows developed 

in this project. These workflows were further extended and integrated into the MDAM and 

MDAP toolkits, enabling a seamless pipeline for subsampling, mutation redesign, and 

predictive modelling of protein dynamics. 
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Figure 3.4 Simplified representation of the three tools MDSubSampler, MDAutoMut, and MDAutoPredict and their 
integration with external Python libraries (e.g., MDAnalysis, gmxapi, PyRosetta, sklearn). The figure highlights the 
core internal modules of each toolkit (e.g., protein_data.py, mutation_workflow.py, learner.py), illustrating the 
modular architecture and functional components of the workflow. The MDSubSampler, shown in orange under 
MDAutoMut and MDAutoPredict, indicates its foundational role in building these toolkits. This is a simplified 
depiction of the full design, as the complete implementation involves additional classes and modules. 

Figure 3.4 provides an overview of the modular design and its core components to illustrate 

the relationships between the developed toolkits and their integration with existing Python 

libraries. This figure demonstrates how each toolkit builds upon and interacts with external 

libraries and internal modules, forming a cohesive computational framework for protein 

dynamics analysis and prediction. 

 
The MDAnalysis library uses the NumPy package and treats atoms, residues, and trajectories 

as objects, making it highly efficient for extracting detailed structural information from MD 

simulations. The heart of MDAnalysis is the Universe class, which represents the entire 

simulation system, including topology and trajectory files. The Universe class enables easy 

extraction of atomic coordinates and other geometric properties using several built-in methods 

and attributes. 

 
The Universe contains an AtomGroup object that represents all the atoms in the system 

and organises them into higher biological groupings such as Residue and Segment. This 

design reflects the hierarchical structure of proteins, where atoms form residues and residues 

are combined to form segments. Each atom belongs to a residue, and each residue is part of 

a segment. MDAnalysis’s design aimed to embed biochemical concepts directly into its class 

structure, making it highly intuitive for protein modelling and analysis (Figure 3.4). 



 

Methods 

 

 

 56 

 

 
Figure 3.5 MDAnalysis class structure, highlighting the relationships between key classes such as Universe, 
AtomGroup, Residue, Segment, Reader and Writer classes that enable reading and writing trajectories. The ability 
to seamlessly integrate MDSS and MDAM into MDAnalysis highlights the strength and versatility of this library, by 
leveraging its modular design. The figure was taken from Michaud-Agrawal et al. [8], © Wiley Periodicals, Inc. 

MDSS leverages these structural representations by using MDAnalysis to select and analyse 

specific groups of atoms within a protein trajectory. The library’s functionality is extended to 

perform a posteriori subsampling operations to protein trajectories, where it selects a subset 

of frames from the simulation, ensuring that the distribution of important geometric properties 

(e.g. RMSD) is consistent between the original and subsampled trajectory. The Universe 

class selection capabilities allow users to focus on specific atoms or residues and precisely 

analyse critical regions such as the LID and NMPbd domains in ADK. 

 
A key feature of MDAnalysis is the TimeStep object, which provides access to individual 

trajectory frames, including the coordinates of atoms and unit cell dimensions. This feature is 

crucial for navigating the trajectory, allowing users to jump between frames or select specific 

points in time for detailed analysis. The Reader class, responsible for reading trajectory files, 

works with the TimeStep object and facilitates extracting and analysing specific frames. 

MDSS and MDAM rely on this functionality to retrieve the most relevant snapshots of protein 

dynamics for their respective tasks. 

 
The combination of MDAnalysis and MDSS enables MDAM to efficiently prepare and simulate 

the data, engineer mutations into the protein structure (single or multiple) and compare the 

dynamics between WT and Mutants by comparing distributions of geometric properties.  
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3.5 PyRosetta 
 
PyRosetta [9] was used in the MDAM workflow for the mutation engineering process within 

the Mutation module. PyRosetta is a Python-based interface for the Rosetta software suite 

designed for high-resolution protein structure prediction, design and mutation analysis [9]. It 

provides powerful tools for manipulating protein structures at the atomic level, including the 

ability to introduce mutations, optimise rotamers, and calculate energetics using all-atom force 

fields [9]. 

 
In the MDAM workflow, PyRosetta [9] can perform targeted mutations (single, double or 

multiples) on the inputted protein structure. It is responsible for introducing new residues at 

selected positions and assessing their impact on the protein’s overall structure. PyRosetta [9] 

facilitates this process using the fa_standard all-atom force field. This force field is 

optimised for energy calculations of all atoms and includes contributions from van der Waals 

interactions, electrostatics, solvation effects, and hydrogen bonds [149]. The fa_standard 

force field ensures that the mutations are energetically favourable and do not cause 

destabilising structural changes, making it suitable for mutation analysis [149]. 

 
The mutation process in MDAM begins with extracting a specific frame from the MD 

simulation, which is then converted into a pose object. This pose represents the 3D protein 

structure in PyRosetta [9]. The ChemicalManager is used to access the required residue 

types, while the ResidueFactory creates new residues that replace the original target 

residues at specific positions [128]. Once a mutation is introduced, PyRosetta’s 

PackRotamersMover optimises the side chain conformations (rotamers), ensuring the new 

residue fits into the protein structure without steric clashes or other unfavourable interactions 

[128]. 

 
Following the rotamer optimisation, the scoring function fa_scorefxn, part of the 

fa_standard force field, can evaluate the energetic impact of the mutation on the protein 

[149]. This scoring function provides a quantitative measure of the effect of the mutation and 

can assess how it affected the stability and dynamics of the protein [149]. While the score 

provides a general indication of structural stability, protein dynamics between WT and mutant 

structures are compared using MDSS. Specifically, a comparison of the distribution of relevant 

geometric properties between the WT and each mutant determined whether the mutations 

promoted the desired conformational shifts in the protein. 
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In the proof-of-concept study, MDAM was tested with two specific single mutations (V135G 

and V145G) and a double mutant (V135G/V145G) in the LID domain of ADK to investigate 

how these mutations can affect ADK’s dynamics. This proof-of-concept was performed to 

validate the performance of the library. However, MDAM is a general-purpose toolkit designed 

to handle any set of mutations, where the user enters a list of mutations that the toolkit should 

handle. Depending on the user’s preference, the toolkit can flexibly apply these mutations in 

single or multiple modes and introduce the mutations sequentially or simultaneously. 

 
Once the mutations are applied, the toolkit generates the simulations for the mutated 

structures. It then compares the dynamics between the WT and each mutant until the desired 

change in dynamics is achieved. Additionally, MDAM includes a heuristic scanning approach 

that iteratively narrows the mutation search space by excluding ineffective candidates based 

on intermediate results. This strategy focuses computational resources on promising 

mutations, efficiently identifying those that shift protein dynamics toward a desired state (e.g. 

promoting closure in the LID domain). 

 
Tool/Library Version License 
MDAnalysis 2.7.0 GPL-2.0 
PyRosetta 4 (2024.01 Release) Free for academic use 
gmxapi 0.4.2 LGPL-2.1 
GROMACS 2022.6 LGPL-2.1 
MDSubSampler 0.0.8 GPL-3.0-only 
Seaborn 0.13.2 BSD-3-Clause 
Dictances 1.5.3 MIT 
Matplotlib 3.6.2 PSF 
Numpy 1.23.5 BSD-3-Clause 
Pandas 1.5.2 BSD-3-Clause 
pytest 7.2.0 MIT 
pytest-mock 3.10.0 MIT 
psutil 5.9.4 BSD-3-Clause 
Scikit-learn 1.2.2 BSD-3-Clause 
Setuptools 69.0.3 MIT 
Black 22.10.0 MIT 
IPykernel 6.23.1 BSD-3-Clause 
Jupyter 1.0.0 BSD-3-Clause 

 
Figure 3.6 Overview of software tools and libraries used in this thesis, including their versions and licenses. This 
table ensures compliance with software usage guidelines, such as for PyRosetta installation. A license was 
obtained for necessary components. 

3.6 GMXAPI 
 
The gmxapi [177] Python interface played a central role in automating the preparation and 

simulation of the MD data within the MDAM workflow. Specifically, using gmxapi [177], the 
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simulation process – from system preparation to mutation analysis – was fully automated, 

ensuring efficient execution and minimal manual intervention. The mdprep.py module (Figure 

3.4) supported the entire workflow, which was used to prepare the system and generate 

simulations automatically for the WT and each mutated structure. 

 
The mdprep.py module, designed as a standalone script, automates the system preparation 

and simulation generation for MDAM workflow. This module covers all aspects of system 

setup, including solvation, ions addition, energy minimisation, temperature and pressure 

equilibration, and production. The mdprep.py is versatile enough to run independently in a 

Python interface or seamlessly integrate with gmxapi. A standard preparation protocol (see 

section 3.2.3) was implemented, but MDAM can be easily customised to offer different 

strategies for system preparation. 

 
When a mutation is inserted in the protein structure, mdprep.py can automatically prepare the 

system for a new round of simulations. This process includes generating the input files needed 

to run the simulations and applying the protocol described in section 3.2.3, ensuring 

consistency across all simulation runs.  

 
Using gmxapi also facilitates efficient resource management by allowing simulations to be 

submitted to HPC queues for parallel execution or paused depending on the real-time analysis 

of the simulation results. This flexibility in managing simulations significantly reduces the 

burden of conducting large-scale mutation studies, especially when testing multiple ADK 

mutants in parallel. 

 

3.7 Deployment of MDAM on ARCHER2 
 
Given the computational cost of running MDAM on large sets, particularly in preparing and 

generating MD simulations, it was necessary to deploy the tool on a dedicated HPC facility. 

Through HecBioSim (EPSRC grant EP/X035603/1), allocation access was provided to the 

EPCC supercomputer ARCHER2. Deployment was designed ad-hoc for it. 

 
Initial testing on local systems revealed significant limitations in laboratory equipment and 

personal laptops. The high memory demands, and computing power needed to efficiently 

simulate MD trajectories for the WT and multiple mutants made local resources unsuitable. In 

contrast, the ARCHER2 supercomputer’s CPU-focused architecture optimised for software 

like GROMACS provided an ideal platform for deploying MDAM. Utilising ARCHER2 enabled 
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the large-scale analysis of mutation effects on protein dynamics, which would not have been 

possible with local resources. 

 
The overall goal of deploying MDAM on ARCHER2 was to redesign protein dynamics by 

systematically introducing multiple mutations into the protein structure while employing a 

heuristic approach to efficiently explore and identify the mutation that produced the desired 

effect on protein dynamics. By automating the simulation process, MDAM could efficiently test 

the impact of each mutation, evaluating how well they induced the targeted dynamic changes. 

Given the intensive computational requirements of generating these simulations, ARCHER2’s 

processing capabilities allowed MDAM to run these tasks much faster and more efficiently 

than on local systems. 

 
The steps to deploy MDAM on ARCHER2 were as follows: 

 
1. Initial Setup: ARCHER2 provides multiple disk partitions, including the home directory 

for persistent storage of user files and the working directory for high-performance, 

temporary storage needed during computational tasks. The home directory has limited 

space and is intended for configuration files and essential data. In contrast, the working 

directory offers significantly more space and is optimised for large-scale computational 

tasks. Given the space constraints in the home directory, the Python environment and 

its dependencies were installed in the working directory. To accommodate this setup, 

the .local directory (used for storing user-installed Python packages) and the ".cache" 

directory (used for caching downloaded dependencies) were moved to the working 

directory. Symbolic links were created from these directories back to the home 

directory, ensuring seamless functionality while utilising the expanded storage capacity 

of the working directory. 

 
➢ cd $HOME  

➢ mkdir /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs  

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs .  

➢ mkdir /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home  

➢ mv .local /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home  

➢ mv .cache /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home  

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home/.local .  

➢ ln -s /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/home/.cache . 

 

2. Environment Creation: A Python virtual environment was created to install and 

manage the required software packages. These included key libraries for MD 
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simulations and ML, such as MDAnalysis, gmxapi and PyRosetta. Since MDAM 

integrates these libraries into its workflow, setting up this environment was critical to 

ensure smooth execution on ARCHER2. 

 
➢  module load PrgEnv-gnu 

➢ module load cray-python 

➢ python -m venv --system-site-packages /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev 

➢ source /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate 

➢ python -m pip install ipython seaborn scikit-learn mdanalysis 

 
3. Installing gmxapi and PyRosetta: The installation process involved loading the 

appropriate GROMACS module and running the PyRosetta installer to ensure all 

dependencies were configured correctly. 

 
➢ source /work/y07/shared/apps/core/gromacs/2022.4/bin/GMXRC  

➢ pip install --no-cache-dir gmxapi  

➢ pip install pyrosetta-installer  

➢ ipython  

➢ import pyrosetta_installer 

➢ pyrosetta_installer.install_pyrosetta(type='MinSizeRel') 

 

4. Job Submission: Test jobs were submitted after setting up the environment to ensure 

that the MDAM workflow could run smoothly on ARCHER2. A simple job submission 

script was written to run a Python test script to ensure the environment was configured 

correctly, and the job ran successfully on a single node with a CPU. The python_test.py 

script validated the deployment by loading a protein structure into MDAM’s 

environment. 

 
   submission_script.sh 

#!/bin/bash --login 

#SBATCH --job-name=python_test 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=1 

#SBATCH --cpus-per-task=1 

#SBATCH --time=00:10:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=standard 
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module load cray-python 

source /mnt/lustre/a2fs-nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate 

 

python python_test.py 

 
    python_test.py 

from mdam.protein import Protein  

pdbfilename = "4AKE.pdb"  

p = Protein(pdbfilename, pdbfilename, pdbfilename) 

 

 
An MDSS and MDAM zip file was downloaded from the GitHub repository to the home 

directory in ARCHER2. After extracting the files, the required Python scripts (mdprep.py, 

mutation.py, mdautomut_workflow.py) were created in the home directory. These 

scripts were essential for managing the workflow within MDAM, including MD preparation, 

mutation engineering, and simulation production. 

 
The successful deployment of MDAM on ARCHER2 demonstrated that the tool could be 

executed efficiently on high-performance computing resources, enabling large-scale 

automation of protein dynamics redesign. This deployment highlights the potential to explore 

multiple mutations and their impact on dynamics at a system level, which would be unfeasible 

with standard computing resources. 

 
However, demonstrating successful deployment does not inherently confirm the correctness 

of the tool’s results. To ensure accuracy, additional validation steps were implemented. These 

included benchmarking MDAM’s outputs against known experimental data and simulated 

results from smaller-scale systems to verify consistency and correctness. This dual approach 

establishes the deployment’s feasibility and validity by showing that MDAM can run effectively 

at scale and confirming that it produces scientifically reliable results. 

 
Distribution and availability  

 
To ensure accessibility for future users, the MDSS library [99], which is a critical component 

of this workflow, is openly available under the GPL-3.0 license at its GitHub repository: 

https://github.com/alepandini/MDSubSampler.  

 
MDAM is hosted on GitHub (https://github.com/alepandini/MDAutoMut) and is going to be 

publicly available at time of submission of the associated manuscript.  
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MDAP, while not currently open source, is actively being developed to make it publicly 

accessible upon publication of relevant manuscript. The code for MDAP is provided in 

Appendix IV. 

 
In addition, all submission scripts necessary for running the tool on ARCHER2 after 

deployment are included in Appendix II.  

 

3.8 Containers – Docker  
 
Running MDSS with all its dependencies presented significant challenges, especially when 

switching operating systems (lab machine-Linux, personal laptop-MacOS). The different ways 

these operating systems handle libraries such as MDAnalysis and NumPy made maintaining 

compatibility difficult. Ensuring the correct versions of these dependencies and managing 

environment-specific variations often resulted in conflicts that hindered the toolkit’s testing 

progress. Given the large volume of MD trajectories to be processed, maintaining a consistent 

design was critical to implementing and testing the toolkit. 

 
To solve this problem, a Docker container [178] was employed to package MDSS and its 

dependencies in a single, self-sufficient environment, and it is made available as part of the 

software package. Docker allows the user to create a container that encapsulates the 

operating system, necessary libraries and the application itself. This approach guarantees 

platform consistency and allows the software to operate smoothly regardless of the underlying 

system. 

 
Using Docker brought several benefits: First, it eliminated the need to manually install 

dependencies, which was particularly beneficial when configuring multiple machines (lab 

machines, personal laptops). Second, by isolating the software environment from the host 

system, Docker reduced the risk of version conflicts and made the entire pipeline more 

manageable. It also made the results easier to reproduce because users could pull the same 

container and get identical results without additional configuration. The container is specifically 

designed to handle the MDSS workflow. 

 
The Docker image was built using a Dockerfile that defined the necessary steps to set up 

the environment, including installing MDSS and other required libraries. Users could easily 

interact with the container through the command line, making the setup user-friendly and 

adaptable to various computational environments. 
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Further details on the Docker container configuration and instructions on how to use it with 

MDSS can be found in the MDSS GitHub repository, available at 

https://github.com/alepandini/MDSubSampler. 

 

3.9 Wrapping the toolkits with Poetry 

 
Since MDSS and MDAM are Python-based toolkits, managing dependencies was essential 

for ensuring smooth development and distribution. Poetry [179] was used to package the 

libraries and make them pip-installable, a tool specifically designed for managing Python 

dependencies and packaging Python projects. Poetry helped to efficiently organise all the 

required libraries, maintain compatibility across environments, and streamline the packaging 

process for both toolkits. 

 
By defining all dependencies in a single pyproject.toml file, Poetry simplified the setup 

and ensured consistency. Additionally, it facilitated the creation of isolated virtual 

environments, preventing conflicts with system-wide packages or other projects. Users can 

easily install the libraries from the Python Package Index (PyPI) using the pip install command. 

 
To set up and run MDSS and MDAM with Poetry, users can follow these steps: 

 
➢ poetry install # Install dependencies and create the virtual 

environment 

➢ poetry build # Build the package 

➢ poetry shell # Activate the virtual environment  

 
These commands ensure proper installation, packaging, and environment setup. Detailed 

instructions for both toolkits can be found in the respective GitHub repositories (see section 

3.8 for links). 

 
MDAP has been developed to demonstrate a proof-of-concept, extending MDAM into an ML 

pipeline capable of predicting conformational states for a given molecular system. Future work 

will focus on refining this tool and packaging it as a standalone toolkit for broader use and 

integration into research workflows. 
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3.10  Summary 
 
This chapter presented the methods and tools used to develop, test, and validate the MDSS, 

MDAM, and MDAP toolkits. It detailed the protocol for setting up MD simulations using ADK 

as a case study, including the generation of unbiased simulations and analysis to ensure the 

reliability of the data. The chapter also described integrating software such as MDAnalysis, 

PyRosetta, and gmxapi and deploying the toolkits on ARCHER2 for scalability. Docker 

containers and Poetry were employed for environment management and distribution to ensure 

reproducibility and ease of use. 
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4 Design, implementation, and testing  
 
The design, implementation, and testing of the three novel tools that were developed in this 

thesis are presented in this chapter: MDSubSampler (MDSS), MDAutoMut (MDAM) and 

MDAutoPredict (MDAP). By providing a concise overview of design, implementation, and 

testing, the chapter provides a compact and clear framework for understanding how these 

tools collectively address the complexities of managing large-scale MD data, automatically 

redesigning protein dynamics, and integrating MD simulations into managing the ML 

framework to perform predictions of MD properties. First, the software design and core 

components of each tool are introduced, followed by the functionality, software implementation 

and accessibility. Finally, the approach to testing each toolkit is shown. 

 

4.1 MDSubSampler tool  
 
MDSS was designed to address the need for modular tools to subsample large MD datasets 

and preprocess them for ML/DL workflows. MD trajectories are recorded in a structured format 

that inherits the convention for data recording from the early times of molecular simulation 

studies and is not designed to be directly used in ML/DL pipelines. Additionally, the large 

volume of recent long timescale trajectories makes them challenging to analyse, and this type 

of analysis can be computationally intensive. They generally have a low signal/noise ratio.  

 
MDSS is designed for a posteriori subsampling large MD trajectories. Specifically, the toolkit 

can extract important protein conformations, reduce data size, and remove noise while 

preserving key structural information. Additionally, MDSS can reformat MD data for ML/DL 

purposes and can be used to compare protein dynamics between different trajectories by 

calculating similarity scores between values of dynamics descriptors using statistical methods.  

 
The work presented in this chapter is based on previously published work by Oues et al. [99] 

that details the design, implementation and testing of MDSS. 

 

4.1.1 Software design and core components 

 
MDSS is an object-oriented modular Python library. Built on top of the MDAnalysis framework 

[8], it performs subsampling of large MD trajectories, reformatting data for ML pipelines, and 

enables comparison of time-dependent descriptors of protein dynamics across simulations. 

The toolkit is built around four core Python classes: ProteinData, ProteinProperty, 
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ProteinSampler, and Dissimilarity. Each of these classes serves a specific role within 

the framework, and they contain specialised subclasses to model different properties and 

processes associated with molecular dynamics data. The class diagram in Figure 4.1 shows 

the relationships between the core classes and their subclasses. 

 
ProteinData class 

 
The ProteinData class is central to the toolkit and handles protein structure, topology, and 

MD trajectory data. It is a wrapper class for low-level MDAnalysis [8] types. The class contains 

a dictionary for storing references to various property objects (see below), each representing 

a specific time-dependent calculated property (e.g., RMSD, Rg, PCs) along the MD trajectory. 

By organising MD data via the ProteinData class, MDSS enables efficient property value 

mapping to trajectory frames and easy manipulation of property values across frames. 

 
ProteinProperty class and subclasses 

 
The ProteinProperty class and its subclasses provide the framework for computing and 

storing properties that can capture time-dependent measures of protein dynamics. The 

primary subclasses include GeometricalProperty and PCAProperty. 

 
The GeometricalProperty subclasses calculate key geometric properties such as RMSD, 

COMDistance, and RadiusOfGyration. These properties enable the analysis of structural 

stability, compactness, and relationships between domains within the protein. By tracking 

these properties across trajectory frames, GeometricalProperty can provide insights into 

conformational changes and functional movements within the protein system. 

 
The RMSD property measures the average positional deviation of atoms from a reference 

structure, helping to monitor significant conformational changes over time. For example, RMSD 

is valuable for observing the extent of structural changes during an MD trajectory. The 

COMDistance property tracks the distance between the centre of masses of specific groups 

within the protein, for example, between different domains or between a protein and a ligand. 

This measure helps study relative movements within the protein and functionally relevant 

interactions. Additional properties such as RadiusOfGyration and DihedralAngles 

provide further insights into the protein’s compactness, geometric orientation, and secondary 

structure transitions, making MDSS applicable to different protein dynamics analyses.  
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Figure 4.1 Class diagram of MDSS, showing relationships among main classes (ProteinData, ProteinProperty, etc.) 
and their multiplicities, with symbols indicating the number of instances each class can be linked to in relation to 
others. The figure was taken from the MDSS’s paper by Oues et al. [99]. 

 
On the other hand, PCAProperty implements Principal Component Analysis (PCA), a 

dimensionality reduction technique. PCA identifies the principal directions or components in 

which the variance of atomic motion is highest, thereby isolating the dominant, slower 

collective motions within the protein system. These slow, large-scale movements often 

describe significant conformational transitions, such as the shifting between open and closed 

states of protein domains. The implementation of PCA in scikit-learn is used in the MDSS 

framework to perform the analysis and then to project MD trajectories onto these principal 

components (PCs). This projection captures the protein’s key conformational transitions over 

time and analyses the movements most likely associated with functional changes. These 

essential protein movements are often the most relevant to understanding protein functional 

dynamics. 

 
Within MDSS, ProteinData objects organise and manage MD trajectories, providing a 

structured way to associate specific trajectory frames with different calculated properties. A 

key feature of ProteinData objects is their dictionary attribute, which contains references to 

ProteinProperty objects. Each ProteinProperty object records property values across 

trajectory frames, allowing for straightforward mapping between calculated property values 

and their corresponding time frames. As the values for different properties can be mapped to 

the same trajectory information, any selection, subsampling or extraction of specific frames 

can be easily applied to the associated property value vectors. This modularity of the software 
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provides flexibility in analysis and enables the extraction of meaningful samples from large 

MD datasets. 

 
ProteinSampler class and subclasses 

 
Sampling strategies implemented in MDSS are encapsulated in subclasses of 

ProteinSampler, which serve the critical purpose of selecting frames and their associated 

property values from MD simulations. These strategies are essential to adapt the sampling 

process to different research objectives, such as identifying important conformational states 

or analysing specific system properties. Specifically, MDSS offers flexibility by allowing users 

to select the appropriate sampling technique depending on the research problem. The library 

is designed with a hierarchy of classes, with ProteinSampler being the main sampler class, 

and different sampling strategies, including RandomSampler, StratifiedSampler, 

UniformSampler, WeightedSampler, and BootstrappingSampler to represent 

subclasses. In this context, sampling is done a posteriori (i.e. on the trajectory data after the 

simulation has been completed as an analysis strategy). This differs from the sampling of the 

conformational space that is done during the simulation. 

 
The RandomSampler selects frames using a random approach. Combined with the 

Dissimilarity class, it can ensure that the distribution of relevant properties (e.g., RMSD) 

is preserved between the original and sampled trajectory. This technique is suitable for 

reducing data size without information loss. To ensure that the sample trajectories preserve 

the system’s structural information, MDSS provides distance metrics (e.g., Bhattacharyya 

distance) that help determine the minimum sample size required to capture the distributions 

of relevant properties (see the Dissimilarity class below).  

 
In contrast, the UniformSampler is designed to ensure uniform coverage of a selected 

property across the value ranges. For example, if a property relates to the opening of a protein 

pocket, consistent sampling ensures that frames representing the full range of pocket opening 

states are included. This method is useful when the goal is to explore the conformational 

landscape of a protein uniformly across a collective variable, as it can provide a balanced 

representation of different states (if the original sampling spans the state transition along the 

collective variable). 

 
The StratifiedSampler provides a more structured approach by dividing the trajectory 

into subsets based on predefined state labels or discrete conditions and then sampling 

proportionally from each subset. This stratification ensures that the protein ’s user-defined 
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group of frames (or state) is adequately represented in the final sample. This approach is 

valuable when different conformational states are present in the trajectory and can be labelled, 

as stratified sampling can recover each state proportionally, providing an equally 

representative view of the protein’s dynamic behaviour across the defined groups (or states). 

 
The WeightedSampler follows a probability-based approach and assigns selection 

probabilities based on the frequency or importance of conformational states. This method is 

ideal when certain states, such as rare or functionally critical conformations, are of research 

interest. By prioritising these states through increased weights, this sampling strategy ensures 

that important frames are well represented, and important features of the dataset are 

preserved that might otherwise be lost in random sampling. 

 
Finally, the BootstrappingSampler involves repeated sampling with replacement, 

generating multiple subsamples from the original dataset. This method is suitable for statistical 

analysis and cross-validation because it enables the creation of robust estimates for property 

distributions. Additionally, it is possible to estimate confidence intervals for the dynamic 

properties by assessing variability between bootstrapping samples. This has not been 

demonstrated in the current study, but it is an implemented feature to benefit MDSS’s users. 

 
ProteinSampler objects in MDSS are created with a specific ProteinProperty object as 

a reference, facilitating subsampling across trajectory frames based on particular properties.  

Each ProteinSampler object returns subsampled ProteinProperty objects, capturing a 

compressed yet representative set of data points. Once subsampling is complete, MDSS 

allows users to save property values and their corresponding trajectory frames to an output 

file. This feature ensures accessibility to sampled data regardless of the original trajectory, 

supporting downstream analysis and integration with other tools. 

 
Dissimilarity class 

 
In MDSS, the sampling of trajectory frames is guided by the distribution of associated 

properties. The primary objective is to compare a property distribution between the original 

and the sampled set. To achieve this, metrics for calculating distances between distributions 

are essential, and the Dissimilarity class and its subclasses play an important role in this 

process. 

 
The Dissimilarity class implements well-established distance measures, enabling users 

to quantitatively evaluate how well the subsampled dataset retains the statistical properties of 
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the original distribution. These metrics include the Bhattacharyya distance [101], which 

quantifies the degree of overlap between probability distributions, the Kullback-Leibler 

divergence [180], which measures divergence from one distribution to another, and the 

Pearson correlation distance [102], which assesses linear correlation. By applying these 

distance metrics, users can optimise sampling strategies to ensure that the subsampled data 

accurately reflects the dynamics of the original simulation. 

 
PropertyPlot class 

 
In addition, MDSS has a PropertyPlot class for visual comparison of distributions, allowing 

users to visualise both the original and subsampled data in a comparison framework. The 

class is built on top of matplotlib Python library. The graphical representation generated by 

MDSS provides immediate insight into how the subsampled data matches the overall 

trajectory. This visualisation complements the quantitative metrics of the dissimilarity class and 

provides users with a comprehensive toolkit for numerical and graphical assessment of protein 

dynamics. 

 

Utility functions 

 
In addition to its primary classes, MDSS includes a utility module that supports important tasks 

throughout the toolkit’s workflow. This module provides functions for file I/O, data 

transformation, mathematical operations, and command-line argument parsing.  

 

Logging and configuration 

 
MDSS includes a logging module (log_setup.py) that captures workflow steps, warnings, 

and errors to support efficient debugging and process tracking. Additionally, configuration 

management is made easier by parser utilities that process command-line input and custom 

settings. This modular design with logging and configuration support ensures ease of use, 

reproducibility, and the flexibility to adapt to different analysis workflows. 

 

4.1.2 Functionality 

 
MDSS facilitates the efficient handling and analysis of large MD trajectories and provides a 

streamlined process for a posteriori subsampling, property calculation, and data preparation 

for ML and DL applications. Figure 4.2 shows the data flow within MDSS, highlighting both the 

input files and the resulting outputs generated from an MD trajectory. The toolkit accepts inputs 
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such as MD trajectories, reference structure, atom selection criteria, geometric property 

specification, sample size or range, and dissimilarity measure. The user can tailor the 

sampling and analysis in MDSS to meet specific research objectives, targeting the protein’s 

different structural features or dynamic properties. 

 

 
 
Figure 4.2 Overview of MDSS’s data flow. The MDSS toolkit takes MD trajectory data along with user-defined 
inputs, such as geometric properties and sampling parameters, and outputs data in various formats. These outputs 
are tailored for different applications, from statistical analysis and visualisation to machine learning integration. 

 
Input files and parameters 

 
MDSS accepts user inputs that guide property calculations, subsampling strategies and output 

generation: 

 
1. MD trajectory file(s) (.xtc): This file includes the atomic coordinates for each simulation 

frame and serves as the primary dataset for property calculations. 

2. Reference structure file (.pdb, .gro): This file provides the initial (or reference) protein 

structure, used to calculate metrics like RMSD. 

3. Atom selection: allows users to specify regions of interest within the protein, such as 

specific residues or domains, enabling focused analysis on areas relevant to the 

research question.  

4. Geometric properties: defines which properties to calculate (e.g. RMSD, 

COMDistance, RadiusOfGyration). Users can choose properties based on their 

relevance to the protein’s dynamics and intended analysis.  

5. Sampling strategy and size: This specifies the subsampling method (e.g. 

RandomSampling) and the sample size of the target trajectory.   
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6. Dissimilarity measure: a metric (e.g. Bhattacharyya distance) for comparing property 

distributions between sampled and original data, ensuring that subsamples retain 

essential dynamic features.  

 
The tool also accommodates the case when precalculated frame-dependent property files are 

available. This feature is useful when users reanalyse or compare existing data without 

recalculating properties, saving time and computational resources. 

 
Output options 

 
MDSS generates multiple output files, allowing users to choose the appropriate formats for 

their specific research goals. Outputs are optional, so users can specify which files they need 

and in which formats. Here is a breakdown of the output options: 

 

1. .dat files store calculated property values for each frame, allowing post-processing and 

evaluation of subsampling by checking the distributions of these properties. The 

properties can capture the system’s dynamics.  

2. .png files include visual representations of property distributions, useful for quickly 

assessing sampling accuracy and comparing subsampled data against the original 

trajectory.  

3. .json and .txt files contain statistical summaries of the calculated properties, including 

distribution metrics and distances.  

4. .xtc trajectory files represent subsampled trajectories, allowing further analysis in other 

tools or workflows that require the trajectory directly.  

5. .npy files contain compressed data for ML/DL workflows. MDSS offers the choice of 

having the MD data transformed into the appropriate format for ML/DL and splits the 

data into learning and testing sets (70% learning - 30% testing). 

 

4.1.3 Software implementation and accessibility 

  
MDSS is an open-source Python library, is hosted on GitHub 

(https://github.com/alepandini/MDSubSampler), and primarily developed within Visual Studio 

Code [181]. The project is built with git version control to ensure a robust, well-documented 

development process. MDSS is an installable Python package deployed using the Poetry 

package manager [179], which streamlines installation, resolves dependencies, and promotes 

reproducibility across computational environments. 

 

https://github.com/alepandini/MDSubSampler
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Poetry facilitates ease of setup by managing all dependencies in the pyproject.toml file 

(Figure 4.3), simplifying the process of deploying MDSS as a Python package. This approach 

not only ensures that all required libraries are easily accessible but also guarantees 

consistency across different systems where MDSS might be installed. 

 

 
 
Figure 4.3 MDSS’s pyproject.toml  file. This configuration file defines the MDSS project settings and dependencies 
within the Poetry environment, streamlining the installation process and ensuring consistency across systems. 
Poetry manages both the primary dependencies for MDSS’s core functions and additional dependencies for 
optional features, enhancing reproducibility and ease of use. 

 
To further support accessibility and reproducibility, MDSS is also packaged within a Docker 

container, enabling users to deploy the toolkit in a self-contained, isolated environment. The 

Docker container includes all necessary dependencies and configurations, eliminating 

compatibility issues and ensuring that MDSS operates consistently across various 

computational systems, regardless of the underlying platform. This containerisation approach 

allows users to run MDSS with minimal setup, which is particularly valuable for those without 
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extensive experience in configuring Python environments. The repository on GitHub provides 

instructions to users on how to use Docker for the project.  

 
The MDSS environment is designed for compatibility with Python version 3.9 (or later), and it 

incorporates a suite of essential dependencies to support protein dynamics analysis and 

subsampling within MD simulations. Key dependencies include MDAnalysis (version 2.1.0 or 

later) [8], which handles protein structure and trajectory management, and NumPy for efficient 

numerical processing of MD data. The dictances package is employed for calculating various 

statistical distances, supporting the subsampling accuracy assessments, while scikit-learn 

helps with PCA and integration with ML/DL pipelines. Pandas, Matplotlib and Seaborn 

packages are included to support different parts of the toolkit’s analysis. 

 
The toolkit is developed to satisfy three distinct user groups: novice users with minimal 

software development experience can utilise pre-prepared scenario scripts, advanced users 

can operate through a Unix-like command-line interface and scientific software developers 

can leverage reusable Python library classes for their projects. 

 

 
Novice users 

 
For beginners, MDSS offers predefined “scenario recipes” or scripts that cover a variety of use 

cases. These scripts are provided as standalone Python files, ready to be run independently, 

and as interactive Jupyter Notebooks. The Notebooks offer a flexible, easily customised 

template, allowing new users to explore different sampling strategies and analyses without 

extensive programming knowledge. All scenarios are stored in a dedicated cookbook folder 

on GitHub, where the community can contribute additional examples or improvements. Figure 

4.4 presents an example scenario that illustrates the sampling process for size reduction with 

minimal information loss, comparing RMSD distributions of the original and subsampled 

trajectories. 
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Figure 4.4 Summary description of an example scenario: Random sampling for size reduction, where different 
subsample sizes are extracted to preserve the information in the distribution of values for a reference property. The 
two plots compare the distributions of RMSD over the coordinates of all Cα atoms in the original and subsampled 
trajectory for sample sizes of 0.25% and 2.5%. The distance between the sampled and original distributions was 
calculated using Bhattacharyya distance: 0.574 (for 0.25%) and 0.057 (for 2.5%). A subset of 2.5% is the smallest 
sample for which the shape and peak location of the distribution of RMSD is preserved. Example structures for an 
open and closed conformation of ADK are reported in the top right of the second plot. Distribution plots were 
generated with R [176] and protein structure images with PyMol [160]. The figure was taken from the 
MDSubSampler paper by Oues et al. [99]. 

 
Advanced users 

 
Advanced users, such as structural biologists, can leverage a Unix-like command-line 

interface, which provides greater flexibility and control over the data processing workflow.  

 

              

                  Figure 4.5 Parser help interface on Linux command line with options and required user arguments. 

 
This interface supports detailed configuration options, allowing users to specify the sampling 

method, geometric properties, and dissimilarity measures. An built-in parser help command 
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lists all available options and guides users through the setup, ensuring accessibility for users 

with moderate command-line experience. Figure 4.5 demonstrates the help interface for 

navigating these options. 

 
Scientific software developers 

 
MDSS supports further development and customisation, making it valuable and practical for 

scientific software developers. The toolkit provides a range of reusable Python library classes 

that form a flexible foundation for building new tools or extending MDSS’s functionality within 

custom workflows. Developers can download the source files (tarball file) from GitHub and 

modify them using an IDE like Visual Studio Code [181]. Figure 4.6 illustrates the modular 

structure of MDSS, detailing the organisation of classes and modules, which facilitates easy 

navigation and customisation. 

 

 

Figure 4.6 Hierarchy of files (modules) in MDSS library as is shown on GitHub page. 

 
Licensing and contribution 

 
MDSS is released under the GPL-3.0 license, ensuring its status as an open-source and 

community-accessible toolkit. Users are free to use, alter, and distribute the software, if any, 

under this license, provided that any derivative works remain open source under the same 

license. This approach encourages collaborative development and supports contributions 

from the research community. 
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Researchers and developers are encouraged to participate in the project on GitHub by adding 

to the codebase, reporting bugs, and making suggestions for enhancements. The README file 

offers thorough documentation, installation guidelines, and usage examples to ensure a 

seamless onboarding process. MDSS’s open-source nature aligns with its objective of 

enabling reproducible and scalable analysis of MD data. 

 

4.1.4 Testing 

 
The functionality and performance of MDSS were tested to validate its core modules and 

workflow, including subsampling accuracy, property calculations, and output handling. The 

goal was to ensure that MDSS could effectively handle large MD data and produce reliable, 

meaningful subsamples while preserving essential information about the system’s dynamics. 

Testing focused on two key areas: first, verification of each sampling strategy’s accuracy, and 

second, validation of calculated properties and dissimilarity measures. 

 
Testing was conducted using MD trajectories of the ADK system, a model system with well-

defined conformational states. This system was selected due to its distinct open and closed 

states, which allowed for complete testing of MDSS’s ability to capture and represent dynamic 

conformational changes across sampled datasets.  

 
Initially, three scenarios were designed to test the tool. Each scenario represents a user case, 

demonstrating the toolkit’s ability to address different research questions. These scenarios 

were created as user-friendly “recipes” that users can run directly, allowing for flexible testing 

of various aspects of MDSS’s functionality. In addition to these standalone scripts, each 

scenario was also implemented as a Jupyter Notebook, enhancing accessibility and 

interactivity for all types of users. 

 
Scenario 1: Subsampling for distribution similarity of RMSD 

 
This scenario tested MDSS’s ability to select the smallest subset of frames that retained the 

RMSD distribution of the original trajectory. The case is helpful for MD users seeking to reduce 

data volume without compromising structural information. 

 
1. Purpose: This scenario was designed to subsample an MD trajectory containing 

different global protein conformations. The goal was to find the smallest subset of 

frames that retained a similar RMSD distribution to the original data. 
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2. Sampling strategy: Random sampling captured frames representative of the protein’s 

entire conformational range. 

3. Workflow: 

 The tool first reads the trajectory and topology files and sets up the RMSD 

calculation for the entire trajectory. 

 Random subsampling is performed at different sample sizes (0.25%, 0.5%, 1%, 

2.5%, 5%, 10%, 20%, 25%, 50%.) specified by the user. 

 MDSS computes the RMSD distribution for each sample size and compares it to 

the entire trajectory’s RMSD distribution using the Bhattacharyya distance as the 

dissimilarity metric. 

 The process iterates until a sample size produces a subsample with an RMSD 

distribution similar to the original, as determined by a user-defined threshold. 

 
This scenario demonstrated MDSS’s ability to preserve critical information of a trajectory 

through random subsampling, achieving significant data reduction while maintaining 

distributional similarity. 

 
Scenario 2: Uniform sampling of pocket opening states 

 
The second scenario explored MDSS’s capability to capture a specific range of conformational 

states within a protein’s binding pocket, particularly in systems where pocket geometries vary 

significantly. 

 
1. Purpose: This scenario aims to obtain a subset of frames representing a broad range 

of pocket opening geometries by sampling frames that varied in RMSD relative to an 

open or closed reference state. 

2. Sampling strategy: Uniform random sampling is applied to ensure even coverage of 

the range of pocket conformations observed in the full trajectory. 

3. Workflow: 

 MDSS reads the trajectory, topology, and selection criteria, specifying residues 

within the binding pocket. 

 A reference structure establishes a baseline RMSD value for the open (or closed) 

state. 

 MDSS calculates the RMSD distribution for pocket conformations in the full 

trajectory and stratifies the frames into intervals based on RMSD values. 

 Uniform random sampling selects frames from each interval, ensuring a 

proportional representation across the full range of pocket conformations. 
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This scenario validated MDSS’s ability to selectively capture structural diversity within a region 

of interest, demonstrating that MDSS could provide a representative subset of frames that 

covered the conformational landscape of the binding pocket. 

 
Scenario 3: Weighted sampling based on conformational state frequency 

 
In this scenario, MDSS’s weighted sampling capabilities were tested to ensure an equal 

representation of all conformational states within the trajectory, including those less frequently 

observed. This approach is useful for users interested in capturing diverse frames that evenly 

span the conformational landscape rather than focusing solely on dominant states. 

 
1. Purpose: By applying weighted sampling, the goal is to reduce the bias towards 

frequently occurring conformations and instead select a subset of frames that provides 

equal representation across the trajectory’s conformational space. 

2. Sampling Strategy: Weights are inversely proportional to the frequency of frames in 

each conformational state, ensuring that less frequent conformations are sampled 

more often than dominant ones. 

3. Workflow: 

 The trajectory and topology files are loaded, and RMSD values are calculated for 

each frame. 

 MDSS analyses the RMSD distribution and generates a weighting vector where 

less frequent RMSD bins are assigned higher weights. 

 Using this weighting vector, MDSS performs weighted sampling to select frames, 

resulting in a subsample that balances the representation of all conformational 

states, regardless of their original frequency. 

 
This scenario demonstrates MDSS’s flexibility in achieving a balanced representation of 

conformational states, making it particularly useful for studies requiring equal sampling of rare 

and common conformations. 

 
Following the testing of MDSS through the initial three scenarios, additional advanced 

workflows were implemented in the cookbook to address more complex sampling and 

subsampling requirements. These advanced scenarios extend MDSS’s utility by focusing on 

hierarchical subsampling and ML applications.  

 

 



 

Design, implementation, and testing 

 

 

 81 

Advanced scenario: Machine learning prediction 

 
In this scenario, MDSS was tested for its capability to reformat MD data and directly use them 

as inputs within ML workflows. This scenario demonstrates how subsampled MD trajectory 

data can be prepared for predictive modelling, enabling researchers to classify or predict 

specific protein conformations based on calculated properties. The workflow outlines a 

complete pipeline that takes subsampled data, applies ML algorithms, and evaluates model 

performance, showcasing MDSS’s utility in ML contexts where MD data is used as input. 

 
1. Purpose: This scenario illustrates the application of ML to predict specific 

conformational states within an MD trajectory using subsampled data as input. It 

enables researchers to classify conformations or states based on key structural 

features, facilitating the identification of patterns within protein dynamics. 

2. In this example, the target prediction focuses on protein states categorised as “Open”, 

“Closed” and “Noise” based on two geometric properties: the RadiusOfGyration 

and the DistanceBetweenAtoms. Labels for these states were defined based on 

expert knowledge (see section 5.1.3), with thresholds derived from density plots of 

these properties (Figure 5.6) This manual labelling serves as the ground truth for 

evaluating ML models. 

3. Workflow: 

 Data preparation: The input data for this scenario consists of a pre-processed 

subsampled dataset of RMSD values (ml_input.npy) and a corresponding 

target label file (target50.csv) indicating the conformational states (Figure 5.6). 

A posteriori subsampling was performed using a random sampling strategy, 

ensuring that the dataset remained representative of the trajectory while reducing 

data volume. The Rg and inter-residue distance values were analysed to define 

the protein states, and density plots were used to visually confirm the separation 

of open, closed, and noise regions in the conformational space. 

 ML model training: Three ML models, Logistic Regression (LR), Random Forest 

(RM), and Support Vector Machine (SVM), were implemented and trained on the 

subsampled data. The data was divided into two sets: 30% for testing and 70% for 

training. 

 Model evaluation: Each model was evaluated using standard classification metrics:  
 

o Accuracy score: Assesses the percentage of correct predictions on the test set.  

o Confusion matrix: This matrix displays the classification model’s performance 

by showing true positives, false positives, true negatives, and false negatives. 



 

Design, implementation, and testing 

 

 

 82 

o Cohen’s Kappa score: Evaluates the agreement between predicted and actual 

labels, adjusting for chance agreement. 

o Classification report: Provides detailed metrics, including precision, recall, and 

F1-score for each class. 

 Results saving: Model performance metrics were saved for further analysis, and 

trained models were saved using joblib for later use. 

 

4.2 MDAutoMut tool  
 
MDAM is a modular Python library developed to rationally redesign protein dynamics through 

mutation scanning. The tool aims to identify mutations that have the desired impact on protein 

dynamics. Mutation scanning is performed either systematically or through a heuristic 

approach. The toolkit is suitable for single, double, or multiple mutation scanning. 

 
The work presented in the following section details the design, implementation and testing of 

MDAM. 

 

4.2.1 Software design and core components 

 
MDAM is designed as a fully automated, modular Python library that combines mutation 

engineering, generation of MD simulations, and evaluation of changes in protein dynamics. 

The tool is structured to explore and then identify mutations that have a desired impact on 

protein dynamics. Specifically, the tool can create workflows with mutation scanning until the 

system samples the desired dynamics in the system. The toolkit contains two core classes: 

Protein and Mutation, and Figure 4.7 displays the class (i.e. module) diagram of the tool. 

The tool imports ProteinData from the MDSS library. 

 
Protein class 

 
The Protein class uses the MDAnalysis framework [8] to load and manage the protein data 

based on the user’s input files, including .xtc, .pdb or .gro formats. This class encapsulates 

structural and simulation data, allowing users to use pre-existing trajectory files or dynamically 

generate data within the MDAM workflow. 

 



 

Design, implementation, and testing 

 

 

 83 

       

Figure 4.7 Class and module diagram of MDAM, depicting its integration with MDSS and modular approach for 
mutation engineering and dynamic simulation in MD workflows. 

 
Mutation class 

 
The Mutation class facilitates mutation engineering in MDAM, using PyRosetta [9] to 

introduce mutations while ensuring structural stability. Users provide a list of mutations in an 

input file, specifying the target residue positions and desired amino acid substitutions. The 

output_mode option allows mutations to be applied individually (single) or in combinations 

(multiple), enabling comprehensive testing of different mutation scenarios. When initialising a 

Mutation class object, users select the reference structure to insert the desired mutation 

from a protein trajectory frame (defaulting to the last frame if unspecified), which is then 

extracted and converted into a PyRosetta Pose object for mutation operations.  

 
The method replaces the target residue for each mutation, repacks side chains, and calculates 

a full-atom energy score before and after mutation to assess structural stability. Specifically, 

the new residue is first generated using PyRosetta’s ChemicalManager within the 

fa_standard force field for full-atom calculations and is substituted at the target position. 

The method then repacks neighbouring side chains to refine local conformations, using the 

default scoring function within the same force field to ensure stability. 

 
Workflows 

 
MDAM includes three modular workflow scripts: mutation_workflow.py, 

mdprep_workflow.py, and mdautomut_workflow.py. While the 

mutation_workflow.py and mdprep_workflow.py scripts are designed to function 

independently as standalone workflows, the mdautomut_workflow.py integrates all 

modules from MDAM, facilitating the fully automated method for rationally redesigning protein 

dynamics. 
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The mdprep_workflow.py script prepares the protein system for MD simulations. This 

workflow manages essential steps such as solvation, in addition, and energy minimisation, 

creating a simulation-ready structure. Users can customise parameters, including force field 

selection and other simulation parameters (currently in the form of a .mdp file), allowing 

flexibility in adapting the workflow to various protein systems and research objectives. 

 
The mutation_workflow.py script supports targeted mutation engineering by enabling the 

insertion of single, double, or multiple mutations. Utilising PyRosetta [9], this script offers 

control over mutation engineering, allowing users to specify desired amino acid changes to 

target specific changes in the system’s dynamics. The flexibility to perform single and multiple 

mutations makes this workflow suitable for exploring various mutational impacts.  

 
The mdautomut_workflow.py script provides an integrated end-to-end pipeline, combining 

system preparation, mutation engineering, and evaluation of change in dynamics within a 

single workflow. This script automates the entire mutational scanning process, aiming to 

identify the impact of specified mutations on protein dynamics.  

 

 
Figure 4.8 A simplified version of the entire workflow of MDAM, showing the step-by-step process of system 
preparation, mutation engineering, and dynamic simulation for the rational redesign of protein dynamics. The 
decision point depends on the acceptance criterion, or the predefined threshold and it can either end the loop or 
continue exploring more mutations until the desired dynamics are achieved.  

 
Figure 4.8 illustrates a simplified version of a workflow within MDAM, outlining the sequential 

steps from system preparation to mutation engineering and dynamic simulation. The flow 

starts by preparing the protein system for MD simulations for the WT, introducing mutations, 

simulating the mutants, and then comparing the WT with each mutant to check if the desired 
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dynamics are achieved. A simple acceptance criterion or a predefined threshold is used to 

enable the automation of the scanning process. This simplified workflow is easily extendable 

due to MDAM’s module structure. 

 
Utility functions 

 
In addition to the core classes and workflow scripts, MDAM includes a set of utility — modules 

args_utils.py, file_io.py, mutation_utils.py, protein_utils.py — that 

support essential tasks within the workflow. These modules handle command-line argument 

parsing, file management, mutations-specific operations and protein structure manipulation, 

providing the flexibility and customisation needed for efficient mutation screening and analysis 

of protein dynamics. 

 
Property and dissimilarity calculations 

 
To assess how mutations affect protein dynamics, MDAM integrates with MDSS for property 

calculation and comparison between wild-type (WT) (or target property) and mutated 

structures. Specifically, it calculates and compares geometrical properties between WT 

against each mutant, enabling a quantitative assessment of how each mutation impacts 

protein dynamics. Using MDSS’s Property and GeometricProperty modules, MDAM can 

compute key properties such as RMSD, RadiusOfGyration, and COMDistance, which can 

serve as indicators of changes in protein conformations. 

 
MDAM can apply MDSS’s Dissimilarity module for each mutant to quantify differences 

between WT and mutant property distributions. This dissimilarity analysis uses statistical 

measures (e.g., Bhattacharyya distance) to evaluate the impact of mutations, allowing the 

toolkit to identify those mutations that most effectively alter the protein’s dynamics. 

Additionally, the plotting.py module visualises the differences in distributions for the 

selected properties between the WT (or target property) and each mutant, representing 

mutation effects on dynamics. 

 
Logging and configuration 

 
The log_setup.py module provides real-time logging across the full MDAM workflow, 

capturing each step and recording warnings or errors encountered during execution. The logs 

offer users detailed insights into each step’s progress and status, enabling efficient 

troubleshooting and validation of results. 
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4.2.2 Functionality 

 

MDAM provides a flexible and user-friendly interface for mutation-based analysis of protein 

dynamics. The toolkit is designed with modular workflows and customisable options, allowing 

researchers to define specific mutations, configure MD simulations and assess changes in 

dynamics through properties. 

 
Mutations and mode 

 
To begin the analysis, users define a list of target mutations in an input file, specifying the 

position and the amino acid change. MDAM supports single, double or multiple mutations, 

enabling users to test a range of mutation scenarios systematically. Through the 

output_mode setting, users control whether mutations are applied individually or in 

combinations, providing flexibility in exploring all mutation impacts on protein dynamics. 

 
Simulation configuration 

 
In MDAM, the entire simulation configuration process is automated into a stepwise script. 

Users predefine the steps and parameters before execution of this script. Once the mutations 

are defined, users configure the MD simulation parameters within MDAM. The toolkit provides 

options for customising the parameters for system preparation and production of MD data. 

The preparation process begins with force field selection during the pdb2gmx step, where 

users can choose from several forcefields, such as AMBER [71] or CHARMM [64], depending 

on the system choice. Additionally, they can specify the water model, such as TIP3P [86], to 

solvate the box.  

 
Following that, users define the simulation box type, such as cubic or truncated octahedron, 

and set the distance between the protein and the edges of the box to ensure adequate 

solvation. The system is then solvated, and ions are added to neutralise the system’s charge. 

Researchers can also adjust the ionic concentration, controlling the electrostatic environment.  

 
Furthermore, users can configure the energy minimisation steps by adjusting parameters to 

control the algorithm used and the convergence criteria and define the strength of positional 

restraints on the protein. Similarly, users define the choices for the temperature and pressure 

equilibration (NVT and NPT ensembles). In each stage, users can control the duration, 

thermostat settings and barostat options through .mdp files. Finally, the length of the simulation 

is defined before it goes into the production phase.  
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For the proof-of-concept validation of the MDAM toolkit, pre-configured .mdp files and all 

necessary parameters for the ADK system are provided, including forcefield selection and 

simulation settings (see section 3.2.3). 

 
Mutation scanning workflows: systematic and heuristic approaches 
 
MDAM supports two primary mutation scanning workflows: systematic and heuristic. These 

approaches address different research needs, balancing thorough exploration and 

computational efficiency. The terms “systematic” and “heuristic” are defined in this context to 

differentiate the workflows: The systematic workflow involves a complete exploration of the 

mutation list, testing every possible mutation. In contrast, the heuristic workflow is tailored for 

scenarios where the mutation space is too large for exhaustive exploration, requiring selective 

prioritisation of mutations for testing. 

 
The systematic workflow best suits smaller mutation sets where exhaustive exploration is 

feasible. MDAM generates and evaluates all possible mutations across specified positions in 

this approach. For instance, a single mutation scan mutates a target position to all 20 standard 

amino acids. In contrast, for double mutations, every pairwise combination of amino acids 

across two positions is tested. This approach is ideal for obtaining detailed insights into 

specific mutations’ influence on protein dynamics. However, as the number of mutation sites 

increases, the computational demand grows exponentially, making systematic scanning 

challenging for larger trajectories or multiple mutation sites. 

 
To address these limitations, MDAM includes an adaptive heuristic workflow that reduces the 

search space through a selective and iterative exclusion strategy. This approach is beneficial 

for complex systems with many potential mutations or limited computational resources. The 

heuristic workflow uses a table of mutation combinations. For example, starting with a random 

pair of mutations (e.g., AA, AG, GA), MDAM evaluates their effects on dynamics. If a 

combination (e.g., AG) fails to produce the desired outcome, the tool excludes all mutations 

involving amino acid “A” at the first position from further testing. This exclusion strategy 

systematically narrows the search to focus on promising mutations, rapidly filtering out 

ineffective combinations. As a result, the heuristic approach accelerates the identification of 

impactful mutations, making it a practical choice for larger mutation sets. 

 
Synthetic distribution as a target for desired dynamics 

 
A critical feature of MDAM is its ability to guide the mutation evaluation towards sampling 

specific dynamic states, which may not naturally occur in the WT. MDAM provides a feature 
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that allows the user to specify a desired distribution for the values of a selected MDSS property 

and use this distribution as the target for redesigning protein dynamics. A synthetic distribution 

of the target CV representing the desired dynamics in ADK was generated to test this 

functionality in a proof-of-concept study. Specifically, the goal was to sample a closed state in 

ADK, represented by a specific value of the COMDistance between its LID and AMPbd 

domains. 

 
The synthetic distribution was generated by introducing a second peak to the COMDistance 

histogram, corresponding to values expected for the closed state alongside the existing peak 

for the open state observed in the WT (Figure 4.9). This artificial bimodal distribution mimicked 

the dynamics of a protein system with both open and closed states, allowing a direct 

comparison of the mutants’ dynamics with the target. 

 
 

                        

Figure 4.9 Synthetic distribution for desired dynamics in ADK. The COMDistance density distribution of the WT 
(green) for ADK system, representing the natural dynamic state with a single peak corresponding to the open 
conformation. The synthetic target distribution (purple) was generated by introducing a second peak corresponding 
to the desired closed conformation. This artificial bimodal distribution mimics a system with both open and closed 

states, enabling a direct comparison of mutant dynamics to the target. Representative structural snapshots of the 
open (top) and closed (bottom) conformations are overlaid on the density plots. 

 
Reducing combinational complexity 

 
To further manage combinatorial complexity, MDAM’s heuristic workflow can group amino 

acids into functionally similar clusters, reducing the overall number of combinations while 

maintaining diversity within the mutational landscape. Since testing all 400 combinations for 
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two positions would be computationally intensive, this grouping method simplifies the search 

space. Each cluster represents a set of amino acids with shared physicochemical properties, 

such as size, polarity, or charge. For instance, small nonpolar amino acids (like A, G, V, and 

P) are represented by a single amino acid, such as Alanine, commonly used in mutagenesis 

studies. This approach ensures that key characteristics are still sampled while focusing 

computational resources on representative amino acids. 

 
By combining functional grouping and adaptive exclusion, MDAM makes exploring large 

mutational landscapes feasible and ensures efficient and targeted mutation scanning. 

 
Comparison of dynamics 

 
To automatically assess how mutations affect protein dynamics, MDAM calculates specific 

properties (user’s choice) for the WT and all mutants and then compares their property 

distributions. The selected properties should capture key aspects of the protein’s structural 

and dynamic behaviour. The primary objective is to measure how closely each mutant’s 

property distribution aligns with the desired target dynamics. This comparison can be carried 

out by either using the WT distribution as a reference or, in cases where a specific target 

dynamic state is desired, by comparing it to a predefined target distribution.  

 
The overlap between the WT (or target) and mutant distributions is measured via distance 

metrics from MDSS. MDAM allows users to define a threshold for reference when calculating 

the distance between distributions. Suppose the calculated distance for a mutant is below the 

threshold. In that case, the mutation (or set of mutations) produces dynamics that closely 

resemble the desired state (e.g. the closed state of ADK). 

 
When the distance between the WT or target and mutant distributions meets the specified 

threshold, MDAM identifies these mutations as those with the desired effect on protein 

dynamics. By iteratively scanning through each mutation or combination of mutations and 

comparing their impact on dynamics, the toolkit narrows down on specific changes that drive 

the protein towards the targeted dynamics. 

 

4.2.3 Software implementation and accessibility 

 
MDAM was developed as an open-source Python library, with the project structured and 

managed through GitHub (https://github.com/alepandini/MDAutoMut) and developed primarily 

within Visual Studio Code [181]. The toolkit is organised to facilitate reproducibility and ease 
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of installation by leveraging the Poetry [179] package manager. Poetry enables streamlined 

management of dependencies, ensuring that MDAM can be easily set up with all required 

libraries across different environments. The configuration of dependencies is specified within 

the pyproject.toml file (Figure 4.10), simplifying the installation process and maintaining 

consistency in the software environment. 

 
The MDAM environment requires Python version 3.9.1 or later, and it integrates multiple 

dependencies essential for mutation scanning and generation of MD simulations. The primary 

dependencies include gmxapi version 0.4.2 for interfacing with GROMACS, PyRosetta, and 

MDAnalysis. Additionally, MDSS supports property and dissimilarity calculations, while the 

seaborn library facilitates data visualisation, particularly in the analysis of property 

distributions. PyRosetta, which requires a specific license, was obtained and installed to 

enable mutation modelling. 

 

        

Figure 4.10 MDAM’s pyproject.toml file. This configuration file defines the MDAM project settings and 
dependencies within the Poetry environment, streamlining the installation process and ensuring consistency across 
systems. Poetry manages both the primary dependencies for MDAM’s core functions and additional dependencies 
for optional features, enhancing reproducibility and ease of use. 

 
Usage and example command-line workflow 

 
MDAM contains a command-line interface that allows users to define mutation lists, configure 

MD parameters, and initiate mutational scanning workflows directly. An example command-

line workflow is illustrated in Figure 4.11, which demonstrates selecting specific input 

parameters, setting up the environment, and generating desired outputs. The figure highlights 
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the key steps, from defining mutations to initiating simulations, making it accessible for novice 

and experienced users. 

 

                             
 

                             
 
Figure 4.11 Parser help interface for MDAM library. The Linux command line contains options and required user 
arguments for both mdprep.py and mutation.py workflows.  

 
Licensing and contribution 

 
MDAM is released under the GPL-3.0 license, ensuring the toolkit remains open-source and 

accessible to the broader scientific community. This license allows researchers and 

developers to freely use, modify, and distribute the software while requiring that any derivative 

work remains open source under the same license, allowing collaborative improvement of the 

toolkit. 
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The project is hosted on GitHub, and researchers and developers are encouraged to report 

issues, suggest improvements, and contribute directly to the codebase. A README file provides 

detailed installation instructions, usage guidelines, and examples to help new users get 

started. 

 

4.2.4 Testing 

 
MDAM’s capability to identify mutations that impact protein dynamics was tested through a 

proof-of-concept study conducted using ADK as a model system (see section 3.2.3). ADK is 

known for its significant dynamic allostery, with distinct open and closed states facilitated by 

the flexible LID and AMP-binding (AMPbd) domains. This example was chosen because 

ADK's dynamic behaviour has been extensively studied, providing detailed experimental 

insights into the effects of specific mutations on the protein’s conformational states. Song et 

al. [165] demonstrated how LID domain mutations, such as VAL135GLY and VAL142GLY, 

enhance interactions with the AMPbd domain, shifting ADK towards a more closed 

conformation (Figure 4.12). These specific mutations were set as a “target” dynamic outcome 

within the scanning process, enabling an evaluation of whether MDAM could identify these 

known mutations among all 20 other possible changes in each position. 

 

 

          

Figure 4.12 Structural illustration of ADK highlighting the domains and mutations. The left structure shows the WT 
in the open apo state, with the core domain in grey, the AMP-binding domain (AMPbd) in red, and the LID domain 
in blue. The right structure depicts the identified LID mutations (V135G and V142G, marked in magenta spheres), 
which enhance interactions between the LID and AMPbd domains, favouring a closed conformation. Additional 
mutations on the AMPbd domain (A37G and V55G, marked in yellow spheres) were included for completeness but 
were not the focus of this study. This representation demonstrates the successful identification of dynamic state-
altering mutations using MDAM, validated by experimental findings from Song et al. [165]. 
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In this scenario, the MDAM toolkit scanned with two specific positions in the LID domain, 

VAL135 and VAL142, but without prior knowledge of the exact mutation required at each 

position. By employing systematic and heuristic scanning approaches, MDAM aimed to find 

mutations that produced the desired conformational shift towards a closed state, mimicking 

the findings of Song et al. [165].  

 
MDAM’s mutation scanning process was optimised, and combinational complexity was 

reduced by grouping amino acids into five categories based on shared physicochemical 

properties: small non-polar, large non-polar, polar uncharged, positively charged, and 

negatively charged. This categorisation allowed for a focused selection of representative 

amino acids from each group, minimising the number of combinations while retaining a diverse 

range of mutational effects. Selecting one representative amino acid per group reduced the 

complexity from 20 x 20 = 400 to 5 x 5 = 25 combinations, making the scan computationally 

feasible. 

 

The following representatives were chosen for each group: 

 

 Group 1 (Small non-polar): Glycine (G) 

Glycine is a small, flexible amino acid commonly used in mutagenesis studies because 

it can introduce conformational flexibility. 

 

 Group 2 (Large non-polar): Leucine (L) 

Leucine, a frequently occurring amino acid, represents typical hydrophobic 

characteristics and is often found in protein cores. 

 

 Group 3 (Polar uncharged): Serine (S) 

Serine is small and polar, often used in mutagenesis studies for its ability to participate 

in hydrogen bonding while remaining uncharged. 

 

 Group 4 (Positively charged): Lysine (K) 

Lysine has a long side chain and basic properties, making it a typical representative in 

studies exploring charge effects on protein structure and dynamics. 

 

 Group 5 (Negatively charged): Aspartic Acid (D) 

Due to its small size and charge, Aspartic acid is frequently used as a representative 

acidic amino acid in mutagenesis studies. 
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Using these representative amino acids, the toolkit explored a manageable subset of the 

mutation landscape while capturing key physicochemical variations. This approach helped to 

perform the proof-of-concept study, where the objective was to identify known mutations (e.g., 

GLY substitutions) within the LID domain that induce a shift towards the closed conformation. 

This systematic reduction allowed for thorough exploration and computational efficiency, 

ensuring that the most impactful mutations could be identified effectively. 

 
For both the systematic and heuristic scanning processes, a list of potential mutations at the 

VAL135 and VAL145 positions was prepared to identify the set of mutations favouring the 

target closed conformation of ADK. Each scanning approach was set up to evaluate these 

mutations by generating the new mutated structures, running MD simulations, and comparing 

the dynamics of each mutant with the WT of ADK and the synthetic target distribution Each 

mutation was evaluated based on the COMDistance property between the LID and AMP-

binding domain. This measure typically shows a bimodal distribution representing these two 

conformations (open and closed state of ADK) (Figure 4.9). 

 
Systematic scanning approach 

 
In the systematic approach, MDAM iteratively evaluated all 25 combinations of the chosen 

representative amino acids (GLY, LEU, SER, LYS, and ASP) at the VAL135 and VAL142 

positions. The COMDistance between the of LID and AMPbd domains was calculated and 

compared to the synthetic target distribution for each combination. This target distribution 

represented a bimodal pattern characteristic of a transition to the closed state, with peaks 

reflecting both open and closed conformations (Figure 4.9). MDAM used the Bhattacharyya 

distance to quantify the similarity between each mutant's COMDistance distribution and this 

property’s WT or target distribution. Mutations producing a Bhattacharyya distance below the 

0.05 threshold were successful, indicating that the induced dynamics closely matched the 

desired closed conformation. 

 
Heuristic scanning approach 

 
In the heuristic approach, MDAM applied an adaptive selection strategy to streamline the 

scanning process further. MDAM initially tested random pairings of these residues at both 

positions, starting with the five representative amino acids. Based on the Bhattacharyya 

distance outcome, the heuristic approach eliminated less promising combinations (those with 

distances well above the 0.05 threshold), thereby reducing the search space and focusing on 

combinations that showed potential alignment with the target distribution. This iterative 
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exclusion strategy allowed for more efficient exploration of the mutation landscape, 

accelerating the identification of impactful mutations while maintaining computational 

feasibility. 

 

4.3 MDAutoPredict tool  
 
MDAP is a standalone toolkit developed to perform predictions using MD trajectories and ML 

methods. It uses a simplified representation of proteins as input data—Cartesian coordinates 

(x, y, z) of atoms—and generates frame-level predictions. MDAP can fully integrate with both 

MDSS and MDAM frameworks while also functioning independently for property prediction 

tasks. 

 
MDAP’s core contribution lies in its implementation of a modular, reusable Python package 

that integrates ML with MD workflows. The tool provides functionality to handle noisy MD data, 

streamline the prediction pipeline, and evaluate the effectiveness of ML methods for property 

prediction. 

 

4.3.1 Software design and core components 

 
MDAP is implemented as a modular Python toolkit that contains two primary classes: 

MDTrajLearner and MLProperty. 

 
MDTrajLearner class 

 
The MDTrajLearner class manages the ML pipeline. It generates input features by 

transforming trajectory data into a 2D matrix representation, trains ML models on this data, 

and evaluates their performance. The input features are derived from space atoms' Cartesian 

coordinates (x, y, z), representing the protein's conformations. The matrix representation 

ensures compatibility with standard ML workflows while maintaining flexibility for future 

integration with alternative data representations, such as graph embeddings. 

 
The generate_and_save_matrix method integrates with the MDSS ProteinData class 

(see section 4.1.1) and can convert MD trajectory data into a flattened matrix format, where 

each row corresponds to a frame, and the columns capture the spatial arrangement of atoms. 

This matrix is saved in .npy format, allowing efficient reuse in subsequent analyses. The 

train_and_test method can train user-specified ML models and store the trained model 
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as a binary object. Performance metrics such as accuracy, confusion matrices, and 

classification reports are logged and saved for further evaluation. 

 
MLProperty class 

 
The MDTrajLearner class extends the ProteinProperty class in MDSS, enabling ML 

predictions to label trajectory frames or return predicted values for the desired properties. It 

incorporates a trained ML model to predict frame-level properties directly from the input data. 

The calculate_property method applies the model to predict property values for all 

frames, storing the results in the property_vector attribute. The class also provides 

functionality for assigning and exporting labels to trajectory frames. 

 
Thanks to the modularity of these two classes, the MDAP toolkit can operate independently 

or be wholly integrated with other tools like MDAM and MDSS. The design allows users to test 

different ML methods, preprocess noisy trajectory data, and annotate frames with predicted 

labels, all within a cohesive framework. 

 

4.3.2 Functionality 

 
MDAP is a supervised ML tool that analyses the trajectory data of MD simulations to build a 

predictive model. It can classify protein conformational states into distinct categories based 

on their structural features. The tool provides a flexible ML framework for classifying protein 

conformational states or other properties from MD simulations.  

 
MDAP takes pre-processed trajectory data and structural labels as input. The output (i.e. the 

target variable) consists of predicted conformational states. 

 
Data transformation  

 
MDAP leverages MDSS to preprocess MD trajectories into an ML-compatible format. MDSS's 

ProteinData module can transform trajectories from 3D atomic coordinate matrices into 2D 

tabular datasets. In this representation, rows correspond to trajectory frames, while columns 

encapsulate cartesian coordinates, making the data readily usable for supervised learning 

algorithms. 

 
Target variable definition  

 



 

Design, implementation, and testing 

 

 

 97 

Labels for conformational states are derived through a density-based clustering approach (see 

section 5.4.1). This method projects the trajectory data onto a two-dimensional principal 

component analysis (PCA) space, where high-density regions correspond to free energy 

minima associated with biologically relevant conformational states (e.g., open, closed, 

intermediate) (Figure 5.33). Frames outside these clusters are classified as non-states, 

ensuring comprehensive labelling of the trajectory. 

 
Supervised classification framework  

 
MDAP’s classification framework is modular and extensible, allowing researchers to integrate 

and apply several ML models to their data. The methods.py module provides a dictionary-

based structure for quickly adding new classifiers, enabling users to adjust the toolkit to their 

specific research questions and systems. 

 

4.3.3 Software implementation and accessibility 

 
MDAP was developed as an object-oriented Python library integrated with well-established 

packages such as MDAnalysis, numpy, scikit-learn, joblib, and MDSS. MDAP was developed 

and tested using Visual Studio Code [181] and was packaged with Poetry [179]. MDAP is 

compatible with Python 3.9. 

 
Usage and example workflow 

 
The workflow.py script allows users to easily modify input paths, model parameters, and 

output settings. Its modular design ensures ease of use and extensibility to integrate additional 

ML models or features, ensuring that MDAP can adapt to different research questions. 

 
Licensing and Contribution 

 
MDAP is currently being finalised for open-source release. Once complete, the GitHub 

repository will be made public, allowing users to contribute to its development. The repository 

will include the codebase, detailed documentation, and example workflows to guide users in 

applying MDAP to their research. 

 

4.3.4 Testing 
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The functionality and performance of MDAP were validated to ensure its robustness and 

reliability in analysing MD trajectories and predicting protein conformational states. Testing 

focused on evaluating MDAP's ability to classify conformational states using supervised ML 

models, ensuring the tool could handle complex datasets effectively and provide accurate 

predictions. 

 
The testing was initially conducted using the second replica of DM (1 μs) on ADK (see 3.2.4 

and 3.3) generated for the MDAM testing. The trajectory was subsampled at 40 ps intervals 

to produce a manageable dataset of 25,001 frames while maintaining a representative view 

of the system's conformational dynamics (open and closed state of ADK). 

 
Six machine learning models were selected for comparison: Decision Tree, Random Forest, 

Gradient Boosting, Support Vector Machine (SVM), Logistic Regression, and Multilayer 

Perceptron (MLP). These techniques, which involve tree-based, ensemble, linear, and Neural 

Network-based techniques, were selected for their effectiveness in classifying ML predictions. 

They offer a balanced performance evaluation across different datasets.  

 
The trajectory dataset was split into training (70%) and testing (30%). Each model was trained. 

Standard metrics like precision, recall, and F1 Scores were used to compare their 

performances. This comparison evaluated the models' capacity to categorise dominant and 

transitional conformational states in detail. 

 
The outputs from MDAP were validated through comprehensive visual and statistical 

evaluations, including confusion matrices, calibration curves and precision-recall graphs. 

These validation steps provided critical insights into the reliability and confidence of the 

models, ensuring that MDAP's predictions aligned with the underlying biological dynamics.  

 
MDAP was demonstrated as a flexible and reliable tool for analysing protein conformational 

states in MD datasets by integrating diverse ML methods and rigorous evaluation metrics. 

 

4.4 Summary 
 
This chapter presented the design, implementation, and testing of MDSS, MDAM, and MDAP. 

By integrating these toolkits into a unified framework, the chapter demonstrated how these 

tools address key challenges in subsampling and preprocessing MD data, rational redesign of 

protein dynamics through mutation scanning, and applying ML to predict protein states. The 

combined approach highlights how design, implementation, and testing ensure robust, 
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reproducible, and scalable workflows. These tools collectively form a reliable pipeline that 

advances the field of computational protein engineering by automating the process of 

redesigning protein dynamics. 
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5 Results 
 
This chapter presents the research findings, focusing on the MD simulations conducted on 

ADK, the model protein system. The results are structured into four key sections. The first 

section presents the results from MDSS, a tool developed to perform a posteriori subsampling 

of MD trajectories while preserving relevant geometric properties. The second section focuses 

on the validation data generated as part of the proof-of-concept study for the MDAM 

framework, which demonstrates the dynamic behaviour of the ADK system for the WT and 

other mutants. The results for MDAM are presented in the third section, particularly its 

automated workflows for introducing mutations and assessing their impact on protein 

dynamics. Finally, the fourth section provides the results for MDAP by performing a 

classification prediction of protein states.  

 

5.1 MDSubSampler results 
 
Three use-case scenarios are presented to demonstrate the potential uses of MDSS: random 

sampling for size reduction, pocket sampling for ensemble docking and sampling by most 

frequently observed conformations. An example of an advanced scenario was implemented, 

machine learning prediction, to demonstrate the tool’s expansion into more complicated 

workflows. The testing of MDSS was conducted using a 1 µs trajectory with a timestep of 2 fs, 

resulting in datasets comprising approximately 100,000 frames. Chapter 3 (section 3.2.2) 

provides information regarding the simulations. The simulation could sample both ADK states, 

so the trajectory contains frames with a close protein conformation. 

 

5.1.1 Scenario: random sampling for size reduction 

 
In this scenario, MDSS was tested for its ability to perform random subsampling of MD 

trajectory data, specifically focusing on preserving the RMSD distribution of Cα atoms in a 

protein structure. The goal was to identify the smallest subset of frames that retained the key 

structural features of the original trajectory while reducing dataset size. 

 
The RMSD over Cα atoms was calculated for each frame of the ADK trajectory relative to a 

reference structure (open conformation after minimisation and thermalisation in the solvent of 

the crystallographic structure). All frames were superimposed onto the reference structure 

before computing RMSD to remove rigid roto-translation and estimate structural variability only 

from intrinsic dynamics. The distribution of the RMSD value of Cα atoms along the full 



 

Results 

 

 

 101 

trajectory of the ADK system, comprised of 100,000 frames, reveals a bimodal distribution 

indicative of two dominant conformations: a closed state and an open state of the ADK LID 

domain (Figure 5.1). The preservation of the bimodal RMSD distribution is critical because it 

reflects the dynamic transition between the open and closed conformations of the ADK LID 

domain, which are functionally significant for substrate binding and product release.      

                           

Figure 5.1 RMSD distribution for random sampling at 2.5% of the total trajectory frames (100,000 frames reduced 
to 2,500 frames). The comparison between the full trajectory (orange) and the subsampled set (purple) 
demonstrates that 2.5% preserves the bimodal distribution of RMSD values corresponding to the two dominant 
conformational states of the ADK protein. These states are identified as the “closed” (RMSD ~7.05 Å) and “open” 
(RMSD ~3.00 Å) conformations of the ADK lid domain. The Bhattacharyya distance used to quantify the similarity 
between distributions is minimal (0.057), confirming that the subsample successfully retains the key structural 
dynamics of the original trajectory while achieving significant data reduction. 

 
The performance of the random sampling technique for size reduction was accessed through 

the following: subsets of the trajectory were selected at varying sizes (0.25%, 0.5%, 1%, 2.5%, 

5%, 10%, 20%, 25%, and 50% of the total 100,000 frames). The distributions of RMSD values 

for each subset were compared to the full trajectory using Bhattacharyya distance as a 

dissimilarity metric. The Bhattacharyya distance is a statistical metric that measures the 

difference (i.e. similarity) between two probability distributions. Lower values of the measure 

indicate greater similarity between the two distributions. 

 
The comparison across all subsets highlights a trend: as the sample size increases, the RMSD 

distribution of the subsampled data progressively converges with that of the reference (i.e. full) 

trajectory (Figure 5.2). While smaller subsets such as 0.25% and 0.5% (250 and 500 frames, 
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respectively) showed notable dissimilarity (Bhattacharyya distance values of 0.574 and 0.337, 

respectively), larger sample sizes displayed reduced dissimilarity (Figure 5.2). Specifically, a 

2.5% sample size (2,500 frames) achieved a Bhattacharyya distance of 0.057, indicating 

preservation of the bimodal RMSD distribution with both peaks for open and closed states 

while maintaining a substantial reduction in data size (Figures 5.1, 5.2). Given the 

computational cost and storage requirements of handling 100,000 frames, reducing the 

dataset to 2.5% (2,500 frames) offers an excellent advantage for downstream analyses, such 

as ML pipelines or ensemble docking studies, without compromising structural accuracy. 

 

 

 

Figure 5.2 Presentation of results for “Random sampling for size reduction” scenario: The distributions of RMSD 
are compared over the coordinates of Cα atoms between the original and subsampled trajectories of the following 
sample sizes: 0.25%, 0.5%, 1%, 2.5%, 5%, 10%, 20%, 25%, and 50%. The Bhattacharyya distance was the 
dissimilarity measure selected to calculate the difference between the two distributions for each sample size. A 
sample of 2.5% is the smallest subset for which the shape and peak location of the distribution of RMSD is 
preserved.  

 

5.1.2 Scenario: pocket sampling for ensemble docking 

 
The second scenario evaluated the ability of MDSS to capture structural diversity in a protein’s 

binding pocket, ensuring even representation of conformations across the range of pocket 
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openings. This scenario could be useful in ensemble docking studies, where an accurate 

representation of pocket geometries enables effective ligand binding analyses. 

 
The RMSD values of Cα atoms for the binding pocket LID (residues 120-160) were calculated 

for all frames of the ADK’s trajectory after fitting to the reference structure. The resulting RMSD 

distribution revealed a continuous range of conformational states, from the fully closed to the 

open lid. Uniform sampling was done by dividing the range of RMSD values into 200 intervals, 

and 10% of the frames within each interval were selected randomly. This uniform sampling 

strategy ensured that the subset of frames proportionally covered the entire range of pocket 

openings.       

 
The effectiveness of this approach was validated by comparing the RMSD distributions of the 

subsampled trajectory and the original full trajectory. As shown in Figure 5.3, the RMSD 

histogram of the subsampled set (purple) equally spans the range of values in the original 

trajectory (orange) (Bhattacharyya distance is 0.127), confirming the proportional 

representation of the pocket conformations. The result demonstrates that the uniform 

sampling method effectively preserves the structural representations within the binding pocket 

while reducing the dataset size. Such equal sampling of pocket geometries is beneficial for 

ensemble docking analyses, where accurate and diverse conformations are essential for 

predicting ligand-binding interactions [182]. 

               

Figure 5.3 Summary result for “Uniform sampling of pocket opening for ensemble docking” scenario. RMSD over 
the Cα atoms of the ADK LID was calculated for all frames. The range of RMSD values from closed to open state 
was divided into 200 intervals, and for each interval, a random sample of 10% of frames was selected. This set of 
frames equally samples the range of possible openings for the protein's binding site. The difference between the 
sampled and original distributions was calculated using Bhattacharyya distance. 
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5.1.3 Scenario: sampling by most frequently observed conformations 

 
The third scenario evaluated MDSS’s ability to generate a representative subsample that 

captures dominant and less frequent conformational states within an MD trajectory. By 

prioritising frames based on the frequency of reference property, this approach allows for a 

more balanced representation of the trajectory’s structural states, removing any bias toward 

the most frequent confirmation. 

 

 

Figure 5.4 Summary results for “Weighted sampling of pocket openings for ensemble docking” scenario. RMSD 
values for ADK LID opening were calculated for each frame. The range of values was then discretised in 100 bins, 
and frequency counts were recorded for each bin and used as a weight for each frame. The resulting set of frames 
was 10% of the original trajectory and was extracted by weighted random sampling. This set contains random 
structures selected from the most frequently observed conformations in the original trajectory. As a result, an 
enrichment of the close conformations was generated compared to unweighted random sampling. 

 
The RMSD values of Cα atoms in the binding pocket LID (residues 120-160) were calculated 

for each frame relative to a reference structure. These RMSD values were then discretised 

into 100 bins, where the frequency of each bin represented the number of frames with RMSD 

values in that range. A weighting vector was generated based on these frequencies, which 

informed the weighted random sampling process. This method ensures that frames are 

selected proportionally across all conformational states, regardless of their frequency in the 

original trajectory. 
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Using weighted random sampling, 10% of the total frames (10,000 out of 100,000) were 

selected. This strategy successfully enriched the representation of less frequent 

conformations—particularly the closed state—while maintaining the dominant conformations, 

such as the open state. Compared to unweighted random sampling, which tends to favour the 

most frequent conformations, the weighted approach achieved a more balanced distribution 

of states, as shown in Figure 5.4. 

 
The RMSD histograms illustrate the following:  both open and closed conformations are 

equally represented in the subsampled trajectory, demonstrating the effectiveness of the 

weighted strategy in avoiding bias. The effectiveness of the weighted sampling strategy was 

further quantified with a Bhattacharyya distance value of 0.067 for a 10% sample size, 

indicating a strong alignment between the weighted subsample and the original RMSD 

distribution. Comparatively, smaller sample sizes (e.g., 2.5% with 0.116) showed more 

significant dissimilarity, highlighting the importance of sample size in achieving a balanced 

representation of both states. 

 

5.1.4 Advanced scenario: machine learning prediction 

 
This scenario demonstrates the ability of MDSS to prepare subsampled trajectory data for ML 

workflows, enabling the prediction and classification of protein conformational states. The goal 

is to offer a combined solution to sample and reshape frame coordinates to a suitable format 

for ML tasks. The workflow begins with subsampled trajectory frames saved as NumPy arrays, 

which are then reshaped from their original 3D format (atoms × Cartesian coordinates × 

frames) into a 2D tabular format. In this transformation, each row represents a trajectory frame 

(F1, F2, …, Fn), while the columns correspond to the atomic Cartesian coordinates that serve 

as features for the ML models (Figure 5.5).    

The input data, therefore, consists of atomic coordinates extracted from the trajectory, which 

capture the structural state of the protein at each frame in the format of single observations 

over a series of variables (the cartesian coordinates in this case). To enable supervised 

learning, a target variable was added to represent the conformational state of the protein 

(Figure 5.6). For the purpose of this scenario, a simple state label was created for each frame. 

These labels were generated using a combination of geometrical information and expert 

choices, to avoid a trivial ML task where there is linear dependency between input and output 

variable.  
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Figure 5.5 Transformation of subsampled trajectory data into a machine learning-compatible format. The input 
matrix consists of atomic Cartesian coordinates for each trajectory frame (F1, F2, ..., Fn), while the target variable 
corresponds to the manually labelled protein states: Open (O), Closed (C), and Noise (N). 

 
First a conformation space was created using two informative variables for the process: Rg 

and distance between two key residues (G55 and P127). Then density analysis was performed 

on the space to detect high-density region putative to be minima in the conformational space 

(see Figure 5.6). Frames in the high-density region corresponding to higher Rg and distance 

values were labelled as the open state (O), frames with lower values were categorised as the 

closed state (C), and all remaining frames were assigned as noise (N). This manual labelling 

process effectively translates the complex protein dynamics into three clearly defined states 

that can be predicted using ML.  

 

                      

Figure 5.6 Approximate view of the conformational space representation using Radius of Gyration (y-axis) and 
distance between two key residues (x-axis). The open state (O) corresponds to larger Rg and distance values, 
forming a distinct cluster in the upper region. The closed state (C) forms a separate cluster in the lower region, with 
reduced Rg and distance values. Frames scattered outside these clusters are labelled as noise (N). 
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Given a target label, a model was trained on 70% of the frames and tested on the remaining 

30%. The evaluation performance for all three ML methods used was done through 

assessment of accuracy, Cohen’s Kappa scores, and confusion matrices to assess their ability 

to classify the protein conformational states. 

 
Cohen’s Kappa score is a statistical metric used to assess the level of agreement between 

predicted and actual labels while adjusting for the likelihood of chance agreement. A score of 

1 signifies perfect agreement, whereas a score of 0 indicates no agreement beyond what is 

expected by chance. This metric provides a more robust evaluation than accuracy alone, 

particularly for imbalanced datasets or multi-class problems such as the classification of 

protein conformational states. 

 
Logistic Regression (LR):  

 
LG achieved an accuracy of 76.72% and a Cohen’s Kappa score of 0.62, providing a reliable 

baseline for comparison. However, the confusion matrix (Figure 5.7, top) highlights challenges 

in correctly classifying the Open and Noise states due to their overlapping structural 

properties. While the model successfully identifies the Closed state, it frequently misclassifies 

frames between the other two states. 

  

 

                       

Figure 5.7 Confusion matrices for the three machine learning models—Logistic Regression (top), Random Forest 
(middle), and Support Vector Machine (bottom)—were used to predict protein conformational states. Each matrix 
shows the distribution of actual and predicted labels for the Open (O), Closed (C), and Noise (N) states. The best 
performance is achieved by the Random Forest model, as it is correctly classifying most frames with minimal 
misclassification. 
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Random Forest (RF): 

 
The RF model delivered the best performance, achieving an accuracy of 91.31% and a 

Cohen’s Kappa score of 0.85, indicating close agreement with the ground truth labels. The 

confusion matrix (Figure 5.7, middle) shows excellent classification across all three states, 

with minimal misclassification of frames between Open, Closed, and Noise states. This result 

reflects the model's robustness in capturing complex, non-linear relationships within the 

feature space. 

 
Support Vector Machines (SVM): 

 
The SVM classifier achieved an accuracy of 81.85% and a Cohen’s Kappa score of 0.69. The 

confusion matrix (Figure 5.7, bottom) reveals that the model performs well for the Closed state, 

accurately distinguishing it from the other two states. However, it struggles to differentiate 

between the Open and Noise states, leading to misclassifications where structural properties 

overlap. 

 

5.2 Validation of MD simulations for proof-of-concept 
 
The following section presents the results of the MD simulations conducted on the ADK 

system, including the WT, single mutants V135G and V142G and the double mutant (DM) 

V135G_V142G. The results highlight the structural differences induced by the mutations and 

their subsequent impact on protein dynamics. The primary objective was to assess whether 

these mutations facilitate the sampling of the closed state.  The evaluation was carried out 

through an examination of geometric properties.  

 

5.2.1 Rationale for generation and validation of MD data for MDAM 

 
The generation and validation of MD simulations were crucial for evaluating the MDAM toolkit. 

The goal was to provide a validated reference dataset and use it to test MDAM’s ability to 

evaluate the dynamic impact of mutations in ADK automatically. The choice of mutants and 

the decision to run microsecond simulations builds upon a study by Song et al. [165], which 

relied on relatively short simulation timescales (100 ns). Simulations on a longer timescale 

would better verify that specific mutations (V135G, V145G) impact ADK's closure.  

 
While initial simulations were conducted for 300 ns trajectories across 10 replicas, these did 

not capture the closure of ADK in any replicas. Therefore, only the results from the 1000 ns 
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trajectories are reported in this section. These extended simulations allowed for a more 

complete sampling of ADK’s open and closed states, with ADK’s closure being observed only 

in the second replica of the DM simulation. This extension enabled comparisons between WT, 

single mutants, and DM, validating the effect of mutations in ADK’s closure. 

 

5.2.2 Data integrity and trajectory validation 

 
The integrity of the generated trajectories was first validated using gmx check -f to ensure 

that the files were not corrupted or that there were no data inconsistencies. Additionally, visual 

inspection with VMD [175] confirmed dynamical changes without anomalous disruptions. 

These validations established reliable MD data datasets for further dynamic analyses. 

 
 
Geometric properties: assessing dynamics 

 
The geometric properties of the system were analysed to validate its dynamic behaviour and 

assess the closure of ADK. Properties evaluated include RMSD, RMSF, Rg, the distance 

between key residues (P127 and G55), and the COM Distance. For the time series plots, a 

single replica per structure (WT, V135G, V142G, DM) was used to illustrate representative 

behaviour over the simulation time.  

 
Trajectories from all five replicas of 1000 ns simulations across all four structures were 

concatenated and compared for distribution plots. An exception was made for the COM 

Distance analysis, where only the second replica of the 1000 ns simulations for WT and DM 

was used to generate the density plot. This combined approach provided a complete view of 

the system’s stability and dynamic sampling through time series and distribution analysis. 

 
1. RMSD: Calculations were performed on the Cα atoms of the protein to measure 

deviations from the initial structure. As shown in Figure 5.8, the time series analysis 

revealed that the WT, single mutants and DM systems stabilised after the equilibration 

phase. While the WT exhibited relatively consistent RMSD values throughout the 

simulation, the DM demonstrated higher fluctuations at specific points, indicating 

increased sampling of conformational variability. This behaviour suggests that the DM 

has a greater propensity to explore distinct conformational states, which is consistent 

with its role in promoting domain closure in ADK. 
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Figure 5.8 Time series RMSD analysis of ADK Cα atoms. The plot shows the smooth-running average of RMSD 
throughout the simulation for the WT (red), single mutants V135G (blue) and V142G (green), and the double mutant 
(DM) V135G/V142G (purple). While all systems stabilise after equilibration, the DM exhibits higher RMSD values 
intermittently, reflecting increased conformational flexibility. 

 

                         
 
Figure 5.9 Density distribution of RMSD values for WT and DM systems. The plot compares the RMSD distributions 
for WT (blue) and DM (red). The WT system shows a unimodal distribution centred around 3 Å. In comparison, the 
DM system displays a bimodal distribution with peaks at 3 Å and 7 Å, indicating sampling of both open and closed 
states. 

 
The density plot in Figure 5.9 highlights the distinct dynamic behaviour of the WT and 

DM systems. The WT trajectory exhibits a narrow unimodal distribution, centred 

around ~3.00 Å, indicating a stable open-state conformation throughout the simulation. 
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In contrast, the DM shows a bimodal distribution, with peaks near ~3.00 Å and ~7.00 

Å. This bimodal behaviour reflects the DM’s ability to sample both open and closed 

states, suggesting that the combined V135G and V142G mutations (i.e. DM) facilitate 

transitions to the closed-state conformation. These results provide evidence that the 

mutations promote the closure of ADK, which is consistent with the study’s objectives 

[165].      

 
2. RMSF: Calculations were performed on the Cα atoms of the protein to evaluate the 

flexibility of individual residues within the ADK structure. As shown in Figure 5.10, the 

RMSF analysis highlights regions of increased flexibility, particularly in the LID 

(residues 120–160) and AMPbd (residues 30–60) domains, which are functionally 

important for ADK closure. WT and DM display similar overall flexibility patterns, with 

peaks in the same regions. However, the DM shows slightly higher fluctuations in the 

LID domain, consistent with its enhanced capacity to transition into the closed 

conformation. This increased flexibility in the LID domain is likely a key factor driving 

the observed differences in the dynamic behaviour between the two systems. The 

single mutants, V135G and V142G, exhibit intermediate flexibility, with V142G showing 

slightly more significant fluctuations than V135G. 

 

                         

Figure 5.10 RMSF analysis of Cα atoms in ADK. The plot displays residue-wise RMSF for WT (purple), single 
mutants V135G (green) and V142G (blue), and double mutant (DM) V135G/V142G (red). Peaks in the LID 
(residues 120–160) and AMPbd (residues 30–60) domains indicate higher flexibility, with the single mutants 
showing moderate increases in LID fluctuations. At the same time, the DM exhibits the most pronounced flexibility, 
facilitating conformational transitions. 
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3. Radius of Gyration (Rg): Calculations were done to evaluate the compactness of the 

ADK structure throughout the simulations. The time series data in Figure 5.11 confirm 

that all four systems maintain consistent Rg values, with no significant collapse or 

expansion observed during the trajectories. This stability in Rg suggests that the 

overall structural integrity of the protein is preserved across all variants. 

                
Figure 5.11 Time series Rg analysis for ADK. The plot shows Rg values over time for WT (green), single mutants 
V135G (red) and V142G (blue), and the double mutant (DM) V135G/V142G (purple). Stable values across all 
systems indicate maintained structural compactness during the simulations. 

 

                  

Figure 5.12 Rg density distribution for ADK. The plot compares Rg distributions for WT (blue) and DM (red). The 
WT exhibits a unimodal distribution centred near 19.5 Å, while the DM shows a broader, bimodal distribution, 
indicating increased conformational diversity.  
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The WT exhibits a unimodal Rg distribution centred near ~19.5 Å, indicative of a stable 

and predominantly compact state throughout the simulation (Figure 5.12). In contrast, 

the DM shows a broader, bimodal distribution with peaks near ~19 Å and a secondary 

peak around ~17 Å. Therefore, the DM's ability to sample a more diverse range of 

conformational states is consistent with occasional structural rearrangements and 

domain movements that facilitate transitions toward the closed conformation.  

 
4. Distance between key residues: The distance between two key residues, P127 (on 

the LID domain) and G55 (on the AMPbd domain), was calculated to evaluate ADK’s 

closure mechanism. The distribution of these distances, shown in Figure 5.13, 

highlights key differences between the variants.  

 

 

                            

Figure 5.13 Distance distribution between residues P127 and G55 in ADK. The plot compares the distributions of 
distance between these two residues for WT (blue) and DM (red). The WT shows a unimodal distribution at ~27 Å, 
while the DM displays a bimodal distribution with peaks at ~25 Å (open state) and ~5 Å (closed state).  

 

The WT exhibits a unimodal distribution centred near ~25 Å, representing a 

predominantly open conformation. In contrast, the DM shows a bimodal distribution, 

with one peak near ~23 Å corresponding to the open state and a second peak near ~8 

Å corresponding to the closed state.  

 
5. COM Distance: The closure of ADK was assessed by calculating the COM Distance 

between the LID (residues 120–160) and AMPbd (residues 30–60) domains. This 
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property is a robust indicator of the conformational state of ADK, as a reduction in COM 

Distance correlates directly with the transition toward the closed state. As shown in 

Figure 5.14, the WT maintains a consistent COM Distance, indicative of a 

predominantly open state. In contrast, the DM displays a bimodal distribution with a 

with two peaks, reflecting its ability to sample closed conformations.  

 

                

 
Figure 5.14 COM Distance distribution for ADK between the WT and the DM. The plot compares the COM distance 
between the LID and AMPbd domains for WT (blue) and DM (red). The WT exhibits a distribution centred near ~35 
Å, consistent with an open state. In comparison, the DM shows a bimodal distribution with two peaks near ~33 Å 
and ~22 Å, indicative of both open and closed states respectively. This plot was derived using only the second 
replica of the 1000 ns simulations for WT and DM. 

                        
Energy and temperature stability 

 
The stability of the simulations was assessed by analysing potential energy and system 

temperature, using gmx eneconv and gmx energy to combine and extract data from energy 

files. Across all structures and replicas, the system temperature remained steady at the target 

level (~300 K), confirming the proper functioning of the thermostat. Similarly, total energy 

exhibited no significant drifts or trends in any simulation, demonstrating energetic stability 

throughout the trajectories. 

 
Figure 5.15 illustrates the energy and temperature profiles for the second replica of the DM 

structure. The total energy remains constant, with no evidence of instability, while the 
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temperature profile shows consistent values around ~300 K, confirming the reliability of the 

simulation conditions. 

 

 

Figure 5.15 Example energy and temperature profiles for the DM Structure (Second Replica). Left: Total energy, 
confirming the energetic stability of the system. Right: The system's temperature profile demonstrates stable 
temperature around the desired ~300 K. These results represent observations across all structures and replicas. 

 
Advanced analysis: Principal Component Analysis (PCA) 

 
PCA was performed to analyse the protein’s collective motions and distinguish differences in 

the conformational sampling between the WT and the DM of ADK. PCA calculations were 

carried out on concatenated trajectories of the Cα atoms, enabling the identification of key 

motions captured by the first two principal components (PC1 and PC2). PC1 and PC2 

explained approximately 63% of the total variance, with PC1 describing the primary motion of 

domain closure and PC2 capturing the LID’s twisting movement during closure. The 

projections of individual replicas onto the PC1-PC2 space are shown in Figure 5.17.  

 
The density plots reveal distinct conformational sampling behaviours for WT and DM. The WT 

primarily occupies a high-density region near the origin and exhibits limited movement toward 

the closed state within the simulation timescale. In contrast, the DM displays broader 

sampling, including direct transitions to the closed state, emphasising the mutations’ role in 

facilitating ADK’s closure. These findings align with the results by Song et al. [165] even when 

extending them to longer timescales. 
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Figure 5.16 PCA Projections for WT and DM. Density plots of the PC1-PC2 space show WT (blue) primarily 
sampling open and intermediate conformations, while DM (magenta) samples closed states. Data is based on five 
concatenated replicas for each structure. 
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Porcupine plots were generated to interpret further the motions captured by PC1 and PC2 

(Figure 5.16, right). These plots visualise the direction and collective motions associated with 

each PC: 

• PC1: Captures the closing motion of the LID and AMPbd domains toward the catalytic 

core of ADK, consistent with functional closure. 

• PC2: Represents a twisting of the LID domain that happens during the closing motion. 

 
Figure 5.16 (left) provides an approximate view of the conformational space sampled by the 

WT and DM systems, aggregated across all five replicas. The density contours in the PC1-

PC2 space reveal key differences in sampling behaviour. The WT primarily occupies a high-

density region near the origin, representing the open and intermediate conformations. In 

contrast, the DM shows a broader distribution, extending into regions associated with the 

closed state. The secondary cluster observed for the DM reflects its ability to directly sample 

the closed conformation, highlighting the impact of mutations in facilitating ADK closure. This 

plot offers a qualitative perspective on how the mutations influence the conformational 

landscape. 

 

                                                                                                                  

 

Figure 5.17 Right: Porcupine plots of PC1 and PC2. The plots illustrate the direction (arrows) and magnitude (length 
of arrows) of motions associated with PC1 and PC2. PC1 captures domain closure, while PC2 depicts lateral shifts 
of the LID domain. Left: Combined PCA Density for WT and DM Systems. The plot shows an approximate view of 
the conformational space sampled by WT and DM in the PC1-PC2 projection. WT primarily samples the open state, 
while DM exhibits broader sampling, including transitions to the closed states. 
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5.3 MDAutoMut results 
 
This section provides the results from validating the MDAM toolkit, focusing on its ability to 

automatically generate simulations, introduce mutations and evaluate their impact on ADK’s 

protein dynamics. The impact of mutations was assessed by analysing the distributional 

differences of COM Distance between each mutant and the WT and a target distribution for 

COM Distance. This analysis used MDSS’s property and dissimilarity classes to quantify which 

mutant approximates the desired dynamic behaviour. 

 

MDAM includes functionality to quickly generate distribution plots for visualising results, which 

are saved in the output folder for immediate analysis. However, for this thesis, the plots were 

refined and enhanced using R [176] to ensure a more polished presentation. 

 
The proof-of-concept demonstrated the toolkit’s capability to identify mutations at specific 

positions (135,142) that could influence ADK’s dynamics to approximate a target conformation 

(closed conformation). Both single and double-mutation workflows were explored. Single 

mutations systematically evaluated all 20 possible amino acid substitutions at positions 135 

and 142 separately. For double mutations, the combinational complexity of testing all 400 

possible pairs of amino acid substitutions was reduced by grouping amino acids into five 

categories (e.g., minor non-polar, large non-polar, polar uncharged, positively charged, 

negatively charged). Representative amino acids from each group were selected for 

systematic testing, resulting in 25 combinations. Additionally, a heuristic approach was 

employed to refine the search space further and focus on the most promising double mutants. 

 
Short simulations of 50 and 200 ps were initially run to test the proof-of-concept. These short 

simulations ensured that the tool could automate the mutation workflow and generate valid 

outputs. Following the tool’s deployment on ARCHER2, the goal was to extend these 

simulations to longer timescales, such as 500 ns or 1000 ns, for more robust validation of the 

mutations’ impact on ADK’s closure. 

 

5.3.1 Mutation workflow  

 
The mutation workflow (Figure 3.4) (mutation_workflow.py) within MDAM was 

implemented using PyRosetta. This automated process introduces one, two, or more 

mutations through a defined list of target positions and substitutions. It simplifies mutation 
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generation and integrates seamlessly into the pipeline, ensuring consistency and 

reproducibility across multiple systems. 

 

  

                 

Figure 5.18 Information and log file for the mutation workflow of MDAM. The top panel shows the WT for ADK 
structure (left) and the generated V135G mutant structure (right). The bottom panel displays the logging output, 
detailing the mutation at position 135 and the associated Rosetta energy calculations before and after the mutation, 
emphasising its impact on structural stability. 

 
The workflow modifies the structure for single mutations by substituting a specified amino acid 

at the desired position in the PDB file. The changes are logged throughout the workflow, 

providing a detailed record of the mutation, including the specific position, the substituted 

amino acid, and any energy changes calculated by Rosetta. Figure 5.18 (top) shows this 
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example, where the single mutation V135G was introduced, and the modified PDB structure 

was generated. 

 
The system’s Rosetta energy was calculated before and after the mutation engineering to 

assess the impact of each mutation. These energy values indicate the system’s stability 

following the mutation. The results demonstrate the workflow’s ability to modify structures 

while maintaining structural integrity efficiently. Figure 5.18 (bottom) shows the workflow’s 

logging output sample, including the mutation details and corresponding energy calculations.  

 

5.3.2 System preparation and simulation workflow 

 
The system preparation and simulation workflow (Figure 3.4) (mdprep_workflow.py)within 

MDAM utilises the gmxapi python interface from GROMACS software, automating the 

preparation and production of MD simulations. This workflow follows a sequence of 10 steps, 

ensuring the consistent preparation of the system with gradual thermalisation and equilibration 

before the production phase (see section 3.2.3). For this test case, a predefined recipe, 

detailed in the Methods chapter, was used to prepare and simulate the system.  

 

               

Figure 5.19 Log file for mdprep workflow in MDAM. Details all the sequential steps, including energy minimisation 
and equilibration is provided. The file represents only a sample of the full log.  

 
Figure 5.19 provides a sample logging file overviewing the workflow’s sequential progression. 

Additionally, the workflow’s execution generated a structured directory and subdirectory 

system to organise all input, intermediate, and output files. Figure 5.20 provides a structured 

view of the directories. 
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This pipeline not only automates the traditionally manual and error-prone steps of system 

preparation but also ensures compatibility with subsequent analyses by following a 

standardised recipe that can be adjusted. Additionally, the workflow was designed with a clear 

structure and detailed logging, making it easy to debug and troubleshoot errors if they arise 

during the preparation or simulation process. 

 

               

Figure 5.20 Hierarchy of directories generated by the MDAM mdprep workflow, ensuring systematic management 
of input, intermediate, and output files for streamlined analysis and debugging. 

 

5.3.3 Full MDAM workflow  

 
This section presents the outcomes of the complete MDAM workflow, including the systematic 

exploration of single and double mutations and the heuristic approach for double mutants. By 

integrating mutation engineering, system preparation, and MD simulations, the MDAM 

workflow provides an efficient automated pipeline for identifying mutations that promote 

desired conformational changes in ADK.  

 
To demonstrate the complete workflow, an example of a log file is presented in Figure 5.21 for 

the heuristic approach, capturing all steps involved in the analysis. A hierarchical 

representation of the output directories and files is also shown in Figure 5.22 (left), and an 

example of a mutation list used as input is presented on the right. In order to perform the proof-

of-concept, the results focus on evaluating the effectiveness of mutations by calculating the 

COM Distance between the AMPbd and LID domains of ADK. Calculations were done with 
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the MDSS library. It then measured the distance between the distributions of COM Distance 

for each mutant with WT and the target distribution (see section 4.2.2 and Figure 4.9).  

 

 

Figure 5.21 Log file for the full MDAM workflow for the proof-of-concept analysis. The panel shows an example log 
file, capturing all steps involved in the double mutation heuristic approach. 

 
Due to the constraints of computational resources, the workflow was tested using an approach 

based on a “dry run” where simulations are precalculated and the MDMA workflow is executed. 

The simulations used in testing were derived from 500 ns trajectories (see section, chapter 3), 

processed using a stride of 20 ps with GROMACS to produce 25,000 frames per trajectory for 

all tested mutants, including the WT. As discussed in Chapter 4 (see section 4.2.4), to reduce 

the combinational complexity, only 5 representative amino acids were used for the testing. 

Therefore, 25 pairs of mutations were generated and evaluated for the double mutation 

workflow. 
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Figure 5.22 Hierarchical organisation of output directories and files generated during the MDAM workflow. The right 
panel includes a sample mutation list used as input for the analysis. 

For this proof-of-concept, the focus was on ADK’s backbone conformational changes. In order 

to accelerate calculations, the analysis was limited to Cα atoms only, as the transition between 

open and closed states is predominantly a backbone-driven event. The results for all three 

scenarios—single mutation, double mutation systematic, and double mutation heuristic—

provided below are on Cα atoms only. 

 
Single mutation  
 
The single mutation workflow systematically evaluated all 20 possible amino acid 

substitutions, first at position 135 and then at position 142, to assess their impact on ADK’s 

conformational dynamics. The COM Distance between the AMPbd and LID domains was 

calculated on Cα atoms. The distribution of values was compared for all mutants against the 

WT and the target distributions (see section 4.2.2). 

 
Figure 5.23 illustrates the COM Distance density for the V135G mutant. The WT (red) exhibits 

a unimodal distribution centred around ~35 Å, consistent with a predominantly open-state 

conformation. The target distribution (blue), representing the desired protein dynamics, 

reflects both open and closed conformation of ADK, with a bimodal pattern characterised by 

peaks near ~25 Å and ~35 Å. For V135G (green), a subtle shift is observed toward shorter 

COM distances, with a broadening towards more open conformations. This result suggests a 

limited tendency for V135G to sample conformations closer to the closed state. The 

Bhattacharyya distance of 0.23 between V135G and the target, compared to 0.09 for the WT, 

indicates that this mutation alone did not achieve the desired target dynamics.  
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Figure 5.23 COM Distance distribution for the V135G mutant compared to the WT and target distributions. The WT 
(red) exhibits a unimodal distribution centred at ~35 Å, representing a predominantly open-state conformation. The 
target distribution (blue) is bimodal, reflecting both open (~ 35 Å) and closed (~ 25 Å) conformations. 

 

 

                  

 
Figure 5.24 COM Distance distribution for the V142G mutant compared to the WT and target distributions. The WT 
(red) maintains a unimodal distribution centred at ~35 Å, while the target distribution (blue) is bimodal, reflecting 
both open and closed conformations. The V142G mutant (green) is closer to the WT, and it fails to replicate the 
bimodal target behaviour fully. The Bhattacharyya distance of 0.19 from the target indicates an incremental 
improvement over V135G. 
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Similarly, Figure 5.24 shows the COM Distance density for the V142G mutant. Compared to 

the V135G, the V142G behaves more like the WT, with a Bhattacharyya distance of 0.19 (i.e. 

slightly better than V135G). Therefore, the V142G single mutation alone did not achieve the 

desired closure of ADK.        

                   

Figure 5.25 COM Distance distribution for the V135K mutant compared to the WT and target distributions. Unlike 
other single mutants, V135K (green) displays dual peaks at ~35 Å and ~25 Å, indicating its ability to sample both 
open and closed states. The Bhattacharyya distance of 0.02 to the target (blue) reflects a high degree of overlap. 
However, the closed-state sampling is more pronounced than in the target, suggesting an imbalance in its 
dynamics. This result highlights the potential of V135K to modulate ADK dynamics partially, but it does not fully 
achieve the equilibrium observed in the target distribution. 

 
An interesting result emerged from the single mutation V135K, shown in Figure 5.25. Unlike 

the other single mutants, V135K demonstrated the ability to sample the closed state directly, 

with a distinct peak near ~25 Å in its COM Distance distribution. This behaviour aligns much 

more closely with the target distribution, as indicated by a significantly lower Bhattacharyya 

distance of 0.02 compared to the target. This result suggests that the substitution of Lysine at 

position 135 induces a structural shift in ADK dynamics, enabling sampling of the closed state.  

 
However, while V135K demonstrates the ability to sample both states, the closed-state 

sampling dominates the distribution relative to the target. This imbalance indicates that the 

mutation alone does not achieve the dynamic equilibrium observed in the target distribution. 

These findings highlight the potential for single mutations, such as V135K, to modulate ADK 

dynamics but also emphasise their limitations in achieving the balanced dynamics necessary 

for full functional closure. However, a more detailed analysis of state transition is required to 
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have a conclusive view on this, but this is not part of the scope of this work and is more relevant 

for a broader understanding of ADK’s dynamics. 

 
These findings confirm that the single mutations V135G and V142G, as well as other 

substitutions apart from V135K, are insufficient to induce the conformational shift required for 

ADK closure. This result aligns with the study by Song et al. [165], which demonstrated that 

ADK’s transition to the closed state is achieved through a combination of mutations, 

specifically the DM (V135G_V142G), rather than individual amino acid changes. As such, 

these insights from the single mutation workflow provide a foundation for exploring double 

mutations and their potential impact on the dynamics to perform a complete framework for this 

proof-of-concept. 

 
Double mutation systematic approach 
 
The systematic double mutation workflow tested combinations of amino acid substitutions at 

positions 135 and 142, generating a ranked list of mutations. The COM Distance distributions 

for each double mutant were compared against the WT and the target distributions to evaluate 

their ability to approximate the desired closed-state dynamics of ADK. Figure 5.26 presents 

the ranked list of mutations based on their Bhattacharyya distance to the target distribution, 

highlighting the top-performing mutants. 

 

                                             

 
Figure 5.26 Results from the double mutation systematic approach. Ranked list of some of the evaluated double 
mutants sorted by their Bhattacharyya distance to the target COM Distance distribution, with V135G_V142G (DM) 
achieving the lowest distance (0.01), indicating the closest match to the target. 

 
After systematically scanning all 25 double mutants, the tool identified V135G_V142G (DM) 

as the closest to the target, with a Bhattacharyya distance of 0.01. This result is particularly 

significant as it aligns with Song’s et al. [165] study, which demonstrated that this specific DM 
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promotes ADK closure. The tool’s ability to correctly rank V135G_V142G as the top-

performing mutation serves as a successful proof-of-concept, validating the effectiveness of 

the systematic approach in identifying mutations that induce the desired conformational 

dynamics. 

 
Figure 5.27 illustrates the COM Distance density for V135G_V142G. The WT distribution (red) 

remains unimodal with a peak at ~35 Å, while the target distribution (blue) is bimodal, reflecting 

open and closed states. The V135G_V142G mutant (green) achieves near-complete overlap 

with the target, with peaks at ~25 Å and ~35 Å, capturing both conformational states. This is 

also demonstrated with the Bhattacharyya distance of 0.01 between the DM and the target. 

This result underscores the effectiveness of the systematic double mutation workflow in 

identifying functionally significant mutations. 

 

                          
Figure 5.27 Results from the double mutation systematic approach. COM Distance distribution for V135G_V142G 
compared to the WT (red) and target (blue). The V135G_V142G mutant (green) closely aligns with the target, 
exhibiting a bimodal distribution with peaks near ~25 Å and ~35 Å.  

 
In addition to V135G_V142G, the second-ranked mutant, V135L_V142L, also demonstrated 

promising behaviour (Figure 5.28). The Bhattacharyya distance of 0.095 is slightly higher than 

V135G_V142G, but it still aligned better with the target than other tested mutations. The COM 

Distance density for V135L_V142L (green) displays a bimodal pattern, suggesting partial 

sampling of both open and closed states, but there is no significant closure compared to 

V135G_V142G. 
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Figure 5.28 COM Distance distribution for V135L_V142L compared to the WT (red) and target (blue). The 
V135L_V142L mutant (green) approximates the target with a bimodal pattern but emphasizes the open state more 
than the closed state, as reflected in its Bhattacharyya distance of 0.095. 

 
These results demonstrate the MDAM toolkit’s performance in identifying mutations that have 

the desired impact on ADK’s dynamics. While V135G_V142G represents the optimal mutation 

for promoting closure, other candidates, such as V135L_V142L, demonstrate the potential for 

alternative mutational strategies. 

 
Double mutation heuristic approach 
 
The heuristic approach employed a targeted search strategy to refine the mutation space by 

focusing on promising double mutations while excluding combinations unlikely to meet the 

desired target dynamics.  

 
Iteration Mutation Pair Bhattacharyya Distance (Vs Target) Outcome 

1 V135G_V142K 0.27803 Unsuccessful 

2 V135S_V142G 0.24816 Unsuccessful 

3 V135G_V142G 0.01021 Successful 

4 V135K_V142V 0.02779 Successful 

5 V135G_V142S 0.24816 Unsuccessful 

        … … … … 

        
Figure 5.29 Results for the heuristic approach for double mutations. The table is showing the iteration-by-iteration 
evaluation of mutation pairs, their Bhattacharyya distances to the target, and their outcomes. Successful mutations 
(e.g., V135K_V142V and V135G_V142G) are highlighted in green, while unsuccessful pairs exceed the 
dissimilarity threshold (0.05). 
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This process began by randomly selecting an initial mutation pair from the mutations list. After 

calculating its Bhattacharyya distance to the target distribution, the search iteratively moved 

to neighbouring combinations by altering one mutation (at position 135) at a time while keeping 

the other constant (at position 142). At each step, evaluated combinations were checked 

against a user-defined dissimilarity threshold of 0.05. Combinations exceeding this threshold 

were excluded, while successful mutations were retained and added to the output list of 

“successful mutations” (Figure 5.29). 

 

 

 
Figure 5.30 Visualisation of the heuristic search process for double mutations. A grid representing the evaluated 
mutation space, with rows and columns corresponding to mutations at positions 135 and 142, respectively. 
Evaluated combinations are marked with checkmarks, while excluded combinations (e.g., those with K at position 
142) are highlighted in red. This representation illustrates how the heuristic search narrows the mutation space 
iteratively by focusing on promising candidates. 

 
Figure 5.30 illustrates the search process, with rows and columns representing possible 

mutations at two positions (rows for position 135 and columns for position 142). The search 

starts at a random pair (e.g., V135G_V142K) and moves iteratively to neighbouring pairs 

based on proximity in the mutation space. The method starts with evaluation of the first random 

pair V135G_V142K. The evaluation process shows that K in position 142 fails to meet the 

user-defined dissimilarity threshold (0.05), hence all mutations with K at position 142 (shown 

in red) are excluded. The process goes on until it finds mutations that have the desired impact 
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on the dynamics (highlighted in green) and saves them in an output list. This exclusion strategy 

reduced the search space, directing computational resources toward more promising 

mutations. This iterative process allowed the search to explore the mutation landscape 

efficiently, narrowing the focus to high-performing mutations while avoiding redundant 

evaluations 

                     

Figure 5.31 A heat map of Bhattacharyya distances for all double mutations evaluated during the heuristic search. 
Lighter regions represent mutations with distributions closer to the target. The optimal mutation, V135G_V142G, is 
highlighted with the smallest Bhattacharyya distance (0.01021), and V135K_V142V emerges as another strong 
candidate with a distance of 0.02. Other promising candidates, such as V135L_V142G, are also visible, illustrating 
the efficiency of the heuristic approach in identifying high-performing mutations. 

 
Figure 5.31 presents a heat map of Bhattacharyya distances for all double mutants that were 

evaluated during the heuristic search. Lighter regions in the heat map represent mutations 

with distances closer to the target, highlighting promising candidates for further exploration. 

Notably, V135G_V142G was identified as the top-performing mutation, with the smallest 

Bhattacharyya distance of 0.01, confirming its ability to approximate the target dynamics. In 

addition, V135K_V142V (single mutant V135K) emerged as another strong candidate with a 

Bhattacharyya distance of 0.02 (as discussed in the single mutation workflow section). This 

demonstrated that the heuristic approach can uncover alternative mutations beyond the 

known optimal result. The heat map also highlights other interesting mutations, such as 
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V135L_V142G, with distributions that closely align with the target, suggesting additional 

candidates worth investigating.  

 
While this heuristic search approach provides a simplified framework to validate and test the 

search process, it also provides flexibility. In this study, the search space for two positions (135 

and 142) was defined by 35 possible double mutant combinations, and the primary criterion 

applied was the Bhattacharyya dissimilarity threshold. However, the heuristic approach can 

be extended to incorporate more complex criteria, such as additional exclusion rules, 

prioritised mutation types, or libraries of predefined compatible or incompatible mutation pairs. 

For example, integrating a plugin that provides prior knowledge of biologically or structurally 

incompatible mutations would allow the search to exclude non-favourable candidates upfront, 

further improving efficiency and precision. This adaptability ensures that the heuristic 

approach can be tailored to diverse research needs while maintaining computational 

efficiency. Different heuristic strategies can also be easily implemented in MDAM thanks to 

the modular structure of the code. 

 

5.4 MDAutoPredict results 
 
The MDAP toolkit was validated by performing a supervised classification prediction. The goal 

was to classify ADK’s protein conformational states into four categories: open (A), closed (B), 

intermediate (I) and non-states (N). The results presented here evaluate MDAP’s performance 

using a dataset derived from the second MD trajectory replica (R02) of 1 μs (1000 ns) 

generated to validate MDAM. In order to perform the validation process quickly and due to 

limited computer resources, R02 was subsampled at 40 ps intervals, resulting in 25,0001 

frames. The testing process involved six ML models, focusing on accuracy, precision, recall 

and computational efficiency. 

 

5.4.1 Target variable definition 

 
The labels of the four states were derived through a density-based analysis of the approximate 

conformational space representation to perform the labelling exercise. This space was 

constructed by projecting the trajectory data onto the first two principal components (PC1 and 

PC2), revealing a two-dimensional free energy landscape. The density of points in this space 

was calculated, with the expectation that high-density regions may be representative of 

possible free energy minima. These minima were associated with the open (A), closed (B), 

and intermediate (I) states based on prior literature and visual inspection of structural features. 
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Low-density regions were classified as non-states (N) for simplicity since the four labels 

already fit the purpose of the validation process.  

 
The plot in Figure 5.32 shows an approximate view of the conformational space. Each point 

represents a conformation (i.e. each state)—the structural snapshots of the protein help in 

understanding the biological interpretation of these associated conformations.  

 

                      

Figure 5.32 Approximate conformational space representation for ADK derived from the MD trajectory’s PCA. PCA 
was used to identify high-density regions corresponding to free energy minima, representing the open (A), closed 
(B), and intermediate (I) states. Low-density regions were classified as non-states (N). Each point represents a 
sampled conformation, and structural snapshots illustrate the biological relevance of the identified states. 

 

5.4.2 Machine Learning performance 

 
Six machine learning models were tested to classify the labelled frames: Logistic Regression, 

Random Forest, SVM, Decision Tree, Gradient Boosting, and Multilayer Perceptron (MLP). 

The input dataset was split into training (70%) and testing (30%) sets to evaluate model 

performance. The models were compared based on accuracy, precision, recall, and F1-score 

metrics. Figure 5.34 shows the confusion matrices for all six models in a descending order of 

the best performance.  
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Figure 5.33 Confusion matrices for all machine learning models tested, including Random Forest, Decision Tree, 
Gradient Boosting, SVM, Logistic Regression, and MLP. Each matrix displays the classification performance across 
the four states: open (A), closed (B), intermediate (I), and non-states (N). Correct classifications are represented 
along the diagonal, while off-diagonal elements indicate misclassifications. 
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Among the models, the Random Forest classifier had the best performance with 96.36%. Its 

confusion matrix highlights the model’s ability to accurately classify all four states with minimal 

misclassification across categories accurately. The Random Forest model successfully 

distinguished the intermediate state (I), which is often challenging due to its transitional nature, 

and showed strong performance for both dominant states (A and B) and the non-state (N). 

The weighted average F1-score for this model was 96%, making it the most reliable choice for 

this dataset. The Decision Tree model followed closely, with an accuracy of 94.34% Its 

confusion matrix revealed a comparable ability to classify the four states but with slightly higher 

misclassification rates for the intermediate and non-state regions, reflecting its limitations in 

handling less frequent categories.  

 
The Gradient Boosting classifier reached an accuracy of 88.83%, demonstrating high 

precision for dominant states (A and B) but struggling to correctly identify the intermediate (I) 

and non-state (N) regions, as evident from its confusion matrix. The SVM achieved an 

accuracy of 84.54% as indicated by its confusion matrix, which showed challenges in 

classifying the non-state region and an inability to identify the intermediate state consistently. 

 

The MLP and Logistic Regression models achieved accuracies of 81.14% and 76.96% 

respectively, with their confusion matrices reflecting difficulties in classifying the intermediate 

state and frequent misclassifications of the non-state region.    

 
Figure 5.34 Precision-Recall (PR) curves for the Random Forest and Decision Tree models. The PR curves reflect 
the precision and recall trade-offs, with Random Forest maintaining higher precision and recall for all states, 
particularly the intermediate and non-states, compared to the Decision Tree. These results demonstrate the 
superior classification capabilities of the Random Forest model. 

 
Figure 5.34 shows the Precision-Recall (PR) for the top two ML methods that achieved the 

highest performance: Random Forest and Decision Tree. The PR curve for the Random Forest 

shows its precision and recall for the dominant states (A and B). It also performs well in 
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identifying the intermediate state, showcasing the model’s ability to handle rare and 

transitional conformations effectively. While slightly less effective, the PR curve for the 

Decision Tree model indicates robust precision for the dominant states. However, it shows 

slight drops in recall for the intermediate and non-states, consistent with its higher 

misclassification rates in these categories.  

 
Furthermore, evaluation of the performance of the Random Forest model is achieved through 

the interpretation of the calibration curve plot shown in Figure 5.35. The plot shows that the 

model can produce well-calibrated probability predictions for each class. The diagonal dashed 

line represents the ideal calibration, where predicted probabilities align perfectly with the 

observed probabilities. The model demonstrates excellent calibration for the dominant states 

(Class A: Open and Class B: Closed), with predicted probabilities closely following the 

diagonal. Therefore, the model’s confidence in these predictions is consistent with the actual 

values. 

                 

Figure 5.35 Calibration curve for the Random Forest model. The plot illustrates the relationship between predicted 
probabilities and observed outcomes for each class: open (A), closed (B), intermediate (I), and non-state (N). The 
curves for dominant states (A and B) align closely with the ideal diagonal line, indicating well-calibrated predictions. 
Slight deviations for the intermediate state (I) and non-state (N) reflect minor overconfidence in these predictions. 
Overall, the Random Forest model exhibits strong calibration across all states. 

 
The calibration for the intermediate state (Class I) is slightly less consistent but still adequate 

as the predicted probabilities align reasonably well with the observed data. However, for the 

non-state (Class N), the curve deviates from the ideal line, indicating a slight overconfidence 

in predictions for this class. Despite this deviation, the model’s overall calibration across all 

four states is superior, confirming its capability to provide reliable probability estimates. 
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In conclusion, this work demonstrated the utility of MDAP in constructing predictive models for 

state labels, building on the preprocessing capabilities of MDSS and the mutation analysis 

framework of MDAM. The MDSS toolkit’s robust capabilities inspired the approach, and the 

findings emphasise its potential for broader integration with other computational methods in 

the field. Notably, the models struggled with I state label, a less represented class, which 

reflects the dual challenge of sparse data representation and the intricate nature of non-

canonical intermediate states. These states require enhanced characterisation and refinement 

in their original labelling to support more robust predictions. Addressing class imbalance 

through targeted sampling strategies and advanced algorithms holds promise for improving 

performance in such challenging cases. This work lays the foundation for further exploration 

of automated tools and workflows in computational protein design, paving the way for more 

comprehensive and scalable analyses of dynamic biomolecular systems. 

                

5.5 Summary 

 
This chapter presented the results of the MDSS, MDAM, and MDAP toolkits, highlighting their 

ability to address key challenges in protein dynamics research. MDSS effectively reduced data 

complexity while preserving critical information, MDAM validated mutation impacts on protein 

dynamics, and MDAP demonstrated the potential for ML-based state classification. Together, 

these tools provide a cohesive automated framework for the redesign of protein dynamics. 
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6 Summary, conclusions, and further work 
 
This chapter provides a summary of this thesis and concludes with the key outcomes achieved 

by developing an automated framework for redesigning protein dynamics. It highlights the 

contributions of the MDSubSampler, MDAutoMut, and MDAutoPredict tools and their 

integration into a unified workflow. Limitations of this research study are presented and 

discussed. Additionally, suggestions for future work are provided, outlining how the outcomes 

of this study can be expanded and applied to address challenges in protein engineering and 

computational biology. 

 

6.1 Summary 
 
This thesis presented a comprehensive framework for addressing some of the challenges in 

redesigning protein dynamics. The framework was designed by developing three novel 

computational tools — MDSubSampler, MDAutoMut, and MDAutoPredict — each designed to 

address a specific gap in the field. 

 
The research followed a systematic approach to achieve the initial goal of this PhD: 

contributing novel methodologies for redesigning protein function. Considering the relationship 

between mutations, protein dynamics, and their functional outcomes, the study focused on 

redesigning protein dynamics associated with function. Given the lack of automated methods 

and unified strategies, the research aimed to develop a fully automated library with a flexible 

design to integrate customisable workflows.  

 
The first step was the development of MDSubSampler, a framework designed to clean, 

prepare and reduce MD simulations by performing a posteriori subsampling of the data. It was 

built as a user-friendly toolkit applicable to various research problems. Validation was 

performed using simple example scenarios, demonstrating its adaptability and utility across 

different applications. MDSubSampler facilitates faster and more efficient workflows by 

providing cleaned input data, making it easier to deal with MD data when using automated 

workflows like MDAutoMut. MDSubSampler also enabled property comparison within 

MDAutoMut, supporting the assessment of whether a given mutation achieves the desired 

dynamic behaviour. 

 
Following the development of MDSubSampler, MDAutoMut was designed to automate 

mutation analysis and directly record the effects of mutations on protein dynamics. Given the 
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computational cost when dealing with MD simulations and these fully automated workflows, 

deploying the tool on a high-performance computing (HPC) system became a critical step. 

Therefore, the toolkit was deployed and tested on ARCHER2. Validation of MDAutoMut 

involved a proof-of-concept approach where specific positions and mutations (known from a 

study that can change the dynamics of the example system used – ADK) were tested to 

determine whether the toolkit could identify them automatically. However, the complexity of 

searching the mutational space, even with just two positions, highlighted the need for a 

heuristic approach, for which a simple demonstrative example was developed and tested.  

 
Finally, MDAutoPredict was implemented as an extension tool of MDAutoMut to integrate ML 

into the workflow. This tool was validated by benchmarking and testing various ML methods 

to predict protein states. A proof-of-concept example was created with a state label for training 

and testing. Designed with flexibility, MDAutoPredict can be adapted or extended to address 

other research problems beyond state prediction, making it a versatile addition to the 

automated library. It is foreseeable to use MDAutoPredict to generate the values of the target 

variable for MDAutoMut redesign workflows in cases where the calculation of this can be too 

expansive for an automated large-scale study (e.g. when a state label may require free energy 

reconstruction to be calculated). 

  
Together, the tools developed in this research study tackle some of the critical challenges in 

protein design, forming a unified yet modular framework through a fully Python-based 

interface. 

 

6.2 Conclusions  
 
This thesis demonstrates the successful development and application of the components for 

a modular computational framework to redesign protein dynamics. The three tools— 

MDSubSampler, MDAutoMut, and MDAutoPredict —offer the possibility of building workflows 

for MD data preprocessing, automated mutation analysis, measurement of mutations’ impact 

on dynamics, and prediction of protein states. Each tool addresses critical gaps in the 

computational design of protein dynamics. 

 
MDSubSampler’s ability to a posteriori extract representative subsets of trajectories has 

proven essential for reducing noise, retaining biologically relevant information, and formatting 

the MD data for ML/DL applications. This tool provides a flexible and general-purpose solution 

that complements existing clustering methods, enabling workflows applicable to different 
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research problems. Additionally, MDSubSampler’s abilities extend to allow the evaluation of 

protein dynamics through statistical methods. Its integration into MDAutoMut highlights its 

importance as the foundational step in the full computational framework of this PhD research 

work.  

 
The development and validation of MDAutoMut contribute to addressing some of the 

challenges of redesigning protein dynamics. One of the main challenges faced during the 

validation of MDAutoMut was undersampling, particularly when studying the dynamic 

behaviour of ADK. This system was chosen as an example for the toolkits’ validation due to 

its literature-documented mutations that shift its structure towards the closed state. A clear 

example of redesigning protein dynamics that could be used to perform the following proof-of-

concept: given the positions of two mutations on the ADK LID’s domain, the MDAutoMut toolkit 

can identify the two mutations that have the desired impact on the system’s dynamics.  

 
While the double mutation identified in the literature was expected to induce closure 

consistently, it was observed that it only sampled the closed state more frequently than the 

WT but not consistently across all simulations. This variability presents another limitation in 

the tool’s validation process. 

 
To overcome this challenge, the following validation approach was used: Short simulations (50 

ps-500 ps) were initially generated to test the functionality of MDAutoMut and its components. 

Then, longer simulations (300 ns, 500 ns, 1000 ns) were performed on HPC platforms, 

allowing the system to adequately sample the desired closed state. Finally, the full workflow 

of MDAutoMut was tested with these pre-calculated longer-timescale simulations. This testing 

strategy was critical to demonstrating that, given sufficient data where the closure is observed, 

MDAutoMut can effectively identify and analyse the relevant mutations. 

 
The deployment of MDAutoMut on HPC, particularly ARCHER2, was essential to demonstrate 

the tool’s scalability for larger and more complex systems. Given MD data’s computational 

demands and the workflow's iterative nature, an HPC platform was the only feasible option. 

However, deploying MDAutoMut on ARCHER2 came with some challenges, mainly due to the 

need to install and configure multiple external libraries required by the workflow. An aspect of 

automated mutation scanning not explored was identifying the residue’s position to change. 

The current implementation of MDAutoMut can scale up the number of sites but still requires 

identification of which sites to mutate from the user. 

 



 

Summary, conclusions, and further work 

 

 

 142 

Building on the success of MDAutoMut, the extension into MDAutoPredict aimed to integrate 

ML capabilities into the framework, enabling the predictions of protein states. MDAutoPredict 

was validated with a simple example of ADK’s state prediction. The labelling exercise of the 

target variable was done independently of the predictive model to prevent bias in the predictive 

analysis.  

 
When implementing MDAutoPredict, certain limitations need to be considered. The quality and 

reliability of predictions are linked to the representativeness of the training data. Rare states, 

such as the closed conformation of ADK, may not appear frequently enough in the dataset, 

presenting challenges for generalisation. Therefore, the example data used for validation 

contained a sampling of both open and closed states of the system to ensure efficient tool 

testing.  

 
In summary, this thesis presents a modular computational framework applicable to 

computational protein design. While the framework’s validation highlighted challenges like 

undersampling and data representativeness, it also demonstrated the tools’ potential to 

facilitate workflows of rational protein design of dynamics. 

 

6.3 Current limitation and future development of this research 
study 

 
The three toolkits’ design, implementation and testing lay the foundation for an automated 

modular framework that can redesign protein dynamics. However, there is significant potential 

for their extension and refinement to address more complex challenges in computational 

protein design.  

 
For MDSubSampler, future work could focus on extending its ability to evaluate also 

physicochemical or energetic properties, aside from geometric or incorporating energy-based 

criteria for selecting trajectory frames. This would improve its effectiveness in capturing 

transitions important to protein function. Given its integration with MDAutoPredict, 

MDSubSampler could be further refined to facilitate the preprocessing of trajectory data 

specifically for ML workflows. For instance, expanding MDSubSampler to include automated 

feature extraction tailored to ML models would reduce manual intervention and ensure optimal 

input quality for predictive tasks. Additionally, combining MDSubSampler with clustering 

approaches could offer a more robust framework for identifying and classifying conformational 
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states, supporting MDAutoPredict’s predictive capabilities and creating automated pipelines 

for protein engineering applications. 

 
For MDAutoMut, future work could focus on integrating advanced sampling strategies, such 

as adaptive or enhanced sampling techniques, to address the challenge of undersampling and 

improve the observation of rare but functionally important states. Refining the heuristic 

mutation scanning process to handle more complex space searches, including cases involving 

more than two mutations, would enhance the tool’s versatility and applicability. Optimising the 

computational efficiency of the workflow would allow MDAutoMut to scale effectively, enabling 

its application to larger protein systems and broader mutational spaces. Finally, a significant 

development area would be the addition of methodology to scan putative position, possibly 

through preliminary analysis using directly PyRosetta’s static design components to identify 

candidate residue positions. 

 

Future work on MDAutoPredict could expand its predictive capabilities to include tasks such 

as predicting protein stability, ligand binding affinity, or allosteric site activity, potentially through 

multi-task learning frameworks. A foreseeable extension of this framework would involve state 

prediction, where MDAutoPredict is integrated with MDAutoMut to test the ability of identified 

mutations to generate desired protein states. MDAutoPredict could refine the mutational 

selection process by annotating mutations with their state-prediction outcomes, enabling a 

more targeted approach to engineering protein dynamics and extending the application of 

MDAutoMut to cases where state labels can only be generated costly by free energy 

reconstruction. Additionally, incorporating enhanced sampling techniques and experimental 

data could improve the diversity and representativeness of training datasets. 

 
Making these toolkits available as open-source software is key to enabling the proposed 

extensions. It allows collaboration, transparency, and adaptability, allowing the scientific 

community to refine and expand their capabilities to address evolving challenges in protein 

engineering. To this end, each tool is developed under GNU General Public Licence and has 

been and will be made available at the stage of manuscript submissions. 

 

6.4 Addressing the research questions 
 

The research questions established in Chapter 1 were centred on automating the analysis and 

redesign of protein dynamics, evaluating the role of mutation engineering on protein dynamics, 

and leveraging machine learning for predicting system states. These questions were directly 
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addressed through the development and implementation of the three toolkits introduced in this 

thesis: 

 

• RQ1: Processing MD simulation data:  How can the volume of MD simulation data 

be effectively managed to enable its use in automated workflows without exceeding 

computational resource limitations? At the same time, how can the complexity of these 

data formats be addressed to ensure easy integration into ML/DL pipelines? 

 

This question was addressed through the development of MDSubSampler, a toolkit 

designed for rational a posteriori subsampling of trajectory data. MDSubSampler 

implements statistical techniques to reduce the number of frames while preserving the 

dynamic diversity of the system. In addition to this, MDSubSampler offers format 

conversion and trajectory preparation functions compatible with downstream statistical 

analysis and machine learning workflows. The evaluation in Chapter 5 demonstrated 

that subsampled datasets maintained essential properties of the full trajectory, as 

shown by RMSD distribution and Bhattacharyya distance metric. 

 

• RQ2: Automating protein dynamics redesign: How can computational strategies be 

developed to fine-tune protein dynamics through targeted mutations, and how can 

these workflows be automated, integrated with existing computational libraries, and 

scaled effectively using high-performance computing (HPC) resources? 

 

This was fulfilled by the development of MDAutoMut, a pipeline that automates mutation 

engineering, simulation preparation, execution, and trajectory comparison of dynamics. 

The tool integrates with GROMACS and PyRosetta and is tailored for high-throughput 

mutation scanning. By evaluating changes in geometric descriptors and PCA space, 

MDAutoMut enables systematic comparison of mutant behaviour against the wild-type 

system. Application to the ADK protein system showed that the pipeline could 

reproduce experimentally known mutation effects and identify new candidates that shift 

conformational behaviour. 

 

• RQ3: Predictive modelling for protein dynamics: How can the automated workflow 

be extended to perform predictions in combination with ML/DL pipelines, and which ML 

models are most appropriate for predictive tasks in protein dynamics? 
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This question was explored through the implementation of MDAutoPredict, a toolkit for 

prediction tasks on MD data using ML. Specifically, MDAutoPredict enables supervised 

learning prediction of protein states. In the test case with ADK, ML classifiers such as 

Decision Trees and Random Forests were trained to distinguish between open and 

closed conformational states.  

 

6.5 Lessons learned and future recommendations 
 
Reflecting on the design and implementation of the automated pipeline presented in this 

thesis, several practical insights emerged that may inform future developments of 

computational workflows for protein dynamics redesign. 

 

First, modularity proved to be a critical factor in enabling flexibility and scalability. The decision 

to separate the pipeline into distinct components for data preparation (MDSubSampler), 

dynamics redesign and MD simulation (MDAutoMut), and system state prediction 

(MDAutoPredict) allowed each tool to be developed, tested, and refined independently. This 

modular approach also facilitates integration with existing libraries and adaptation to new 

systems or workflows. 

 

Second, the importance of preprocessing and standardisation became increasingly evident. A 

significant portion of development time was devoted to handling file format inconsistencies, 

trajectory cleaning, and feature extraction. These steps, although often underestimated, had 

a direct impact on the performance of MD analysis and ML models. Future pipelines would 

benefit from adopting more standardised data transformation procedures and shared libraries 

for input/output handling. 

 

Third, while heuristic-based mutation analysis was effective in guiding exploration of dynamic 

behaviour, there is potential to expand this approach through learning-driven design 

strategies. For instance, reinforcement learning or optimisation algorithms could be employed 

in future work to prioritise mutations based on dynamic responses or predictive uncertainty.  

 

Fourth, sampling limitations emerged as a constraint on the performance of ML models, 

particularly in distinguishing between states that were underrepresented in the simulation 

data. Incorporating enhanced sampling techniques or active learning approaches could 

improve coverage of conformational space and support more robust model training. 
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Finally, although the pipeline was designed to be automated, domain knowledge remained 

essential throughout the study. Expert input was necessary to define target variables, interpret 

ML outputs, and assess biological relevance. This suggests that future developments should 

aim not to remove human input entirely, but to structure it in a way that supports decision-

making within the automated workflow. 

 

In summary, these lessons highlight the need for future automated pipelines to balance 

efficiency and flexibility, leverage data-driven methods alongside domain expertise, and 

incorporate feedback mechanisms to improve design outcomes iteratively. The integration of 

such features may enable more generalisable and intelligent frameworks for protein dynamics 

analysis and design. 
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Appendix II 
 
In this section the three submission scripts used on ARCHER2 to run MDAutoMut library are 

provided. All three workflows (mutation_workflow.py, mdprep_workflow.py and 

mdautomut_workflow.py) were tested and validated.  

 
mutation_workflow.py 

 

#!/bin/bash --login 

#SBATCH --job-name=python_test 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=1 

#SBATCH --cpus-per-task=1 

#SBATCH --time=24:00:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=standard 

 

# Load the Python module, ... 

module load cray-python 

 

# PYTHONPATH 

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/$USER 

MDAM=MDAutoMut 

MDSS=MDSubSampler 

export 

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH 

echo $PYTHONPATH 

 

# activate virtual environment 

source /mnt/lustre/a2fs-

nvme/work/e280/e280/$USER/pyenvs/mddev/bin/activate 

 

# Run your Python program 

# prefix="$1" 

 

python mutation_workflow.py \ 

    --traj="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.xtc" \ 

    --top="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.gro" \ 

    --pdb="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/MD_4AKEA_protein.pdb" \ 

    --frame-number="1" \ 

    --mutation-file="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/data/mutations_135.rtf" \ 

    --output-folder="/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/MDAutoMut/mutation_results/" \ 
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    --output-mode="single" \ 

    --prefix="1001" 

 

mdprep_workflow.py 

#!/bin/bash --login 

#SBATCH --job-name=mdprep_workflow 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=128 

#SBATCH --cpus-per-task=1 

#SBATCH --time=24:00:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=standard 

 

# Load the Python module, ... 

module load cray-python 

module load gromacs 

 

# PYTHONPATH 

PREFIX="1001" 

RESULTS_PREFIX="${PREFIX}_${SLURM_JOB_ID}" 

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/$USER 

MDAM=MDAutoMut 

MDSS=MDSubSampler 

OUTPUT_DIRECTORY=$WORK/MDAutoMut/system_prep_results 

SYSTEM_NAME=4AKE 

MUTATION_PATH=$WORK/MDAutoMut/mutation_results 

MDP_PATH=$WORK/MDAutoMut/mdp_spc_files 

 

export 

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH 

export GMXLIB=/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/Programs/gromacs-2022 

export MPLCONFIGDIR=$WORK/config/matplotlib 

 

echo $PYTHONPATH 

echo $GMXLIB 

echo $MPLCONFIGDIR 

 

# Capture the Slurm Job ID 

JOB_ID=$SLURM_JOB_ID 

echo "Job ID: $JOB_ID" 

 

# activate virtual environment 

source /mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/pyenv/mddev/bin/activate 

 

# Run your Python program 

python mdprep_workflow.py \ 
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    --prefix="$RESULTS_PREFIX" \ 

    --system-name="$SYSTEM_NAME" \ 

    --mutation="V135K" \ 

    --outpath-directory="$OUTPUT_DIRECTORY" \ 

    --pdb="$MUTATION_PATH/1001_V142K.pdb" \ 

    --spc216-gro="$MDP_PATH/spc216.gro" \ 

    --ions-mdp="$MDP_PATH/ions.mdp" \ 

    --em-1-mdp="$MDP_PATH/em_sd_posre_1.mdp" \ 

    --em-2-mdp="$MDP_PATH/em_sd_2.mdp" \ 

    --em-3-mdp="$MDP_PATH/em_cg_3.mdp" \ 

    --nvt-1-mdp="$MDP_PATH/eqv_posre2000_T200_1.mdp" \ 

    --nvt-2-mdp="$MDP_PATH/eqv_posre1000_T250_2.mdp" \ 

    --nvt-3-mdp="$MDP_PATH/eqv_posre1000_T300_3.mdp" \ 

    --nvt-4-mdp="$MDP_PATH/eqv_posre500_T300_4.mdp" \ 

    --nvt-5-mdp="$MDP_PATH/eqv_posre250_T300_5.mdp" \ 

    --nvt-6-mdp="$MDP_PATH/eqv_T300_6.mdp" \ 

    --npt-1-mdp="$MDP_PATH/eqp_T300_1.mdp" \ 

    --npt-2-mdp="$MDP_PATH/eqpadv_T300_2.mdp" \ 

    --prod-mdp="$MDP_PATH/prod_T300.mdp" 

 

mdautomut_workflow.py 

#!/bin/bash --login 

#SBATCH --job-name=mdautomut_workflow 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=128 

#SBATCH --cpus-per-task=1 

#SBATCH --time=48:00:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=long 

 

module load cray-python 

module load gromacs 

 

# Environment setup 

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK 

export MPICH_MAX_THREAD_SAFETY=multiple 

 

export GMX_MAXBACKUP=-1 

export GMX_ALLOW_CPT=1 

 

# PYTHONPATH 

RESULTS_PREFIX="0801" 

PREFIX_SLURM="${RESULTS_PREFIX}_${SLURM_JOB_ID}" 

WORK=/mnt/lustre/a2fs-nvme/work/e280/e280/namir_oues 

MDAM=MDAutoMut 

MDSS=MDSubSampler 

OUTPUT_DIRECTORY=$WORK/$MDAM/mdautomut_results 

RESULTS_SUBFOLDER_SLURM="$WORK/$MDAM/mdautomut_workflow_results/$PREFIX_S

LURM" 

RESULTS_SUBFOLDER="$WORK/$MDAM/mdautomut_workflow_results" 
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MDP_PATH=$WORK/$MDAM/mdp_spc_files 

MUTATION_FILE_PATH=$WORK/$MDAM/data/mutations_135_142.rtf 

 

mkdir -p "$RESULTS_SUBFOLDER_SLURM" 

mkdir -p "$RESULTS_SUBFOLDER" 

 

export 

PYTHONPATH=$WORK/$MDAM:$WORK/$MDAM/mdam:$WORK/$MDSS:$WORK/$MDSS/mdss:$PYT

HONPATH 

export GMXLIB=/mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/Programs/gromacs-2022 

export MPLCONFIGDIR=$WORK/config/matplotlib 

 

echo $PYTHONPATH 

echo $GMXLIB 

echo $MPLCONFIGDIR 

 

# activate virtual environment 

source /mnt/lustre/a2fs-

nvme/work/e280/e280/namir_oues/pyenv/mddev/bin/activate 

 

# Capture the Slurm Job ID 

JOB_ID=$SLURM_JOB_ID 

echo "Job ID: $JOB_ID" 

 

# Run your Python program 

python mdautomut_workflow.py \ 

--prefix="0801" \ 

--check-existing \ 

--output-mode="multiple" \ 

--system-name="4AKE" \ 

--mutation-file="$MUTATION_FILE_PATH" \ 

--pdb-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.pdb" \ 

--trajectory-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.xtc" \ 

--topology-file="$RESULTS_SUBFOLDER/WT/0801_4AKE_WT_prod.gro" \ 

--outpath-dir="$RESULTS_SUBFOLDER" \ 

--mutation="WT" \ 

--mutation-subfolder="WT" \ 

--dissimilarity-threshold="0.05" \ 

--frame-number="1" \ 

--spc216-gro="$MDP_PATH/spc216.gro" \ 

--ions-mdp="$MDP_PATH/ions.mdp" \ 

--em1-mdp="$MDP_PATH/em_sd_posre_1.mdp" \ 

--em2-mdp="$MDP_PATH/em_sd_2.mdp" \ 

--em3-mdp="$MDP_PATH/em_cg_3.mdp" \ 

--nvt1-mdp="$MDP_PATH/eqv_posre2000_T200_1.mdp" \ 

--nvt2-mdp="$MDP_PATH/eqv_posre1000_T250_2.mdp" \ 

--nvt3-mdp="$MDP_PATH/eqv_posre1000_T300_3.mdp" \ 

--nvt4-mdp="$MDP_PATH/eqv_posre500_T300_4.mdp" \ 

--nvt5-mdp="$MDP_PATH/eqv_posre250_T300_5.mdp" \ 

--nvt6-mdp="$MDP_PATH/eqv_T300_6.mdp" \ 
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--npt1-mdp="$MDP_PATH/eqp_T300_1.mdp" \ 

--npt2-mdp="$MDP_PATH/eqpadv_T300_2.mdp" \ 

--prod-mdp="$MDP_PATH/prod_T300.mdp" 

 

Appendix III 
 
In this section the submission script used to generate data on ARCHER2 is provided below. 

Due to time limitation of 24h on HPC queues a restart script was required to restart the 

simulation multiple times.  

 
archer_prod.sh 

#!/bin/bash 

#SBATCH --mail-user=namir.oues@brunel.ac.uk 

#SBATCH --mail-type=ALL 

#SBATCH --job-name=mdrun_test 

#SBATCH --nodes=2 

#SBATCH --ntasks-per-node=128 

#SBATCH --cpus-per-task=1 

#SBATCH --time=24:00:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=standard 

 

label=`basename $PWD` 

mol=$label 

 

runtyp="prod_T300" 

job=$mol"_"$runtyp 

 

# Setup the environment 

module load gromacs 

 

# Ensure the cpus-per-task option is propagated to srun commands 

export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK 

 

export OMP_NUM_THREADS=1 

srun --distribution=block:block --hint=nomultithread gmx_mpi mdrun -s 

$job.tpr -o $job.trr -g $job.log -e $job.edr -c $job.gro -cpo $job.cpt -x 

$job.xtc >& mdrun_$job.log 

 

archer_prod_restart.sh 

#!/bin/bash 

#SBATCH --mail-user=namir.oues@brunel.ac.uk 

#SBATCH --mail-type=ALL 

#SBATCH --job-name=mdrun_test 

#SBATCH --nodes=1 
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#SBATCH --ntasks-per-node=128 

#SBATCH --cpus-per-task=1 

#SBATCH --time=24:00:00 

#SBATCH --account=e280-Pandini 

#SBATCH --partition=standard 

#SBATCH --qos=standard 

 

label=`basename $PWD` 

mol=$label 

 

runtyp="prod_T300" 

job=$mol"_"$runtyp 

job_restart="restart_"$mol"_"$runtyp 

 

# Setup the environment 

module load gromacs 

 

# Ensure the cpus-per-task option is propagated to srun commands 

export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK 

 

export OMP_NUM_THREADS=1 

srun --distribution=block:block --hint=nomultithread gmx_mpi mdrun -s 

$job.tpr -o $job.trr -g $job.log -e $job.edr -c $job.gro -cpi $job.cpt -

cpo $job.cpt -x $job.xtc -noappend -nice 0 >& mdrun_$job_restart.log 

 

Appendix IV 
 
In this section the python code for the MDAutoPredict library is presented. The code was built 

in a modular way; hence all classes/modules are presented in separate blocks.  

 
learner.py 

from log_setup import log 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import accuracy_score, confusion_matrix, 

classification_report 

from methods import machine_learning_models 

import joblib 

import numpy as np 

 

class MDTrajLearner: 

    """ 

    Class for managing machine learning tasks on protein trajectory data 

using ProteinData. 

 

    Attributes 

    ---------- 

    protein_data : ProteinData 

        An instance of the ProteinData class. 

    performance : dict 
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        A dictionary to store the performance metrics of trained models. 

    output_path : str 

        Path where the trained model object is saved. 

    """ 

 

    def __init__(self, protein_data): 

        """ 

        Initialize the MDTrajLearner class. 

 

        Parameters 

        ---------- 

        protein_data : ProteinData 

            An instance of the ProteinData class. 

        """ 

        self.protein_data = protein_data 

        self.performance = {} 

        self.output_path = None 

 

    def generate_and_save_matrix( 

        self, xtc_output_path, matrix_output_path, unit="nanometer" 

    ): 

        """ 

        Generate a matrix representation for learning and save it. 

 

        Parameters 

        ---------- 

        xtc_output_path : str 

            Path to save the intermediate trajectory in numpy format. 

        matrix_output_path : str 

            Path to save the final matrix representation. 

        unit : str, optional 

            Unit for coordinate conversion. Default is 'nanometer'. 

 

        Returns 

        ------- 

        numpy.ndarray 

            The generated matrix representation. 

        """ 

        trajectory_numpy = self.protein_data.cast_output_traj_to_numpy( 

            outfilepath=xtc_output_path, 

            subsampled_traj=self.protein_data.trajectory_data.trajectory, 

            unit=unit, 

        ) 

        matrix_representation = self.protein_data.convert_numpy_to_2D( 

            trajectory_numpy, outfilepath=matrix_output_path 

        ) 

        np.save(matrix_output_path, matrix_representation) 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "STEPS", 

                f"The matrix representation of the trajectory is saved at 

{matrix_output_path}", 

            ) 

        ) 

        return matrix_representation 

 

    def train_and_test( 

        self, 

        ml_input_path, 
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        target_path, 

        model_name, 

        model_params, 

        output_model_path, 

    ): 

        """ 

        Train and test a machine learning model on the provided data. 

 

        Parameters 

        ---------- 

        ml_input_path : str 

            Path to the numpy file containing the ML input data. 

        target_path : str 

            Path to the file containing target variable data. 

        model_name : str 

            Name of the machine learning method. 

        model_params : dict 

            Parameters for initializing the machine learning model. 

        output_model_path : str 

            Path to save the trained model as a binary file. 

 

        Returns 

        ------- 

        dict 

            Performance metrics of the trained model. 

        """ 

        # Step 1: Load the input matrix and target labels 

        x = np.load(ml_input_path) 

        target = np.genfromtxt(target_path, dtype=str, delimiter=",", 

skip_header=0) 

 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "VALIDATION", 

                f"Input matrix size: {x.shape}, Target size: 

{len(target)}", 

            ) 

        ) 

 

        # Step 2: Encode string labels into numerical values 

        label_encoder = LabelEncoder() 

        y = label_encoder.fit_transform(target) 

 

        # Ensure alignment between input and target sizes 

        if x.shape[0] != len(y): 

            log.error( 

                "{:<15s} {:<80s}".format( 

                    "ERROR", 

                    "Mismatch between input matrix and target sizes.", 

                ) 

            ) 

            raise ValueError("Mismatch between input matrix and target 

sizes.") 

 

        # Step 3: Split data into training and testing sets 

        x_train, x_test, y_train, y_test = train_test_split( 

            x, y, test_size=0.3, random_state=25 

        ) 

        log.info( 
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            "{:<15s} {:<80s}".format( 

                "STEPS", 

                "Splitting the data into training and testing is done..", 

            ) 

        ) 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "VALIDATION", 

                f"Training set size: {x_train.shape}, Testing set size: 

{x_test.shape}", 

            ) 

        ) 

 

        # Step 4: Initialize and train the model 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "STEPS", 

                "Training the model has started.", 

            ) 

        ) 

        ModelClass = machine_learning_models[model_name] 

        model = ModelClass(**model_params) 

        model.fit(x_train, y_train) 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "RESULT", 

                "Training the model is completed.", 

            ) 

        ) 

 

        # Save the trained model 

        joblib.dump(model, output_model_path) 

        self.output_path = output_model_path 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "STEPS", 

                f"The model is saved at {output_model_path}", 

            ) 

        ) 

        # Step 5: Evaluate the model 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "STEPS", 

                "The model evaluation has started.", 

            ) 

        ) 

        y_pred = model.predict(x_test) 

        accuracy = accuracy_score(y_test, y_pred) 

        conf_mat = confusion_matrix(y_test, y_pred) 

        report = classification_report( 

            y_test, y_pred, target_names=label_encoder.classes_, 

output_dict=True 

        ) 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "STEPS", 

                "The model evaluation is completed.", 

            ) 

        ) 
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        log.info( 

            "{:<15s} {:<80s}".format( 

                "RESULT", 

                f"Accuracy of the model: {accuracy:.4f}", 

            ) 

        ) 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "RESULT", 

                "Confusion Matrix:", 

            ) 

        ) 

        for i, row in enumerate(conf_mat): 

            log.info( 

                "{:<15s} {:<80s}".format( 

                    f"ROW {i}", 

                    f"{row.tolist()}", 

                ) 

            ) 

 

        # Store performance metrics 

        self.performance = { 

            "accuracy": accuracy, 

            "confusion_matrix": conf_mat.tolist(), 

            "classification_report": report, 

        } 

        return self.performance 

 

    def test_model(self, ml_input_path, target_path, model_path): 

        """ 

        Test a pre-trained machine learning model and compute performance 

metrics. 

 

        Parameters: 

            ml_input_path (str): Path to the numpy file containing the 

test input data. 

            target_path (str): Path to the file containing target 

variable data. 

            model_path (str): Path to the pre-trained model file. 

 

        Returns: 

            dict: Performance metrics of the tested model, including 

y_true and y_pred. 

        """ 

        # Step 1: Load test data and pre-trained model 

        x_test = np.load(ml_input_path) 

        target = np.genfromtxt(target_path, dtype=str, delimiter=",", 

skip_header=0) 

        model = joblib.load(model_path) 

 

        # Encode target labels if necessary 

        label_encoder = LabelEncoder() 

        y_true = label_encoder.fit_transform(target)  # Ensure numerical 

encoding 

        y_pred = model.predict(x_test)  # Predictions should match the 

encoding 

 

        try: 

            y_scores = ( 
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                model.predict_proba(x_test)[:, 1] 

                if hasattr(model, "predict_proba") 

                else None 

            ) 

        except AttributeError: 

            y_scores = None 

 

        # Calculate performance metrics 

        accuracy = accuracy_score(y_true, y_pred) 

        conf_matrix = confusion_matrix(y_true, y_pred) 

        class_report = classification_report(y_true, y_pred, 

zero_division=0) 

 

        # Decode labels back to original for human readability if needed 

        decoded_y_true = label_encoder.inverse_transform(y_true) 

        decoded_y_pred = label_encoder.inverse_transform(y_pred) 

 

        return { 

            "y_true": decoded_y_true, 

            "y_pred": decoded_y_pred, 

            "y_scores": y_scores, 

            "accuracy": accuracy, 

            "confusion_matrix": conf_matrix, 

            "classification_report": class_report, 

        } 
 
evaluator.py 

import os 

import pandas as pd 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

from sklearn.preprocessing import label_binarize 

from plot import PerformancePlotting as p 

 

class Evaluator: 

    def __init__(self): 

        self.accuracy_scores = {} 

        self.classification_reports = {} 

 

    def evaluate(self, model_name, y_test, y_pred, class_labels, 

output_dir): 

        """ 

        Evaluate model performance and generate confusion matrix plot. 

        """ 

        # Calculate accuracy 

        accuracy = accuracy_score(y_test, y_pred) 

        print(f"{model_name} Accuracy: {accuracy:.4f}") 

 

        # Generate classification report and confusion matrix 

        report = classification_report( 

            y_test, y_pred, target_names=class_labels, output_dict=True 

        ) 

        cm = confusion_matrix(y_test, y_pred) 

 

        # Ensure the output directory exists 

        os.makedirs(output_dir, exist_ok=True) 

 

        # Save classification report to file 
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        report_path = os.path.join( 

            output_dir, f"{model_name}_classification_report.txt" 

        ) 

        with open(report_path, "w") as f: 

            f.write(classification_report(y_test, y_pred, 

target_names=class_labels)) 

        print(f"Classification report saved at: {report_path}") 

 

        # Plot and save the confusion matrix in the output directory 

        p.plot_confusion_matrix( 

            cm, 

            class_labels, 

            model_name, 

            f"Confusion matrix: {model_name}", 

            accuracy, 

            output_dir, 

        ) 

        # Save confusion matrix as a CSV file 

        self.save_confusion_matrix_to_csv(cm, class_labels, output_dir, 

model_name) 

 

    def save_confusion_matrix_to_csv(self, cm, class_labels, output_dir, 

model_name): 

        """ 

        Save confusion matrix to a CSV file. 

        """ 

        os.makedirs(output_dir, exist_ok=True) 

        cm_df = pd.DataFrame(cm, index=class_labels, 

columns=class_labels) 

        output_path = os.path.join(output_dir, 

f"{model_name}_confusion_matrix.csv") 

        cm_df.to_csv(output_path) 

        print(f"Confusion matrix data saved at: {output_path}") 

 

    def save_results(self): 

        """ 

        Save evaluation results. 

        """ 

        os.makedirs("results", exist_ok=True) 

        accuracy_df = pd.DataFrame( 

            list(self.accuracy_scores.items()), columns=["Model", 

"Accuracy"] 

        ) 

        accuracy_df.to_csv(os.path.join("results", 

"accuracy_scores.csv"), index=False) 

        print("Accuracy scores saved to 'results/accuracy_scores.csv'") 

 

        classification_reports_df = pd.concat( 

            { 

                k: pd.DataFrame(v).transpose() 

                for k, v in self.classification_reports.items() 

            }, 

            axis=0, 

        ) 

        classification_reports_df.to_csv( 

            os.path.join("results", "classification_reports.csv") 

        ) 

        print("Classification reports saved to 

'results/classification_reports.csv'") 
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    def load_labels(self, file_path, label_mapping=None): 

        """ 

        Load labels from a file. Optionally map numeric labels to string 

labels. 

 

        Parameters: 

            file_path (str): Path to the file containing labels. 

            label_mapping (dict, optional): Mapping of numeric labels to 

string labels. 

 

        Returns: 

            list: Loaded and optionally mapped labels. 

        """ 

        try: 

            # Load labels as a list 

            with open(file_path, "r") as f: 

                labels = [line.strip() for line in f] 

 

            if not labels: 

                raise ValueError(f"The file {file_path} is empty.") 

 

            # If mapping is provided, map numeric labels to string labels 

            if label_mapping: 

                labels = [ 

                    label_mapping[label] for label in labels if label in 

label_mapping 

                ] 

 

            return labels 

        except Exception as e: 

            raise ValueError(f"Error reading or processing {file_path}: 

{e}") 

 

 
 
property.py 

from log_setup import log 

from mdss.property import ProteinProperty 

 

class MLProperty(ProteinProperty): 

    """ 

    MLProperty class for calculating and labeling properties using 

machine learning predictions. 

 

    Attributes 

    ---------- 

    model : object 

        A trained machine learning model for making predictions. 

    frame_labels : dict 

        A dictionary mapping frame indices to predicted labels. 

    predictions : list 

        A list of predictions for all frames. 

    """ 

 

    def __init__(self, protein_data, model, atom_selection="name CA"): 

        """ 

        Initialize MLProperty with a trained machine learning model. 
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        Parameters 

        ---------- 

        protein_data : ProteinData 

            An instance of the ProteinData class. 

        model : object 

            A trained machine learning model capable of making 

predictions. 

        atom_selection : str, optional 

            Atom selection for property calculation. Default is 'name 

CA'. 

        """ 

        super().__init__(protein_data, atom_selection) 

        self.model = model 

        self.frame_labels = {} 

        self.predictions = [] 

 

    def calculate_property(self, input_matrix=None): 

        """ 

        Use the ML model to calculate a property for all frames. 

 

        Parameters 

        ---------- 

        input_matrix : numpy.ndarray, optional 

            Input data matrix where each row corresponds to a frame. 

            If None, input_matrix is generated from protein_data. 

 

        Returns 

        ------- 

        list 

            A list of predictions corresponding to each frame. 

        """ 

        if self.model is None: 

            log.error( 

                "{:<15s} {:<80s}".format( 

                    "ERROR", 

                    "No model is loaded for predictions. Please use a 

valid model.", 

                ) 

            ) 

            raise ValueError( 

                "No model is loaded for predictions. Please use model as 

input." 

            ) 

 

        # Make predictions 

        self.predictions = self.model.predict(input_matrix) 

        self.property_vector = self.predictions 

        self.frame_indices = list(range(len(self.predictions))) 

        self._property_statistics() 

        return self.predictions 

 

    def label_frames(self, labels=None): 

        """ 

        Assign labels to frames based on the model predictions. 

 

        Parameters 

        ---------- 

        labels : list, optional 
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            List of labels to assign based on the predictions. 

            If None, use the unique predictions as labels. 

 

        Returns 

        ------- 

        dict 

            A dictionary mapping frame indices to their assigned labels. 

        """ 

        if not self.predictions: 

            log.error( 

                "{:<15s} {:<80s}".format( 

                    "ERROR", 

                    "No predictions available. Run calculate_property() 

first.", 

                ) 

            ) 

            raise ValueError( 

                "No predictions available. Run calculate_property() 

first." 

            ) 

 

        unique_predictions = sorted(set(self.predictions)) 

        if labels is None: 

            labels = unique_predictions 

        else: 

            if len(labels) != len(unique_predictions): 

                log.error( 

                    "{:<15s} {:<80s}".format( 

                        "ERROR", 

                        "Number of labels does not match the unique 

predictions.", 

                    ) 

                ) 

                raise ValueError( 

                    "The number of labels does not match the number of 

unique predictions." 

                ) 

 

        label_map = {pred: label for pred, label in 

zip(unique_predictions, labels)} 

 

        self.frame_labels = { 

            idx: label_map[pred] 

            for idx, pred in zip(self.frame_indices, self.predictions) 

        } 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "RESULT", 

                "Frame labels assigned based on predictions.", 

            ) 

        ) 

        return self.frame_labels 

 

    def write_frame_labels(self, outfilepath): 

        """ 

        Write the frame labels to a file. 

 

        Parameters 

        ---------- 
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        outfilepath : str 

            Path to save the frame labels. 

        """ 

        if not self.frame_labels: 

            log.error( 

                "{:<15s} {:<80s}".format( 

                    "ERROR", 

                    "No frame labels available. Run label_frames() 

first.", 

                ) 

            ) 

            raise ValueError("No frame labels available. Run 

label_frames() first.") 

 

        with open(outfilepath, "w") as f: 

            for frame_idx, label in self.frame_labels.items(): 

                f.write(f"{frame_idx} {label}\n") 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "RESULT", 

                f"Frame labels written to {outfilepath}", 

            ) 

        ) 

 

plot.py 

import matplotlib.pyplot as plt 

import seaborn as sns 

import os 

import numpy as np 

from sklearn.preprocessing import label_binarize 

from sklearn.metrics import PrecisionRecallDisplay 

from sklearn.preprocessing import label_binarize 

from sklearn.calibration import calibration_curve 

from sklearn.metrics import PrecisionRecallDisplay 

from sklearn.metrics import ( 

    confusion_matrix, 

    precision_recall_curve, 

    roc_curve, 

) 

from log_setup import log 

 

class PerformancePlotting: 

    @staticmethod 

    def plot_confusion_matrix( 

        cm, class_labels, model_name, title, accuracy, output_dir 

    ): 

        """ 

        Plot and save the confusion matrix with counts and percentages in 

all cells. 

 

        Parameters: 

            cm (array-like): Confusion matrix. 

            class_labels (list): List of class labels. 

            title (str): Title of the plot. 

            accuracy (float): Model accuracy to display in the title. 

            output_dir (str): Directory to save the plot. 

        """ 

 



 

Appendix IV 

 

 

 180 

        # Ensure cm dimensions match class_labels 

        assert ( 

            cm.shape[0] == cm.shape[1] == len(class_labels) 

        ), f"Confusion matrix dimensions {cm.shape} and class labels 

{len(class_labels)} do not match." 

 

        # Calculate total samples for global normalization 

        total = cm.sum() 

 

        # Create annotation labels with counts and percentages for all 

cells 

        labels = np.empty_like(cm, dtype=object) 

        for i in range(cm.shape[0]): 

            for j in range(cm.shape[1]): 

                count = cm[i, j] 

                percentage = (count / total) * 100 if total > 0 else 0 

                labels[i, j] = f"{count}\n({percentage:.1f}%)" 

 

        # Plot the heatmap 

        plt.figure(figsize=(8, 6)) 

        sns.heatmap( 

            cm, 

            annot=False,  # Turn off default annotation 

            fmt="", 

            cmap="GnBu", 

            xticklabels=class_labels, 

            yticklabels=class_labels, 

            cbar=True, 

            linewidths=0.5, 

            linecolor="gray", 

        ) 

 

        # Manually add text annotations 

        for i in range(cm.shape[0]): 

            for j in range(cm.shape[1]): 

                count = cm[i, j] 

                percentage = (count / cm.sum()) * 100 if cm.sum() > 0 

else 0 

                text = f"{count}\n({percentage:.1f}%)" 

                plt.text( 

                    j + 0.5,  # x-coordinate (column) 

                    i + 0.5,  # y-coordinate (row) 

                    text, 

                    ha="center", 

                    va="center", 

                    color="black", 

                ) 

 

        # Add title and labels 

        plt.title(f"{title}\nAccuracy: {accuracy:.4f}") 

        plt.xlabel("Predicted") 

        plt.ylabel("Actual") 

 

        # Save the plot 

        os.makedirs(output_dir, exist_ok=True) 

        output_path = os.path.join(output_dir, f" {model_name} 

_confusion_matrix.png") 

        plt.savefig(output_path, dpi=300) 

        plt.close() 
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    @staticmethod 

    def plot_precision_recall(y_true, y_scores, model_name, output_dir, 

prefix=None): 

        """ 

        Precision-Recall Curve: Handle binary and multiclass 

classification. 

 

        Parameters: 

            y_true (array): True labels. 

            y_scores (array or None): Predicted probabilities or decision 

scores. 

            model_name (str): Name of the model. 

            output_dir (str): Directory to save the plot. 

        """ 

        # Skip plotting if y_scores is None 

        if y_scores is None: 

            log.info( 

                "{:<15s} {:<80s}".format( 

                    "STEPS", 

                    f"Skipping Precision-Recall Curve for {model_name}: 

No probability scores provided..", 

                ) 

            ) 

 

            return 

 

        # Binarize labels for multiclass 

        classes = np.unique(y_true) 

        y_true_binarized = label_binarize(y_true, classes=classes) 

 

        plt.figure(figsize=(8, 6)) 

        for i, class_name in enumerate(classes): 

            if y_scores.ndim > 1: 

                y_class_scores = y_scores[:, i] 

            else: 

                y_class_scores = y_scores 

 

            precision, recall, _ = precision_recall_curve( 

                y_true_binarized[:, i], y_class_scores 

            ) 

            display = PrecisionRecallDisplay(precision=precision, 

recall=recall) 

            display.plot(ax=plt.gca(), name=f"Class {class_name}") 

 

        plt.title(f"Precision-Recall Curve for {model_name}") 

        plt.xlabel("Recall") 

        plt.ylabel("Precision") 

        plt.legend(loc="best") 

        file_name = ( 

            f"{prefix}_{model_name}_precision_recall_curve.png" 

            if prefix 

            else f"{model_name}_precision_recall_curve.png" 

        ) 

        plt.savefig(os.path.join(output_dir, file_name)) 

        plt.close() 

 

    @staticmethod 



 

Appendix IV 

 

 

 182 

    def plot_roc_curve(y_true, y_scores, model_name, output_dir, 

prefix=None): 

        """ 

        ROC Curve: Handle binary and multiclass classification. 

 

        Parameters: 

            y_true (array): True labels. 

            y_scores (array or None): Predicted probabilities or decision 

scores. 

            model_name (str): Name of the model. 

            output_dir (str): Directory to save the plot. 

        """ 

        from sklearn.preprocessing import label_binarize 

        from sklearn.metrics import RocCurveDisplay 

 

        # Skip plotting if y_scores is None 

        if y_scores is None: 

            log.info( 

                "{:<15s} {:<80s}".format( 

                    "STEPS", 

                    f"Skipping ROC Curve for {model_name}: No probability 

or decision scores provided.", 

                ) 

            ) 

            return 

 

        # Binarize labels for multiclass 

        classes = np.unique(y_true) 

        y_true_binarized = label_binarize(y_true, classes=classes) 

 

        plt.figure(figsize=(8, 6)) 

        for i, class_name in enumerate(classes): 

            if y_scores.ndim > 1: 

                y_class_scores = y_scores[:, i] 

            else: 

                y_class_scores = y_scores 

 

            fpr, tpr, _ = roc_curve(y_true_binarized[:, i], 

y_class_scores) 

            RocCurveDisplay(fpr=fpr, tpr=tpr).plot( 

                ax=plt.gca(), name=f"Class {class_name}" 

            ) 

 

        plt.title(f"ROC Curve for {model_name}") 

        plt.xlabel("False Positive Rate") 

        plt.ylabel("True Positive Rate") 

        plt.legend(loc="best") 

        file_name = ( 

            f"{prefix}_{model_name}_roc_curve.png" 

            if prefix 

            else f"{model_name}_roc_curve.png" 

        ) 

        plt.savefig(os.path.join(output_dir, file_name)) 

        plt.close() 

 

    @staticmethod 

    def plot_calibration_curve(y_true, y_prob, model_name, output_dir, 

prefix=None): 

        """ 
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        Calibration Curve: Handle binary and multiclass classification. 

 

        Parameters: 

            y_true (array): True labels. 

            y_prob (array): Predicted probabilities for each class. 

            model_name (str): Name of the model. 

            output_dir (str): Directory to save the plot. 

        """ 

        from sklearn.preprocessing import label_binarize 

 

        # Binarize labels for multiclass 

        classes = np.unique(y_true) 

        y_true_binarized = label_binarize(y_true, classes=classes) 

 

        plt.figure(figsize=(8, 6)) 

        for i, class_name in enumerate(classes): 

            if y_prob.ndim > 1: 

                y_class_prob = y_prob[:, i] 

            else: 

                y_class_prob = y_prob 

 

            prob_true, prob_pred = calibration_curve( 

                y_true_binarized[:, i], y_class_prob, n_bins=10 

            ) 

            plt.plot(prob_pred, prob_true, marker="o", label=f"Class 

{class_name}") 

 

        plt.plot( 

            [0, 1], [0, 1], linestyle="--", color="gray", 

label="Perfectly Calibrated" 

        ) 

        plt.title(f"Calibration Curve for {model_name}") 

        plt.xlabel("Predicted Probability") 

        plt.ylabel("True Probability") 

        plt.legend(loc="best") 

        file_name = ( 

            f"{prefix}_{model_name}_calibration_curve.png" 

            if prefix 

            else f"{model_name}_calibration_curve.png" 

        ) 

        plt.savefig(os.path.join(output_dir, file_name)) 

        plt.close() 

 

    @staticmethod 

    def generate_model_plots(y_true, y_pred, y_scores, model_name, 

output_dir): 

        """ 

        Generate and save all plots for a given model. 

 

        Parameters: 

            y_true (array): Ground truth labels. 

            y_pred (array): Predicted labels by the model. 

            y_scores (array): Predicted probabilities or decision scores. 

            model_name (str): Name of the machine learning model. 

            output_dir (str): Directory to save the plots. 

        """ 

        os.makedirs(output_dir, exist_ok=True) 

        PerformancePlotting.plot_confusion_matrix( 

            y_true, y_pred, model_name, output_dir 
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        ) 

        PerformancePlotting.plot_precision_recall( 

            y_true, y_scores, model_name, output_dir 

        ) 

        PerformancePlotting.plot_roc_curve(y_true, y_scores, model_name, 

output_dir) 

        if y_scores is not None and len(np.unique(y_scores)) > 2: 

            PerformancePlotting.plot_calibration_curve( 

                y_true, y_scores, model_name, output_dir 

            ) 

 

    @staticmethod 

    def plot_model_comparison(models, accuracies, output_dir, 

prefix="comparison"): 

        """ 

        Generates and saves a bar plot comparing model accuracies. 

 

        Parameters: 

            models (list): List of model names. 

            accuracies (list): List of corresponding accuracies for the 

models. 

            output_dir (str): Directory to save the plot. 

            prefix (str): Prefix for the output file name. 

        """ 

        import os 

 

        # Ensure output directory exists 

        os.makedirs(output_dir, exist_ok=True) 

 

        # Create and save the plot 

        plt.figure(figsize=(10, 6)) 

        plt.bar(models, accuracies) 

        plt.xlabel("Model") 

        plt.ylabel("Accuracy") 

        plt.title("Model Performance Comparison") 

        plt.xticks(rotation=45) 

 

        # Save the plot in the results folder 

        comparison_plot_path = os.path.join( 

            output_dir, f"{prefix}_models_accuracy_comparison.png" 

        ) 

        plt.savefig(comparison_plot_path) 

        plt.close()  # Close the plot to avoid displaying it 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "OUTPUT", 

                f"Model performance comparison plot saved to 

{comparison_plot_path}", 

            ) 

        ) 

 

methods.py 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import SVC 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.neural_network import MLPClassifier 
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machine_learning_models = { 

    "LogisticRegression": LogisticRegression, 

    "RandomForest": RandomForestClassifier, 

    "SVM": SVC, 

    "DecisionTree": DecisionTreeClassifier, 

    "GradientBoosting": GradientBoostingClassifier, 

    "MLP": MLPClassifier, 

} 

 

 

 
log_setup.py 

import logging 

import os 

from datetime import datetime 

 

try: 

    if not hasattr(logging, "configured"): 

        here = os.path.abspath(os.path.dirname(__file__)) 

        log_dir = os.path.join(here, "logs") 

 

        if not os.path.exists(log_dir): 

            os.makedirs(log_dir) 

 

        filename = datetime.now().strftime("log_%Y_%m_%d_%H_%M_%S.txt") 

        filepath = os.path.join(log_dir, filename) 

        print(f"Log file path: {filepath}") 

 

        logging.basicConfig( 

            filename=filepath, 

            level=logging.INFO, 

            format="%(asctime)s %(levelname)s %(message)s", 

            filemode="w", 

        ) 

        logging.configured = True 

except Exception as e: 

    print(f"Error during logging setup: {e}") 

 

log = logging.getLogger(__name__) 

 

 
 

workflow.py 

from log_setup import log 

from mdss.protein_data import ProteinData 

from learner import MDTrajLearner 

from property import MLProperty 

from evaluation import Evaluator 

import numpy as np 

import joblib 

import os 

 

prefix = "1912" 

 

log.info( 
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    "{:<15s} {:<80s}".format( 

        "STEPS", 

        f"Starting the machine learning workflow with prefix '{prefix}'", 

    ) 

) 

 

# Input files 

trajectory_path = "data/R02_4AKE_DM_prod_T300_protein_dt40.xtc" 

topology_path = "data/R02_4AKE_DM_prod_T300_protein.gro" 

target_path = "data/R02_4AKE_DM_prod_T300_dt40_target_var.dat" 

trajectory_to_predict = "data/R02_4AKE_DM_prod_T300_protein_dt200.xtc" 

 

# Output files 

results_dir = "results" 

if not os.path.exists(results_dir): 

    os.makedirs(results_dir) 

 

matrix_output_path = os.path.join(results_dir, f"{prefix}_matrix.npy") 

trajectory_to_predict_matrix = os.path.join( 

    results_dir, f"{prefix}_matrix_to_predict.npy" 

) 

 

# Step 1: Initialize ProteinData and MDTrajLearners 

protein_data = ProteinData(trajectory_path, topology_path) 

learner = MDTrajLearner(protein_data) 

 

# Step 2: Generate and save matrix representation 

log.info( 

    "{:<15s} {:<80s}".format( 

        "STEPS", 

        "Generating matrix representation of the trajectory.", 

    ) 

) 

learner.generate_and_save_matrix( 

    xtc_output_path=trajectory_path, 

matrix_output_path=matrix_output_path 

) 

 

# Initialize the Evaluator 

evaluator = Evaluator() 

 

# Step 3: Train and test all machine learning models 

models_to_test = [ 

    "LogisticRegression", 

    "RandomForest", 

    "SVM", 

    "DecisionTree", 

    "GradientBoosting", 

    "MLP", 

] 

results = {} 

label_mapping = {"0": "A", "1": "B", "2": "I", "3": "N"} 

 

# Load true labels 

y_test = evaluator.load_labels(target_path) 

 

for model_name in models_to_test: 

    model_output_dir = os.path.join(results_dir, 

f"{prefix}_{model_name}") 
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    os.makedirs(model_output_dir, exist_ok=True) 

    model_output_path = os.path.join(model_output_dir, "model.joblib") 

 

    if os.path.exists(model_output_path): 

        log.info( 

            "{:<15s} {:<80s}".format( 

                "INPUT", 

                f"Trained model for {model_name} already exists at 

{model_output_path}. Skipping training.", 

            ) 

        ) 

        # Load existing model 

        loaded_model = joblib.load(model_output_path) 

        y_pred = loaded_model.predict(np.load(matrix_output_path)) 

 

        # Evaluate and generate confusion matrix 

        evaluator.evaluate( 

            model_name=model_name, 

            y_test=y_test, 

            y_pred=y_pred, 

            class_labels=list(label_mapping.values()), 

            output_dir=model_output_dir, 

        ) 

        continue 

 

    log.info( 

        "{:<15s} {:<80s}".format( 

            "STEPS", 

            f"Training and testing with {model_name}.", 

        ) 

    ) 

 

    # Define model-specific parameters 

    model_params = {} 

    if model_name == "RandomForest": 

        model_params = {"n_estimators": 100, "random_state": 42, 

"n_jobs": -1} 

    elif model_name == "GradientBoosting": 

        model_params = {"n_estimators": 100, "learning_rate": 0.1} 

    elif model_name == "SVM": 

        model_params = {"kernel": "rbf", "C": 1, "gamma": "scale"} 

    elif model_name == "MLP": 

        model_params = {"hidden_layer_sizes": (100,), "max_iter": 300} 

 

    # Train and test the model 

    performance = learner.train_and_test( 

        ml_input_path=matrix_output_path, 

        target_path=target_path, 

        model_name=model_name, 

        model_params=model_params, 

        output_model_path=model_output_path, 

    ) 

 

    # Use predicted labels for evaluation 

    y_pred = performance["predictions"]  # Assuming 'predictions' holds 

y_pred 

    evaluator.evaluate( 

        model_name=model_name, 

        y_test=y_test, 
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        y_pred=y_pred, 

        class_labels=list(label_mapping.values()), 

        output_dir=model_output_dir, 

    ) 

 

log.info(f"Workflow completed with prefix '{prefix}'") 

 

Appendix V 
 
The following R code was used to generate the plots for the figures presented in the thesis. 

 
Kde2d_PV_replicas.R 
 

# parameters 

nbin = 200 

ncol = 200 

 

# input details 

simprefix = "R01-R05_4AKE" 

prefix = paste(simprefix, "_XX_prod_T300_", sep = '') 

APC = 'PC1' 

BPC = 'PC2' 

 

# functions 

read_proj_xvg <- function(filename){ 

    filelines <- readLines(filename) 

    filelines <- filelines[c(1:(length(filelines)-1))] 

    df <- read.table(text = filelines, comment.char = "@", header = F)$V2 

    return(df) 

} 

 

plot_image <- function(k_PC, col_fun, main_title, n_colours = ncol){ 

    col_vector = col_fun(n_colours) 

    image( 

        k_PC, 

        col = col_vector, 

        xlab = APC, 

        ylab = BPC, 

        xaxt = 'n', 

        yaxt = 'n', 

        main = main_title 

    ) 

    axis(1, seq(-10,10,2)) 

    axis(2, seq(-10,10,2)) 

    abline(h = seq(-10,10,0.5), lty = 3, col = 'lightgrey') 

    abline(v = seq(-10,10,0.5), lty = 3, col = 'lightgrey') 

    image( 

        k_PC, 

        col = col_vector, 

        xlab = APC, 

        ylab = BPC, 

        main = simprefix, 

        add = T 

    ) 

    contour( 

        k_PC, 
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        col = 'grey10', 

        add = T 

    ) 

} 

 

# read values 

APC_values <- read_proj_xvg(paste(prefix, APC, '_proj.xvg', sep ='')) 

BPC_values <- read_proj_xvg(paste(prefix, BPC, '_proj.xvg', sep ='')) 

 

# calculate density 

k_PC <- MASS::kde2d(APC_values, BPC_values, n = nbin) 

 

# sim names 

sim_names <- c( 

    paste("R0", c(1:5), "_4AKE_WT" , sep = ''), 

    paste("R0", c(1:5), "_4AKE_DM" , sep = '') 

) 

sim_col <- c( 

  rep("blue", 5), 

  rep("magenta", 5) 

) 

 

# plot 

orange_palette <- colorRampPalette(c(rgb(1,1,1,0.2),"lightgoldenrod", 

"goldenrod", "darkgoldenrod"), alpha = T) 

par(mfrow=c(1,1)) 

plot_image(k_PC, orange_palette, simprefix) 

 

# multiplot 

#par(mfrow=c(2,5)) 

for(i in c(1:10)){ 

  png(paste(sim_names[i], '_PC1-PC2.png',sep = ''), width = 1350, height 

= 1050) 

  par(cex = 2) 

  i_vector <- c(1:50000) + ((i-1)*50000) 

  plot_image(k_PC, orange_palette, sim_names[i]) 

  points( 

    APC_values[i_vector], 

    BPC_values[i_vector], 

    pch = '.', 

    col = sim_col[i] 

  ) 

  dev.off() 

} 

FA 

target_distribution.R 
 

library(ggplot2) 

library(mclust) 

 

set.seed(42) 

 

peak1 <- rnorm(500000, mean = 2.4, sd = 0.1)   

peak2 <- rnorm(4500005, mean = 3.55, sd = 0.4)  

 

WT <- read.csv("R01_R05_4AKE_WT_prod_T300_COM.xvg", header = FALSE, 

sep='') 

target <- data.frame(Value = c(peak1, peak2), Group = "Target") 

wt <- data.frame(Value = WT$V2, Group = "WT") 
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target_vs_WT <-rbind(target, wt) 

target_vs_WT$Value <- target_vs_WT$Value * 10 

 

create_target_plot <- function(data, x_label, plot_title, file_name) { 

  p <- ggplot(data, aes(x = Value, fill = Group)) + 

    geom_density(alpha = 0.5, colour =NA) + 

    labs(title = plot_title, x = x_label, y = "Density", fill = 

"Structure") + 

    theme_minimal() + 

    theme(plot.title = element_text(hjust = 0.5, size = 16, face = 

"bold")) + 

    scale_fill_manual(values = c("blue", "green")) 

 

  ggsave(file_name, plot = p, width = 8, height = 6, dpi = 300) 

 

} 

 

create_target_plot( 

  target_vs_WT,  

  "COMDistance (Å)",   

  "Target and WT for COMDistance",   

  "target_distribution.png"   

) 

 

density_plots.py 
 

library(ggplot2) 

library(zoo)   

 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/V135G/R01_4AKE_V135G/xvg") 

R01_V135G_rmsd <- read.table("R01_4AKE_V135G_prod_T300_rmsd.xvg", 

skip=18, col.names = c("FRAME", "RMSD")) 

R01_V135G_rmsf <- read.table("R01_4AKE_V135G_prod_T300_rmsf.xvg", 

skip=27, col.names = c("res", "RMSF")) 

R01_V135G_Rg <- read.table("R01_4AKE_V135G_prod_T300_Rg.xvg", skip=27) 

 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/V142G/R01_4AKE_V142G/xvg") 

R01_V142G_Rg <- read.table("R01_4AKE_V142G_prod_T300_Rg.xvg", skip=27) 

R01_V142G_rmsf <- read.table("R01_4AKE_V142G_prod_T300_rmsf.xvg", 

skip=27, col.names = c("res", "RMSF")) 

R01_V142G_rmsd <- read.table("R01_4AKE_V142G_prod_T300_rmsd.xvg", 

skip=18, col.names = c("FRAME", "RMSD")) 

 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/WT/R01_4AKE_WT/xvg") 

R01_WT_Rg <- read.table("R01_4AKE_WT_prod_T300_Rg.xvg", skip=27) 

R01_WT_rmsf <- read.table("R01_4AKE_WT_prod_T300_rmsf.xvg", skip=27, 

col.names = c("res", "RMSF")) 
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R01_WT_rmsd <- read.table("R01_4AKE_WT_prod_T300_rmsd.xvg", skip=18, 

col.names = c("FRAME", "RMSD")) 

 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/DM/R02_4AKE_DM/xvg") 

R02_DM_rmsf <- read.table("R02_4AKE_DM_prod_T300_rmsf.xvg", skip=27, 

col.names = c("res", "RMSF")) 

R02_DM_rmsd <- read.table("R02_4AKE_DM_prod_T300_rmsd.xvg", skip=18, 

col.names = c("FRAME", "RMSD")) 

R02_DM_Rg <- read.table("R02_4AKE_DM_prod_T300_Rg.xvg", skip=27) 

 

R01_WT_rmsd$Condition    <- "WT" 

R01_V135G_rmsd$Condition <- "V135G" 

R01_V142G_rmsd$Condition <- "V142G" 

R02_DM_rmsd$Condition    <- "DM" 

 

combined_rmsd <- rbind( 

  data.frame(FRAME = R01_WT_rmsd$FRAME, RMSD = R01_WT_rmsd$RMSD, 

Condition = "WT"), 

  data.frame(FRAME = R01_V135G_rmsd$FRAME, RMSD = R01_V135G_rmsd$RMSD, 

Condition = "V135G"), 

  data.frame(FRAME = R01_V142G_rmsd$FRAME, RMSD = R01_V142G_rmsd$RMSD, 

Condition = "V142G"), 

  data.frame(FRAME = R02_DM_rmsd$FRAME, RMSD = R02_DM_rmsd$RMSD, 

Condition = "DM") 

) 

 

rmsd_plot <- ggplot(combined_rmsd, aes(x = FRAME, y = RMSD, color = 

Condition)) + 

  geom_line(size = 0.8) + 

  labs(title = "RMSD", 

       x = "Frame", 

       y = "RMSD (nm)", 

       color = "Structures") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold")) 

ggsave("rmsd_overlayed_plot.png", plot = rmsd_plot, width = 8, height = 

6, dpi = 300) 

 

#################### smooth running average RMSD ####################### 
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# Define a function to plot RMSD with consistent x-axis labels and 

smoothed averages 

plot_rmsd_with_consistent_x <- function(data, smooth_window = 100, 

file_name = "rmsd_consistent_xaxis_plot.png") { 

   

# Convert RMSD to Ångstroms (10x nanometers) 

  data$RMSD <- data$RMSD * 10 

   

  conditions <- unique(data$Condition) 

  colors <- c("red", "blue", "green", "purple") 

  png(file_name, width = 1200, height = 800, res = 150) 

  plot( 

    data$FRAME, data$RMSD, type = "n",  # Empty plot 

    xlab = "Frame", ylab = "RMSD (Å)", 

    main = "RMSD", 

    ylim = range(data$RMSD, na.rm = TRUE),  

    xlim = range(data$FRAME, na.rm = TRUE), 

    xaxt = "n"  # Suppress default x-axis labels 

  ) 

   

  for (i in seq_along(conditions)) { 

    condition_data <- subset(data, Condition == conditions[i]) 

     

  Plot raw RMSD data as faint dashed lines 

    lines(condition_data$FRAME, condition_data$RMSD, col = colors[i], lwd 

= 0.5, lty = 3) 

     

    # Calculate and plot smoothed RMSD data 

    smoothed_rmsd <- rollmean(condition_data$RMSD, smooth_window, fill = 

NA) 

    lines(condition_data$FRAME, smoothed_rmsd, col = colors[i], lwd = 2) 

  } 

  axis( 

    side = 1,  # Bottom axis 

    at = seq(0, max(data$FRAME), by = 250000),  # Tick positions 

    labels = format(seq(0, max(data$FRAME), by = 250000), scientific = 

FALSE)  # Consistent number format 

  ) 

   legend( 
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    "topright", legend = conditions, col = colors, lty = 1, lwd = 2, 

    title = "Structure", bg = "white" 

  ) 

   dev.off() 

} 

 

# Call the function to create the plot 

plot_rmsd_with_consistent_x( 

  combined_rmsd,  

  smooth_window = 1000,  # Adjust the window for smoothing as needed 

  file_name = "rmsd_smooth_running_average.png" 

) 

 

#################### Radis of Gyration####################### 

 

plot_rg_with_consistent_x <- function(data, smooth_window = 100, 

file_name = "rg_consistent_xaxis_plot.png") { 

  data$Rg <- data$Rg * 10 

   

  conditions <- unique(data$Condition) 

  colors <- c("red", "blue", "green", "purple") 

   

  png(file_name, width = 1200, height = 800, res = 150) 

   

  plot( 

    data$FRAME, data$Rg, type = "n",  # Empty plot 

    xlab = "Frame", ylab = "Radius of Gyration (Å)", 

    main = "Radius of Gyration", 

    ylim = range(data$Rg, na.rm = TRUE),  

    xlim = range(data$FRAME, na.rm = TRUE), 

    xaxt = "n"  # Suppress default x-axis labels 

  ) 

   

  for (i in seq_along(conditions)) { 

    condition_data <- subset(data, Condition == conditions[i]) 

     

    lines(condition_data$FRAME, condition_data$Rg, col = colors[i], lwd = 

0.5, lty = 3) 
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    smoothed_rg <- rollmean(condition_data$Rg, smooth_window, fill = NA) 

    lines(condition_data$FRAME, smoothed_rg, col = colors[i], lwd = 2) 

  } 

   

  axis( 

    side = 1,  # Bottom axis 

    at = seq(0, max(data$FRAME), by = 250000),  # Tick positions 

    labels = format(seq(0, max(data$FRAME), by = 250000), scientific = 

FALSE)  # Consistent number format 

  ) 

   

  legend( 

    "topright", legend = conditions, col = colors, lty = 1, lwd = 2, 

    title = "Structure", bg = "white" 

  ) 

   

  dev.off() 

} 

 

plot_rg_with_consistent_x( 

  combined_Rg,   

  smooth_window = 1000,  

  file_name = "rg_smooth_running_average.png" 

) 

 

 

####################  RMSF ####################### 

 

R01_WT_rmsf$Condition    <- "WT" 

R01_V135G_rmsf$Condition <- "V135G" 

R01_V142G_rmsf$Condition <- "V142G" 

R02_DM_rmsf$Condition    <- "DM" 

 

combined_rmsf <- rbind( 

  data.frame(Residue = R01_V135G_rmsf$res, RMSF = R01_V135G_rmsf$RMSF, 

Condition = "V135G"), 

  data.frame(Residue = R01_V142G_rmsf$res, RMSF = R01_V142G_rmsf$RMSF, 

Condition = "V142G"), 
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  data.frame(Residue = R01_WT_rmsf$res, RMSF = R01_WT_rmsf$RMSF, 

Condition = "WT"), 

  data.frame(Residue = R02_DM_rmsf$res, RMSF = R02_DM_rmsf$RMSF, 

Condition = "DM") 

) 

 

combined_rmsf$RMSF <- combined_rmsf$RMSF * 10 

 

rmsf_plot <- ggplot(combined_rmsf, aes(x = Residue, y = RMSF, color = 

Condition)) + 

  geom_line(size = 0.8) + 

  labs(title = "RMSF", 

       x = "Residue", 

       y = "RMSF (Å)", 

       color = "Structures") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold")) 

 

ggsave("rmsf_overlayed_plot.png", plot = rmsf_plot, width = 8, height = 

6, dpi = 300) 

 

#################### Rg density plot ################## 

 

R01_V135G_Rg$Condition <- "V135G" 

R01_V142G_Rg$Condition <- "V142G" 

R01_WT_Rg$Condition    <- "WT" 

R02_DM_Rg$Condition    <- "DM" 

 

combined_Rg <- rbind( 

  data.frame(FRAME = R01_V135G_Rg$V1, Rg = R01_V135G_Rg$V2, Condition = 

"V135G"), 

  data.frame(FRAME = R01_V142G_Rg$V1, Rg = R01_V142G_Rg$V2, Condition = 

"V142G"), 

  data.frame(FRAME = R01_WT_Rg$V1, Rg = R01_WT_Rg$V2, Condition = "WT"), 

  data.frame(FRAME = R02_DM_Rg$V1, Rg = R02_DM_Rg$V2, Condition = "DM") 

) 

 

Rg_plot <- ggplot(combined_Rg, aes(x = FRAME, y = Rg, color = Condition)) 

+ 
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  geom_line(size = 0.8) + 

  labs(title = "Radius of gyration", 

       x = "Frame", 

       y = "Radius of Gyration (nm)", 

       color = "Structures") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold")) 

 

ggsave("Rg_overlayed_plot.png", plot = Rg_plot, width = 8, height = 6, 

dpi = 300) 

 

####################### COMDistance density##################### 

setwd("~/Dropbox/Thesis draft/figures/xvg_WT_DM_COM Distance") 

R02_DM_COMDistance <- read.table("R02_4AKE_DM_prod_T300_COM.xvg", skip 

=25) 

R01_WT_COMDistance <- read.table("R01_4AKE_WT_prod_T300_COM.xvg", 

skip=25) 

 

R01_WT_COMDistance$Structure <- "WT" 

R02_DM_COMDistance$Structure <- "DM" 

   

  combined_COMDistance <- rbind( 

    data.frame(COMDistance = R01_WT_COMDistance$V2, Structure = 

R01_WT_COMDistance$Structure), 

    data.frame(COMDistance = R02_DM_COMDistance$V2, Structure = 

R02_DM_COMDistance$Structure) 

  ) 

 

  combined_COMDistance$COMDistance <- combined_COMDistance$COMDistance * 

10 

 

density_plot <- ggplot(combined_COMDistance, aes(x = COMDistance, fill = 

Structure)) + 

  geom_density(alpha = 0.5, adjust = 1) +  # Adjust alpha for 

transparency 

  labs(title = "COMDistance: R02_WT_vs_R02_DM", 

       x = "COMDistance (Å)", 

       y = "Density", 

       fill = "Structure") + 
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  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold")) 

 

ggsave("COMDistance_angstrom.png", plot = density_plot, width = 8, height 

= 6, dpi = 300) 

 

ggplot(DM_COM, aes(x = value)) + 

  geom_density(fill = "blue", alpha = 0.5) +  # Adjust fill color and 

transparency 

  labs(title = "Density Plot of Value", 

       x = "Value", 

       y = "Density") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold")) 

 

#########################density plots############################ 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/DM/R01_R05_4AKE_DM/xvg") 

R01_R05_DM_rmsd <- read.table("R01_R05_4AKE_DM_prod_T300_rmsd.xvg", 

skip=1) 

R01_R05_DM_Rg <- read.table("R01_R05_4AKE_DM_prod_T300_Rg.xvg", skip=1) 

R05_DM_G55_P127 <- read.table("R01_R05_4AKE_DM_prod_T300_G55-P127.xvg", 

skip=1) 

 

setwd("~/Documents/PhD/ADK/xvg_plots_MD/jade/WT/R01_R05_4AKE_WT/xvg") 

R01_R05_WT_rmsd <- read.table("R01_R05_4AKE_WT_prod_T300_rmsd.xvg", 

skip=1) 

R01_R05_WT_Rg <- read.table("R01_R05_4AKE_WT_prod_T300_Rg.xvg", skip=1) 

R05_WT_G55_P127 <- read.table("R01_R05_4AKE_WT_prod_T300_G55-P127.xvg", 

skip=1) 

 

R01_R05_DM_rmsd$Structure <- "DM" 

R01_R05_WT_rmsd$Structure <- "WT" 

R01_R05_DM_Rg$Structure <- "DM" 

R01_R05_WT_Rg$Structure <- "WT" 

R05_DM_G55_P127$Structure <- "DM" 

R05_WT_G55_P127$Structure <- "WT" 

 

# Combine datasets for each property 

combined_rmsd <- rbind( 
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  data.frame(Time = R01_R05_DM_rmsd$V1, Value = R01_R05_DM_rmsd$V2, 

Structure = R01_R05_DM_rmsd$Structure), 

  data.frame(Time = R01_R05_WT_rmsd$V1, Value = R01_R05_WT_rmsd$V2, 

Structure = R01_R05_WT_rmsd$Structure) 

) 

 

combined_Rg <- rbind( 

  data.frame(Time = R01_R05_DM_Rg$V1, Value = R01_R05_DM_Rg$V2, Structure 

= R01_R05_DM_Rg$Structure), 

  data.frame(Time = R01_R05_WT_Rg$V1, Value = R01_R05_WT_Rg$V2, Structure 

= R01_R05_WT_Rg$Structure) 

) 

 

combined_G55_P127 <- rbind( 

  data.frame(Time = R05_DM_G55_P127$V1, Value = R05_DM_G55_P127$V2, 

Structure = R05_DM_G55_P127$Structure), 

  data.frame(Time = R05_WT_G55_P127$V1, Value = R05_WT_G55_P127$V2, 

Structure = R05_WT_G55_P127$Structure) 

) 

 

combined_rmsd$Value <- combined_rmsd$Value * 10 

combined_Rg$Value <- combined_Rg$Value * 10 

combined_G55_P127$Value <- combined_G55_P127$Value * 10 

 

# Function to create and save density plots 

create_density_plot <- function(data, x_label, plot_title, file_name) { 

  p <- ggplot(data, aes(x = Value, fill = Structure)) + 

    geom_density(alpha = 0.5, colour =NA) + 

    labs(title = plot_title, x = x_label, y = "Density", fill = 

"Structure") + 

    theme_minimal() + 

    theme(plot.title = element_text(hjust = 0.5, size = 14, face = 

"bold")) 

   

  ggsave(file_name, plot = p, width = 8, height = 6, dpi = 300) 

} 

 

# RMSD Density Plot 

create_density_plot( 
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  combined_rmsd,  

  "RMSD (Å)",   

  "RMSD : R01_R05_WT_DM",   

  "RMSD_density_comparison_angstrom.png"   

) 

 

# Rg Density Plot 

create_density_plot(combined_Rg, "Rg (Å)", "Rg : R01_R05_WT_DM", 

"Rg_density_comparison_angstrom.png") 

 

# G55-P127 Distance Density Plot 

create_density_plot(combined_G55_P127, "Distance between G55 and P127 

(Å)", "dist_G55_P127 : R01_R05_WT_DM", 

"G55_P127_distance_density_comparison_angstrom.png") 

 

Density_Rg_Distance_target_labels.R 

--- 

title: "R Notebook" 

output: html_notebook 

editor_options:  

  chunk_output_type: console 

--- 

 

### 0. Load packages and set paramters 

 

```{r} 

library(MASS) 

library(DescTools) 

library(grDevices) 

library(sf) 

library(sp) 

 

data_file <- "MD05_ADK_protein_large_Rg-dG55P127.csv" 

out_file <- "MD05_ADK_protein_large_Rg-dG55P127_output.csv" 

target_var_file <- "MD05_ADK_protein_large_Rg-dG55P127_target_var.dat" 

png_file <- "MD05_ADK_protein_large_Rg-dG55P127.png" 

 

y_cutoff <- 1.765 

x_idx <- 2 
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y_idx <- 3 

``` 

 

### 1. Load data 

 

```{r} 

d <- read.csv(data_file) 

``` 

 

### 2. Calculate density 

 

```{r} 

d_kde <- kde2d(d[,x_idx], d[,y_idx], n = 500) 

``` 

 

### 3. Create contour 

 

```{r} 

cnt_d_kde <- contourLines(d_kde) 

``` 

 

### 4. Annotate contour to data 

 

```{r} 

n_cnt <- length(cnt_d_kde) 

cnt_levels <- sapply(cnt_d_kde, function(x){x$level}) 

ant <- sapply(c(1:n_cnt), function(i){ 

    i_cnt <- cnt_d_kde[[i]] 

    point.in.polygon(d[,x_idx], d[,y_idx], i_cnt$x, i_cnt$y)*i 

  } 

) 

d <- cbind(d, ant) 

d$highest <- apply(ant, 1, max) 

d$level <- sapply(d$highest, function(x){ 

  if(x == 0){ 

    0 

    }else{ 

    cnt_levels[x]}   

  } 
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) 

``` 

 

### 5. Annotate counter table 

 

```{r} 

cnt_table <- data.frame(cnt_id = NA, level = cnt_levels, basin_id = NA) 

for(i in c(1:length(cnt_levels))){ 

  ave_y <- mean(d[d$highest == i, 2]) 

  if(ave_y >= y_cutoff){ 

    cnt_table[i, 'basin_id'] = 'A' 

    cnt_table[i, 'cnt_id'] = paste('A',cnt_table[i,'level'], sep = '_') 

    }else{ 

    cnt_table[i, 'basin_id'] = 'B' 

    cnt_table[i, 'cnt_id'] = paste('B',cnt_table[i,'level'], sep = '_') 

  } 

} 

 

 

``` 

 

### 6. Annotate data table with basin 

 

```{r} 

d$basin <- 'N' 

d[d$highest %in% which(cnt_table$basin_id == 'A') ,'basin'] <- 'A' 

d[d$highest %in% which(cnt_table$basin_id == 'B') ,'basin'] <- 'B' 

``` 

 

### 7. Plot contour lines 

 

```{r} 

rgb.palette <- 

colorRampPalette(c("yellow","gold","orange","red","darkred")) 

 plot(d[,c(x_idx,y_idx)], pch = '.', col = 'grey') 

  

for(i in c(1:n_cnt)){ 

  if(cnt_table[i, 'basin_id'] == 'A'){ 
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    points(d[d$highest == i ,c(x_idx,y_idx)], col 

=rgb.palette(9)[cnt_table[i,'level']])   

  } 

} 

for(i in c(1:n_cnt)){ 

  if(cnt_table[i, 'basin_id'] == 'B'){ 

    points(d[d$highest == i ,c(x_idx,y_idx)], col 

=rgb.palette(9)[cnt_table[i,'level']])   

  } 

} 

contour(d_kde, col = 'grey', add = T) 

 

``` 

 

### 8. Set possible target variables 

 

#### 8.1 Label points by basin 

 

```{r} 

d$target_01 <- d$basin 

``` 

 

#### 8.2 Label points by basin with depth level greater than 4 

 

```{r} 

d$target_02 <- 0 

d[d$highest > 4, 'target_02'] <- 1 

``` 

 

#### 8.3 Label points by two deeper region in each basin 

 

```{r} 

d$target_03 <- 'N' 

A_deeper <- max(which(cnt_table$basin_id == 'A')) 

B_deeper <- max(which(cnt_table$basin_id == 'B')) 

d[d$highest == A_deeper, 'target_03'] <- 'A' 

d[d$highest == B_deeper, 'target_03'] <- 'B' 

``` 
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#### 8.4 Label points by basin with depth level greater than 4 and 

different basin label 

 

```{r} 

d$target_04 <- 'N' 

d[d$highest > 4 & d$basin == 'A', 'target_04'] <- 'A' 

d[d$highest > 4 & d$basin == 'B', 'target_04'] <- 'B' 

``` 

 

### 9. Save data 

 

```{r} 

write.csv(file = out_file, d, quote = F, row.names = F) 

 

write.table(file = target_var_file, d[, c('Time', "target_04")], 

row.names = F, quote = F) 

``` 

 

 

### 10. Graphs 

 

```{r} 

par(las = 1) 

plot( 

  d[,c(x_idx,y_idx)],  

  pch = '.',  

  col = 'grey', 

  type = 'n', 

  xlim = c(0.5,4.5), 

  ylim = c(1.55,2.25), 

  xlab = 'Gly 55 - Pro 127', 

  ylab = expression(R[g]), 

  xaxt = 'n', 

  yaxt = 'n', 

  bty = 'l' 

) 

axis(1, seq(0, 5, 0.25)) 

axis(2, seq(1.5, 2.5, 0.05)) 

abline(v = seq(0, 5, 0.25), col = 'lightgray') 
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abline(h = seq(1.5, 2.5, 0.05), col = 'lightgray') 

points(d[,c(x_idx,y_idx)],  pch = '.',  col = 'grey50' ) 

contour(d_kde, col = SetAlpha('red', 1.5), lwd = 1.5, add = T, drawlabels 

= FALSE) 

``` 

 

```{r}  

png(file = png_file, width = 1000, height = 1200) 

par(las = 1) 

par(cex = 2) 

plot( 

  d[,c(x_idx,y_idx)],  

  pch = '.',  

  col = 'grey', 

  type = 'n', 

  xlim = c(0.5,4.5), 

  ylim = c(1.55,2.25), 

  xlab = 'Gly 55 - Pro 127 / nm', 

  ylab = expression(R[g] / nm), 

  xaxt = 'n', 

  yaxt = 'n', 

  bty = 'l' 

) 

axis(1, seq(0, 5, 0.5)) 

axis(2, seq(1.5, 2.5, 0.05)) 

abline(v = seq(0, 5, 0.5), col = 'lightgray') 

abline(h = seq(1.5, 2.5, 0.05), col = 'lightgray') 

points(d[,c(x_idx,y_idx)],  pch = '.',  col = 'grey50' ) 

points(d[d$highest > 4,c(x_idx,y_idx)],  pch = '.',  col = 'grey20' ) 

contour(d_kde, col = SetAlpha('red', 1.5), lwd = 1.5, add = T, drawlabels 

= FALSE) 

dev.off() 

``` 

 

 

```{r}  

# rgb.palette <- colorRampPalette( 

#   c("yellow","gold","orange","red","darkred"),  

#   alpha = T 
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# ) 

# color_vector <- 

as.vector(SetAlpha(rgb.palette(max(cnt_table[,'level'])), 0.3)) 

 

# for(i in c(1:n_cnt)){ 

#   if(cnt_table[i, 'basin_id'] == 'A'){ 

#     if (cnt_table[i,'level'] > 4){ 

#       points(d[d$highest == i ,c(x_idx,y_idx)], col 

=color_vector[cnt_table[i,'level']])   

#     } 

#   } 

# } 

# for(i in c(1:n_cnt)){ 

#   if(cnt_table[i, 'basin_id'] == 'B'){ 

#     if (cnt_table[i,'level'] > 4){ 

#       points(d[d$highest == i ,c(x_idx,y_idx)], col 

=color_vector[cnt_table[i,'level']])   

#     } 

#   } 

# } 

``` 
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