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Abstract

In this thesis, we investigate new control variates for simulation-based pricing of options

where the option price is a function of the sum of (or integral of) lognormal random variables.

We use two different approaches: one is the use of Hermite polynomial approximation of

the relevant function and another is the use of upper and lower bounds on the option

prices obtained using the properties of Brownian motion. We provide detailed numerical

experiments to illustrate the use of these approaches for accurate and low variance pricing

basket and Asian options. First order Hermite polynomial approximation also gives a

reasonable direct approximation to the basket or Asian option price for at the money and

in-the-money options.
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Chapter 1

Introduction

1.1 Overview

Basket and Asian options are exotic options whose payoff depend on the sum of prices of

underlying asset/s. If the prices are assumed to be lognormal, weakly path dependent options

on a single asset generally admit a closed-form representation, however, pricing basket and

Asian options is analytically intractable even when the underlying asset price follows a

lognormal distribution. The most accurate way of pricing basket and Asian options is by

the use of Monte Carlo methods. However, Monte Carlo is computationally very intensive

and, without the use of specialized variance reduction methods, leads to estimates with very

high variance. Most of the analytical work in this area has to do with price and bounds

estimations (as in the works of Milevsky and Posner in [28], Gentle in [13], Curran in [8]),

while most numerical methods involve the use of control variates (Korn in [22], Dingeç in

[11], Shiraya in [36]), in an effort to achieve low variance estimates of the option prices. In
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the remaining chapter, we look at the general theory on basket and Asian options and review

existing literature on them.

1.2 Basket Options

A basket option is a type of financial derivative where the underlying asset is a group of

assets, commodities, securities or currencies. Some examples of basket options include index

options and currency baskets etc. Basket options have a similar payoff structure to standard

options, since they depend on the final value of the asset or groups of assets. Given a basket

of assets, whose final value is S(T ) at a maturity time T , its payoff is given by

´

S(T )−K
¯+

, (1.1)

for a nonnegative strike K.

Basket options are typically traded over-the-counter and are customized depending on the

buyer’s requirements. Besides being able to efficiently and simultaneously hedge risk on

several assets at the same time, basket options are also relatively low-priced compared to

buying options on each of the individual assets in the basket. However, the downside of

holding such a financial derivative is liquidity. If an investor holding a call/put basket

option wanted to get rid of his position, he/she would have to purchase a put/call option.

Some of the benefits of basket options are

1 Basket options are more cost-effective than purchasing individual options on each asset

in the basket.
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2 Basket options hedges exposure more efficiently than options on the individual assets

in the basket.

3 They are customized to suit investors needs/requirements.

4 Low transaction costs: Transactions costs are lower since a basket option is a single

transaction compared to purchasing inidividual options on the assets in the basket.

Some of the drawbacks of basket options include:

1 Liquidity problems: Given that a call/put basket option is customized based on

investors preferences, they would need to purchase a put/call option to get rid of

this position.

2 Basket options are difficult to price because there is no closed-form formula to price

them.

The most popular type of basket options is the currency option which is typically used by

multinational corporations to mitigate numerous currency exposures.

Despite the payoff of a basket option being similar to that of a standard option, the behaviour

of the basket differs from that assets constituting the basket. As a result of this, pricing

a basket option is quite different from pricing standard options and in fact, basket options

have no known closed-form solution. This is because the basket of assets have no known

distribution and thus density. Under the assumption that the individual assets in the basket

follow a geometric Brownian motion (GBM) model and using no arbitrage arguments, the

13



price of a basket option at an earlier time 0 with maturity T is given by

e−rTE

«

ˆ n∑
i=1

ωiSi(T )−K

˙+
ff

(1.2)

where n is the number of assets in the basket, Si(T ) is the price of the ith asset in the basket

at time T , K is the nonnegative strike. Each asset Si(T ) is lognormally distributed and S(T )

is the sum of n lognormally distributed random variables, which is in fact not lognormal or

known to follow any distribution.

Most of the analytical work on pricing basket options in existence are approximations,

since the distribution of the basket of assets is unknown. Analytic approximations are

obtained by using a random variable whose dynamics closely match that of the basket.

Kemna [20] and Gentle [13] obtained closed-form approximation for the price of a basket

option using the geometric mean of the assets in the basket. This was done using the fact

geometric mean of a sequence are a lower bound on the arithmetic mean of the sequence.

Moreover, the geometric mean of the assets are lognormally distributed and can give closed-

form estimates. This approach was found to generally under value basket option prices.

Milevsky and Posner [28] obtained closed-form estimates for the basket option price, by

observing that the distribution of the sum of infinite lognormal random variables can be

approximated by the reciprocal gamma distribution. The only drawback is that it was found

to under-price out-of-the-money call options when compared to Monte Carlo prices. Ju [19]

used Taylor series expansion to price basket and Asian options. Another form of closed-form

approximation for pricing basket options is methods of moment-matching. This involves

finding a suitable lognormal random variable with first and second moments similar to those

of the basket of assets, thus obtaining suitable parameters for which the basket option can be
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priced under the assumption that it is lognormal. Methods of moment-matching were used

by Brigo [5] and Henriksen [15] to approximate the price of a basket option. Paletta [? ] also

used exact moment-matching and Hermite expansion to price and hedge basket options with

shifted jump-diffusions. Curran [8] used conditional moment-matching by conditioning on

the geometric mean to obtain closed-form estimates for the basket option price. Alternatively,

bounds estimation was used in the absence of closed-form analytic solutions and these were

lower and upper bounds on the price of basket options. Rogers-Shi [35] found a lower

bound on the payoff of the sum of lognormal randomm variables conditioned on a suitable

random variable. More recently, Xu and Zheng [39] obtained good estimates for the basket

option price using a weighted sum of the lower bound and conditional second moments

using local volatility jump-diffusion models. Despite several analytical approximations to

pricing basket option, Monte Carlo simulations remain the most accurate way of valuing

such options. The major drawback of this approach is the high variance of its estimates.

De Luigi [9] used adaptive numerical techniques to price low-dimensional basket options and

found that this technique served as good control variates in the pricing of high dimensional

ones. Dingeç [11] used control variates and conditional Monte Carlo to price basket options.

They found that using the geometric average as a control variate, together with conditional

Monte Carlo, yielded more efficiency than solely using the geometric price as a control

variate. Korn [22] proposed the use of a limiting geometric mean as an approximation to

arithmetic mean to obtain closed-form estimates for the basket option price. Also, the use of

this limiting geometric mean as a control variate provided efficient Monte Carlo estimates.

Xu and Zheng [39] used control variates to price basket option under jump diffusion models.
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This was extended to stochastic volatility models with jumps using asymptotic expansion as

control variates by Shiraya [36]. This method of asymptotic expansion was also previously

used by Xu and Zheng[39], with Forward Partial Integral Differential Equation (PIDE)

to approximate the basket option price. Dingeç [10] proposed new control variate models

using time-changed Brownian motions for pricing and sensitivity analysis of Basket options.

Shiraya [37] proposed a class of control variates for pricing basket options driven by Lévy

processes with the use of subordinated Wiener processes and was extended by Zhang [40] to

exponential subordinated Wiener processes.

1.3 Asian Options

An Asian option also called an average option refers to an option whose payoff is based on

an average value of the asset during some time period of the options lifetime. It is an option

whose payoff depends on the time average of the underlying asset price over the lifetime of

the option. Asian options are exotic or path-dependent options. Typically, this average is

either sampled on a discrete or a continuous basis. The payoff of a European Asian call

option is given by

˜

1

T

∫ T

0

S(u)du−K

¸+

, (1.3)

in the continuous case and

¨

˝

1

M + 1

M∑
i=1

S(ti)−K

˛

‚

+

, (1.4)

for the discretely monitored case and ti ∈ [0, T ] such that ti = i T
m

∀i = 1, ...,M .
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This averaging feature of Asian options makes them less likely to be significantly affected

by manipulation of the underlying asset price. They are very similar to standard options

because they have similar payoff structures and differ mainly in the sense that standard

options are lognormal and Asian options have no known distribution or closed-form solution.

This makes them difficult to price analytically and the most accurate way of pricing Asian

options is by Monte Carlo simulations. However, this approach to pricing Asian option is

very computationally intensive.

Asian options are difficult to price since they do not follow any known distribution, despite

the underlying asset’s distribution being lognormal. This is because the sum/average of

lognormal random variables is not lognormal. Most of the research into Asian option can

be divided into three main categories. The first one can be categorized as focusing mainly

on closed-form estimates/approximations of Asian options. This typically involves finding

a distribution that closely resembles that of the random variable as seen in the work of

Geman-Yor [12], Kemna [20], Milevsky [28], Curran [8] to mention but a few.

This also includes methods of moment-matching which involves approximating the average

value of the asset with a lognormal random variable. This is done by matching the first

two moments of a lognormal random variable with those of the average value of the asset.

This provided a basis for Asian options to be priced under the assumption that they are

approximately lognormal. Some of the research on this was carried out by Brigo [5], Levy

[26], Henriksen [15] and Tunaru [25] etc. The second is the method of bounds estimation.

Given that the average value of an asset has no closed-form solution, finding suitable bounds

on the actual price is important for an investor. One of the most popular bounds on Asian
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was discovered by Rogers-Shi [35].

The third method is a numerical approach and this is done by using appropriate numerical

methods such as control variates to obtain efficient Monte Carlo estimates of the price of an

Asian option. Most of the recent work done (Lai [24], Shiraya [36], Zhang [40] etc.) in the

pricing of Asian options is in developing new control variates, to obtain accurate, efficient

Asian option prices.

More recently, Fourier and Laplace transform based models have gained wide acceptance

in their use for pricing exotic options (particularly basket and Asian options). This is due to

their efficiency in dealing with complicated payoff structures by using the characteristic

functions of the underlying asset(s) to reduce the pricing problem to that requiring an

inversion of a transformed density. This approach was first explored in the seminal works

of Geman-Yor [12] to price continuously-monitored Asian options. Some of the more recent

excursions of this approach in pricing basket and Asian option can be seen in the works of

Bayer [1], Bayer [2] and Zhang [42].

1.4 Statement of the Problem

Despite basket and Asian options being different in the sense one depends on the value

of a group of assets and the other depending on its average over a time period, they are

quite similar in terms of the pricing structure. Under the geometric Brownian motion model

(GBM), asset prices are lognormal but the distribution of the basket of assets or the average

value of an asset is not lognormal and this is due to the fact that the sum of lognormal random

variables is not lognormal. Without loss of generality, the associated pricing problem can be
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stated as: given n normal random variables x1, ..., xn with a non-negative number K such

that ∫
A

pex1 + ...+ exn −KqQ(dx1...dxn), (1.5)

where A = {(x1, ...xn) :
n∑
i=1

exi > K}.

The density Q(dx1...dxn) is unknown and is generally not lognormal. As a result of this,

options of this functional form have no known closed-form solution even though the work

of Milevsky in [28], suggested that the sum of infinite lognormals follows an inverse gamma

distribution. Monte Carlo methods remains probably one of the most accurate way till date

of pricing basket and Asian options. However, its implementation is usually computationally

intensive and the estimates are usually inefficient due to their high variance. Despite the

plethora of literature and work available on the pricing of options on a single underlying

asset, it is a well-known fact there is no closed-form solution for the price of a basket option,

and accurate basket option prices are obtained using Monte Carlo methods. This is because

the value of the underlying basket of assets is not lognormal and in fact has no known

distribution. The possible existence of an analytical solution for a call option on a basket

of assets was pointed out by Hobson [16], but further stated that such a solution would be

difficult to obtain. Many of the available methods for valuing basket options in closed-form

are either analytical or numerical approximations.

In this thesis, we model the underlying asset(s) using a Geometric Brownian Motion

(GBM) model. Despite the existence of more sophisticated models such as the Stochastic

Volatility Models (SVM) and jump-diffusion models which can capture volatility skew. In

practice asset price volatilities are quoted in terms of Black-Scholes implied volatility and
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the GBM model remains the basis on which practitioner theories are built. Furthermore, the

GBM model is analytically tractable and does not suffer from over-fitting of the parameters.

This analytical tractability allows us to keep our modelling approach at the center stage

without having to make unrealistic simplifications/assumptions. As a result of this, we

provide good analytic approximations for the price of basket and Asian options, using first

order Hermite polynomials. In the basket option case, this approach leads to a reformulation

of the representation of the value of the basket, resulting in a Black-Scholes type solution.

While in the Asian option case, our approximations for the average value of the underlying is

an evaluation of a function of Gaussian random variables. We also provide good bounds on

the option prices using the distributional properties of the underlying Brownian motion(s)

and the convexity of the option payoff. Finally, we apply use these price estimates and bounds

as control variates to obtain fast, accurate, low variance Monte Carlo prices of basket and

Asian options. These result are benchmarked against standard control variates such as the

(modified) Geometric lower bound which is famous Kemna and Vorst [20] approximation in

the Asian option case, and the Gentle’s [13] approximation for the Basket option.

1.5 Organisation of Thesis

This thesis is organised into seven chapters. This chapter introduces the general theory

and literature on pricing basket and Asian options and a formal statement of the associated

pricing problem. Chapter 2 incorporates basic results in probability and martingale theory,

and thereafter derive some results which we shall use in later chapters. Some of these

results include convergence of maximum and minimum of independent Brownian motions,
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joint distributions of a Brownian motion and its running maximum (or minimum), joint

distribution of a Brownian bridge and its running maximum (or minimum), joint density

of running maximums or minimum of a Brownian motion. These results are later used in

Chapter’s 3 and 4, to derive analytic bounds on the price of basket and Asian options.

Chapter 3 presents the dynamics of basket option under the assumption that the individual

assets follow a Geometric Brownian Motion framework and its time-changed representation.

We derive closed-form approximations for basket option in a Gaussian and a lognormal

framework. In the Gaussian approach, we approximate the value of the basket by approximating

the martingale component of the assets for small time periods, which then leads to closed-

form basket option prices. In the lognormal approach, we estimate the value of the basket

using first order Hermite polynomials and its parameters are estimated using third order

Taylor series expansions, and the lognormal estimate is then used to price basket options.

However, this approach is limited to pricing low-dimensional portfolios, as a result we suggest

an analytical adaptation which allows us to price reasonable large portfolios. We also derive

bounds on the basket option price using convexity arguments of the payoff function of the

basket option. Further analytic bounds are obtained on the basket option price are obtained

by replacing the underlying Brownian motions with there joint maximum or minimum.

These bounds are generally not analytically tractable and requires integrability conditions

or conditioning arguments, which we provide to obtain explicit closed-form results. Chapter

4 presents analogous methods used to estimate the price of basket options and its bounds

to Asian options. We estimate the price of an Asian option by estimating the martingale

component of the underlying assets using first order Hermite polynomial, then using this
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approximation to work out the average value of the asset and its option price. We also derive

the bounds on the average value of the underlying by replacing the underlying Brownian

motion with its running maximum or minimum, and consequently the bounds on the Asian

option price using several different approaches. Chapter 5 covers the general methodology

of control variates. We provide algorithms for the control variates (for both basket and

Asian options), which we use for our numerical experiments. These control variates are

estimates and bounds on basket and Asian option price derived in chapters 3 and 4. We

also include another control variate for pricing Asian options which we term ”future-valued

basket” (FVB), which we refer to in Chapter 6. In Chapter 6, we present and compare

the numerical results from Monte Carlo simulation for basket and Asian call options for a

variety of positions of moneyness and maturity times. For basket options, assets’ volatilities

are obtained from real world market indices and we simulate the option prices for two and

five-asset baskets, for different strikes and maturities. Simulations are also carried out to

obtain Asian option prices for different maturities and strikes. Chapter 7 summarises our

results and findings. We also suggest possible future research in this area.
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Chapter 2

Control Variate Methodology &

Mathematical Premliminaries

2.1 Overview

The control variate methodology is a variance reduction method used obtain efficient Monte

Carlo estimates. A lot of work of work in the pricing of basket and Asian options employ

this approach to achieve option prices as in the works of [36], [37] and [41]. In this chapter,

we show the importance of correlation in the choice of a suitable control variate and on

variance reduction. We also introduce the concept of martingales and Brownian motions.

We provide a few known results of martingales which are essential to our arbitrage free

pricing framework. Brownian motions are stochastic processes with almost surely continuous

sample paths, which are used to model asset prices. Understanding the distribution of such

a stochastic process is key to effectively pricing and hedging such assets/derivatives.Later in
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this chapter we derive distributional properties of Brownian motions, which we will employ

in chapter 3 and 4 in the pricing of path-dependent options, as well as in finding suitable

bounds on them.

2.2 Control Variate Methodology

The control variate method is a technique used to reduce the variance of Monte Carlo

estimates and provide an efficient estimate. The main idea behind this approach is approximating

a random variable with a similar known distribution, and using the knowledge of the known

distribution to reduce the error of the Monte Carlo estimates.

Consider a random variable Y , which is a function h(X) whose distribution is not known,

but the distribution of X is known. We can estimate the value of Y , by using a random

variable Z = h∗(X) whose distribution is known by using the random variable Ψ which is

an estimator of Y such that

Ψ = Y − λ pZ − E(Z)q , (2.1)

where λ is a constant and Z is referred to as a control variate of Y (see Glasserman [14]).

By generating samples for Yi and Zi for a considerable sample size n, it can be observed that

for large n that,

1

n

n∑
i=1

Ψi =
1

n

n∑
i=1

Yi − λ

˜

1

n

n∑
i=1

Zi − E(Z)

¸

→ E(Y ). (2.2)

Alternatively, this can be written as

lim
n→∞

P

˜

ˇ

ˇ

ˇ

ˇ

1

n

n∑
i=1

Ψi − E(Y )

ˇ

ˇ

ˇ

ˇ

> ϵ

¸

= 0, (2.3)
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for any ϵ > 0.

This shows that Ψ is an estimator of Y . To see how Ψ is an efficient estimator, we observed

the variance of Ψ , which is given by

V ar(Ψ) = V ar(Y ) + λ2V ar(Z)− 2λCov(Y, Z). (2.4)

To minimize the variance of Ψ, we take its partial derivatives with respect to λ and set it to

zero to obtain

λ∗ =
Cov(Y, Z)

V ar(Z)
. (2.5)

Substituting λ∗ back into 2.4 to obtain a reduction in the variance given by

V ar(Ψ) = V ar(Y )− Cov(Y, Z)2

V ar(Z)
. (2.6)

Thus making the expression of Ψ given below

Ψ = Y − λ∗ pZ − E(Z)q , (2.7)

to be an efficient estimator of Y .

To achieve significant variance reduction in the (Monte Carlo) estimates, there must be

strong control correlation between the variable we wish to price Y and the chosen control

variate X. To see the role of correlation in variance reduction, we have provided an analytic

working showing this relationship. To prove this, we observe the variance function 2.6 and
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see that

V ar(Ψ) = V ar(Y )− Cov(Y, Z)2

V ar(Z)
, (2.8)

= V ar(Y )

„

1− Cov(Y, Z)2

V ar(Y )V ar(Z)

ȷ

(2.9)

= V ar(Y )

»

–1−

˜

Cov(Y, Z)

V ar(Y )1/2V ar(Z)1/2

¸2
fi

fl (2.10)

where the object given by
Cov(Y, Z)

V ar(Y )1/2V ar(Z)1/2
is the correlation ρ(Y, Z) between the variables

Y and Z. This shows that the stronger the correlation between the variables Y and Z,

the greater the variance reduction. This relationship can also viewed from a regression

standpoint, i.e. given a regression model of the form:

Y = α + βZ + ϵ, (2.11)

where ϵ is the random error process, α is the intercept, and β is the coefficient of the linear

regression. It turns out that the optimal β in 2.11 estimated by minimising the sum of

squared errors is given by

β∗ =
Cov(Y, Z)

var(Z)
, (2.12)

which is identical to the optimal λ in 2.5. The performance of the regression model is

evaluated by its R2, which measures the proportion of variation in the dependent variable

Y that can be attributed to the independent variable Z. Also, the R2 is also given by the

square of the correlation between Y and Z, i.e. R2 = ρ2(Y, Z). Hence, the higher the R2,

the higher the correlation and the greater the variance reduction achieved. An alternative
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representation for the R2 is given by

R2 = λ2
1

var(Z)/var(Y )
(2.13)

= λ2
1

σ̃2
ZY

, (2.14)

where σ̃2
ZY represents the normalised variance of Z with respect to that of Y .

In chapter 5, we provide different control variates used to obtain efficient Monte Carlo prices

of basket and Asian options, as well as their numerical implementation schemes. We also

provide the optimal values for the parameter λ for our control variates in chapter 6.

2.3 Mathematical Preliminaries

In this section, we develop the theory of the random variables whose densities will be used

in the analytic pricing and bounds estimation of both basket and Asian options.

2.3.1 Martingales

A martingale {X(t)}0≤t≤T is a stochastic process defined on a probability space (Ω,F ,P)

satisfying the following properties

1 X(t) is integrable i.e. E[|X(t)|] <∞.

2 E[|X(t)||F(s)] = X(s) ∀s ≤ t.

3 If E[|X(t)||F(s)] ≥ X(s) then {X(t)} ∀s ≤ t is a submartingale.

4 If E[|X(t)||F(s)] ≤ X(s) ∀s ≤ t then {X(t)} is a supermartingale.
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Theorem 2.3.1. Martingale convergence theorem: Let X(t) be a martingale bounded in L1,

then lim
t→∞

X(t) = X(∞) P− a.e and in L1.

Theorem 2.3.2. Martingale representation theorem: Let g ∈ L2(F(t)) and X(t) be an

F(t)-martingale, then X(t) admits a representation of the form

X(t) = X(0) +

∫ t

0

g(s)dW (s). (2.15)

Theorem 2.3.3. Ito’s Lemma: Let f(t,W (t)) ∈ C1,2, then f has the following stochastic

dynamics given by

df =
∂f

∂t
dt+

∂f

∂W
dW (t) +

1

2

∂2f

∂dW 2 pdW (t)q2 , (2.16)

such that dtdW (t) = pdtq2 = 0 and pdW (t)q2 = dt

2.3.2 Derived densities and distributions of Brownian motions

In this section, we shall derive some key results of (functions of) Brownian motions

which we will employ in chapters 3 and 4, in pricing and obtaining analytic bounds on basket

and Asian option price. Let (Ω,F ,Q) be a fixed probability space, equipped with a filtration

{F(t)}t≥0, generated by n independent Brownian motions. For a fixed time t > 0, we define

Mn(t) and mn(t) as a sequence indexed on n, of the maximum and minimum respectively of

n independent Brownian motions.

Proposition 2.3.1. The densities ϕ(M,n) of the maximum Mn(t) and ϕ(m,n) of the minimum

mn(t) of n independent Brownian motions W1(t), ...,Wn(t) are respectively given by

ϕ(M,n)(y) =
n

?
t
ϕ

ˆ

y
?
t

˙ ˆ

Φ

ˆ

y
?
t

˙˙n−1

,
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and

ϕ(m,n)(y) =
n

?
t
ϕ

ˆ

y
?
t

˙ ˆ

Φ

ˆ

− y
?
t

˙˙n−1

,

for any y ∈ R and n ∈ N.

Proposition 2.3.2. For a fixed time t > 0, the sequence {Mn(t)}n≥2 is a non-decreasing

sequence and Fn(t)-submartingale in n.

Proof. For any fixed time 0 ≤ t ≤ T , {Mn(t)}n≥2 is continuous and Fn(t)-adapted, since the

underlying Wiener processes are continuous and measurable with respect to F(t).

To show integrability, for a fixed t and n ≥ 2, we use the following inequality to obtain,

E r|Mn(t)|s ≤ E
ˆ n∑

j=1

|Wj(t)|
˙

<∞. (2.17)

To show the submartingale property in n, we define Fn(t) as the filtration up to time t,

observing n independent Wiener processes. Also, we simplify Mn(t) by the following

Mn(t) = max pMn−1(t),Wn(t)q , (2.18)

=Mn−1(t) + pWn(t)−Mn−1(t)q
+ . (2.19)

Therefore,

E rMn(t) | Fn−1(t)s = E
“

Mn−1(t) + (Wn(t)−Mn−1(t))
+|Fn−1(t)

‰

, (2.20)

=Mn−1(t) + E
“

(Wn(t)−Mn−1(t))
+|Fn−1(t)

‰

(2.21)

Since, (Wn(t)−Mn−1(t))
+ ≥ 0, we obtain that

E rMn(t) | Fn−1(t)s ≥Mn−1(t). (2.22)
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Proposition 2.3.3. For a fixed time t > 0, the sequence {mn(t)}n≥2 is a non-increasing

sequence and Fn(t)-supermartingale in n.

Proof. For a fixed time t ≥ 0, {Mn(t)}n≥2 is continuous, adapted and is Fn(t)-measurable,

since the underlying Wiener processes are measurable with respect to F(t).

We show integrability for n ≥ 2 and for a fixed time t, by the following inequality to obtain

E p|mn(t)|q < E
ˆ n∑

j=1

|Wj(t)|
˙

<∞. (2.23)

To show the supermartingale property in n, we define Fn(t) as the filtration up to time t,

observing n Wiener processes. Also, we simplify mn(t) by the following

mn(t) = min pmn−1(t),Wn(t)q , (2.24)

= mn−1(t)− pmn−1(t)−Wn(t)q
+ . (2.25)

Therefore,

E pmn(t) | Fn−1(t)q = E
“

mn−1(t)− pmn−1(t)−Wn(t)q
+ |Fn−1(t)

‰

, (2.26)

= mn−1(t)− E
“

pmn−1(t)−Wn(t)q
+ |Fn−1(t)

‰

, (2.27)

≤ mn(t). (2.28)

Proposition 2.3.4. The maximum Mn(t) of n Brownian motions converges P-a.e. and in

L1 to M∞(t) as n→ ∞.
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Proof. To prove this, it sufficient to show that E r|M∞(t)|s <∞ since Mn(t) is an increasing

sequence in n.

We prove this using proof by induction. By integration by parts, we find that E r|Mn(t)|s <∞

is true for n = 2 and 3. Assuming this is true for n = k, this implies that

E r|Mk(t)|s =

∫ ∞

0

ykϕ̃

ˆ

y
?
t

˙

Φk−1

ˆ

y
?
t

˙

dy, (2.29)

where ϕ̃

ˆ

y
?
t

˙

=
1

∆
ϕ

ˆ

y
?
t

˙

and ∆ = 1 − 1

2n
is the normalisation factor over the positive

half-line.

For n = k + 1,

E r|Mk+1(t)|s =

∫ ∞

0

y(k + 1)ϕ̃

ˆ

y
?
t

˙

Φk

ˆ

y
?
t

˙

dy, (2.30)

=

∫ ∞

0

y(k + 1)ϕ̃

ˆ

y
?
t

˙

Φk

ˆ

y
?
t

˙

dy, (2.31)

=

∫ ∞

0

ykϕ̃

ˆ

y
?
t

˙

Φk

ˆ

y
?
t

˙

dy +

∫ ∞

0

yϕ̃

ˆ

y
?
t

˙

Φk

ˆ

y
?
t

˙

dy, (2.32)

≤
∫ ∞

0

ykϕ̃

ˆ

y
?
t

˙

Φk−1

ˆ

y
?
t

˙

dy +

∫ ∞

0

yϕ̃

ˆ

y
?
t

˙

Φ

ˆ

y
?
t

˙

dy, (2.33)

= E r|Mk(t)|s +
1

∆

∫ ∞

0

yϕ

ˆ

y
?
t

˙

Φ

ˆ

y
?
t

˙

dy, (2.34)

= E r|Mk(t)|s +

?
2 + 1

4
?
π

<∞. (2.35)

This suggests that Mk(t) is bounded for all k and sup
k∈N

E r|Mk(t)|s < ∞. Thus, Mk(t) is

bounded in L1 and by monotone convergence theorem increases to M∞(t).

Proposition 2.3.5. The minimum mn(t) of n Brownian motions converges P-a.e. and in

L1 to m∞(t) respectively as n→ ∞.

Proof. The proof of this is quite similar to the case of maximum of Brownian motions.
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Proposition 2.3.6. Given the running maximums and minimums of n independent Brownian

motions, the density of their joint maximum M∗
n(t) of the running maximums and the joint

minimum of the running minimums m∗
n(t) are respectively given by

ϕ(M∗,n)(y) =
2n
?
t
ϕ

ˆ

y
?
t

˙ ˆ

2Φ

ˆ

y
?
t

˙

− 1

˙n−1

, y ≥ 0

and

ϕ(m∗,n)(y) =
2n
?
t
ϕ

ˆ

y
?
t

˙ ˆ

1− 2Φ

ˆ

y
?
t

˙˙n−1

, y < 0,

for any y ∈ R.

Proof. To prove the above, we make use of their distributional properties. The joint distribution

of the running maximum of n independent Brownian motions is given by

Q pM∗
n(t) ≤ yq = pQ pM∗

i (t) ≤ yqq
n (2.36)

= Φ(M∗,n(y) (2.37)

We then take the derivatives of the above distribution with respect to y to obtain,

ϕ(M∗,n)(y) =
2n
?
t
ϕ

ˆ

y
?
t

˙ ˆ

2Φ

ˆ

y
?
t

˙

− 1

˙n−1

, y ≥ 0. (2.38)

For the running minimum of n independent Brownian motions,

1−Q pm∗
n(t) ≥ yq = 1− pQ pm∗(t) ≥ yqq

n , (2.39)

= Φ(m∗,n)(y). (2.40)

Taking derivatives of the distribution Φ(m∗,n) of the joint minimum with respect to y to

obtain the density ϕ(m∗,n), we get that

ϕ(m∗,n)(y) =
2n
?
t
ϕ

ˆ

y
?
t

˙ ˆ

1− 2Φ

ˆ

y
?
t

˙˙n−1

, y < 0. (2.41)

32



Proposition 2.3.7. The maximum of the running maximums of n independent Brownian

motions is a non-decreasing sequence in n and t, for n ≥ 2 and t ≥ 0 and is an {F(t)}-

submartingale.

Proof. It is fairly obvious that the maximum of the running maximums is a continuous,

adapted and non-decreasing sequence, since its underlying running maximums are non-

decreasing, adapted and continuous as well.

We can show integrability of this joint maximum of running maximums as follows

E
ˆ

|M∗
n(t)|

˙

≤ E
ˆ n∑

j=1

|M∗(t)|
˙

<∞. (2.42)

To show the submartingale property, for any 0 ≤ s ≤ t we have

E
ˆ

M∗
n(t)

∣∣∣F(s)

˙

= E
ˆ

M∗
n(t)−M∗

n(s) +M∗
n(s)

∣∣∣F(s)

˙

, (2.43)

=M∗
n(s) + E

ˆ

M∗
n(t)−M∗

n(s)
∣∣∣F(s)

˙

, (2.44)

≥M∗
n(s). (2.45)

Proposition 2.3.8. The minimum of the running minimums of n independent Brownian

motions is a non-increasing sequence in n and t, for n ≥ 2 and t ≥ 0.

Proof. It is fairly obvious that the maximum of the running maximums is a continuous,

adapted and non-decreasing sequence, since its underlying running maximums are non-

decreasing, adapted and continuous as well.

We can show integrability of this joint minimum of running minimums by

E
ˆ

|m∗
n(t)|

˙

≤ E
ˆ n∑

j=1

|m∗
n(t)|

˙

<∞. (2.46)
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To show the supermartingale property, for any 0 ≤ s ≤ t we have,

E
ˆ

m∗
n(t)

∣∣∣F(s)

˙

= E
ˆ

m∗
n(t)−m∗

n(s) +m∗
n(s)

∣∣∣F(s)

˙

, (2.47)

= m∗
n(s) + E

ˆ

m∗
n(t)−m∗

n(s)
∣∣∣F(s)

˙

, (2.48)

≤ m∗
n(s). (2.49)

In general for any time t ≥ 0, W (t) satisfies the following inequality

W (t) ≤ |W (t)| ∧M(t) ≤ |W (t)| ∨M(t), (2.50)

where W(t) and M(t) is an F(t)−Brownian motion and its running maximum respectively.

Proposition 2.3.9. The density ϱM(y) of the minimum of the absolute value of a Brownian

motion and its running maximum is given by

ϱM(y) = 1{y ≥ 0} 1
?
t

„

ϕ

ˆ

3y
?
t

˙

− ϕ

ˆ

y
?
t

˙ȷ

,

for any y ≥ 0.

Proof. We define R(t) = minp|W (t)|,M(t)q. The distribution of R(t) is given by

QpR(t) ≤ yq = 1−QpR(t) ≥ yq, (2.51)

= 1−QpM(t) ≥ y, |W (t)| ≥ yq. (2.52)

Also,

QpM(t) ≥ y, |W (t)| ≥ yq =

∫ y

0

∫ ∞

y

ϕ(M,W )(m,w)dwdm+

∫ y

0

∫ −y

−∞
ϕ(M,W )(m,w)dwdm,

(2.53)
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where ϕ(M,W )(m,w) is the joint pdf of a Brownian motion and its running maximum.

We set I1 =

∫ y

0

∫ ∞

y

ϕ(M,W )(m,w)dwdm and I2 =

∫ y

0

∫ −y

−∞
ϕ(M,W )(m,w)dwdm.

Also, we set φ(m, y) =

∫ ∞

y

ϕ(M,W )(m,w)dw.

We take partial derivatives of I1 with respect to y so that,

∂

∂y

ˆ

∫ y

0

∫ ∞

y

ϕ(M,W )(m,w)dwdm

˙

=
∂

∂y

∫ ∞

y

ϕ(M,W )(m,w)dw, (2.54)

= φ(y, y) +

∫ y

0

∂

∂y
φ(m, y)dm, (2.55)

where

φ(y, y) =

∫ ∞

y

ϕ(M,W )(y, w)dw, (2.56)

=

∫ ∞

0

2(2y − w)

t
?
t

ϕ

ˆ

2y − w
?
t

˙

dw, (2.57)

= − 2
?
t

∫ y

−∞

´z

t

¯

ϕ

ˆ

z
?
t

˙

dz, pwhere z = 2y − wq (2.58)

= − 2
?
t
ϕ

ˆ

y
?
t

˙

. (2.59)

Also, ∫ y

0

∂

∂y
φ(m, y)dm = −

∫ y

0

ϕ(M,W )(m, y)dm, (2.60)

= −
∫ ∞

0

2(2m− y)

t
?
t

ϕ

ˆ

2m− y
?
t

˙

dm, (2.61)

=
1

?
t

ˆ

ϕ

ˆ

− y
?
t

˙

− ϕ

ˆ

− y
?
t

˙ ˙

, (2.62)

= 0. (2.63)
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We take the partial derivatives of I2 with respect to y,

∂

∂y

ˆ

∫ y

0

∫ y

=∞
ϕ(M,W )(m,w)dwdm

˙

= φ(y, y) +

∫ y

0

∂

∂y
φ(m, y)dm, (2.64)

=

∫ ∞

0

2(2y − w)

t
?
t

ϕ

ˆ

2y − w
?
t

˙

dw +

∫ y

0

∂

∂y
φ(m, y)dm,

=
2

?
t
ϕ

ˆ

y

2
?
t

˙

+

∫ y

0

∂

∂y
φ(m, y)dm, (2.65)

=
2

?
t
ϕ

ˆ

y
?
t

˙

−
∫ y

0

2(2m+ y)

t
?
t

ϕ

ˆ

2m+ y
?
t

˙

dw,

=
2

?
t
ϕ

ˆ

y

2
?
t

˙

− 1
?
t

ˆ

ϕ

ˆ

3y
?
t

˙

− ϕ

ˆ

y
?
t

˙˙

. (2.66)

Combining the partial derivatives of I1 and I2 and substituting back into 2.52 to obtain,

Q pR(t) ∈ dyq = 1{y ≥ 0} 1
?
t

ˆ

ϕ

ˆ

3y
?
t

˙

− ϕ

ˆ

y
?
t

˙˙

dy. (2.67)

Furthermore, the densityQ pmin(R1(t), ..., Rn(t)) ∈ dyq of the joint maximum of the minimum

of running maximum and the absolute value of a Brownian motion for n independent

Brownian motions is given by

Q pmin(R1(t), ..., Rn(t)) ∈ dyq = n

ˆ ˆ

ϕ

ˆ

3y
?
t

˙

− ϕ

ˆ

y
?
t

˙˙

dy

˙n−1

ϱM(y)dy,

= n

ˆ

Φ

ˆ

3y
?
t

˙

− Φ

ˆ

y
?
t

˙ ˙n−1

ϱM(y)dy. (2.68)

Proposition 2.3.10. The density ϱm(y) of the maximum of the negative path of a Brownian

motion reflected below the x-axis and the running minimum of a Brownian motion is given

by

ϱm pyq =
1

?
t

„

ϕ

ˆ

y
?
t

˙

− ϕ

ˆ

3y
?
t

˙ȷ

,
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where y ≤ 0.

Proof. We can use the the fact − |W (t)| ∨m(t) = −R(t) and is the reflection of R(t) below

the x-axis and we obtain above density.

Proposition 2.3.11. The joint density fβ,β∗ of a Brownian bridge and its running maximum

have the following form

fβ,β∗(m,w) = exp

ˆ

− z

T
w − z2

T

˙

(2m− w)

πt
?
tT

exp

ˆ

− 1

2t
(2m− w)2

˙

,

for w ≤ m, m ≥ 0 and z ∈ R.

Proof. We define a Brownian bridge at a time t over the interval [0, T ] by

β(t, T ) = W (t)− t

T
W (T ).

If we fix W (T ) = z, we see that the conditional distribution of β(t, T ) given W (T ) = z is a

drifted Brownian motion and conditionally normally distributed as N
ˆ

− t

T
z, t

˙

.

Furthermore, we define an equivalent measure Q̃, which is absolutely continuous with respect

to Q, such that W (t) is a Brownian motion with no drift.

We define a change of measure variable θ(t) such that

θ(t) = exp

ˆ

z

T
W (t)− 1

2

´ z

T

¯2

t

˙

, (2.69)

= exp

ˆ

z

T
W̃ (t) +

1

2

´ z

T

¯2

t

˙

, (2.70)

and

Q̃(A) =

∫
A

θ(T )dQ ∀ A ∈ F . (2.71)

37



The joint pdf g̃β,β∗ of β(t, T ) given that W (T ) = z and its running maximum β∗(t, T ) under

Q̃ is given by

g̃β,β∗(m,w) =
2(2m− w)

t
?
t

ϕ

ˆ

2m− w
?
t

˙

, (2.72)

where w ≤ m and m ≥ 0, which is in fact just the joint density of a Brownian W (t) and its

running maximum M(t).

The conditional distribution under Q is given by

Q pβ(t, T ) ≤ w, β∗(t, T ) ≤ m|W (T ) = zq = E
“

1{β(t,T )≤w,β∗(t,T )≤m}
‰

, (2.73)

= Ẽ
„

1

θ(T )
1{β(tT )≤w,β∗(tT )≤m}

ȷ

. (2.74)

We simplify this further to obtain that,

Q pβ(t, T ) ≤ w, β∗(t, T ) ≤ m|W (T ) = zq =

∫ w

−∞

∫ m

−∞
eαy−

1
2
α2T 2(2x− y)

t
?
t

ϕ

ˆ

2x− y
?
t

˙

dxdy,

(2.75)

where α = − z

T
.

To obtain the conditional density gβ,β∗ of a Brownian bridge β(t, T ) and its running maximum

β∗(t, T ) in the Q−measure we take derivatives to w and m, which yields,

gβ,β∗(m,w) = eαy−
1
2
α2T 2(2m− w)

t
?
t

ϕ

ˆ

1
?
t
(2m− w)

˙

, (2.76)

and thus its unconditional density fβ,β∗ is given by

fβ,β∗(m,w) = exp

ˆ

− z

T
w − z2

2T

˙

2(2m− w)

t
?
tT

ϕ

ˆ

1
?
t
(2m− w)

˙

ϕ

ˆ

z
?
T

˙

, (2.77)

= exp

ˆ

z

T
w − z2

2T

˙

2(2m− w)

t
?
tT

ϕ

ˆ

1
?
t
(2m− w)

˙

ϕ

ˆ

z
?
T

˙

, (2.78)

= exp

ˆ

− z

T
w − z2

T

˙

(2m− w)

πt
?
tT

exp

ˆ

1

2t
(2m− w)2

˙

. (2.79)
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which is the required results.

Proposition 2.3.12. The joint density gβ,β∗ of a Brownian bridge β(t, T ) and its running

minimum β̃(t, T ) have the following the form

gβ,β̃(m,w) = exp

ˆ

− z

T
w − z2

T

˙

(w − 2m)

πt
?
tT

exp

ˆ

− 1

2t
(w − 2m)2

˙

,

for w ≥ m and m ≤ 0.

Proof. The proof of this is very similar to the density of a Brownian bridge and its maximum.

We use the fact that for any process W (t),

max
0≤s≤t

W (s) = min
0≤s≤t

−W (s). (2.80)

Substituting this identity into 2.79, we get the required results.

Proposition 2.3.13. The running maximum of a Brownian motion satisfies the following

stochastic dynamics

dM(t) = 1{W (t) > M(t−)}dW (t) +
1

2
dLM(t),

where LM(t) is the local time of the Brownian motion W (t) at its running maximum M(t)

at a time t.

Proposition 2.3.14. The running minimum of a Brownian motion satisfies the following

stochastic dynamics

dm(t) = 1{W (t) < m(t−)}dW (t) +
1

2
dLm(t),

where Lm(t) is the local time of the Brownian motion W (t) at its running minimum m(t) at

a time t.
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Proposition 2.3.15. The density of
n∑
i=1

ciM(ti) is given by

Q

¨

˝

n∑
k=1

ckM(tk) ∈ dy

˛

‚=
1

2π

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(c1z1+c2z2+...+cnzn)

×
n∏
k=1

1

c2k
q ptk − tk−1, zk − zk−1q dzkdpdy,

where i =
?
−1, q ptk − tk−1, zk − zk−1q =

c

2

π(tk − tk−1)
exp

„

−(zk − zk−1)
2

2(tk − tk−1)

ȷ

and tk = k
T

n

∀k ≤ n.

Proof. We consider a partition of time T such that 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn−1 ≤ tn = T

and the distribution of
n∑
k=1

ckM(tk) is given by

Q

˜

n∑
k=1

ckM(tk) ≤ y

¸

= E

«

1

{
n∑
k=1

ckM(tk) ≤ y

}ff

, (2.81)

and we take its derivative with respect to y, to obtain its density. To do this, we first work

out the joint density of M(t1), ...,M(tn).

Q pM(t1) ∈ dx1, ...,M(tn−1, tn) ∈ dxnq = Q pM(t1) ∈ dx1, ...,M(tn)−M(tn−1) ∈ dxnq ,

=

n−1∏
k=0

ˆ

2

π(tk+1 − tk)

˙
1
2

exp

„

−
x2k+1

2(tk+1 − tk)

ȷ

dxk+1.

For simplicity, we set

q(tk − tk−1, xk) =

ˆ

2

π(tk − tk−1)

˙
1
2

exp

„

− x2k
2(tk − tk−1)

ȷ

.
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The distribution of
∑

k ckM(tk) is given by,

Q

˜

n∑
k=1

ckM(tk) ≤ y

¸

=

∫ ∞

0

∫ ∞

0

...

∫ ∞

0

1{c1M(t1) + ...+ cnM(tn) ≤ y}

×Q pM(t1) ∈ dx1,M(t1, t2) ∈ dx2, ...,M(tn−1, tn) ∈ dxnq ,

=

∫ ∞

0

∫ ∞

0

...

∫ ∞

0

1{c1x1 + c2(x1 + x2) + ...+ cn(x1 + ...+ xn) ≤ y}

× q(t1, x1)q(t2 − t1, x2)...q(tn − tn−1, xn)dx1dx2...dxn (2.82)

Setting c1x1 = z1, c2(x1 + x2) = z2,..., and cn(x1 + x2 + ...+ xn) = zn and transforming the

RHS of 2.82, using Jacobian transforms so that

Q

˜

n∑
k=1

ckM(tk) ≤ y

¸

=

∫ ∞

0

∫ ∞

0

...

∫ ∞

0

1{z1 + z2 + ...+ zn ≤ y}
n∏
k=1

1

c2k

× q(t1, z1)q(t2 − t1, z2 − z1)...q(tn − tn−1, zn − zn−1)dz1dz2...dzn,

and its corresponding density is given by

Q

˜

n∑
k=1

ckM(tk) ∈ dy

¸

=

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ ∞

0

d

dy
1{z1 + z2 + ...+ zn ≤ y}

n∏
k=1

1

c2k

× q(t1, z1)q(t2 − t1, z2)...q(tn − tn−1, zn)dz1dz2...dzndy,

=

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ ∞

0

δ pz1 + z2 + ...+ zn − yq

n∏
k=1

1

c2k

× q(t1, z1)q(t2 − t1, z2 − z1)...q(tn − tn−1, zn − zn−1)dz1dz2...dzndy.

(2.83)

Using the Fourier representation of a delta function which is given by

δ(x− α) =
1

2π

∫ ∞

−∞
eip(x−α)dp, (2.84)
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for any α ∈ R.

We can simplify 2.83 to become

Q

˜

n∑
k=1

ckM(tk) ∈ dy

¸

=

∫ ∞

−∞
eipy

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ ∞

0

eip(z1+z2+...+zn)
n∏
k=1

1

c2k

× q(t1, z1)q(t2 − t1, z2 − z1)...q(tn − tn−1, zn − zn−1)dz1dz2...dzndpdy

=
dy

2π

∫ ∞

−∞
eipy

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ ∞

0

eip(z1+z2+...+zn)
n∏
k=1

1

c2k

×
n∏
k=1

ˆ

2

π(tk+1 − tk)

˙
1
2

exp

«

−1

2

ˆ

zk+1 − zk
?
tk+1 − tk

˙2
ff

dz1dz2...dzndp

(2.85)

Thus, we are able to show the required results.

Proposition 2.3.16. The density of
n∑
k=1

ckm(tk) is given by

Q

¨

˝

n∑
k=1

ckm(tk) ∈ dy

˛

‚=
1

2π

∫ ∞

−∞
e−ipy

∫ zn−1

∞

∫ zn−2

∞
...

∫ 0

−∞
eip(z1+z2+...+zn)

×
n∏
k=1

1

c2k
q′ ptk − tk−1, zk − zk−1q dzkdpdy,

where q′ ptk − tk−1, zk − zk−1q =

c

2

π(tk − tk−1)
exp

„

−(zk − zk−1)
2

2(tk − tk−1)

ȷ

, i =
?
−1 and tk = k

T

n

∀k ≤ n.

Proof. We consider a partition of time T such that 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn−1 ≤ tn = T

and the distribution of
n∑
k=1

ckm(tk) is given by

Q

˜

n∑
k=1

ckm(tk) ≤ y

¸

= E

«

1

{
n∑
k=1

ckm(tk) ≤ y

}ff

, (2.86)
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and we take its derivative with respect to y, to obtain its density. To do this, we first work

out the joint density of m(t1), ...,m(tn).

Q pm(t1) ∈ dx1, ...,m(tn)−m(tn−1) ∈ dxnq = Q pm(t1) ∈ dx1, ...,m(tn−1, tn) ∈ dxnq ,

=

n−1∏
k=0

ˆ

2

π(tk+1 − tk)

˙
1
2

exp

„

−
x2k+1

2(tk+1 − tk)

ȷ

dxk+1.

For simplicity, we set

q′(tk − tk−1, xk) =

ˆ

2

π(tk − tk−1)

˙
1
2

exp

„

− x2k
2(tk − tk−1)

ȷ

.

The distribution of
∑

km(tk) is given by,

Q

˜

n∑
k=1

ckm(tk) ≤ y

¸

=

∫ 0

−∞

∫ 0

−∞
...

∫ 0

−∞
1{c1m(t1) + ...+ cnm(tn) ≤ y}

×Q pm(t1) ∈ dx1,m(t1, t2) ∈ dx2, ...,m(tn−1, tn) ∈ dxnq ,

=

∫ 0

−∞

∫ 0

−∞
...

∫ 0

−∞
1{c1x1 + c2(x1 + x2) + ...+ cn(x1 + ...+ xn) ≤ y}

× q(t1, x1)q(t2 − t1, x2)...q(tn − tn−1, xn)dx1dx2...dxn. (2.87)

Setting c1x1 = z1, c2(x1 + x2) = z2,..., and cn(x1 + x2 + ...+ xn) = zn and transforming the

RHS of 2.87 so that

Q

˜

n∑
k=1

ckm(tk) ≤ y

¸

=

∫ 0

−∞

∫ 0

−∞
...

∫ 0

−∞
1{z1 + z2 + ...+ zn ≤ y}

n∏
k=1

1

c2k

× q′(t1, z1)q
′(t2 − t1, z2 − z1)...q

′(tn − tn−1, zn − zn−1)dz1dz2...dzn,
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and its corresponding density is given by

Q

˜

n∑
k=1

ckm(tk) ∈ dy

¸

=

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ ∞

0

d

dy
1{z1 + z2 + ...+ zn ≤ y}

n∏
k=1

1

c2k

× q′(t1, z1)q
′(t2 − t1, z2)...q

′(tn − tn−1, zn)dz1dz2...dzndy,

=

∫ ∞

zn−1

∫ ∞

zn−2

...

∫ 0

−∞
δ pz1 + z2 + ...+ zn − yq

n∏
k=1

1

c2k

× q′(t1, z1)q
′(t2 − t1, z2 − z1)...q

′(tn − tn−1, zn − zn−1)dz1dz2...dzndy,

=

∫ ∞

−∞
eipy

∫ ∞

zn−1

∫ zn−2

−∞
...

∫ 0

−∞
eip(z1+z2+...+zn)

n∏
k=1

1

c2k

× q′(t1, z1)q
′(t2 − t1, z2 − z1)...q

′(tn − tn−1, zn − zn−1)dz1dz2...dzndpdy,

=
dy

2π

∫ ∞

−∞
eipy

∫ zn−1

−∞

∫ zn−2

−∞
...

∫ 0

−∞
eip(z1+z2+...+zn)

n∏
k=1

1

c2k

×
n∏
k=1

ˆ

2

π(tk+1 − tk)

˙
1
2

exp

«

−1

2

ˆ

zk+1 − zk
?
tk+1 − tk

˙2
ff

dz1dz2...dzndp.

(2.88)

Thus, we are able to show the required results.

2.4 Summary

In this chapter, we have observed the general framework and methodology of control variates.

We have also shown the role of played by correlation in the reduction of the variance of

estimates when using control variates. In regressional analysis, this can be viewed in terms

of the R2 of the model, which we have been able to express in terms of the optimal λ and
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the normalised variance of the control variate with respect to that of our variable of interest.

We have also derived the dynamics of (functions of) Brownian motions and their densities

which we use later on to obtain analytic estimates for the price of basket and Asian options,

as well as their bounds.
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Chapter 3

Basket Options

3.1 Overview

Under the Black-Scholes framework, assets follow a Geometric Brownian motion model i.e.

they are lognormally distributed. However, the same cannot be said about a basket of assets.

In this chapter, we study the behaviour of a basket of assets in the Black-Scholes framework

and obtain suitable approximations for the price of a basket option. In section 3.2, we observe

the dynamical features of the basket of assets such as it stochastic dynamics, moments and

its time change representation. In section 3.3, we obtain a lognormal approximation for

the basket, allowing for closed-form approximation of a basket option in the aforementioned

setting. We also make a generalisation for a large number of assets in the basket, specifically

for use as a control variate for simulation purposes. In section 3.4, we demonstrate the

Gaussian behaviour of the basket in small time intervals, leading to closed-form solutions

for short maturity basket options. Despite basket options not having an analytical formula,
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much work has been done in obtaining closed-form bounds (Kemna [20], Gentle [13], Xu

and Zheng [39]). We derive closed-form bounds on the price of a basket option using the

distributional properties of a Brownian motion, which is covered in the rest of the chapter.

3.2 Basket Option Dynamics

We assume the existence of a filtered probability space (Ω,F ,F(t),Q) and the filtration

{F(t)} is generated by d independent Brownian motions. The basket comprises n assets

whose price processes at any time t are given by S1(t), S2(t), ..., Sn(t) and satisfy the Black-

Scholes dynamics given by

dSi(t)

Si(t)
= rdt+

d∑
j=1

σijdWj(t), (3.1)

for each i and the value S(t) of the basket of n assets at any time t is given by

S(t) =

n∑
i=1

ωiSi(t), (3.2)

where ωi are non-negative portfolio weights of the assets in the basket such that
n∑
i=1

ωi = 1,

and r is a constant, risk-free interest rate. The value of the basket S(t) satisfies the following

SDE

dS(t)

S(t)
= rdt+ ΛdW (t), (3.3)

where W (t) is an {F(t)}-Brownian motion such that

W (t) =

∫ t

0

1

Λ

n∑
i=1

d∑
k=1

ωiσik
Si(u)

S(u)
dWk(u), (3.4)
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and Λ is the volatility of the value process {S(t)} of the basket satisfying the relation

Λ2 =
1

S2(t)

n∑
i=1

n∑
j=1

d∑
k=1

ωiωjSi(t)Sj(t)σikσjk. (3.5)

The distribution of the basket satisfying the above dynamics can be estimated by studying

the conditional/unconditional moments of the value of the basket.

Proposition 3.2.1. The first and second conditional moments of the basket in 3.3, evolves

respectively according to the following ODEs

∂tEs[S(t)] = rEs[(t)],

∂tEs[S2(t)] =
`

r + Λ2
˘

Es[S2(t)].

with initial conditions Es[S(s)] = S(s) and Es[S2(t)] = S2(s)e(r+Λ2)(t−s), whose respective

solutions are given by

Es[S(t)] = S(s)er(t−s),

Es[S2(t)] = S2(s)e(r+Λ2)(t−s), ∀0 ≤ s ≤ t.

where Es[−] is the conditional expectation with respect to F(s) and ∂t(.) is the partial

derivative with respect to time.

Corollary 3.2.1. The conditional variance V (s, t) of the basket is given by

V (s, t) = S2(s)er(t−s)
”

eΛ
2 − er(t−s)

ı

.

Given the representation of the basket in 3.3, we can see that Λ has the functional form

Λ = Λ(t, S(t)), due to its dependence on the price level of the basket at time t. This suggests

that basket options would be suitably priced using local volatility models as done by Xu and
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Zheng in [39]. Despite this above representation, we in fact see that GBM models are quite

adequate and useful for pricing options on a group of assets. To demonstrate this, we begin

by setting Y (t) =
∫ t
0
ΛdW (s), which is simply the integral of the the second factor on the

RHS of 3.3. This process Y (t) is an F(t)−continuous local martingale. The continuity of

Y (t) is fairly obvious, since the underlying randomness is generated by independent Brownian

motions which are continuous P−a.e. The quadratic variation ⟨Y ⟩t of such a process Y (t) is

given by

⟨Y ⟩t =
∫ t

0

Λ2ds. (3.6)

By a direct application of the Dubin-Dambis-Schwarz theorem, we can rewrite the process

as

Y (t) = Ŵ (τt), (3.7)

Proposition 3.2.2. The stochastic differential equation satisfied by the basket at any time

t satisfies the following dynamical equation given by

dS(t)

S(t)
= rdt+ dŴ (τt),

where Ŵ (τt) is an F(τt)-Brownian motion such that τt = inf{t :
∫ t
0
Λ2du > t}.

This above representation of the stochastic dynamics of the basket in fact suggests that, we

can rewrite its dynamics in terms of a Geometric Brownian Motion whose volatility is unity.

Given these features of the basket given above, we attempt to provide a suitable lognormal

approximation for the price of a basket option.
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The price of the basket call option at an earlier time 0 with maturity date T denoted

CB(0, T,K) is given by

CB(0, T,K) = e−rTEQ “

pS(T )−Kq
+

‰

, (3.8)

where K is the nonnegative strike price of the basket option. The price of the basket call

option CB(t, T,K) at any earlier time t prior to the maturity date T is given by

CB(t, T,K) = e−r(T−t)EQ
r(S(T )−K)+|F(t)s. (3.9)

To obtain the expectation in 3.8 and 3.9, we require the distribution of the basket which is

generally unknown.

3.3 Lognormal Approach to Basket Option Pricing

Given assets which follow a Geometric Brownian motion model, being able to consistently

price the basket of assets in a lognormal framework is extremely desirable. This was the

main motivation behind methods of moment-matching (Brigo [5], Henriksen [15], Paletta

[? ]). In this section, we estimate the price of a basket option using first order Hermite

polynomials in attempt to fit suitable parameters, which allow our basket option to be price

in the lognormal framework.

3.3.1 First Order Hermite Polynomial Approximation

We know for a fact that S(t) is lognormal for n = 1 and CB(0, T ) is available in closed-

form in terms of Black-Scholes formula. If we can approximate the summation
n∑
i=1

ωiSi(t)
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by a lognormal random variable with a known finite variance in closed-form, we can obtain

a Black-Scholes type solution of the price of the basket call option. Instead of trying to

approximate S(t) directly e.g. using moments, we construct a linear approximation of y(t) :=

ln(S(t)) in terms of ln(Si(t)), using Hermite polynomial basis. Given a filtered probability

space (Ω,F ,F(t),Q), {F(t)} represents the filtration generated by d independent Brownian

motions W1(t), ...,Wd(t) and Q is the risk neutral measure. We assume the asset prices Si(t)

are F(t)-measurable and follow a Geometric Brownian Motion (GBM) model given by

Si(t) = Si(0) exp

«

ˆ

r − 1

2
σ2
i

˙

t+
d∑
j=1

σijWj(t)

ff

, ∀i = 1, ..., n, (3.10)

and satisfy the SDE in 3.1. The price C(0, T,K) of a basket call option at a time 0, with a

nonnegative strike K and maturing at time T is

C(0, T,K) = e−rTEQ “

(S(T )−K)+
‰

. (3.11)

Given the function ψ, which is the log of the terminal value of the basket, we can re-write ψ

as a function of standard normal variables such that

ψ(u) = log pS(T )q, (3.12)

= log

¨

˝

n∑
i=1

ωiSi(0) exp

˜

ˆ

r − 1

2
σ2
i

˙

T +
d∑
j=1

σijWj(T )

¸

˛

‚, (3.13)

= log

¨

˝

n∑
i=1

ωiSi(0) exp

˜

ˆ

r − 1

2
σ2
i

˙

T +
?
T

d∑
j=1

σijuj

¸

˛

‚. (3.14)

where uj ∼ N (0, 1) ∀j.

We can transform nonlinear functions of Gaussian random variables into a linear combination
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of standard normal random variables using Hermite polynomials. Suppose ψ belongs to a

class of functions Y such that

Y =

{
ψ(u) :

∫ ∞

−∞
ϕ(u; 0, I)ψ2(u)du <∞,∀j

}
, (3.15)

where ϕ(u; 0, I) is the density of a standard normal vector u = (u1, ..., ud) with covariance

matrix I. We define the first order Hermite polynomials {h(1)j (u)}dj=1 as

h
(1)
j (u) = (−1)

∂ϕ(u; 0, I)

∂uj
ϕ−1(u; , 0, I), (3.16)

= uj. (3.17)

where h
(0)
j (u) = 1 ∀j, which satisfy the orthogonality condition

∫ ∞

−∞
h
(1)
j (u)h

(1)
k (u)ϕ(u; 0, I)du = δjk, (3.18)

where δjk =


1, if j = k,

0, otherwise.

We can express ψ(u) as

ψ(u) ≈
d∑
j=0

bjh
(1)
j (u),

= b0 +
d∑
j=1

bjuj. (3.19)

To obtain b0, multiply 3.19 by ϕ(u) and integrate over u

∫ ∞

−∞
ψ(u)ϕ(u)du = b0

∫ ∞

−∞
ϕ(u)du+

d∑
j=1

bj

∫ ∞

−∞
ujϕ(u)du, (3.20)

= b0. (3.21)
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Thus,

b0 =

∫ ∞

−∞
ψ(u)ϕ(u)du. (3.22)

To obtain bj, we multiply 3.19 by ukf(u) and integrate over u to get

∫ ∞

−∞
ukψ(u)ϕ(u)du = b0

∫ ∞

−∞
ukϕ(u)du+

d∑
j=1

bj

∫ ∞

−∞
ujukϕ(u)du, (3.23)

=
d∑
j=1

bjδjk, (3.24)

yielding,

bj =

∫ ∞

−∞
ujψ(u)ϕ(u)du, 1 ≤ j ≤ d. (3.25)

Proposition 3.3.1. The closed-form estimate of the basket option price at a time 0 is given

by

C(0, T,K) ≈ e−rT
„

exp

ˆ

1

2y

„

(b0 + y)2 − b20

ȷ˙

Φ

ˆ

b0 + y − lnK
?
y

˙

−KΦ

ˆ

b0 − lnK
?
y

˙ȷ

.

(3.26)

Proof. We can then approximate the price at time 0 of a basket option maturing at time T ,

whose assets satisfy 3.2 by

(3.27)C(0, T,K) ≈ e−rTEQ
[(
eψ(u) −K

)+]
.
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The approximate terminal payoff is given by

EQ “

peψ(u) −Kq
+

‰

=

∫ ∞

−∞

`

eψ(u) −K
˘+
g(ψ)dψ, (3.28)

=

∫ ∞

lnK

`

eψ(u) −K
˘

g(ψ)dψ, (3.29)

=

„∫ ∞

lnK

eψ(u)g(ψ)dψ −K

∫ ∞

lnK

g(ψ)dψ

ȷ

, (3.30)

= exp

ˆ

1

2y

„

(b0 + y)2 − b20

ȷ˙

Φ

ˆ

b0 + y − lnK
?
y

˙

−KΦ

ˆ

b0 − lnK
?
y

˙

, (3.31)

where g(ψ) is the density of ψ(u) given by

g(ψ) =
1

?
y
ϕ

ˆ

ψ(u)− b0
?
y

˙

, (3.32)

where y = V ar(ψ(u)) =
d∑
j=1

b2j .

Thus, the approximated price of the basket option is given by

C(0, T,K) ≈ e−rT
„

exp

ˆ

1

2y

„

(b0 + y)2 − b20

ȷ˙

Φ

ˆ

b0 + y − lnK
?
y

˙

−KΦ

ˆ

b0 − lnK
?
y

˙ȷ

.

(3.33)

This closed-form approximation 3.33 for a basket option price is analogous to Black-Scholes

representation for the price of a single asset. We demonstrate through examples for two-

asset case (which can be generalised to more assets in the basket) that this yields good

approximations for a variety of underlying parameter values and very short maturities.

Also, this closed-form estimate can be used as a control variate for pricing basket options.

However, the computational complexity of calculating the basket option price increases as
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the number of assets in the basket increase. To overcome this, we suggest an adaptation to

the previously mentioned method, to allow for its use as a control variate for pricing basket

options with sufficiently large assets in the basket.

In general,

ln(1 + Si(T )) ≤ Si(T ), (3.34)

where Si(T ) = ωiSi(T ). Taking sums of (3.34) over i, we can deduce the following inequality

ln

˜

n∏
i=1

Si(T )

¸

<

n∑
i=1

ln
´

1 + Si(T )
¯

<

n∑
i=1

Si(T ) = S(T ). (3.35)

We can simplify the weighted products of assets as

n∏
i=1

Si(T ) =

˜

n∏
i=1

Si(0)

¸

exp

«˜

nr − 1

2

n∑
i=1

σ2
i

¸

T

ff

exp

˜

n∑
i=1

n∑
j=1

σijWj(T )

¸

, (3.36)

and its logarithm can be becomes

ln

˜

n∏
i=1

Si(T )

¸

= ln

˜

n∏
i=1

Si(0)

¸

+

˜

nr − 1

2

n∑
i=1

σ2
i

¸

T +
n∑
i=1

d∑
j=1

σijWj(T ), (3.37)

= γ +
n∑
i=1

n∑
j=1

σijWj(T ), (3.38)

where Si(T ) = ωiSi(T ) and γ = ln
´∏n

i=1 Si(0)
¯

+

˜

nr − 1

2

n∑
i=1

σ2
i

¸

T .

We define a new function ψ̃(u) by simply replacing S(T ) in (3.12) with and the strike K of

the basket with lnK such that

ψ̃ = ln

˜

ln

˜

n∏
i=1

S(T )

¸¸

(3.39)

= ln

˜

γ +
n∑
i=1

n∑
j=1

σijWj(T )

¸

= ln

˜

γ +
?
T

n∑
i=1

n∑
j=1

σijuj

¸

(3.40)
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where uj ∼ N (0, 1) ∀j. Since ψ̃(u) ∈ Y , we can approximate ψ̃ similar to ψ as

ψ̃(u) = b̃0 +
n∑
j=1

b̃juj, (3.41)

where the parameters b̃j’s are estimated as bj’s in (3.22) and (3.25) but are estimated by

replacing ψ instead of ψ̃ for all 0 ≤ j ≤ n.

We can estimate the parameters of b̃j’s in (3.41) using third order Taylor series approximation

of ψ̃ of uj’s about 0 given by

ψ̃(u) = ψ̃(0) +
n∑
j=1

∂ψ̃

∂uj

ˇ

ˇ

ˇ

ˇ

ˇ

uj=0

uj +
1

2

d∑
j=1

n∑
k=1

∂2ψ̃

∂ujuk

ˇ

ˇ

ˇ

ˇ

ˇ

uj=uk=0

ujuk

+
1

6

d∑
j=1

n∑
k=1

n∑
l=1

∂3ψ̃

∂ujukul

ˇ

ˇ

ˇ

ˇ

ˇ

uj=uk=ul=0

ujukul. (3.42)

Thus, the coefficients of the parameters of ψ̃ are

b̃0 = ln γ − 1

2

T

ξ2

d∑
j=1

n∑
i=1

n∑
k=1

σijσkj, (3.43)

= ln γ − 1

2

T

ξ2

n∑
k=1

n∑
i=1

Aik, (3.44)

where A is the volatility matrix and

b̃j =

?
T

γ

n∑
i=1

σij +

ˆ

?
T

γ

˙3 n∑
i=1

n∑
l=1

n∑
m=1

σijσljσmj +

ˆ

?
T

γ

˙3 d∑
k=1

n∑
i=1

n∑
l=1

n∑
m=1

σikσmkσlk,

(3.45)

for all 1 ≤ j ≤ n.

We denote the price at time 0 of an option on the logarithm of the product of weighted
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assets in the basket with a strike lnK, maturing at time T as C̃(0, T, lnK) is given by

C̃(0, T, lnK) = e−rTEQ

«˜

ln

˜

n∏
i=1

S(T )

¸

− lnK

¸+ff

. (3.46)

Using the lognormal approximation for ln p
∏n

i=1 S(T )q in (3.40), we can obtain the option

price C̃(0, T, lnK) in a lognormal framework. Thus, the option price C̃(0, T, lnK) is given

by

C̃(0, T, lnK) = e−rT

«

exp

ˆ

1

2

´

V̄ + 2b̃0

¯

˙

Φ

˜

b̃0 + V − ln K̄
?
V̄

¸

− K̄Φ

˜

b̃0 − ln K̄
?
V̄

¸ff

,

(3.47)

where K̄ = lnK and V̄ =
n∑
j=1

b̃2j .

Given that we have the price of the option C̃(0, T, lnK) in closed-form, we have all the

essential ingredients necessary to use this method for pricing basket options, using the first

order Hermite polynomial as a control variate for a large number of underlying assets.

3.4 Gaussian Approximation For Short Maturity Basket

Options

Despite assets being lognormally distributed, we can find simple Gaussian approximations

for the price of a basket option for small maturities. Given an n- asset basket, we can rewrite

3.2 as

S(t) =

n∑
i=1

ωiSi(0)e
rtZi(t), (3.48)
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where Zi(t) is a Q-martingale which can be represented as

Zi(t) = 1 +

∫ t

0

Zi(s)

d∑
j=1

σijdWj(s). (3.49)

For small maturities t and for any ϵ > 0, we assume that |Zi(s) − 1| < ϵ for all i and

0 ≤ s < t. Using this we consider a simplification of the value of the basket, so that 3.48

becomes

S(t) ≈
n∑
i=1

ωiSi(0)e
rt

´

1 +

d∑
j=1

σijWj(t)
¯

, (3.50)

=

n∑
i=1

ωiSi(0)e
rt

´

1 + Pi(t)
¯

, (3.51)

where Pi(t) =
d∑
j=1

σijWj(t), is normally distributed with mean 0 and covariance t
d∑
j=1

σijσkj.

This leads to a basket which follows a Gaussian distribution, allowing for closed-form approximation

of the price of basket option on it. To understand the accuracy of this Gaussian estimation

of the basket, we observe the error process E(t) of the difference between 3.48 and 3.50.

Proposition 3.4.1. The error process E(t) is a martingale with zero mean and its variance

VE(t) is a nonnegative submartingale given by

VE(t) = e2rt
n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)

„

1

Aik
pexp ptAikq − 1q − t

ȷ

,

which is an increasing function of time, where Aik =
d∑
j=1

σijσ
T
jk.

Proof. E(t) is given by

E(t) =

∫ t

0

n∑
i=1

d∑
j=1

ωiSi(0)e
rt

pZi(s)− 1qσijdWj(s), (3.52)
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which is an Ito integral with zero mean and its variance VE(t) is given by

VE(t) = e2rtE

»

–

∫ t

0

n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)(Zi(s)− 1)(Zk(s)− 1)ds

fi

fl , (3.53)

= e2rt
∫ t

0

n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)E r(Zi(s)− 1)(Zk(s)− 1)s ds. (3.54)

Using the fact that E[Zi(s)] = E[Zk(s)] = 1,∀i, k and E[Zi(s)Zk(s)] = exp

˜

s

d∑
j=1

σijσ
T
jk

¸

, we

can simplify VE(t) to obtain

VE(t) = e2rt
∫ t

0

n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)

¨

˝exp

¨

˝s

d∑
j=1

σijσ
T
jk

˛

‚− 1

˛

‚ds, (3.55)

= e2rt
n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)

«

1∑d
j=1 σijσ

T
jk

˜

exp

˜

t
d∑
j=1

σijσ
T
jk

¸

− 1

¸

− t

ff

,

(3.56)

which concludes the first part of the proof. To prove that the variance VE(t) is an increasing

function of time, it sufficient to show that

∂

∂t

ˆ

1

Aik
pexp ptAikq − 1q − t

˙

= pexp ptAikq − 1q − 1 ≥ 0, ∀t ≥ 0. (3.57)

Given that our Gaussian approximation for the value of a basket is valid for small time

intervals, we now look to obtain the price of a basket option for very short maturities within

this framework.

Proposition 3.4.2. Given the value of a basket with short maturity t which satisfies 3.51,

the price of its corresponding basket option at a time 0 with strike K is given by

C(0, t,K) ≈ e−rt
„

V (t)ϕ

ˆ

K −m(t)

V (t)

˙

+ (m(t)−K)Φ

ˆ

m(t)−K

V (t)

˙ȷ

, (3.58)
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where m(t) =
n∑
i=1

ωiSi(0)e
rT , V 2(t) = e2rtt

n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)σijσkj and ϕ(.) is the

standard Gaussian density and Φ(.) is its corresponding distribution,

Proof. We define the variance V 2(t) of S(t) as

V 2(t) = E
“

pS(t)−m(t)q2
‰

, (3.59)

= e2rtE

»

–

n∑
i=1

n∑
k=1

d∑
j=1

d∑
l=1

ωiωkSi(0)Sk(0)σijσklWj(t)Wl(t)

fi

fl , (3.60)

= e2rtE

»

–

n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)σijσklW
2
j (t)

fi

fl , (3.61)

= te2rt
n∑
i=1

n∑
k=1

d∑
j=1

ωiωkSi(0)Sk(0)σijσkl. (3.62)

Using the representation of S(t) in 3.50, the density of S(t) is given by

Q pS(t) ∈ dyq =
1

V (t)
ϕ

ˆ

y −m(t)

V (t)

˙

dy. (3.63)

The price of a basket option at a time 0 with small maturity and strike K si given by

C(0, t,K) = e−rtE
“

pS(t)−Kq
+

‰

, (3.64)

≈ e−rt
∫ ∞

K

py −KqQ pS(t) ∈ dyq , (3.65)

= e−rt
∫ ∞

K

py −Kq
1

V (t)
ϕ

ˆ

y −m(t)

V (t)

˙

dy, (3.66)

=

∫ ∞

K

py −Kq
1

V (t)
ϕ

ˆ

y −m(t)

V (t)

˙

dy. (3.67)
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Set z =
y −m(t)

V (t)
and we take its derivative with respect to y. We substitute for y to obtain,

C(0, t,K) ≈ e−rt
∫ ∞

y−m(t)
V (t)

pm+ zV (t)qϕ(z)dz −Ke−rt
∫ ∞

y−m(t)
V (t)

ϕ(z)dz, (3.68)

= e−rt
„

pm(t)−KqΦ

ˆ

m(t)−K

V (t)

˙

+ V (t)ϕ

ˆ

m(t)−K

V (t)

˙ȷ

. (3.69)

Furthermore, 3.50 suggests that using a first order Taylor expansion of the exponential

martingale term in an asset under a GBM model might be a good estimate for pricing short

maturity basket options, since for small maturities higher orders of the Taylor terms and

their sum go to zero.

3.5 Bounds On The Price Of A Basket Option

The option price on the geometric lower bound of a basket of assets as in [13], is the most

popular bound on basket option prices and is also used as a benchmark in comparing the

performance of other lower bounds. It involves using the arithmetic mean of a sequence

being bounded below by its geometric mean. For a basket of n assets, its geometric mean

G(T ) is given by

G(T ) =
n∏
i=1

rSi(T )s
ωi ≤

n∑
i=1

ωiSi(T ). (3.70)

The geometric mean G(T ) is lognormally distributed and the price of a European call option

on it can be obtained in closed-form. The price of a European call option on G(T ) given by

61



CG(0, T ), with strike K and maturity T at a time 0 is given by

CG(0, T,K) = e−rT

«

Θβ exp

ˆ

1

2
v

˙

Φ

˜

v − ln p K
Θβ

q
?
v

¸

−KΦ

˜

− ln p K
Θβ

q
?
v

¸ff

, (3.71)

where Θ =
∏n

i=1 pSi(0)q
ωi , v = V ar(lnΘ), β =

∑n
i=1 ωi

`

r − 1
2
σ2
i

˘

T .

3.5.1 Direct Upper and Lower Bounds on Basket Option Price

In this section, we obtain tight (lower and upper) bounds on the price of a basket option

by a direct application of the Jensen’s inequality due to the convexity of the payoff of the

basket option.

Proposition 3.5.1. A basket option has a direct upper bound UB(0, T,K) on its price at

time 0 prior to time T , which is given by

UB(0, T,K) = e−rT
n∑
i=1

ωiE
ˆ

Si(T )−K

˙+

.

Proof. The expected payoff of the basket option CB(0, T,K) at its maturity is bounded

above as shown below by

CB(0, T,K) = EpS(T )−Kq
+, (3.72)

= E

˜

n∑
i=1

ωiSi(T )−K

¸+

, (3.73)

= E

˜

n∑
i=1

ωiSi(T )−K

n∑
i=1

ωi

¸+

, (3.74)

≤
n∑
i=1

ωiE
ˆ

Si(T )−K

˙+

. (3.75)

Hence,

CB(0, T,K) = e−rTE pS(T )−Kq
+ ≤ e−rT

n∑
i=1

ωi

ˆ

Si(T )−K

˙+

= UB(0, T,K). (3.76)
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The upper bound UB(0, T,K) on the basket option price is the same as holding n options of

different assets with the same strike K. The price of such a fictitious portfolio UB(0, T,K)

is given by

UB(0, T,K) = e−rT
n∑
i=1

“

Si(0)e
rTΦ(h+i )−KΦ(h−i )

‰

, (3.77)

where hi± =
ln

´

Si(0)e
rT

K

¯

± 1
2
σ2
i T

σi
?
T

.

Proposition 3.5.2. A basket option has a direct lower bound UL(0, T,K) on its price at

time t < T , which is given by

UL(0, T,K) = S(0)−Ke−rT ,

provided S(0) > Ke−rT .

3.6 Distributional Bounds on a Basket Option Price

Some of the research into finding suitable bounds on the price of a basket option involve

using the properties of its payoff function such as in Rogers-Shi lower bound [35]. In this

section, we derive new upper and lower bounds on a basket of assets and their corresponding

option price by using the distributional properties of Brownian motions.

3.6.1 Lower And Upper Distributional Bounds Of A Basket Option

In general, we can obtain an upper bound on the basket of assets 3.2 and the price of a basket

option 3.8 by replacing the independent Wiener processes with their joint maximum. Also,
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we can obtain lower bounds on the basket and its option price by using the joint minimum

of the independent Brownian motions in the basket.

Proposition 3.6.1. The value S(t) of the basket of assets at any time t is bounded above by

Su(t) =

n∑
i=1

ωiSi(0) exp
´

(r − 1

2
σ̄2
i )t

¯

exp
´

Md(t)

d∑
j=1

σij

¯

, (3.78)

and bounded below by

Sl(t) =

n∑
i=1

ωiSi(0) exp
´

(r − 1

2
σ̄2
i )t

¯

exp
´

md(t)

d∑
j=1

σij

¯

, (3.79)

where Md(t) = max
1≤j≤d

Wj(t), md(t) = min
1≤j≤d

Wj(t) and provided
n∑
j=1

σij is nonnegative for

1 ≤ i ≤ n.

Proof. The price S(t) of a basket of assets at a time t is the solution, which satisfies the SDE

in 3.3, which has the following form

S(t) =

n∑
i=1

ωiSi(0) exp
”

(r − 1

2
σ2
i )t

ı

exp
´

d∑
j=1

σijWj(t)
¯

, (3.80)

where σ2
i =

n∑
j=1

σ2
ij, Wj(t) and Wk(t) are independent Brownian motions for j ̸= k.

For any asset i, we setup the following inequalities

d∑
j=1

σij min
1≤j≤d

Wj(t) ≤
d∑
j=1

σijWj(t) ≤
d∑
j=1

σij max
1≤j≤d

Wj(t), (3.81)

d∑
j=1

σijmd(t) ≤
d∑
j=1

σikWj(t) ≤
d∑
j=1

σijMd(t), (3.82)

md(t)

d∑
j=1

σij ≤
d∑
j=1

σijWk(t) ≤Md(t)

d∑
j=1

σij, (3.83)
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where Md(t) = max
1≤j≤d

Wk(u)) and md(t) = min
1≤j≤d

Wj(t).

So that,

md(t)

d∑
j=1

σij ≤
d∑
j=1

σijWk(t) ≤Md(t)

d∑
j=1

σij for all i. (3.84)

Thus, the price of the asset at time t is bounded by

Sl(t) =

n∑
i=1

Yi exp
´

m(t)σ∗
i

¯

≤ S(t) ≤
n∑
i=1

Yi exp
´

M(t)σ∗
i

¯

= Su(t), (3.85)

where σ∗
i =

d∑
j=1

σij and Yi = ωiSi(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

.

These bounds on the value of the basket given by Su(t) and Sl(t) are analytically intractible

and are of a similar problem type as the the basket of assets. To this end, we can estimate

options on Su(t) and Sl(t) by using their respective geometric means, as suggested by Gentle

[13]. Given the representation for the distributional upper bound on the value of a basket of

n assets at a time T given by Su(T ) and Sl(T ) respectively in proposition 3.6.1. Let us call

Gu(T ) as the geometric mean of 3.78, which then has the following representation

Gu(T ) =

n∏
i=1

»

–Si(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

exp

ˆ

Md(T )

d∑
j=1

σij

˙

fi

fl

1
n

. (3.86)

Given the representation of Gu(T ) above, we can use it to estimate the price of an option

on Su(T ), which is an the upper bound on the basket option price.

Proposition 3.6.2. The price CGu(0, T ) at time 0 of an option on the geometric mean

Gu(T ), maturing at time T with nonnegative strike K is given by

CGu(0, T ) = α1β1e
−rT

∫ ∞

K̃

eγ1y
d

?
T
ϕ

ˆ

y
?
T

˙ ˆ

Φ

ˆ

y
?
T

˙˙d−1

dy −Ke−rT

»

–1−

˜

Φ

˜

K̃
?
T

¸¸d
fi

fl
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where α1 =
n∏
i=1

Si(0)
1
n , β1 = exp

«˜

r − 1

2

n∑
i=1

σ2
i

n

¸

T

ff

, γ1 =
1

n

n∑
i=1

d∑
j=1

σij and

K̃ =
1

γ1
ln

ˆ

K

α1β1

˙

.

Proof. We can simplify the expression for Gu(T ) in 3.86 to become

Gu(T ) =

¨

˝

n∏
i=1

ˆ

Si(0)

˙
1
n

˛

‚exp

«˜

r − 1

2

n∑
i=1

σ2
i

n

¸

T

ff

exp

˜

Md(T )
1

n

n∑
i=1

d∑
j=1

σij

¸

. (3.87)

The price CGu(0, T ) of the option on Gu(T ) at a time 0 is given by

CGu(0, T ) = e−rTE
“

pGn(T )−Kq
+

‰

, (3.88)

= e−rT
∫ ∞

K̃

pα1β1e
γ1y −Kq

d
?
T
ϕ

ˆ

y
?
T

˙ ˆ

N
ˆ

y
?
T

˙˙d−1

dy, (3.89)

= α1β1e
−rT

∫ ∞

K̃

eγ1y
d

?
T
ϕ

ˆ

y
?
T

˙ ˆ

Φ

ˆ

y
?
T

˙˙d−1

dy

−Ke−rT

»

–1−

˜

Φ

˜

K̃
?
T

¸¸d
fi

fl . (3.90)

This completes the proof.

Similarly, given the geometric mean of Sl(T ) in 3.79, we can derive the price of an option on

it with the same strike K. We can define the geometric mean Gl(T ) on 3.79 as

Gl(T ) =

n∏
i=1

»

–Si(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

exp

ˆ

md(T )

d∑
j=1

σij

˙

fi

fl

1
n

. (3.91)

Proposition 3.6.3. The price CGl
(0, T ) of the option on Gl(T ) maturing at T at a time 0

with nonnegative strike K is given by

CGl
(0, T ) = e−rT

∫ ∞

K̃

eγ1y
d

?
T
ϕ

ˆ

y
?
T

˙ ˆ

Φ

ˆ

− y
?
T

˙˙d−1

dy +Ke−rT

˜

Φ

˜

−K̃
T

¸¸d

,

where α1 =
n∏
i=1

Si(0)
1
n , β1 = exp

«˜

r − 1

2

n∑
i=1

σ2
i

n

¸

T

ff

, γ1 =
1

n

n∑
i=1

d∑
j=1

σij and

K̃ =
1

γ1
ln

ˆ

K

α1β1

˙

.
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Hence, we are able to use the bounds 3.78 and 3.79 on the value of the basket to obtain

closed-form estimates on the basket option price using their respective geometric mean.

Alternatively, we can obtain more accurate option prices on the distributional bounds of

the value of the basket using Curran’s method [8]. This is achieved by conditioning the

price using 3.78 and 3.79 on their respective geometric mean which we carry out in the next

proposition.

Proposition 3.6.4. The estimated option price Cu
B(0, T ), on Su(T ) with strike K, at a time

0 prior to its maturity T using Curran’s conditioning arguments is given by

Cu
B(0, T ) = e−rTE rSu(T )1{Gu(T ) ≥ K}s +Ke−rT

«

ˆ

Φ

ˆ

1

γ1
ln

ˆ

K

α1β1

˙˙˙d

− 1

ff

, (3.92)

where Su(T ) is as defined is 3.78, α1 =
n∏
i=1

Si(0)
1
n , β1 = exp

«˜

r − 1

2

n∑
i=1

σ2
i

n

¸

T

ff

, γ1 =

1

n

n∑
i=1

d∑
j=1

σij.

Proof. The price at a time 0 an option on Su(T ) prior to the maturity T is given by

Cu
B(0, T ) = e−rTE

“

pSu(T )−Kq
+

‰

, (3.93)

= e−rTE
”

E
”

pSu(T )−Kq
+

ˇ

ˇ

ˇ
Gu(T ) = y

ıı

, (3.94)

= e−rT
∫ K

0

E
”

pSu(T )−Kq
+

ˇ

ˇ

ˇ
Gu(T ) = y

ı

Q pGu(T ) ∈ dyq

+ e−rT
∫ ∞

K

E
”

pSu(T )−Kq
+

ˇ

ˇ

ˇ
Gu(T ) = y

ı

Q pGu(T ) ∈ dyq . (3.95)

We use the fact that∫ K

0

E
”

pSu(T )−Kq
+

ˇ

ˇ

ˇ
Gu(T ) = y

ı

Q pGu(T ) ∈ dyq ≈ 0. (3.96)
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Substituting 3.105 in 3.104 to obtain,

Cu
B(0, T ) = e−rT

∫ ∞

K

E
”

pSu(T )−Kq
+

ˇ

ˇ

ˇ
Gu(T ) = y

ı

Q pGu(T ) ∈ dyq (3.97)

= e−rT
∫ ∞

K

E
”

Su(T )−K
ˇ

ˇ

ˇ
Gu(T ) = y

ı

Q pGu(T ) ∈ dyq (3.98)

= e−rTE rSu(T )1Gu(T ) ≥ Ks −Ke−rTQ pGu(T ) ≥ Kq (3.99)

= e−rTE rSu(T )1{Gu(T ) ≥ K}s −Ke−rT

«

1−

˜

Φ

ˆ

1

γ1
ln

ˆ

K

α1β1

˙˙d
¸ff

(3.100)

Thus, we are able to obtain the required results.

The option price given by Cu
B(0, T ) is an upper bound on the basket option price in 3.11.

Next, we shall proceed to work out the lower bound on the basket option price using similar

conditioning arguments.

Proposition 3.6.5. The estimated option price C l
B(0, T ), on Sl(T ), with strike K at a time

0 prior to its maturity T using Curran’s conditioning arguments is given by

C l
B(0, T ) = e−rTE rSl(T )1{Gl(T ) ≥ K}s +Ke−rT

«

ˆ

Φ

ˆ

− 1

γ1
ln

ˆ

K

α1β1

˙˙˙d
ff

, (3.101)

where Sl(T ) is as defined is 3.79, α1 =
n∏
i=1

Si(0)
1
n , β1 = exp

«˜

r − 1

2

n∑
i=1

σ2
i

n

¸

T

ff

, γ1 =

1

n

n∑
i=1

d∑
j=1

σij.
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Proof. The price at a time 0 an option on Sl(T ) prior to the maturity T is given by

C l
B(0, T ) = e−rTE

“

pSl(T )−Kq
+

‰

, (3.102)

= e−rTE
”

E
”

pSl(T )−Kq
+

ˇ

ˇ

ˇ
Gl(T ) = y

ıı

, (3.103)

= e−rT
∫ K

0

E
”

pSl(T )−Kq
+

ˇ

ˇ

ˇ
Gl(T ) = y

ı

Q pGl(T ) ∈ dyq

+ e−rT
∫ ∞

K

E
”

pSl(T )−Kq
+

ˇ

ˇ

ˇ
Gl(T ) = y

ı

Q pGl(T ) ∈ dyq . (3.104)

We use the fact that∫ K

0

E
”

pSl(T )−Kq
+

ˇ

ˇ

ˇ
Gl(T ) = y

ı

Q pGl(T ) ∈ dyq ≈ 0. (3.105)

Substituting 3.105 in 3.104 to obtain,

C l
B(0, T ) = e−rT

∫ ∞

K

E
”

pSl(T )−Kq
+

ˇ

ˇ

ˇ
Gl(T ) = y

ı

Q pGl(T ) ∈ dyq (3.106)

= e−rT
∫ ∞

K

E
”

Sl(T )−K
ˇ

ˇ

ˇ
Gl(T ) = y

ı

Q pGl(T ) ∈ dyq (3.107)

= e−rTE rSl(T )1Gl(T ) ≥ Ks −Ke−rTQ pGl(T ) ≥ Kq (3.108)

= e−rTE rSl(T )1{Gl(T ) ≥ K}s +Ke−rT

«

ˆ

Φ

ˆ

− 1

γ1
ln

ˆ

K

α1β1

˙˙˙d
ff

(3.109)

Thus, we are able to obtain the required results.

Given the analytic intractibility of the bounds Sl(t) and Su(t) on the value of a basket at any

time t, we can impose integrability conditions on the the volatility parameters which will

allow for closed-form evaluation of options on these bounds. These integrability conditions
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leads to further bounds on the value of the basket given by

S̄l(t) =
n∑
i=1

Yi exp
´

md(t)σm

¯

≤ Sl(t) ≤ S(t) ≤ Su(t) ≤
n∑
i=1

Yi exp
´

Md(t)σM

¯

= S̄u(t),

(3.110)

where σ2
i =

d∑
j=1

σ2
ij, σM = max

1≤i≤n
σ∗
i and σm = min

1≤i≤n
σ∗
i .

In general, the processMd(t) can be replaced with the maximum of the running maximums or

the maximum of the minimum of the absolute value of a Brownian motion and its running

maximum of independent Brownian motions. These are themselves upper bounds on the

underlying Brownian motions and vice-versa to obtain different bounds on the value of the

basket and the option price. With these new upper and lower analytic bounds on the value

of the basket given by Su(t) and Sl(t) respectively, we are able to work out the density and

the corresponding distribution of these bounds.

Proposition 3.6.6. Given the lower bound S̄l(t) on the value of a basket S(t) at a time t,

its density and distribution is given by

Q
`

S̄l(t) ∈ dy
˘

=
1

y

1

σm
?
T
nϕ

˜

1

σm
?
T
ln

˜

y

ϑ

¸¸ «

1− Φ

˜

1

σm
?
T
ln

˜

y

ϑ

¸¸ffn−1

dy,

and

Q
`

S̄l(t) ≤ y
˘

= 1−

«

1− Φ

˜

1

σm
?
T
ln

˜

y

ϑ

¸¸ ffn

,

respectively, where ϑ =
n∑
i=1

ωiSi(0) exp
”

(r − 1

2
σ2
i )T

ı

.

Proposition 3.6.7. Given the upper bound S̄u(t) on the value of a basket Su(t), its density
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and distribution is given by

Q
`

S̄u(t) ∈ dy
˘

=
1

y

1

σM
?
T
nϕ

˜

1

σM
?
T
ln

˜

y

ϑ

¸¸ ˜

Φ

˜

1

σM
?
T
ln

˜

y

α

¸¸¸n−1

dy,

and

Q
`

S̄u(t) ≤ y
˘

=

˜

Φ

˜

1

σM
?
T
ln

˜

y

ϑ

¸¸¸n

,

respectively, where ϑ =
n∑
i=1

ωiSi(0) exp
”

(r − 1

2
σ2
i )T

ı

.

Proposition 3.6.8. Given a basket of assets, which has the bounds as specified in (3.110)

such a basket has the following bounds on the price of the basket option at a time 0 given by

Un
1 = ne−rT

n∑
i=1

Yi
?
T

∫ ∞

ξ

eσMyϕ

ˆ

y
?
T

˙ ˆ

Φ

ˆ

y
?
T

˙˙n−1

dy −Ke−rT
„

1−
ˆ

Φ

ˆ

ξ
?
T

˙˙nȷ

,

(3.111)

and

Ln1 = ne−rT

n∑
i=1

Yi
?
T

∫ ∞

τ

eσmyϕ

ˆ

y
?
T

˙ ˆ

1− Φ

ˆ

y
?
T

˙˙n−1

dy +Ke−rT
„

1− Φ

ˆ

τ
?
T

˙ȷn

,

(3.112)

where Yi = ωiSi(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

, ξ =
1

σM
ln

K∑n
i=1 Yi

and τ =
1

σm
ln

K∑n
i=1 Yi

.

Theoretically, a basket of assets can contain any number of assets in the basket and would

require an increasing number of maximum or minimum of Wiener processes. For a large

number of assets in the basket, it can be computationally challenging to work out the bounds

on the basket, and thereafter, the bounds on the basket option. For a large number of

assets, we can obtain overall bounds on the basket and its corresponding option price using
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proposition 2.3.4 and 2.3.5 and these bounds are independent of the number of assets in the

basket.

Corollary 3.6.1. The distributional bounds on the price of a basket option using the maximum

and minimum of Brownian motions is given by

U1 = e−rT

»

—

—

–

n∑
i=1

Yi
?
T

∫ ∞

ξ

eσMyϕ

ˆ

y
?
T

˙

Φ

ˆ

y
?
T

˙

dy − K

2

ˆ

1− Φ2

ˆ

ξ
?
T

˙˙

fi

ffi

ffi

fl

(3.113)

and

L1 = e−rT

»

—

—

–

n∑
i=1

Yi
?
T

∫ ∞

τ

eσmyϕ

ˆ

y
?
T

˙

Φ

ˆ

− y
?
T

˙

dy +
K

2
Φ2

ˆ

τ
?
T

˙

fi

ffi

ffi

fl

, (3.114)

independent of n, which follows from proposition 3.6.8.

Proposition 3.6.9. The upper U2 and lower L2 bounds on the basket of asset at time 0

given that the maximum of the running maximums and minimum of the running minimums

of n independent Wiener processes is given by

Un
2 =

n∑
i=1

Yi
2ne−rT

?
T

∫ ∞

ξ∗
1{y ≥ 0}eσMyϕ

ˆ

y
?
T

˙ ˆ

2Φ

ˆ

y
?
T

˙

− 1

˙n−1

dy

−Ke−rT
„

1−
ˆ

2Φ

ˆ

ξ∗
?
T

˙

− 1

˙nȷ

,

and

Ln2 =
n∑
i=1

Yi
2ne−rT

?
T

∫ ∞

τ∗
1{y ≤ 0}eσmyϕ

ˆ

y
?
T

˙ ˆ

1− 2Φ

ˆ

y
?
T

˙˙n−1

dy

+Ke−rT
ˆ

1− 2Φ

ˆ

y
?
T

˙˙n

,

respectively. Where Yi = ωiSi(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

, ξ∗ =
1

σM
ln

K∑n
i=1 Yi

and

τ ∗ =
1

σm
ln

K∑n
i=1 Yi

.
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Proposition 3.6.10. The upper U3 and lower L3 bounds on the basket of assets at time 0

given that the maximum of the running maximums of n independent Wiener processes by

Un
3 =

n∑
i=1

Yi
ne−rT
?
T

∫ ∞

ξ∗
1{y ≥ 0}

ˆ

Φ

ˆ

3y
?
t

˙

− Φ

ˆ

y
?
t

˙ ˙n−1 ˆ

ϕ

ˆ

3y
?
t

˙

− ϕ

ˆ

y
?
t

˙˙

dy

+Ke−rT
ˆ

Φ

ˆ

3ξ∗
?
T

˙

− Φ

ˆ

ξ∗
?
T

˙˙n

,

and

Ln3 =
n∑
i=1

Yi
ne−rT
?
T

∫ ∞

τ∗
1{y ≤ 0}

ˆ

Φ

ˆ

y
?
t

˙

− Φ

ˆ

3y
?
t

˙ ˙n−1 ˆ

ϕ

ˆ

y
?
t

˙

− ϕ

ˆ

3y
?
t

˙˙

dy

+Ke−rT
ˆ

Φ

ˆ

τ ∗
?
T

˙

− Φ

ˆ

3τ ∗
?
T

˙˙n

,

respectively. Where Yi = ωiSi(0) exp

„ˆ

r − 1

2
σ2
i

˙

T

ȷ

, ξ∗ =
1

σM
ln

K∑n
i=1 Yi

and

τ ∗ =
1

σm
ln

K∑n
i=1 Yi

.

All of these bounds can easily be evaluated in closed-form for n = 2, 3. For quick approximations

of the bounds, we can use numerical methods or other approximations for n > 3. It is easy

to see in the case of a single asset, that the natural bounds of any asset at a time t < T

is obtained by substituting the underlying Brownian motion for its running maximum to

get its upper bound or its running minimum to get its lower bound. We can also obtain

suitable estimates for the bounds by using suitable Taylor series expansion of the exponential

component of the integrand.

Alternatively, we can use N (y) ≤ 1 ∀y ∈ R to obtain reasonable simplifications of these

bounds.
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3.7 Summary

We have derived closed-form estimates for the price of a basket option in a Gaussian

framework and in a lognormal framework using first order Hermite polynomials. The

accuracy of the first order Hermite polynomial method in pricing basket option would depend

on the choice of order of Taylor series order estimates of ψ. However, we do not focus

solely on the accuracy of the estimates of this lognormal approach, but also on whether it

is a good control variate for obtaining efficient Monte Carlo estimates. For the Gaussian

approximation, we see that the accuracy reduces as the maturity of the option increases,

and is only valid for short maturity options and as a control variate for longer dated ones.

We also obtained several analytic bounds on the price of a basket option, namely the

direct and distributional bounds are obtained. The direct upper and lower bounds provides

tight bounds on basket option price which follow from the convexity of its payoff. The

distributional bounds are obtained by replacing the underlying in dependent Brownian

motions with their overall maximum (or minimum) to obtain bounds on the basket option

price. These bounds are estimated by either using (Curran’s) conditioning arguments or

imposing suitable integrability conditions on the volatility parameters of the underlying

assets in the basket.
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Chapter 4

Asian Options

4.1 Overview

In this chapter, we begin by studying the general dynamics of an Asian option by looking

at the behaviour of the underlying asset and thereafter the relevant equation governing the

price of an Asian option. We then obtain estimates and bounds on the price of an Asian

option. We estimate the price of an Asian option using first order Hermite polynomial, using

a similar approach to the one used in estimating the price of a basket option. While for the

bounds estimation we use the notion of distributional bounds to estimate the upper and

lower bounds on the price of an Asian option.

4.2 Asian Option Dynamics

Given a filtered probability space (Ω,F ,F(t),Q), where F is the sigma algebra, {F(t)}t≥0

is the filtration generated by one or more independent Brownian motions and Q is the risk-
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neutral measure. We assume that the asset price is adapted to the Brownian filtration {F(t)}

and follows a geometric Brownian motion model given by

dS(t) = rS(t)dt+ σS(t)dW (t), (4.1)

where {W (t): t ∈ [0, T ]} is a Brownian motion under the risk-neutral measure Q, r is the

lending/borrowing rate. The average value of an asset A(0, T ) over the time interval [0, T ]

is given by

A(0, T ) =
1

T

∫ T

0

S(u)du. (4.2)

Alternatively, A(0, T ) can be written in discrete form as

A(0, T ) =
1

M + 1

M∑
i=1

S

ˆ

i
T

m

˙

. (4.3)

This averaging feature is essentially what makes Asian option less prone to manipulation.

Also, Asian options are path-dependent unlike standard options which are markov. The

price of an Asian option at any time t, depends not only on the time t and its value S(t) at

time t but also the history of S(t) up to time t. If we define an {F(t)}-measurable process

Y (t) for 0 ≤ t ≤ T such that

Y (t) =

∫ t

0

S(u)du, (4.4)

which satisfies the following stochastic differential equation given by

dY (t) = S(t)dt. (4.5)

The pair S(t) and Y (t) form a 2-dimensional markov process, so that there exists some

function h(t, x, y) such that

h(t, S(t), Y (t)) = e−r(T−t)E
“

pA(0, T )−Kq
+

|F(t)
‰

, (4.6)
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for 0 ≤ t < T . Furthermore, the price of an Asian option at an earlier time t prior to its

maturity T is governed by the following partial differential equation which is given by

ht(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y) (4.7)

for x ≥ 0 and y ∈ R, subject to the following boundary conditions

h(t, 0, y) = e−r(T−t)
´ y

T
−K

¯+

, (4.8)

lim
y↓−∞

v(t, x, y) = 0, (4.9)

v(T, x, y) =
´ y

T
−K

¯+

(4.10)

for 0 ≤ t < T . This function h(t, S(t), Y (t)) can be estimated numerically. The price

CA(0, T ) of Asian call option at a time 0 which matures at a time T is given by

CA(0, T ) = e−rTE

«

ˆ

1

T

∫ T

0

S(u)du−K

˙+
ff

, (4.11)

where K is a non-negative strike K and its price CA(t, T ) at an earlier time t < T is given

by

CA(t, T ) = e−r(T−t)E

«

ˆ

1

T

∫ T

0

S(u)du−K

˙+ˇ

ˇ

ˇ

ˇ

F(t)

ff

. (4.12)

4.3 Closed-form Approximation Of Asian Options

Under the GBM framework, we can decompose the price of an asset S(t) into a deterministic

component and an exponential martingale which is lognormal, resulting in the lack of closed-

form solution of an Asian on the asset S(t). To overcome this, we can approximate the

77



exponential martingale as a polynomial or linear combination of Gaussian random variables,

which will allow us to price an Asian options within the Gaussian framework. In general,

given a Brownian exponential martingale Z(t), we can approximate the martingale Z(t)

using Hermite polynomials to obtain the identity given below,

exp

ˆ

θW (t)− 1

2
θ2t

˙

=

∞∑
n=0

θn

n!
hn(t,W (t)). (4.13)

where hn(t,W (t)) is the n-th order Hermite polynomial.

The first few Hermite polynomials are given by h0(t,W (t)) = 1, h1(t,W (t)) = W (t) and

h2(t,W (t)) = W 2(t) − t. Furthermore, for each n we observe that hn(t,W (t)) is a Q -

martingale. We can obtain a closed-form Gaussian approximation of A(0, T ) by using the

first order Hermite polynomial approximation for the exponential martingale identity in 4.13,

and then estimate the price A(0, T ) of the Asian option.

Proposition 4.3.1. The price of an Asian option has the approximation given by

CA(0, T ) ≈ e−rT
„

(X̄ −K)Φ

ˆ

X̄ −K

σX

˙

− σXϕ

ˆ

K − X̄

σX

˙ȷ

,

where X̄ =
S(0)

rT

´

erT − 1
¯

and σX =
σS(0)

rT

ˆ∫ T

0

(erT − ers)2ds

˙

1
2

, using the first order

Hermite polynomial approximation for average value of an asset over the interval [0, T ].
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Proof.

A(0, T ) =
S(0)

T

∫ T

0

eru exp

ˆ

σW (t)− 1

2
σ2t

˙

du, (4.14)

≈ S(0)

T

∫ T

0

eru p1 + σW (t)q du, (4.15)

≈ S(0)

T

∫ T

0

eru
„

1 + σ

∫ u

0

dW (s)

ȷ

du, (4.16)

=
S(0)

T

«∫ T

0

erudu+ σ

∫ T

0

∫ u

0

erudW (s)du

ff

. (4.17)

Re-arranging the double integral above we get,

A(0, T ) ≈ S(0)

T

„

erT − 1

r
+ σ

∫ T

0

∫ T

s

erududW (s)

ȷ

, (4.18)

=
S(0)

T

„

erT − 1

r
+
σ

r

∫ T

0

perT − ersqdW (s)

ȷ

, (4.19)

= A1
H(0, T ). (4.20)

This first order Hermite approximation of A(0, T ) which we dub A1
H(0, T ), is Gaussian

with mean
S(0)

rT
perT − 1q and its variance

σ2S2(0)

r2T 2

∫ T

0

perT − ersq2ds, obtained by a direct

application of the Wiener-Itô isometry. To obtain the approximate value of the Asian option,

we define a standard normal random variable z such that

z =

∫ T

0

`

erT − ers
˘

dW (s)

g

f

f

e

˜∫ T

0

perT − ersq2ds

¸

, (4.21)

and a random variable X given by

X = X̄ + σXz, (4.22)
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where X̄ and σX are the mean of A1
H(0, T ) and variance of A1

H(0, T ) respectively. We can

also define a critical value of z∗ such that,

z ≥ K − X̄

σX
= z∗. (4.23)

Using equations 4.21-4.23, the approximate price of an Asian option price is given by

CA(0, T ) = e−rTE
“

pA(0, T )−Kq
+

‰

, (4.24)

≈ e−rT
∫ ∞

z∗

`

X̄ + σXz −K
˘

ϕ(z)dz, (4.25)

= e−rT
„

(X̄ −K)Φ

ˆ

X̄ −K

σX

˙

− σXϕ

ˆ

K − X̄

σX

˙ȷ

. (4.26)

An alternative approach to estimating the price of an Asian option, is by using first order

Hermite polynomials method which we have previously used for pricing basket options, see

section 3.3.1. We can think of Asian options as continuously monitored basket options by

setting our ψ to be

ψ(u) = log

˜

1

T

∫ T

0

S(u)du

¸

, (4.27)

and the coefficients b0 and b1 are given by 3.22 and 3.25 such that

ψ(u) = b0 + b1u, (4.28)

where b0 is given as in 3.22 and b1 is as given as in 3.25. Similar to the basket option case,

we can estimate ψ using Taylor’s series expansion of u around 0. We can estimate the price

of the Asian option by

CA(0, T ) ≈ e−rTE
”

`

eψ(u) −K
˘+

ı

.
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whose solution is given by 3.33.

4.4 Bounds Estimation of Asian Option Price

Owing to the difficulty in pricing Asian options, numerous research has been carried out in

finding suitable bounds on its prices (as in the works done by Curran in [8], Rogers-Shi in

[35], Xu and Zhang in [39]). Trivially, we can find an upper bound an Asian option given by

pA(0, t)−Kq
+ ≤ A(0, t) ≤ A(0, t) +K, (4.29)

for some nonnegative strike K. In this section, we provide analytical bounds on the payoff

of Asian options using the properties of Brownian motion in the underlying asset, which

follows a geometric Brownian Motion (GBM) model. We shall later rely on some of these

bounds as control variates for the pricing of Asian options using Monte Carlo simulations.

4.4.1 Direct Bounds on Asian Options

In this approach, we obtain a not so direct upper and lower bounds on the price of an

Asian option using the unconditional and conditional version of the Jensen’s inequality on

the expected payoff of the Asian option price, which is due to the convexity of the payoff

function.

Proposition 4.4.1. The price CA(0, T ) of an Asian option is bounded above by CS(0, T )

which is the time average of options with different maturities over the interval [0, T ] and is

given by

1

T

∫ T

0

ˆ

S0N (d+)− e−rTKN (d−)

˙

du. (4.30)
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The price CA(0, T ) of an Asian option given by 4.11 has an upper bound given by

CA(0, T ) = e−rTE

»

–

˜

1

T

∫ T

0

ˆ

S(u)−K

˙

du

¸+
fi

fl (4.31)

≤ e−rT
1

T

∫ T

0

E
“

pS(u)−Kq
+

‰

du (4.32)

=
1

T

∫ T

0

ˆ

S0N (d+)− e−rTKN (d−)

˙

du (4.33)

where d± =
ln pS(0)eru/Kq ± 1

2
σ2u

σ
?
u

. This upper bound given by 4.33 which we shall call the

average upper bound (AUB), will be used later on.

Furthermore, this upper bound CS(0, T ) on the price of an Asian option is bounded above

by the price at a time 0 of a European call option on underlying asset S(t) is maturing at

time T with the same strike K. To see this,

CS(0, T ) = e−rT
1

T

∫ T

0

E
“

pS(u)−Kq
+

‰

du, (4.34)

= e−rT
1

T

∫ T

0

E
“

pe−r(T−u)E[S(T )|Fu]−Kq
+

‰

du, (4.35)

≤ e−rT
1

T

∫ T

0

E
“

pE[S(T )|Fu]−Kq
+

‰

du, (4.36)

= e−rT
1

T

∫ T

0

E
“

pE[S(T )−K|Fu]q
+

‰

du, (4.37)

≤ e−rT
1

T

∫ T

0

E
“

pS(T )−Kq
+

‰

du, (4.38)

= e−rTE
“

pS(T )−Kq
+

‰

. (4.39)

The result 4.39 is generally known and provided for completeness.

Proposition 4.4.2. The price of an Asian option is bounded below by CL(0, T ), which is
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given by

CL(0, T ) =

ˆ

S(0)

rT

`

1− e−rT
˘

−Ke−rT
˙+

, (4.40)

and is nontrivial provided that S(0) >
rTK

erT − 1
.

4.4.2 Distributional Bounds on Asian Options

Given the average value A(0, t) of the asset S(t) over the interval [0, t], we seek to derive an

upper bound on it using the distributional properties of the underlying noise process, and

eventually an upper bound on the price of an Asian option. We can find an upper bound

on A(0, t) which we call A′(0, t), using the properties of the Brownian motion W (t) over the

fixed interval [0, t].

Proposition 4.4.3. There is an upper bound A′(0, t) on A(0, t) given by

A′(0, t) = µ(t) exp pσM(t)q,

where µ(t) = S(0)

˜

exp
`

r − 1
2
σ2t

˘

− 1
`

r − 1
2
σ2

˘

t

¸

, M(t) = sup
0≤u≤t

W (u), and A′(0, t) is real-valued

provided r ̸= 1

2
σ2 and t > 0.
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Proof.

A(0, t) ≤ 1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

exp

ˆ

σ sup
0≤s≤u

W (s)

˙

du, (4.41)

=
1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

exp pσM(u)qdu, (4.42)

≤ 1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

exp pσM(t)qdu, (4.43)

= exp pσM(t)q
1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

du, (4.44)

= S(0) exp pσM(t)q

«

exp
`

r − 1
2
σ2

˘

t− 1
`

r − 1
2
σ2

˘

t

ff

. (4.45)

6 A(0, t) ≤ µ(t) exp pσM(t)q, (4.46)

= A′(0, t). (4.47)

Proposition 4.4.4. The upper bound A′(0, t) on the time average A(0, t) of the asset S(t)

has the following distribution and density given by

Q pA′(0, t) ≤ yq = 2Φ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

− 1, y > 0,

and

Q pA′(0, t) ∈ dyq = 1{y > µ(t)} 1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy,

respectively, provided σ > 0.

Similar to the distributional upper bound on the time-average value of an asset, we can also

obtain lower bounds on it, using the distributional properties of a Brownian motion.
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Proposition 4.4.5. Given the time-average of an asset A(0, t) over the interval [0, t], we

can obtain a lower bound A∗(0, t) on A(0, t) which is given by

A∗(0, t) = S(0)

˜

exp
`

r − 1
2
σ2

˘

t− 1
`

r − 1
2
σ2

˘

t

¸

exp pσm(t)q,

where m(t) = inf
0≤u≤t

W (u).

Proof.

A(0, t) ≥ 1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

exp

ˆ

σ inf
0≤s≤u

W (s)

˙

du, (4.48)

=
1

t

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

exp pσm(u)q du, (4.49)

≥ 1

t
exp pσm(t)q

∫ t

0

S(0) exp

„

pr − 1

2
σ2

qu

ȷ

du, (4.50)

= µ(t) exp pσm(t)q , (4.51)

= A∗(0, t), (4.52)

where µ(t) = S(0)

˜

exp
`

r − 1
2
σ2

˘

t− 1
`

r − 1
2
σ2

˘

t

¸

.

Proposition 4.4.6. The lower bound A∗(0, t) on the average asset price A(0, t) has the

following distribution and density given by

QpA∗(0, t) ≤ yq = 2N
ˆ

min

ˆ

0,
1

σ
ln

ˆ

y

µ(t)

˙˙˙

,

and

QpA∗(0, t) ∈ dyq = 1{y < µ(t)} 1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy.

Having looked at the the distributional bounds on the price of an Asian option, as well as

the density/distribution of these bounds. We then proceed to obtain the price of options on
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these bounds, which naturally will be bounds on the price of an Asian option, provided they

have the same nonnegative strike K. That is

A∗(0, t) ≤ A(0, t) ≤ Ã(0, t),

implies

CA∗(0, t) ≤ CA(0, t) ≤ CA′(0, t),

where CA∗(0, t) and CA′(0, t) are the the respective lower and upper bounds on the price of

an Asian option CA(0, t). We can work out these bounds on the price of an Asian option

since we know their densities.

Proposition 4.4.7. The distributional upper bound on the price of an Asian option is given

by

CA′(0, t) = 2e−rt
„

µ(t) exp

ˆ

1

2
σ2t

˙ˆ

1−N
´

(−σ
?
t) ∨ (υ − σ

?
t)

¯

˙

−K

ˆ

1−N p0 ∨ υq

˙ȷ

,

where υ =
1

σ
?
t
ln

ˆ

y

µ(t)

˙

.

Proof.

CA′(0, t) = e−rtE
”

pÃ(0, t)−Kq
+

ı

, (4.53)

= e−rt
∫ ∞

K∨µ(t)
py −Kq

1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy. (4.54)

We can decompose the above expression into I1 and I2 such that

I1 =

∫ ∞

K∨µ(t)
y
1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy, (4.55)
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and

I2 =

∫ ∞

K∨µ(t)
K

1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy. (4.56)

We can simplify I1 to obtain

I1 =

∫ ∞

K∨µ(t)

1

σ

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy (4.57)

Setting w =
1

σ
?
t
ln

ˆ

y

µ(t)

˙

, and taking its derivative with respect y, I1 becomes,

I1 =

∫ ∞

0∨υ

2

σ

1
?
t
σ

?
tµ(t) exp

´

wσ
?
t
¯

ϕ(w)dw, (4.58)

= 2µ(t) exp

ˆ

1

2
σ2t

˙

∫ ∞

0∨υ
ϕ

´

w − σ
?
t
¯

dw, (4.59)

= 2µ(t) exp

ˆ

1

2
σ2t

˙ „

1−N
ˆ

(−σ
?
t) ∨ (υ − σ

?
t)

˙ȷ

. (4.60)

To obtain I2,

I2 =

∫ ∞

K∨µ(t)
K

1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy, (4.61)

=
2K

σ

∫ ∞

K∨µ(t)

1

y

1
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy. (4.62)

Using w =
ln( 1

µ(t)
y)

σ
?
t

, and taking its derivative with respect to y I2 becomes,

I2 =
2K

σ

∫ ∞

0∨υ

1

y

1
?
t
ϕ(w)µ(t)σ

?
t exp(wσ

?
t)dy, (4.63)

= 2K

∫ ∞

0∨υ
ϕ(w)dw, (4.64)

= 2K r1−N p0 ∨ υqs . (4.65)
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Combining I1 and I2 and re-arranging them to obtain,

CA′(0, t) = 2e−rt
„

µ(t) exp

ˆ

1

2
σ2t

˙ „

1−N
ˆ

(−σ
?
t) ∨ (υ − σ

?
t)

˙ȷ

−K r1−N p0 ∨ υqs

ȷ

.

(4.66)

Proposition 4.4.8. The distributional lower bound on the price of an Asian option is given

by

CA∗(0, t) = e−rt
„

2µ(t) exp

ˆ

1

2
σ2T

˙ ˆ

N (µ(t)− σ
?
t)−N (K − σ

?
t)

˙

−K

ˆ

1− 2N (υ)

˙ȷ

,

where υ =
1

σ
?
t
ln

ˆ

y

µ(t)

˙

.

Proof.

CA∗(0, t) = e−rtEr pA∗(0, t)−Kq
+

s, (4.67)

= e−rt
∫ ∞

−∞
1{y > K}1{y < µ(t)}(y −K)

1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy,

= e−rt
∫ ∞

−∞
1{K < y < µ(t)}(y −K)

1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy, (4.68)

= e−rt
∫ µ(t)

K

(y −K)
1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy. (4.69)

Decomposing the above expression for the lower bound on A(0, t) to I3 and I4 such that,

I3 =

∫ µ(t)

K

y
1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy, (4.70)

and

I4 =

∫ µ(t)

K

K
1

σy

2
?
t
ϕ

ˆ

1

σ
?
t
ln

ˆ

y

µ(t)

˙˙

dy. (4.71)
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Using w =
1

σ
?
t
ln

ˆ

y

µ(t)

˙

, and taking its derivative with respect to y, I3 is simplified to

obtain,

I3 = 2µ(t)

∫ 0

υ

exp

ˆ

1

2
σ2t

˙

ϕ(w − σ
?
t)dw. (4.72)

Setting ξ = w − σ
?
t and dξ = dw, I4 is simpified to obtain

I4 = 2K

ˆ

1

2
−N (υ)

˙

. (4.73)

Combining I3 and I4 and re-arranging them the required result follows.

Given the respective lower and upper bounds, A∗(0, t) and A
′(0, t) on A(0, t) using the overall

running maximum or minimum of a Brownian motion, we can also find more conservative

bounds using the distributional properties of a Brownian motion satisfying the following

inequality

A∗(0, t) ≤ Ā(0, t) ≤ A(0, t) ≤ Ã(0, t) ≤ A′(0, t), (4.74)

such that

Ã(0, t) =
1

t

∫ t

0

S̃(u)du, (4.75)

and

Ā(0, t) =
1

t

∫ t

0

S̄(u)du, (4.76)

where S̃(u) = S(0) exp
“`

r − 1
2
σ2

˘

u
‰

exp pσM(u)q and S̄(u) = S(0) exp
“`

r − 1
2
σ2

˘

u
‰

exp pσm(u)q.

These bounds Ã and Ā in 4.75 and 4.76 respectively are tighter, making them more ideal as

suitable bounds and could potentially lead to better closed-form bounds on the price of an

Asian option.
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We begin by defining an {F(t)}-adapted processes S̃(t) and S̄(t) which we dub the fictitious

assets which have the following representations

S̃(t) = S(0) exp

„ˆ

r − 1

2
σ2

˙

t

ȷ

exp pσM(t)q , (4.77)

and

S̄(t) = S(0) exp

„ˆ

r − 1

2
σ2

˙

t

ȷ

exp pσm(t)q . (4.78)

Proposition 4.4.9. Given the representations of S̃(t) and S̄(t) in 4.77 and 4.78. S̃(t) and

S̄(t) have the following stochastic dynamics

dS̃(t)

S̃(t)
=

ˆ

r +
1

2
σ2

p1{W (t) > M(t)} − 1q

˙

dt+ σ1{W (t) > M(t)}dW (t) +
1

2
σdLMt ,

(4.79)

and

dS̄(t)

S̄(t)
=

ˆ

r +
1

2
σ2

p1{W (t) < m(t)} − 1q

˙

dt+ σ1{W (t) < m(t)}dW (t) +
1

2
σdLmt , (4.80)

respectively.

Proof. By a direct application of Itô’s lemma to 4.77 and 4.78 the required result follows.

We can observe trivially that Q
´

S̄(t) ≤ S(t) ≤ S̃(t)
¯

= 1, and the resulting fictitious Asian

options from each of our fictitious assets is a bound on the actual Asian option price for the

same strike K.

So evaluating the price of a fictitious Asian option CÃ(0, t) with the same strike K as an

Asian option in 4.11, will always yield an upper bound on the price of an Asian option and

vice-versa. The price of such a fictitious Asian option at a time 0, maturing at T is given by

CÃ(0, T ) = e−rTE
„

´

Ã(0, T )−K
¯+

ȷ

. (4.81)
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However, estimating CÃ(0, T ) leaves us with a problem of a similar type to finding a closed-

form solution of an Asian option CA(0, T ). This is because, despite knowing the distribution

of M(t), the distribution of

∫
eσM(t)dt is largely unknown for some σ > 0. To overcome this,

we use Jensen’s inequality to define a geometric lower bound G̃(0, T ) on Ã(0, T ) which is

given by

G̃(0, T ) = exp

˜

1

T

∫ T

0

ln S̃(u)du

¸

, (4.82)

or

G̃n(0, T ) =

˜

n−1∏
i=0

S(ti)

¸
1
n

, (4.83)

where S(ti) = S(0) exp
“

(r − 1
2
σ2)ti + σM(ti)

‰

and satisfies the following relation

G̃(0, T ) ≤ Ã(0, T ). (4.84)

Proposition 4.4.10. The estimated price of a fictitious Asian option CÃ(0, T ) at a time 0,

maturing at time T is given by the following

CÃ(0, T ) ≈ e−rT
α1

2π

∫ ∞

ς∗
S(t0)e

y

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn)
n∏
k=1

q ptk − tk−1, zk − zk−1q

× dzkdpdy −Ke−rT
1

2π

∫ ∞

ς∗

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn)

×
n∏
k=1

q ptk − tk−1, zk − zk−1q dzkdpdy, (4.85)

where α1 = S(0) exp

˜

`

r − 1
2
σ2

˘

∑n−1
k=1 tk
n

¸

, β =
σ

n
, and ς∗ =

1

β
ln

ˆ

K

α1S(t0)

˙

.
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Proof. By definition,

G̃n(0, T ) = S(t0)

˜

exp

«

(r − 1

2
σ2)

∑n−1
k=0 tk
n

ff¸
1
n

exp

¨

˝

σ

n

n−1∑
k=0

(M(tk+1)−M(tk))

˛

‚,

= α1S(t0) exp

¨

˝

n−1∑
k=0

ckM(tk)

˛

‚, (4.86)

where c0 = 1− n, ck = 1 for 1 ≤ k ≤ n− 1 and α1 and β are as defined above.

The price of the option on the geometric average G̃(0, T ) is given by

CG̃(0, T ) = E

»

–

¨

˝α1S(t0) exp

¨

˝

n−1∑
k=0

ckM(tk)

˛

‚−K

˛

‚

+fi

fl . (4.87)

Using the density of
n−1∑
k=0

ckM(tk) we have derived in 2.83, we are able to obtain the required

result.

In general, it is not particularly clear if the estimate CG̃(0, T ) for the price of the fictitious

Asian option CÃ(0, T ) is really an upper bound on the price of an Asian option.

Corollary 4.4.1. A sufficient condition for the estimate CG̃(0, T ) of the price of the fictitious

Asian option CÃ(0, T ) to be an upper bound on the price of an Asian option is

1 + ln

˜

S̃(T )

G̃(0, T )

¸

≥ S(T )

A(0, T )
. (4.88)

Proof. To prove this, we begin by assuming that CG̃(0, T ) ≥ CA(0, T ). This implies that for

any time 0 ≤ t ≤ T ,

G̃(0, t) ≥ A(0, t), (4.89)

for any nonnegative strike K. By taking logs of the above inequality and then taking its
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derivative with respect to t, we obtain

−1

t

∫ t

0

ln S̃(u)du+ ln S̃(t) ≥ −A(0, t) + S(t)

A(0, t)
, (4.90)

= −1 +
S(t)

A(0, t)
. (4.91)

Making further simplifications we can rewrite the above expression as

− ln

„

exp

ˆ

1

t

∫ t

0

ln S̃(u)du

˙ȷ

+ ln S̃(t) ≥ −1 +
S(t)

A(0, t)
, (4.92)

which then becomes,

− ln G̃(0, t) + ln S̃(t) ≥ −1 +
S(t)

A(0, t)
. (4.93)

We thus obtain

ln S̃(t)− ln G̃(0, t) ≥ −1 +
S(t)

A(0, t)
, (4.94)

which gives us the required result.

Alternatively, we can derive the upper bound on the price of an Asian option using similar

conditioning arguments as done by Curran in [8], to obtain the price of an Asian option.

We can achieve this, by conditioning the price of a fictitious Asian option CÃ(0, t) on the

geometric mean G̃(0, t) of Ã(0, t).

Proposition 4.4.11. The price at a time 0 of the fictitious Asian option CÃ(0, T ), maturing

at time T with a nonnegative strike K using conditioning arguments on its geometric mean

G̃(0, T ) is given by

CÃ(0, T ) = e−rTE
”

Ã(0, T )1{G̃(0, T ) ≥ K}
ı

−Ke−rT
1

2π

∫ ∞

Υ∗

∫ ∞

−∞

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn−y)

×
n∏
k=1

q ptk − tk−1, zk − zk−1q dzkdpdy,
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where Υ = ln

ˆ

K

α1S(t0)

˙

and α1 is as defined in proposition 4.4.10.

Proof.

CÃ(0, T ) = e−rTE
„

´

Ã(0, T )−K
¯+

ȷ

, (4.95)

= e−rTE
„

E
„

´

Ã(0, T )−K
¯+ ˇ

ˇ

ˇ
G̃(0, T ) = z

ȷȷ

, (4.96)

= e−rT
∫ K

0

E
„

´

Ã(0, T )−K
¯+ ˇ

ˇ

ˇ
G̃(0, T ) = z

ȷ

Q
´

G̃(0, T ) ∈ dz
¯

+ e−rT
∫ ∞

K

E
„

´

Ã(0, T )−K
¯+ ˇ

ˇ

ˇ
G̃(0, T ) = z

ȷ

Q
´

G̃(0, T ) ∈ dz
¯

. (4.97)

We set I1 to become

I1 = e−rT
∫ K

0

E
„

´

Ã(0, T )−K
¯+ ˇ

ˇ

ˇ
G̃(0, T ) = z

ȷ

Q
´

G̃(0, T ) ∈ dz
¯

. (4.98)

We can estimate I1 using its geometric mean G̃(0, T ) and thus, yielding that I1 = 0.

We set I2 to become,

I2 = e−rT
∫ ∞

K

E
„

´

Ã(0, T )−K
¯+ ˇ

ˇ

ˇ
G̃(0, T ) = z

ȷ

Q
´

G̃(0, T ) ∈ dz
¯

. (4.99)

Given G̃(0, T ) ≥ K, we can drop the max function so that I2 becomes,

I2 = e−rT
∫ ∞

K

E
”´

Ã(0, T )−K
¯

ˇ

ˇ

ˇ
G̃(0, T ) = z

ı

Q
´

G̃(0, T ) ∈ dz
¯

, (4.100)

= e−rTE
”

Ã(0, T )1{G̃(0, T ) ≥ K}
ı

−Ke−rTQ
´

G̃(0, T ) ≥ K
¯

. (4.101)

To complete the proof we need to show that

Q
´

G̃(0, T ) ≥ K
¯

=
1

2π

∫ ∞

Υ∗

∫ ∞

−∞

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn−y)

×
n∏
k=1

q ptk − tk−1, zk − zk−1q dzkdpdy.
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Therefore,

Q
´

G̃(0, T ) ≥ K
¯

= Q

¨

˝

n−1∑
k=0

ckM(tk) ≥ ln

ˆ

K

α1S(t0)

˙

˛

‚ (4.102)

=
1

2π

∫ ∞

Υ∗

∫ ∞

−∞

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn−y)

×
n∏
k=1

q ptk − tk−1, zk − zk−1q dzkdpdy. (4.103)

Substituting the expression for Q
´

G̃(0, T ) ≥ K
¯

into I2, we are able to obtain the required

result.

Similar to the conservative upper bound Ã(0, t) on the average value of an asset over the

interval [0, t], we can construct conservative lower bounds by assuming the existence of a

fictitious asset S̄(t) whose value at any time t is given by

S̄(u) = S(0) exp

„ˆ

r − 1

2
σ2

˙

u

ȷ

exp pσm(u)q , (4.104)

where m(t) = inf
0≤s≤t

W(s). The time-average of the fictitious asset {S̄(u)}0≤u≤t over the

interval [0, t] is given by

Ā(0, t) =
1

t

∫ t

0

S̄(u)du. (4.105)

Furthermore, Ā(0, t) satisfies the following inequality

A∗(0, t) ≤ Ā(0, t) ≤ A(0, t), (4.106)

which leads to tighter and possibly closed-form bounds on A(0, t) than A∗(0, t). The price at

a time 0 of the fictitious Asian option whose underlying is the time-average of S̄(t), maturing
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at a time T is given by

CĀ(0, T ) = e−rTE
”

`

Ā(0, T )−K
˘+

ı

, (4.107)

where K is the nonnegative strike price. Just as with the case of the fictitious Asian upper

bound, we find that estimating 4.107 is difficult because the distribution of Ā is generally

unknown. To this effect, we can estimate its price using the geometric lower bound Ḡ(0, T )

on Ā(0, T ) and this is given by the following approximation

Ḡn(0, T ) =

¨

˝

n−1∏
k=0

S̄(tk)

˛

‚

1
n

, (4.108)

where S̄(tk) = S(t0) exp pσm(tk)q exp
`

(r − 1
2
σ2)tk

˘

for 1 ≤ k ≤ n.

This is useful because knowing the distribution of the underlying S̄(t) is sufficient to estimate

the distribution of Ḡ(0, T ). With this approximation in mind, we can then proceed to work

out the price of the fictitious Asian option whose underlying is S̄(t).

Proposition 4.4.12. The estimated price of a fictitious Asian option CĀ(0, T ) at a time 0,

maturing at time T is given by the following

CĀ(0, T ) ≈ e−rT
α1

2π

∫ ∞

ς∗
S(t0)e

y

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn)
n∏
k=1

q′ ptk − tk−1, zk − zk−1q

× dzkdpdy −Ke−rT
1

2π

∫ ∞

ς∗

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn)

×
n∏
k=1

q′ ptk − tk−1, zk − zk−1q dzkdpdy,

where α1 = S(0) exp

˜

`

r − 1
2
σ2

˘

∑n−1
k=1 tk
n

¸

, β =
σ

n
, and ς∗ =

1

β
ln

ˆ

K

α1S(t0)

˙

.
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Proof. We can the rewrite CḠ(0, T ) as

CḠ(0, T ) = e−rT
∫ ∞

K

`

Ḡn(0, T )−K
˘

Q
`

Ḡn(0, T ) ∈ dy
˘

, (4.109)

= e−rT
∫ ∞

K

¨

˝

˜

n−1∏
k=0

S̄(tk)

¸
1
n

−K

˛

‚Q
`

Ḡn(0, T ) ∈ dy
˘

, (4.110)

= e−rT
∫ ∞

ς∗

¨

˝α1S(t0) exp

¨

˝

n−1∑
k=0

ckm(tk)

˛

‚−K

˛

‚

× 1

2π

∫ ∞

ς∗

∫ ∞

−∞
e−ipy

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn)

×
n∏
k=1

q′ ptk − tk−1, zk − zk−1q dzkdpdy, (4.111)

where c0 = 1− n, ck = 1 for 1 ≤ k ≤ n− 1 and α1 and β are as defined above.

We can also derive a lower bound on the price of an Asian option using similar conditioning

arguments as previously carried out for fictitious upper bound CÃ(0, T ). We can achieve

this by conditioning the price of average value Ā(0, T ) of the fictitious asset on its geometric

mean Ḡ(0, T ).

Proposition 4.4.13. The price at a time 0 of the fictitious Asian option on S̄(t) maturing

at time T with a nonnegative strike K conditioned on its geometric mean is given by

CĀ(0, T ) = e−rTE
“

Ā(0, T )1{Ḡ(0, T ) ≥ K}
‰

−Ke−rT
1

2π

∫ ∞

Υ

∫ ∞

−∞

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn−y)

×
n∏
k=1

q′ ptk − tk−1, zk − zk−1q dzkdpdy,

where Υ = ln

ˆ

K

α1S(t0)

˙

.
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Proof.

CĀ(0, T ) = e−rTE
”

`

Ā(0, T )−K
˘+

ı

, (4.112)

= e−rTE
”

E
”

`

Ā(0, T )−K
˘+

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ıı

, (4.113)

= e−rT
∫ K

0

E
”

`

Ā(0, T )−K
˘+

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ı

Q
`

Ḡ(0, T ) ∈ dz
˘

+ e−rT
∫ ∞

K

E
”

`

Ā(0, T )−K
˘+

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ı

Q
`

Ḡ(0, T ) ∈ dz
˘

. (4.114)

We set I1 to become

I1 = e−rT
∫ K

0

E
”

`

Ā(0, T )−K
˘+

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ı

Q
`

Ḡ(0, T ) ∈ dz
˘

. (4.115)

We can estimate I1 using its geometric mean Ḡ(0, T ) and I1 = 0.

We set I2 to become,

I2 = e−rT
∫ ∞

K

E
”

`

Ā(0, T )−K
˘+

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ı

Q
`

Ḡ(0, T ) ∈ dz
˘

. (4.116)

Given G̃(0, T ) ≥ K, we can drop the max function so that I2 becomes,

I2 = e−rT
∫ ∞

K

E
”

`

Ā(0, T )−K
˘

ˇ

ˇ

ˇ
Ḡ(0, T ) = z

ı

Q
`

Ḡ(0, T ) ∈ dz
˘

, (4.117)

= e−rTE
“

Ā(0, T )1{Ḡ(0, T ) ≥ K}
‰

−Ke−rTQ
`

Ḡ(0, T ) ≥ K
˘

. (4.118)

Finally,

Q
`

Ḡ(0, T ) ≥ K
˘

= Q

¨

˝

n−1∑
k=0

ckm(tk) ≥ ln

ˆ

K

α1S(t0)

˙

˛

‚, (4.119)

=
1

2π

∫ ∞

Υ

∫ ∞

−∞

∫ ∞

zn−1

...

∫ ∞

0

eip(z1+z2+...+zn−y)

×
n∏
k=1

q′ ptk − tk−1, zk − zk−1q dzkdpdy. (4.120)

Using this we achieve the required results.
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4.5 Summary

In this chapter, we obtained closed-form distributional bounds CA′ and CA∗ on the price of

Asian option. These bounds are obtained by using the overall minimum and maximum value

attained by the Brownian motion over a finite interval. Furthermore, these bounds can be

improved by simply replacing the Brownian motion with the running minimum or maximum

of a Brownian motion and these bounds can then be estimated in closed-form using their

geometric averages. These bounds allow us to determine whether the Asian option will expire

in or out-of-the-money. For example, if the upper bound expires out-of-the-money, then the

Asian option will certainly expire out-of-the-money. Also, if the lower bound expires in-the-

money, then the Asian option will expire in-the-money.

In the next chapter, we use some of our estimates and bounds on the price of an Asian option

as control variates to obtain efficient Asian option prices.
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Chapter 5

Control Variates For Basket and

Asian Options

5.1 Overview

Monte Carlo methods remains the most accurate way of pricing basket options, but is

inefficient due to the high variance of its estimates. In this chapter, our motivation is

to develop a computational scheme for the efficient pricing of basket options using control

variates. We begin by observing the computational scheme involved in the Monte Carlo

approach for pricing basket and Asian options and the general theory behind control variates

analysis. Finally, we present our computational schemes for the pricing of basket option using

our control variates for variance reduction purposes to obtain efficient Monte Carlo estimates.
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5.2 Monte Carlo Approach For Pricing Basket Options

Basket options are difficult to price because the weighted sum of the assets in the basket has

no known distribution. Monte Carlo simulations are the most accurate way to price basket

options. Consider a basket of assets, which follow a GBM model as in 3.2 subject to the

aforementioned weighting constraints. Consider a basket option with n underlying assets in

the basket, a strike K and the underlying follows a GBM model. To price the basket option,

we use the following computational scheme.

Despite the high accuracy of the Monte Carlo approach, this method has the main drawbacks

of being computationally intensive and high variance of its estimates. To overcome this,

variance reduction techniques such as importance sampling, antithetic and control variates

are employed, to provide efficient Monte Carlo estimates.

In the next section, we will review the general method of control variates in reducing variance

of Monte Carlo estimates to produce efficient estimates of the price of a basket option.

5.3 Control Variate Algorithms For Basket Options

In this section, we look at the control variates we shall be using for pricing basket call option

and specify their numerical schemes for their implementation as a control variate.
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Algorithm 1: Monte Carlo simulation of basket option price

n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T )

Set A
(k)
P (0) = e−rT max

`

S(k)(T )−K, 0
˘

Set ÂP (0) =
1

N

N∑
k=1

A
(k)
P (0)
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5.3.1 Geometric Lower Bound As a Control Variate For Basket

Option Price

The value of a basket of assets is bound below by its Geometric mean, which can be written

as

G(T ) =
n∏
i=1

(Si(T ))
ωi ≤

n∑
i=1

ωiSi(T ) = S(T ). (5.1)

Gentle [13] proposed the use of the geometric mean of the value of the basket to approximate

the basket option price. Also, such an approximate solution was possible in closed-form

because the geometric mean of lognormal random variables is itself lognormal and thus has

a known distribution. The approximate price ĈG(0, T,K) of the basket option using the

geometric mean is given by

ĈG(0, T,K) = Θλ exp

ˆ

1

2
v

˙

Φ

˜

v − ln p K
Θλ

q
?
v

¸

−KΦ

˜

− ln p K
Θλ

q
?
v

¸

, (5.2)

where Θ =
∏n

i=1 pSi(0)q
ωi , v = V ar(lnΘ), λ =

∑n
i=1 ωi

`

r − 1
2
σ2
i

˘

T and K is the strike price.

We can use the payoff ĈG(0, T,K) as a control variate to obtain an efficient estimate of the

price of the basket option price. We specify the estimator CG as

GCV = e−rT rAP − (GP − CG)s , (5.3)

where GCV is the Geometric control variate estimator, AP =
∑

i ωi pSi(T )−Kq
+ and

GP = p
∏

i(Si(T ))
ωi −Kq

+.
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Algorithm 2: Monte Carlo Simulation of Basket Option Price Using Geometric

lower bound as control variate
n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

λG: Control variate parameter

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T )

Set C(k)(0) = e−rT max
`

S(k)(T )−K, 0
˘

Set G(k)(0) = max
´∏n

i=1 S
(k)
i (T )ωi −K, 0

¯

Calculate C(0) =
1

N

N∑
k=1

C(k)(0) and set λG =
Cov(G(k)(0), A

(k)
P (0))

Var(G)

Set G
(k)
CV = A

(k)
P (0)− λG

´

G− Ĉ
(k)
G

¯

and calculate GCV =
1

N
G

(k)
CV
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5.3.2 Direct Upper Bound As a Control Variate For Basket Option

Price

We specify the upper bound control variate UCV as

UCV = e−rT

«

AP −

˜

UB −
n∑
i=1

ωiĈi

¸ff

(5.4)

where Ĉi = pSi(T )−Kq
+ is the random payout of an option on the underlying asset i and

UB =
N∑
i=1

E pSi(T )−Kq
+.

5.3.3 First Order Hermite Polynomial As a Control Variate For

Basket Option Price

First of all, we estimate the parameters b̂0 and b̂1 of the first order Hermite polynomial. We

can then work out the closed-form lognormal approximation H0 of the payoff of the basket

option. We specify the Hermite polynomial Control variate HCV as

HCV = e−rT rAP − pHP − CHqs , (5.5)

where CH is the closed-form Hermite approximation of a basket in 3.33, andH
(k)
P =

´

exp pb0+∑d
j=1 bju

(k)
j q −K

¯+

and u
(i)
j ∼ N (0, 1) ∀j.
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Algorithm 3: Monte Carlo Simulation of Basket Option Price Using Direct Upper

Bound As a Control Variate
n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

λU : Control variate parameter for the direct upper bound

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T ) and Ĉ(k)(0) =

n∑
i=1

ωimax
`

S(k)(T )−K, 0
˘

Set λU =
Cov(A

(k)
P (0), Ĉ(k)(0))

Var(Ĉ(k)(0))
and U

(k)
CV = e−rT

”

A
(k)
P (0)− λU

´

UB − Ĉ(k)(0)
¯ı

Calculate UCV =
1

N
U

(k)
CV
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Algorithm 4: Monte Carlo Simulation of Basket Option Price Using First order

Hermite polynomial as control variate

n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

λH : Control variate parameter for the Hermite polynomial approximation

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T ) and A

(k)
P (0) = max

`

S(k)(T )−K, 0
˘

Set λH =
Cov(C(0), HP (0))

Var(HP (0))
and set H

(k)
P as defined above

Set H
(k)
CV = e−rT

”

A
(k)
P (0)− λH

´

CH −H
(k)
P

¯ı

Calculate HCV =
1

N
H

(k)
CV
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5.3.4 Maximum of a Brownian Motion As a Control Variate For

Basket Option Price

For the purpose of the maximum of Brownian motion control variate estimate, we replace

Un
1 with U1, which is given by

xU1 ≈ e−rT

»

–

N∑
i=1

Yi exp

ˆ

1

2
σ2
MT

˙

Φ

ˆ

σMT − ξ
?
T

˙

− K

2

ˆ

1− Φ2

ˆ

ξ
?
T

˙˙

fi

fl (5.6)

where we have approximated U1 by using the fact that N (y) ≤ 1, for any y ∈ R. We specify

the maximum of Brownian motion control variate estimator by

UBMCV = e−rT
”

AP − λUBM

´

xU1 − U
(i)
1

¯ı

(5.7)

where xU1 is as defined in (5.6) and λUBM =
cov(AP , U1)

var(U1)
.

5.3.5 Minimum of a Brownian Motion Distributional Bounds As

a Control Variate

Similar to case of the maximum of a Brownian motion as a control variate, we approximate

the distributional lower bound Ln1 in 3.112 with xL1 which is given by

xL1 ≈ e−rT

»

–

N∑
i=1

Yi exp

ˆ

1

2
σ2
mT

˙

Φ

ˆ

σmT − τ
?
T

˙

+
K

2

ˆ

1− Φ2

ˆ

ξ
?
T

˙˙

fi

fl . (5.8)

We specify the control variate for the distributional lower bound using the minimum of a

Brownian motion as

LBMCV = e−rT
”

AP − λLBMpxL1 − L
(i)
1 q

ı

(5.9)

where λLBM =
cov(AP , L1)

var(L1)
.
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Algorithm 5: Monte Carlo Simulation of Basket Option Price Using Maximum

of Brownian motion as control variate
n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

λUBM : Control variate parameter for the distributional upper bound

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S
∗(k)
i (T ) = Si(0) exp

``

r − 1
2
σ2

˘

T + σM |Zij|
?
T

˘

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T ) and A

(k)
P (0) = max

`

S(k)(T )−K, 0
˘

Set σM = max
∑d

j=1 σij

Set U
(k)
1 (0) = max

´∑n
i=1 ωiS

(k)
i (T )−K, 0

¯

and λUBM =
Cov(AP (0), U1(0))

Var(U1)

Set UBM
(k)
CV = e−rT

”

A
(k)
P (0)− λUBM

´

Û1 − U
(k)
1 (0)

¯ı

Calculate UBMCV =
1

N
UBM

(k)
CV
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Algorithm 6: Monte Carlo Simulation of Basket Option Price Using Minimum of

Brownian motion As a Control Variate
n: Number of assets in the basket

N : Number of Monte Carlo simulations

d: Number of independent Brownian motions

σi: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

S
(k)
i (T ): Simulation k of the asset i at time T , for i = 1, ..., n and k = 1, ..., N

ωk: Weighting of asset i

λLBM : Control variate parameter for the distributional lower bound

for k = 1, ..., N

for i = 1, ..., n

for j = 1, ..., d

Generate Zij ∼ N (0, 1), ∀i, j

Set S
(k)
i (T ) = Si(0) exp

˜

`

r − 1
2
σ2

˘

T +
d∑
j=1

σijZij
?
T

¸

Set S ′(k)
i (T ) = Si(0) exp

``

r − 1
2
σ2

˘

T − σM |Zij|
?
T

˘

Set S(k)(T ) =
n∑
i=1

ωiS
(k)
i (T ) and A

(k)
P (0) = max

`

S(k)(T )−K, 0
˘

Set L
(k)
1 (0) = max

´∑n
i=1 ωiS

(k)
i (T )−K, 0

¯

σm = min
∑d

j=1 σij and λLBM =
Cov(AP (0), L1(0))

Var(L1(0))

Set LBM
(k)
CV = e−rT

”

A
(k)
P (0)− λLBM

´

L̂1 − L
(k)
1 (0)

¯ı

Calculate LBMCV =
1

N
LBM

(k)
CV
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5.4 Monte Carlo Approach For Pricing Asian Options

Given that Asian options are difficult to price analytically because they do not follow any

known distribution, Monte Carlo approach remains the most accurate way of pricing them.

In this section, we develop computational schemes for achieving efficient Asian option prices

using control variates.

Algorithm 7: Monte Carlo Simulation of Asian Option Price

S(0): Initial value of the asset

M : Number of partitions of the time interval [0, T ]

N : Number of Monte Carlo simulations

σ: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

Si(tj): Simulation i of the asset at time tj, for i = 1, ..., N and j = 1, ...,M

∆: partition size tj − tj−1

Ai(T ): Average of the asset S(t) over the interval [0, T ] for simulation i

for i = 1, ...N

for j = 1, ...,M

Generate Zij ∼ N (0, 1)

Si(tj) = S(tj−1) exp
``

r − 1
2
σ2

˘

tj + σZij
?
∆

˘

Set Ai(T ) =
M∑
j=0

S(tj)

M + 1

Calculate A(T ) = e−rT
1

N

∑N
i=1Ai(T )
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The Monte Carlo approach despite being accurate is undesirable, which is due to high

variance of the Monte Carlo estimates. In the next section we look at numerical schemes for

computing efficient prices of an Asian option using control variates.

5.5 Control Variates For Pricing Asian Options

We present our choice of control variates which we will employ for variance reduction purposes

of the Monte Carlo estimates. These control variates are the geometric lower bound, average

upper bound and the distributional lower and upper bounds.

5.5.1 Geometric Lower Bound As a Control Variate

In general, the geometric average of a sequence is less than or equal to its arithmetic average.

This principle also applies to Asian options. This approach was first used by [20], noting that

though it gives a lower bound on the price of an Asian option but the value is close enough

to be an approximation on it. Using G(0, T ) to denote the geometric average continuously

sampled over the interval [0, T ] satisfying,

G(0, T ) ≤ A(0, T ), (5.10)

where A(0, T ) is as previously defined. We define G(0, T ) as

G(0, T ) = exp

«

1

T

∫ T

0

lnS(t)dt

ff

(5.11)
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. To see that G(0, T ) is lognormal, we see that∫ T

0

lnS(t)dt = (lnS(0))T +
1

2

ˆ

r − 1

2
σ2

˙

T 2 + σ

∫ T

0

W (t)dt, (5.12)

= (lnS(0))T +
1

2

ˆ

r − 1

2
σ2

˙

T 2 + σ

∫ T

0

(T − u)dW (u). (5.13)

G(0, T ) is lognormal and the price CG(0, T ) of an option on G(0, T ) at a time 0 is given by,

CG(0, T ) = e−rTE
“

pG(0, T )−Kq
+

‰

, (5.14)

= e−rT
∫
G(0,T )≥K

(GT −K)
1

b

2
3
πσ2T

exp−1

2

3y2

σ2T
dy, (5.15)

= e−rT
∫ ∞

y∗

ˆ

exp p lnS0 +

ˆ

r − 1

2
σ2

˙

T + yq −K

˙

× 1
b

2
3
πσ2T

exp−1

2

3y2

σ2T
dy, (5.16)

= S(0) exp r(b− r)T sΦ(d1)−Ke−rTΦ(d2). (5.17)

where y∗ = ln

ˆ

K

S(0)

˙

− 1

2

ˆ

r − 1

2
σ2

˙

T , d1 =
ln(S(0)/K) + (b+ 1

2
σ2
G)T

σG
?
T

, d2 = d1 − σG
?
T ,

σG =
σ

?
3
and b =

1

2

`

r − 1
2
σ2
G

˘

. This proof is available in books and is shown merely for

completeness.

The numerical scheme for the geometric lower bound as a control variate is as follows:

5.5.2 Average Upper Bound As a Control Variate

Direct upper bound method allows us to use the fact that we can bound the Asian option

price above using the price of a standard call option on the Asian options underlying with

the same strike. The numerical scheme for the direct upper bound as a control variate is as

outlined in algorithm 9.
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Algorithm 8: Monte Carlo Simulation of Asian Option Using Geometric Lower

Bound as a Control Variate.
S(0): Initial value of the asset

M : Number of partitions of the time interval [0, T ]

N : Number of Monte Carlo simulations

σ: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

Si(tj): Simulation i of the asset at time tj, for i = 1, ..., N and j = 1, ...,M

∆: partition size tj − tj−1

Ai(T ): Average of the asset S(t) over the interval [0, T ] for simulation i

Gi(T ): is the geometric average of Ai(T ) for simulation i

for i = 1, ...N

for j = 1, ...,M

Generate Zij ∼ N (0, 1)

Si(tj) = S(tj−1) exp
``

r − 1
2
σ2

˘

tj + σZij
?
∆

˘

Set Gi(T ) = exp
”

lnS(0) +
`

r − 1
2
σ2

˘

T + 2
3
σ

?
∆Z̃iM

ı

Set A(T ) =
1

N

∑N
i=1

M∑
j=0

S(tj)

M + 1
, Ci

A = (Ai(T )−K)+ and Ĉi
G = pGi(T )−Kq

+

Set and λG =
Cov(CA, CG)

Var(CG)
and GCV

i = Ci
A + λG(CG − Ci

G)

Calculate GCV = 1
N

∑N
i=1G

CV
i
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Algorithm 9: Monte Carlo Simulation of Asian Option Using Average Upper

Bound as a Control Variate.
S(0): Initial value of the asset

M : Number of partitions of the time interval [0, T ]

N : Number of Monte Carlo simulations

σ: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

Si(tj): Simulation i of the asset at time tj, for i = 1, ..., N and j = 1, ...,M

∆: partition size tj − tj−1

Ai(T ): Average of the asset S(t) over the interval [0, T ] for simulation i

for i = 1, ...N

for j = 1, ...,M

Generate Zij ∼ N (0, 1)

Si(tj) = S(tj−1) exp
``

r − 1
2
σ2

˘

tj + σZij
?
∆

˘

Set Ci
S(T ) =

1
M+1

∑M
j=0(S

i(T )−K)+

Set A(T ) =
1

N

∑N
i=1

M∑
j=0

S(tj)

M + 1
, Ci

A = e−rT (Ai(T )−K)+ and CS is as defined in 4.33

Set λS =
Cov(ĈS, CA)

Var(ĈS)
and GCV

i = Ci
A − λG(CS − Ci

S)

Calculate CCV
S = 1

N

∑N
i=1G

CV
i
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5.5.3 Distributional Upper Bound As a Control Variate

The numerical scheme for the distributional upper bound is outlined algorithm 10

5.5.4 Distributional Lower Bound As a Control Variate

The numerical scheme for the distributional lower bound is outlined algorithm 11.

5.6 Summary

Given that Monte Carlo methods are the most accurate way of pricing basket and Asian

options, variance reduction methods i.e. control variates are used to obtain efficient estimates

of basket option prices. Control variate methods involve using a random variable whose

distribution is similar to the basket or average value of the asset and admits a closed-form

solution, to reduce the variance of the option. However, for optimal variance reduction to be

achieved we specify a critical value of λ. The value of λ varies for different control variate

methods, but is generally close to 1 for assets following a GBM model [11]. We specified the

numerical schemes for computing Monte Carlo and control variate estimates for the price of

a basket/Asian option. In the next chapter, we will simulate the price of a basket/Asian

option using our numerical schemes and illustrate the accuracy and efficiency of our control

variates.
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Algorithm 10: Monte Carlo Simulation of Asian Option Using Distributional

Upper Bound as a Control Variate.

S(0): Initial value of the asset

M : Number of partitions of the time interval [0, T ]

N : Number of Monte Carlo simulations

σ: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

Si(tj): Simulation i of the asset at time tj, for i = 1, ..., N and j = 1, ...,M

∆: partition size tj − tj−1

Ai(T ): Average of the asset S(t) over the interval [0, T ] for simulation i

for i = 1, ...N

for j = 1, ...,M

Generate Zij ∼ N (0, 1)

Si(tj) = S(tj−1) exp
``

r − 1
2
σ2

˘

tj + σZij
?
∆

˘

Set Au(i) =
S0 exp

`

σ
?
T |Zij|

˘

`

r − 1
2
σ2

˘

T

“

exp
`

pr − 1
2
σ2qT

˘

− 1
‰

Set Ĉi
Ã
= e−rT (Au(i)−K)+ and λAU =

Cov(ĈA, ĈÃ)

Var(ĈÃ)

Set CCV
i = Ci

A − λAU(C
i
Ã
− CÃ)

Calculate ĈCV =
1

N

∑N
i=1C

CV
i
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Algorithm 11: Monte Carlo Simulation of Asian Option Using Distributional

Lower Bound as a Control Variate.
S(0): Initial value of the asset

M : Number of partitions of the time interval [0, T ]

N : Number of Monte Carlo simulations

σ: Volatility of asset i

T : Maturity of the basket option

r: Risk-free rate

Si(tj): Simulation i of the asset at time tj, for i = 1, ..., N and j = 1, ...,M

∆: partition size tj − tj−1

Ai(T ): Average of the asset S(t) over the interval [0, T ] for simulation i

for i = 1, ...N

for j = 1, ...,M

Generate Zij ∼ N (0, 1)

Si(tj) = S(tj−1) exp
``

r − 1
2
σ2

˘

tj + σZij
?
∆

˘

Set Al(i) =
S0 exp

`

−σ
?
T |Zij|

˘

`

r − 1
2
σ2

˘

T

“

exp
`

pr − 1
2
σ2qT

˘

− 1
‰

Set Ĉi
Ā
= e−rT (Al(i)−K)+ and λAL =

Cov(ĈA, ĈĀ)

Var(ĈĀ)

Set C ′CV
i = Ci

A − λAL(C
i
Ā
− CĀ)

Calculate Ĉ ′
CV =

1

N

∑N
i=1C

′CV
i
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Chapter 6

Numerical Experiments and Results

For Basket and Asian Options

6.1 Overview

In this chapter, we carry out numerical experiments to determine the efficiency of our control

variates using Monte Carlo methods for basket and Asian call options. To obtain the

basket/Asian option price using plain Monte Carlo, we use 107 simulations and this price is

used as the benchmark.More specifically, for Asian options we use N = 104 sample paths and

M = 1000 time steps while for basket options we have 107 sample paths. All computations

have been carried out on matlab using an Apple M1 Pro MacBook Pro 2021 with 16GB

of unified memory, and 8-core CPU (with 6 performance cores and 2 efficiency cores) and

14-core GPU.

For basket call options, simulations are carried out using two and five-assets basket for
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all our control variates i.e direct upper bound (DUB), first order Hermite polynomial and

distributional bounds, which are benchmarked against the geometric lower bound (LB)

control variate. We then compare the results obtained with the variance reductions as well

as their computation times. For pricing Asian call options the control variates employed are

the first order Hermite polynomial approximation, the geometric lower bound (GLB), the

average of European options for different maturities (AUB) and a basket of assets with the

same maturity T and strike K, but with variable initial values and times to maturity which

we shall call the future-valued basket (FVB). To see the future-valued approach, we consider

a finite partition of the time interval [0, T ] in to m intervals. We begin with an asset whose

initial value is S(0) at time 0, and its values S(tj) at the time intervals tj such that tj = j
T

m
,

is S(0)ertj and work out the price of a European call option on each of these constructed

assets maturing at the same time T . We can form a portfolio of assets whose payoff V (T, T )

at a time T is the average of these assets and use this as a control variate for pricing Asian

options which is given by

V (T, T ) =
1

m+ 1

M+1∑
i=1

pS(tj, T )−Kq
+ , (6.1)

where S(tj, T ) is the price at time T of an asset whose initial value is S(tj).

6.2 Numerical Results For Basket Options

We use 522 observations of daily prices from January 1, 2018 to December 31, 2019 of five

market indices namely FTSE 100, FTSE 250, S&P 500, NIKKEI 225 and IMOEX (from

Thomson Reuters Datastream) to obtain daily volatility and covariance estimates.
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FTSE

100

FTSE

250

S&P 500 NIKKEI

225

IMOEX

FTSE 100 7.18 6.90 3.48 1.86 4.40

FTSE 250 6.90 9.29 3.67 2.58 3.75

S&P 500 3.48 3.67 8.60 7.00 3.89

NIKKEI 225 1.86 2.58 7.00 9.57 1.57

IMOEX 4.40 3.75 3.89 1.57 16.31

Table 6.1: Daily covariance estimates of market indices (×10−5).

These values of covariances were used to generate simulated basket option prices, for various

values of maturity T and strike K.

6.2.1 Lognormal Approximations using Hermite Polynomial

To obtain the closed-form approximations using Hermite polynomials, we estimate ψ(u) in

3.14 using Taylor series expansions of u about 0. Using third order Taylor series and the

covariance results of the FTSE 100 and FTSE 250, we estimate the Hermite polynomials

coefficients in 3.22 and 3.25 to obtain the closed-form approximation of the two-asset basket

option for different maturities T and across different positions of moneyness. We also

estimate the absolute error percentage in the price of the Hermite polynomial method and
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this is calculated as

%AbsError =
|HPPrice−MCPrice|

MCPrice
, (6.2)

whereMCPrice is the price estimate obtained using Monte Carlo simulations whileHPPrice

is the first order Hermite polynomial estimate for the price of a basket option as given by

3.33. To improve the accuracy of basket option price, we make use of a modified strike K̂

as suggested by [13]. The idea is to pick a strike whose expected difference from our first

order Hermite polynomial price estimate is similar to that of the expected difference of the

forward price and strike of the basket. This modified strike K̂ is given by

K̂ = eEψ(u) − S(0)erT +K, (6.3)

where ψ(u) is as defined in 3.19, with all parameters suitably calibrated using third order

Taylor series. The Monte Carlo price of a basket option is obtained using a sample of 107

simulations.

Table 6.2 shows the estimated price of a two-asset basket option using Hermite polynomials

for a variety of maturity periods and strikes and the corresponding errors in the estimates.

Next, we look at the result from our Monte Carlo simulation for basket options.

6.2.2 Two-asset Basket Case

In this section, we estimate the price of a two-asset basket call option using control variates in

which we compare the antithetic Monte Carlo (MC) estimate with different control variates

(such as the geometric lower bound (LB), Hermite polnomial (HP) and direct upper bound

(UB)) for different criteria. The prices are estimated using daily volatility estimates of
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T K HP Price MC Price % Abs Error CI L CI U

0.5

60 20.799 20.361 0.438 20.342 20.385

80 6.740 4.648 2.091 4.629 4.657

100 1.348 0.315 1.033 0.309 0.319

1

60 21.046 20.987 0.059 20.956 21.017

80 6.859 6.658 0.201 6.637 6.679

100 1.362 1.257 0.105 1.248 1.267

2

60 21.545 22.481 0.936 22.431 22.522

80 7.108 9.591 2.483 9.567 9.629

100 1.416 3.345 1.929 3.326 3.365

Table 6.2: Hermite polynomial approximation for a two-asset basket option.

FTSE 100 and FTSE 250. For the case of two-assets in a basket, we simulate the price

of the basket option for different positions of moneyness K and maturities T using daily

volatilities obtained from the real world market indices of FTSE 100 and FTSE 250.

In table 6.2, we look at the results from the Hermite polynomial closed-form approximation

for a basket option of two-assets for different maturities as well as strikes. We observe that

the accuracy is higher when the basket of assets are in-the-money and out-of-the-money

across the different maturity times. Also, for a fixed maturity T , the basket option price is

a decreasing function of the strike K and for a fixed strike K, the price of the basket is a

decreasing function of the maturity T .

In tables 6.3, 6.4 and 6.5, we compare the price, variance and computation times of our Monte
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Carlo estimate of a two-asset basket option with the results obtained using the Hermite

polynomial closed-form, geometric lower bound (also known as Gentle’s estimate), direct

upper bound, distributional upper bound and distributional lower bound as control variates.

The variances are normalized with respect to the Monte Carlo variance of the estimate in all

numerical experiments. These are respectively represented as MC, HP, LB, UB, UBM and

LBM in the tables. We also use CI L and CI U to denote the respective lower and upper

confidence intervals of the Monte Carlo estimates throughout the chapter.

We observe that the price estimates using the direct upper bound and the Hermite polynomial

as a control variate are highly accurate and are quite similar to those obtained using Monte

Carlo and the Geometric lower bound as a control variate. The variances of our new control

variates are significantly lower than the Monte Carlo variances. In fact, the Geometric lower

bound and the direct upper bound control variates have the lowest variances and are similar

on average.

Furthermore, we see that among our control variates the Hermite polynomial and direct

upper bound control variates have faster computation times than the Geometric lower bound

and Monte Carlo technique. However, the Hermite polynomial control variate record the

fastest computation time across all strikes K and maturities T when compared to other

control variates.

6.2.3 Five-asset Basket Case

For a basket of five-assets, we compare the Monte Carlo estimate with estimates obtained

using different control variates (geometric lower bound and direct upper bound). We obtain

124



daily volatility/covariance estimates from five market indices namely FTSE 100, FTSE

250, S&P 500, NIKKEI 225 and IMOEX. We compare the results of the control variates

(Geometric lower bound and direct upper bound) techniques with standard Monte Carlo

estimate for the basket option price.

Tables 6.5-6.7 show the basket option price, the variance (normalized relative to the variance

of Monte Carlo estimate) and the computation times across different maturities for the same

range of strikes K = 60, 80, 100.

Similar to the two-asset case, we observe that basket option prices are non-decreasing

functions of time for any fixed position of moneyness and are inversely related with the

strike, for a fixed time.

We observe very similar basket option prices for the different techniques implemented.

The variance estimates from the upper bound control variate are lower variance than the

Monte Carlo estimates, and almost identical variance to the Geometric lower bound control

variance in all cases. The upper bound control variate has faster computational times when

compared to the classical Monte Carlo and Geometric lower bound control variate methods.

6.3 Numerical Results For Asian Options

We simulate the price of an Asian option using Monte Carlo methods. For our numerical

experiment, we set the initial price of the asset to be S(0) = 80 and simulate the price of the

option using strikes K = 60, 80 and 100, for the respective in-the-money, at-the-money and

out-of-the-money positions of moneyness across different maturity times T = 0.5, 1, 2. We

simulate the Monte Carlo price(s) for the Asian option using N = 10, 000 sample paths and
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M = 1000 time steps In the next section we observe the accuracy of the first order Hermite

polynomial approximation for the price of an Asian option and then the results from our

control variates.

6.3.1 First Order Hermite Polynomial Approximation For Asian

Options

We observe the accuracy of our closed-form estimate of the price of an Asian option using

first order Hermite polynomial for different maturities for different maturity times T and

across different strikes K. We have computed the actual Monte Carlo estimate of the price

of an Asian option using using 1000 time steps and 10000 sample paths. We have used an

initial asset price S(0) = 80, short rate r = 0.01 and volatility σ = 20%. The Absolute error

percentage in the first order Hermite polynomial approximation of the Asian option price is

calculated using 6.2, where in this context HPPrice is the first order Hermite polynomial

estimate for the price of an Asian option as given by 4.26 and MCPrice is the Monte Carlo

price of the Asian option.

Table 6.10 shows the estimated price of an Asian option using Hermite polynomials for

different maturity periods and strikes and the corresponding error percentages in the estimates.

The error percentages are calculated using the ratio of the difference between the estimated

Asian option price and the Monte Carlo price to the Monte Carlo price of the Asian option.

We can observe by inspection that for a fixed maturity T , the error percentage increases

from the in-the-money case to the out-of-the-money case. Thus implying that the first order

Hermite polynomial is good as an approximation for the price of an Asian option except in
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the out-of-the-money case.

6.3.2 Control Variate Analysis For Asian Options

In this section, we estimate the price of an Asian call option using different control variate

methods. We look at the numerical results obtained from implementation of control variate

methods, which we compare to the standard Monte Carlo approach (MC). The control

variates we have used for this analysis are Hermite polynomial (HP), average upper bound

(AUB), the future-valued basket FV B and the geometric lower bound (GLB) (also known

as Kemna-Vorst estimate) which we shall use as a benchmark for our control variates. To

price the assets, we have used a volatility of 20%, which we have obtained from the FTSE

100.

In tables 6.11, 6.12 and 6.13 we compare the price, variance and computation times of our

antithetic Monte Carlo estimate of an Asian call option with the results obtained using the

Hermite polynomial (HP), average upper bound (AUB), the future-valued basket FV B and

the geometric lower bound (GLB) as control variates. The variances is normalized with

respect to the Monte Carlo variance of the estimate for all numerical experiments.

We observe that the price estimates using the average upper bound and the Hermite polynomial

as a control variate are highly accurate and are quite similar to those obtained using Monte

Carlo and the geometric lower bound as a control variate. The variances of our new control

variates are significantly lower than the Monte Carlo variances. In fact, the Geometric lower

bound and the direct upper bound control variates have the lowest variances and are similar

on average.
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Furthermore, we see that besides variance reduction using control variates also reduce

computation times of the estimates as well. The Hermite polynomial and average upper

bound control variates have faster computation times than the geometric lower bound and

Monte Carlo technique. However, the Hermite polynomial control variate record the fastest

computation time across all strikes K and maturities T .

We observe that, similar to the basket option pricing case, the price of Asian options are

non-decreasing functions of maturity T for any fixed position of moneyness and are inversely

related with the strike K, for a fixed T .

Also, our numerical experiments yield very similar results for Asian option prices for the

different control variate techniques.

The normalised variance estimates from the average upper bound (AUB), Hermite polynomial

(HP), and geometric lower bound upper bound (GLB) control variate are significantly lower

than the normalised variance from the Monte Carlo estimates. The geometric lower bound

gives the best overall variance reduction, but is very similar to those obtained from the

average upper bound and Hermite polynomial control variates in most cases. Furthermore,

these three control variates namely the average upper bound, Hermite polynomial and

geometric lower bound have faster computation times than the standard Monte Carlo and

the future-valued basket control variate. The future-valued basket control variate yields the

least variance reduction of usually between 10− 30% and generally has slower computation

times than the standard Monte Carlo simulation.
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Figure 6.1: Correlation plots between MC estimates and control variates of a basket option
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Figure 6.2: Correlation plots between Asian option prices and AUB (a), first order Hermite

polynomial approximation (b), geometric lower bound (c) and FVB (d) respectively
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6.4 Summary

In this chapter, we observed through numerical experiments the accuracy of our different

control variate methods for pricing basket and Asian call options. For the basket call option,

we observe the accuracy of the Hermite polynomial approximation of a two-asset basket.

Results show that this method is fairly accurate if the basket is deep-in-the-money or at-

the-money. The observed error is found to be the lowest for T = 1, when compared to

other maturity times for a fixed position of moneyness. The control variate analysis, we find

that all our control variates yield significant variance reduction. Furthermore, the lower and

upper distributional bounds achieve more variance reduction than the benchmark control

variate in most cases.

For Asian call options, we observe that the first order Hermite polynomial approximation of

an Asian call option gives good estimates when the average value of the underlying asset is

deep-in-the-money or at-the-money. However, for the out-of-the-money case, the estimates

obtained for the price of an Asian option are largely unreliable. This is also similar to the

results obtained for basket options and with those observed by Milevsky [28] and Curran [8],

where the authors stated that closed-form approximation of options on the sum of lognormal

assets where inaccurate when the asset was out-of-the-money. The results from the control

variates yield significant variance reduction with the exception of the future-valued basket.

Similar findings are recorded with the computation times of the control variates.
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K Method Price Variance CI L CI U Time

60

MC 20.3633 1.0000 20.3415 20.3850 0.0567

LB 20.3615 0.0001 20.3612 20.3617 0.2320

UB 20.3618 0.0002 20.3614 20.3620 0.0733

HP 20.3609 0.0225 20.3586 20.3631 0.0068

UBM 20.3581 0.4601 20.3435 20.3626 0.4486

LBM 20.3094 0.0596 20.3042 20.3147 0.0469

80

MC 4.6431 1.0000 4.6285 4.6567 0.0152

LB 4.6387 0.0001 4.6385 4.6389 0.2362

UB 4.6392 0.0047 4.6382 4.6402 0.0769

HP 4.6392 0.0285 4.6373 4.6409 0.0869

UBM 4.6374 0.4327 4.6289 4.6403 0.2613

LBM 4.6464 0.0784 4.6424 4.6504 0.0865

100

MC 0.3122 1.0000 0.3085 0.3159 0.0541

LB 0.3145 0.0004 0.3144 0.3146 0.2355

UB 0.3147 0.0454 0.3139 0.3155 0.0782

HP 0.3144 0.1912 0.3127 0.3161 0.0875

UBM 0.3138 0.5194 0.3111 0.3154 0.2853

LBM 0.3127 0.1781 0.3112 0.3142 0.0867

Table 6.3: Basket option prices for a two-asset basket, T=0.5
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K Method Price Variance CI L CI U Time

60

MC 20.9871 1.0000 20.9569 21.0179 0.0335

LB 20.9849 0.0002 20.9845 20.9853 0.2036

UB 20.9844 0.0005 20.9837 20.9852 0.0341

HP 20.9847 0.0194 20.9813 20.9881 0.0435

UBM 20.9844 0.4363 20.9701 20.9997 0.2325

LBM 20.9791 0.0607 20.9716 20.9865 0.0495

80

MC 6.6758 1.0000 6.6549 6.6966 0.0501

LB 6.6595 0.0003 6.6592 6.6599 0.2364

UB 6.6599 0.0007 6.6585 6.6613 0.0751

HP 6.6609 0.0185 6.6581 6.6637 0.0857

UBM 6.6631 0.4791 6.6501 6.6771 0.2541

LBM 6.6174 0.0771 6.6115 6.6233 0.0872

100

MC 1.2449 1.0000 1.2356 1.2542 0.0500

LB 1.2487 0.0006 1.2484 1.2489 0.2356

UB 1.2483 0.0221 1.2469 1.2497 0.0771

HP 1.2486 0.0361 1.2469 1.2500 0.0868

UBM 1.2322 0.5101 1.2256 1.2338 0.2620

LBM 1.2359 0.1186 1.2325 1.2391 0.0869

Table 6.4: Basket option prices for a two-asset basket, T = 1
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K Method Price Variance CI L CI U Time

60

MC 22.4924 1.0000 22.4509 22.5238 0.0545

LB 22.4834 0.0004 20.4819 22.4845 0.2401

UB 22.4832 0.0009 22.4819 22.4845 0.0810

HP 22.4839 0.0311 22.4770 22.4883 0.0906

UBM 22.2479 0.5278 22.2210 22.2747 0.3034

LBM 22.2396 0.0645 22.2291 22.2502 0.0965

80

MC 9.5914 1.0000 9.5601 9.6226 0.0574

LB 9.6002 0.0006 9.5994 9.6009 0.2423

UB 9.6019 0.0037 9.5596 9.6039 0.0814

HP 9.5974 0.0421 9.5930 9.6017 0.0928

UBM 9.4249 0.4424 9.4044 9.4374 0.1918

LBM 9.4150 0.0777 9.4062 9.4238 0.0566

100

MC 3.3437 1.0000 3.3242 3.3632 0.0375

LB 3.3377 0.0008 3.3371 3.3383 0.2108

UB 3.3467 0.0119 3.3445 3.3488 0.0396

HP 3.3531 0.0718 3.3479 3.3583 0.0525

UBM 3.3406 0.4914 3.3374 3.3563 0.2172

LBM 3.2906 0.1152 3.2841 3.2971 0.0601

Table 6.5: Basket option prices for a two-asset basket, T = 2
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K Method Price Variance CI L CI U Time

60

MC 20.3111 1.0000 20.2937 20.3285 0.1401

LB 20.3107 0.0021 20.3099 20.3107 0.3675

UB 20.3082 0.0035 20.3072 20.3092 0.2131

HP 20.3109 0.3406 20.3007 20.3186 0.2016

UBM 20.3027 0.5521 20.2897 20.3157 0.4189

LBM 20.3107 0.2322 20.3024 20.3190 1.6879

80

MC 3.7339 1.0000 3.7228 3.7451 0.1352

LB 3.7341 0.0051 3.7334 3.7342 0.3754

UB 3.7237 0.0635 3.7208 3.7265 0.2188

HP 3.7371 0.3438 3.7284 3.7404 0.2018

UBM 3.7371 0.5701 3.7297 3.7414 0.3795

LBM 3.7371 0.2844 3.7312 3.7431 1.6751

100

MC 0.0931 1.0000 0.0914 0.0948 0.1446

LB 0.0941 0.0227 0.0939 0.0941 0.3624

UB 0.0909 1.4135 0.0892 0.0917 0.2145

HP 0.0945 0.3987 0.0929 0.0948 0.1972

UBM 0.0945 0.6239 0.0931 0.0949 0.3864

LBM 0.0946 0.3917 0.0934 0.0948 1.6667

Table 6.6: Basket option prices for a five-asset basket, T = 0.5
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K Method Price Variance CI L CI U Time

60

MC 20.7163 1.0000 20.6920 20.7407 0.1546

LB 20.7216 0.0047 20.7199 20.7216 0.3869

UB 20.7114 0.0086 20.7096 20.7136 0.2363

HP 20.7188 0.3712 20.7051 20.7291 0.2222

UBM 20.7141 0.5647 20.7057 20.7221 0.4474

LBM 20.7217 0.2357 20.7101 20.7291 1.7071

80

MC 5.3851 1.0000 5.3688 5.4015 0.1434

LB 5.3925 0.0103 5.3908 5.3925 0.3682

UB 5.3764 0.0585 5.3724 5.3804 0.2163

HP 5.3941 0.3191 5.3834 5.3991 0.2019

UBM 5.3853 0.5441 5.3734 5.3911 0.3795

LBM 5.3902 0.2764 5.3814 5.3963 1.7035

100

MC 0.5749 1.0000 0.5694 0.5893 0.1673

LB 0.5698 0.0309 0.5689 0.5699 0.3891

UB 0.5612 0.5094 0.5572 0.5651 0.6194

HP 0.5656 0.4133 0.5609 0.5704 0.2286

UBM 0.5654 0.7069 5609 0.5698 0.6194

LBM 0.5669 0.3771 0.5635 0.5701 1.7383

Table 6.7: Basket option prices for five-asset basket, T = 1
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K Method Price Variance CI L CI U Time

60

MC 22.7791 1.0000 21.7453 21.8128 0.1579

LB 21.7702 0.0103 21.7667 21.7702 0.3845

UB 21.7462 0.0126 21.7424 21.7501 0.2341

HP 21.7692 0.2846 21.7505 21.7723 0.2189

UBM 21.7814 0.5704 21.7907 22.0133 0.2948

LBM 21.7698 0.2427 21.7532 21.7764 1.7223

80

MC 7.8575 1.0000 7.8320 7.8879 0.1574

LB 7.8367 0.0212 7.8333 7.8367 0.3814

UB 7.8232 0.0529 7.8177 7.8288 0.2303

HP 7.8402 0.3803 7.8296 7.8504 0.2166

UBM 7.8424 0.5132 7.8269 7.8593 0.3953

LBM 7.8402 0.2925 7.8338 7.8596 1.7361

100

MC 1.9530 1.0000 1.9659 1.9560 0.0129

LB 1.9419 0.0428 1.9393 1.9419 0.3791

UB 1.9294 0.3107 1.9231 1.9357 0.2309

HP 1.9454 0.4719 1.9351 1.9508 0.2153

UBM 1.9394 0.6037 1.9293 1.9421 0.4001

LBM 1.9454 0.3255 1.9351 1.9511 1.7026

Table 6.8: Basket option price for a five-asset basket, T = 2
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Control Variates Optimal λ R2

LB 0.9998 0.9941

UB 0.9542 0.9001

HP 0.6892 0.9759

UBM 0.7042 0.6818

LBM 2.6687 0.9383

Table 6.9: R2 and optimal Values of λ for the Basket Option Control Variates

T K HP Price MC Price % Abs Error CI L CI U

0.5

60 20.1009 20.0912 0.1132 20.0911 20.0912

80 2.6265 2.6217 0.0254 2.6216 2.6217

100 0.0016 0.0071 0.0018 0.0071 0.0072

1

60 20.2351 20.1870 0.0902 20.1868 20.1871

80 3.7673 3.7378 0.0313 3.7377 3.7379

100 0.0474 0.1082 0.0740 0.1083 0.1083

2

60 20.6727 20.4561 0.2007 20.4558 20.4563

80 5.4275 5.3826 0.0804 5.3824 5.3827

100 0.3738 0.6527 0.2574 0.6256 0.6527

Table 6.10: Hermite polynomial approximation for the price of an Asian option.
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K Method Price Variance CI L CI U Time

60

MC 20.1481 1.0000 20.1476 20.1488 0.5891

AUB 20.2004 0.0003 20.2004 20.2004 0.4885

HP 20.0981 0.0043 20.0981 20.0982 0.0567

GLB 20.1001 0.0003 20.1001 20.1001 0.0595

FVB 20.1087 0.8319 20.1083 20.1092 0.4879

80

MC 2.6502 1.0000 20.6498 2.6507 0.5422

AUB 2.6567 0.0127 2.6566 2.6568 1.9188

HP 2.6387 0.0031 2.6387 2.6388 0.0534

GLB 2.6211 0.0003 2.6211 2.6211 0.0489

FVB 2.6393 0.6845 2.6390 2.6397 0.8744

100

MC 0.0066 1.0000 0.0064 0.0068 0.5617

AUB 0.0059 0.2379 0.0058 0.0059 0.5401

HP 0.0063 0.1113 0.0062 0.0063 0.0596

GLB 0.0068 0.0131 0.0068 0.0068 0.0526

FVB 0.0057 0.5516 0.0055 0.0059 0.6574

Table 6.11: Asian option prices, T = 0.5.
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K Method Price Variance CI L CI U Time

60

MC 20.1882 1.0000 20.1872 20.1892 0.5333

AUB 20.4183 0.0019 20.4183 20.4184 0.3829

HP 20.2029 0.0073 20.2027 20.2031 0.0305

GLB 20.2731 0.0005 20.2731 20.2731 0.0279

FVB 20.1121 0.8461 20.1114 20.1129 0.4261

80

MC 3.7539 1.0000 3.7532 3.7544 0.5342

AUB 3.7822 0.0132 3.7821 3.7823 1.9545

HP 3.7329 0.0086 3.7328 3.7329 0.0531

GLB 3.7562 0.0007 3.7537 3.7537 0.0471

FVB 3.7362 0.8612 3.7356 3.7367 0.8409

100

MC 0.1131 1.0000 0.1129 0.1133 0.5478

AUB 0.1195 0.4204 0.1194 0.1194 0.1195

HP 0.1081 0.0567 0.1081 0.1082 0.0529

GLB 0.1099 0.0101 0.1099 0.1099 0.0474

FVB 0.1315 0.5456 0.5454 0.5458 0.7134

Table 6.12: Asian option prices, T = 1.
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K Method Price Variance CI L CI U Time

60

MC 20.5549 1.0000 20.5543 20.5553 0.5429

AUB 20.9419 0.0038 20.9418 20.9421 0.4025

HP 20.4576 0.0104 20.4575 20.4576 0.0564

GLB 20.4945 0.0011 20.4944 20.4946 0.0498

FVB 20.1228 0.8114 20.1225 20.1231 0.5233

80

MC 5.4036 1.0000 5.4029 5.4042 0.5601

AUB 5.4911 0.0131 5.4909 5.4912 1.8892

HP 5.3762 0.0119 5.3761 5.3765 0.0491

GLB 5.3883 0.0014 5.3883 5.3889 0.0455

FVB 5.3176 0.7862 5.3173 5.3179 0.8124

100

MC 0.6302 1.0000 0.6299 0.6306 0.5442

AUB 0.6255 0.1394 0.6254 0.6257 0.4343

HP 0.6255 0.0081 0.6255 0.6256 0.0491

GLB 0.6399 0.0075 0.6398 0.6399 0.0481

FVB 0.6865 0.8323 0.6864 0.6866 0.7451

Table 6.13: Asian option prices, T = 2.
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Control Variates Optimal λ R2

AUB 1.0225 0.9851

HP 1.0532 0.9975

GLB 1.0224 0.9989

FVB 0.0422 0.0248

Table 6.14: R2 and optimal values of λ for the Asian Option Control Variates
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Chapter 7

Summary of Contributions and

Future Research

We proposed new control variates for the pricing of basket/Asian options which are based

off closed-form estimates and bounds on the aforementioned options. The contributions of

this thesis can be summarized into two parts. The first part summarises results pertaining

to pricing basket options and the second part summarises relevant results to Asian option

prices.

The summary of contributions on basket options as follows:

We derived new closed-form estimates for the price of a basket option using first order

Hermite polynomials. This method is fairly accurate for short maturity times for deep-in-

the-money and at-the-money positions of moneyness. This is particularly useful for low-

dimensional portfolios and becomes more computationally involved as the number of assets

in the basket increases. For a large number of assets in the basket, suitable adaptations to
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this method are made to allow for its use as a control variate. We also derived closed-form

Gaussian representation for the price of a basket option for very short maturity times and

its accuracy decreases as maturity of the option increases.

We derived closed-form bounds on the price of a basket option using the distributional

properties of a Brownian motion. This was achieved by replacing the underlying Wiener

processes in the assets with their joint maximum to obtain an upper bound on the basket

of assets and vice-versa. These distributional bounds generally lead to a similar problem-

type as the basket of assets and are evaluated in two ways. Firstly, they can be estimated

using their geometric average allowing for closed-form representation. The second approach

involves imposing integrability conditions on the volatility parameters of the bounds on the

basket, leading to a closed-form estimates of the bounds on the basket option price.

Direct bounds on the basket option price are also obtained due to the convexity of the

payoff function on the option, resulting from a direct application of the Jensen’s inequality.

Furthermore, the direct upper bound is the weighted sum of options on the individual assets

in the basket with the same strike.

In our numerical experiments we simulate the price of a basket option using the first order

Hermite polynomial estimate, the distributional bounds, direct upper bound and geometric

lower bound as control variates. The geometric lower bound which we refer to as the standard

control variate, is used as a benchmark to compare the efficiency of the remaining control

variates. The results from the numerical experiments indicate that all control variates yield

significant variance reduction. The distributional bounds yield the highest variance reduction

compared to all other control variates even outperforming the standard control variate. The
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distributional bounds also have the fastest computation times compared to all other control

variates.

We can summarize our contributions on Asian options as follows:

Closed-form estimates for the price of an Asian option using first order Hermite polynomial

approximation were obtained for the average value of the underlying asset over the required

time period. Similar to the basket options case, good estimates were also obtained for the

in-the-money and at-the-money case across different maturities, except for the out-of-the-

money case. We obtained closed-form bounds on the Asian option price by substituting

the Brownian term with its overall minimum/maximum over the entire time interval. This

leads to relatively large bounds on the Asian option price. To overcome this, we define two

fictitious assets, obtained by simply replacing the Brownian term in the underlying asset

with its running maximum or minimum. These new bounds on the Asian option prices are

estimated using their geometric averages and conditioning arguments. Direct bounds on

the Asian option price are also obtained similar to those calculated for basket options. We

also introduce a control variate which we dub the future-value basket (FVB),which allows us

to capture the dynamics and correlations of the average value of the asset over finite intervals.

Our numerical experiments are carried out using the average upper bound (AUB), geometric

lower bound (GLB), first order Hermite polynomial approximation (HPA) and the future-

valued basket (FVB) as control variates. Significant variance reduction is obtained for all

control variates except for the future-valued basket (FVB). The HPA and GLB have the

highest and very similar variance reduction but the GLB has slightly faster computation

times than the HPA. The FVB recorded the slowest computation times and very little
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variance reduction. It is worth mentioning that all the distributional bounds on the price of

an Asian option while yielding suitable closed-form bounds on the Asian option price, were

unsuitable as control variates due to high bias in the estimated price or the high variance of

results.

We can observe from our numerical experiments of both basket and Asian options, that

estimates or bounds obtained in a Gaussian or log-normal framework serve as better control

variates than those obtained from other distributions such as a ‘half-Gaussian (such as the

ones implied by the running maximum and the running minimum of a Brownian motion)’,

when asset prices follow a geometric Brownian motion model.

For future work and research, asset price model can follow generalisations of the Black-

Scholes model with non-constant volatility or to include jumps. It might be worth exploring

the role of information in the price determination of basket/Asian options given an explicit

representation of the market information as in the Brody-Hughston-Macrina framework. It

is unknown as to whether having an analytic form for the market filtration will provide a

clearer image of what the true distribution of the basket/Asian option should be.
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