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State Estimation for Delayed Neural Networks

Zidong Wang, Daniel W. C. Ho, and Xiaohui Liu

Abstract—In this letter, the state estimation problem is studied for neural
networks with time-varying delays. The interconnection matrix and the
activation functions are assumed to be norm-bounded. The problem ad-
dressed is to estimate the neuron states, through available output mea-
surements, such that for all admissible time-delays, the dynamics of the
estimation error is globally exponentially stable. An effective linear ma-
trix inequality approach is developed to solve the neuron state estimation
problem. In particular, we derive the conditions for the existence of the de-
sired estimators for the delayed neural networks. We also parameterize the
explicit expression of the set of desired estimators in terms of linear matrix
inequalities (LMIs). Finally, it is shown that the main results can be easily
extended to cope with the traditional stability analysis problem for delayed
neural networks. Numerical examples are included to illustrate the appli-
cability of the proposed design method.

Index Terms—Exponential stability, linear matrix inequalities (LMIs),
neural networks, state estimation, time-delays.

I. INTRODUCTION

In 1983, Cohen and Grossberg published their seminal paper [5]
on the global mathematical analysis of a class of general nonlinear
cooperative-competitive neural networks, known as Cohen-Grossberg
model. Since then, the mathematical properties of various neural net-
works, such as the stability, the attractivity and the oscillation, have
been hot research topics that have drawn considerable attention, and a
large amount of results have been available in the literature.

On the other hand, the dynamic behavior of many biological and
artificial neural networks contains inherent time delays, which may
cause oscillation and instability [1], [4], [12]. Delayed neural networks
have been widely applied in many areas, such as signal and image
processing, artificial intelligence, system identification, industrial au-
tomation, etc. In the past decade, the analysis of neural networks with
time-delay has been a subject of great practical importance that has at-
tracted a great deal of research interest. Up to now, most works on de-
layed neural networks have focused on the stability analysis problem
for neural networks with constant or time-varying delays. Sufficient
conditions, either delay-dependent or delay-independent, have been
proposed to guarantee the asymptotical or exponential stability for the
neural networks, see [1], [4], [9]–[12], [15], [17], and [18] for some
recent results.

Since delayed neural networks have been considered as viable net-
work models, the neuron state estimation problem becomes precursor
for many applications. The main reason is that, in relatively large-scale
neural networks, it is often the case that only partial information about
the neuron states is available in the network outputs. Therefore, in order
to utilize the neural networks, one often needs to estimate the neuron
state through availablemeasurement, and then use the estimated neuron
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state to achieve certain practical performances, such as system mod-
eling, signal processing and control engineering. The state estimation
problem for neural networks has received some research attention. In
[6], an approach was developed to approximate the dynamic and static
equations of stochastic nonlinear systems and to estimate state vari-
ables based on a radial basis function neural network. In [7], a method
of estimating the online immeasurable states was proposed based on a
recurrent neural network model of the system by using the extended
Kalman filter. In [14], an adaptive state estimator was described by
using techniques of optimization theory, the calculus of variations and
gradient descent dynamics. So far, to the best of the authors’ knowl-
edge, though the stability analysis issue of delayed neural networks
has been well studied, the important state estimation problem has not
been fully investigated yet, and remains to be challenging. It is, there-
fore, our intention in this letter to deal with this problem, and provide
a systematic design procedure of the desired state estimators.

In this letter, the state estimation problem is studied for neural net-
works with time-varying delays. The interconnection matrix and the
activation functions are assumed to be norm-bounded. The problem ad-
dressed is to estimate the neuron states, through available output mea-
surements, such that for all admissible time-delays, the dynamics of
the estimation error is globally exponentially stable. An effective linear
matrix inequality (LMI) approach is developed to solve the neuron state
estimation problem. In particular, we derive the conditions for the ex-
istence of the desired estimators for the delayed neural networks. We
also parameterize the explicit expression of the set of desired estima-
tors, and show that the main results can be used to establish the stability
criterion for a general class of delayed neural networks. Two numerical
examples are used to demonstrate the usefulness of the proposed design
methods.

The rest of the letter is arranged as follows. The state estimation
problem is formulated in Section II for continuous delayed neural net-
works. In Section III, we give the main results that comprise the exis-
tence conditions and the explicit expression of the desired estimators.
In Section IV, the results are extended for the stability analysis problem
of delayed neural networks. Illustrative examples are provided in Sec-
tion V, and some remarks are concluded in Section VI.

Notations: The notations are quite standard. Throughout this letter,
n and n�m denote, respectively, the n-dimensional Euclidean

space and the set of all n � m real matrices. The superscript T
denotes matrix transposition and the notation X � Y (respec-
tively, X > Y ) where X and Y are symmetric matrices, means
that X � Y is positive–semidefinite (respectively, positive–defi-
nite). In is the n � n identity matrix. j � j is the Euclidean norm
in n. If A is a matrix, denote by kAk its operator norm, i.e.,
kAk = supfjAxj : jxj = 1g = �max(ATA) where �max(�)
(respectively, �min(�)) means the largest (respectively, smallest)
eigenvalue of A. l2[0;1] is the space of square integrable vector
function. Denote byLpF ([�h; 0]; n) the family of allF0-measurable
C([�h; 0]; n)-valued variables � = f�(�) : �h � � � 0g such that
sup�h���0 j�(�)j

p < 1. The shorthand diagfM1;M2; � � � ;MNg
denotes a block diagonal matrix with diagonal blocks being the ma-
tricesM1;M2; � � � ;MN . Sometimes, the arguments of a function or a
matrix will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following delayed neural network with n neurons:

_u(t) = �Au(t) +W0g (u(t)) +W1g (u (t� h(t))) + V (1)
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where u(t) = [u1(t); u2(t); � � � ; un(t)]
T 2 n is the state vector of

the neural network, A = diag(a1; a2; � � � ; an) is a diagonal matrix
with positive entries ai > 0. W0 = (w0

ij)n�n and W1 = (w1

ij)n�n
are the connection weight matrix and the delayed connection weight
matrix, respectively. g(u(t)) = [g1(u1); g2(u2); � � � ; gn(un)]

T

denotes the neuron activation function with g(0) = 0, and
V = [V1; V2; � � � ; Vn]

T is a constant vector. h(t) denotes the
time-varying bounded state delay satisfying

0 � h(t) � h <1; _h(t) � d < 1 (2)

where h and d are scalar constants.
Traditionally, whenmodeling a neural network, a typical assumption

is that the activation functions are continuous, differentiable, monoton-
ically increasing and bounded, such as the sigmoid-type of function.
However, in many electronic circuits, the input–output functions of am-
plifiers may be neither monotonically increasing nor continuously dif-
ferentiable. As discussed in [12] and [13], nonmonotonic functions can
be more appropriate to describe the neuron activation in designing and
implementing an artificial neural network. In this letter, we assume that
the neuron activation function in (1), g(�), satisfies the following Lips-
chitz condition:

jg(x)� g(y)j � jG(x� y)j (3)

where G 2 n�n is a known constant matrix. Hence, we do not need
the activation functions to be monotonic and smooth. The type of ac-
tivation functions in (3) is more general than the conventional sigmoid
activation functions, and have been used in numerous papers [12].

In practice, it is often the case that the information about the neuron
states are incomplete from the network measurements (outputs). That
is, only partial information about the neuron states is available in the
network measurements. On the other hand, the network measurements
are subject to nonlinear disturbances. Therefore, our aim is to develop
an efficient estimation algorithm in order to observe the neuron states
from the available network outputs. In this letter, the network measure-
ments are assumed to satisfy

y(t) = Cu(t) + f (t; u(t)) (4)

where y(t) 2 m is the measurement output, C is a known constant
matrix with appropriate dimension. f : � n ! m is the neuron-
dependent nonlinear disturbances on the network outputs, and satisfies
the following Lipschitz condition:

jf(t; x)� f(t; y)j � jF (x� y)j (5)

where the constant matrix F 2 n�n is known. Note that the nonlin-
earity description given in (5) has been frequently used in many papers
dealing with nonlinear analysis [16].

In this letter, the full-order state estimator is of the form

_̂u(t) = � Aû(t) +W0g (û(t)) +W1g (û (t� h(t))) + V

+K [y(t)� Cû(t)� f (t; û(t))] (6)

where û(t) is the estimation of the neuron state, andK 2 n�m is the
estimator gain matrix to be designed.

Let the error state be

e(t) = u(t)� û(t); (7)

then it follows from (1), (4), and (6) that:

_e(t) = (�A�KC)e(t)+W0 [g (u(t))� g (û(t))]

+W1 [g (u (t� h(t)))� g (û (t� h(t)))]

�K [f (t; u(t))� f (t; û(t))] : (8)

Now, let e(t; �) denote the state trajectory of the error-state
system (8) from the initial data e(�) = �(�) on �h � � � 0 in
L2

F ([�h; 0]; n). It can be easily seen that the system (8) admits a
trivial solution e(t; 0) � 0 corresponding to the initial data � = 0.

Definition 1: For the system (8) and every � 2 L2

F ([�h; 0]; n)
where h is the upper bound of the time-delay, the trivial solution is
globally exponentially stable if there exist constants � > 0 and � > 0
such that

je(t; �)j2 � �e
��t sup

�h���0
j�(�)j2 : (9)

We shall design a state estimator for the delayed neural network de-
scribed by (1) and (4), such that the dynamics of the system (8) is glob-
ally exponentially stable, for the nonlinear activation function g(�), the
nonlinear disturbance f(�; �), and the time-varying delay h(t).

III. MAIN RESULTS AND PROOFS

The following lemma, known as Schur Complement Lemma, will be
essential in establishing our results in terms of LMIs.

Lemma 1: [3] Given constant matrices
1,
2,
3 where
1 = 
T
1

and 0 < 
2 = 
T
2 , then


1 + 
T
3 


�1
2 
3 < 0

if and only if


1 
T
3


3 �
2

< 0; or
�
2 
3


T
3 
1

< 0:

We first derive the conditions under which the error dynamics of the
estimation process is globally exponentially stable. The following the-
orem shows that such conditions can be expressed in terms of the posi-
tive–definite solution to a quadratic matrix inequality involving several
scalar parameters.

Theorem 1: Let the estimator gainK be given. If there exist positive
scalars "1 > 0, "2 > 0, "3 > 0 and a positive–definite matrix P > 0
such that the following quadratic matrix inequality

(�A�KC)TP + P (�A�KC)

+ P "
�1
1 W0W

T
0 + "

�1
2 W1W

T
1 + "

�1
3 KK

T
P

+ "1G
T
G+ "2(1� d)�1GT

G+ "3F
T
F < 0 (10)

holds, then the error-state system (8) of the neural network is globally
exponentially stable.

Proof: For notational simplicity, we define

AK := �A �KC (11)

 (t) := g (u(t))� g (û(t)) (12)

�(t) := f (t; u(t))� f (t; û(t)) (13)

	 :=

"
1=2
1
 (t)� "

�1=2
1

W T
0 Pe(t)

"
1=2
2
 (t� h(t))� "

�1=2
2

W T
1 Pe(t)

"
1=2
3
�(t) + "

�1=2
3

KTPe(t)

: (14)
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From (3) and (5), we have immediately that

 
T (t) (t) := jg (u(t))� g (û(t))j2

� jGej2 = e
T
G
T
Ge; (15)

�
T (t)�(t) := jf (t; u(t))� f (t; û(t))j2

� jFej2 = e
T
F
T
Fe: (16)

Following the similar line of the proof of [16, Th.1], using the facts
	T	 � 0; 0 � _h(t) � d < 1 and the relations (10), (15), and (16),
we can establish that

d� (e(t))

dt

� e
T (t) A

T
KP + PAK + P "

�1
1 W0W

T
0 + "

�1
2 W1W

T
1

+"�13 KK
T

P + "1G
T
G

+"2(1� d)�1GT
G+ "3F

T
F e(t) < 0 (17)

where the Lyapunov functional candidate is given by

�(e(t)) = e
T (t)Pe(t) +

t

t�h(t)

e
T (s)Qe(s)ds

Q: = "2(1� d)�1GT
G (18)

and P is the positive–definite solution to the inequality (10).
From Lyapunov stability theory, we arrive at the conclusion that the

error-state system (8) is asymptotically stable. In order to prove the
expected global exponential stability of the system (8), we will need
to make some standard manipulations on the relation (17). The de-
tailed proof follows similar line of the proof of [16, Th. 1] and is, thus,
omitted. We just mention here that in the Definition 1, the constant �
is the unique positive root of the equation

�min(��)� ��max(P )� �h�max(Q)e
�h = 0

where

� := A
T
KP + PAK + P "

�1
1 W0W

T
0 + "

�1
2 W1W

T
1

+"�13 KK
T

P + "1G
T
G+ "2(1� d)�1GT

G+ "3F
T
F

where h (0 � h(t) � h) is the maximum of the time-varying state
delay. Another constant � is determined by

� = �
�1
min(p) �max(p) + h�max(Q)(1 + �he

�h) :

This completes the proof of Theorem 1.
In Theorem 1, when an estimator is given, the analysis result (i.e.,

the stability criterion) is established in terms of a quadratic matrix
equality (10), which contains several scalar parameters. Next, we deal
with the corresponding design problem, which aims to design the esti-
mator gain,K , such that (10) holds for positive scalars "1 > 0, "2 > 0,
"3 > 0 and a positive–definite matrix P > 0.

It should be mentioned that, in the past decade, linear matrix in-
equalities (LMIs) have gained much attention for their computational
tractability and usefulness in many areas, including the stability testing
for neural networks [12], because the so-called interior point method
[3] has been proven to be numerically very efficient for solving the
LMIs. Thus, our next goal is to develop an LMI approach to designing
the desired estimator gains for the delayed neural networks.

Theorem 2: If there exist three positive scalars "1, "2, "3, a posi-
tive–definite matrix P 2 n�n and a matrix R 2 n�n such that the
linear matrix inequality, shown in (19) at the bottom of the page, holds,
then with the estimator gain

K = P
�1
R (20)

the error-state system (8) of the delayed neural network described by
(1) and (4) is globally exponentially stable.

Proof: First of all, note thatA is a diagonal matrix, hence,AT =
A. Pre- and postmultiplying the inequality (19) by the block-diagonal
matrix

diag I; "
�

1 I; "
�

1 I; "
�

2 I; "
�

2 I; "
�

3 I; "
�

3 I

yield (21), shown at the bottom of the page, or


1 
T3

3 �
2

< 0 (22)

�AP � PA � CTRT �RC PW0 "1G
T PW1 "2(1� d)� GT R "3F

T

W T
0 P �"1I 0 0 0 0 0

"1G 0 �"1I 0 0 0 0

W T
1 P 0 0 �"2I 0 0 0

"2(1� d)� G 0 0 0 �"2I 0 0

RT 0 0 0 0 �"3I 0

"3F 0 0 0 0 0 �"3I

< 0 (19)

�AP � PA � CTRT �RC "
�

1 PW0 "1 G
T "

�

2 PW1 "2 (1� d)� GT "
�

3 R "3 F
T

"
�

1 W T
0 P �I 0 0 0 0 0

"1 G 0 �I 0 0 0 0

"
�

2 W T
1 P 0 0 �I 0 0 0

"2 (1� d)� G 0 0 0 �I 0 0

"
�

3 RT 0 0 0 0 �I 0

"3 F 0 0 0 0 0 �I

< 0 (21)
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where


1 := �AP � PA� C
T
R
T �RC


2 := I


3 := "
�

1 PW0 "1 G
T

"
�

2 PW1

"2 (1� d)� G
T

"
�

3 R "3 F
T

T

:

It follows from the Schur Complement Lemma (Lemma 1) that (22)
holds if and only if:


1 +
T
3 


�1
2 
3 < 0

or

� AP � PA � C
T
R
T �RC + "

�1
1 PW0W

T
0 P

+ "1G
T
G+ "

�1
2 PW1W

T
1 P + "2(1� d)�1

G
T
G

+ "
�1
3 PKK

T
P + "3F

T
F < 0: (23)

Noticing that R = PK , it can be easily seen that (23) is the same
as (21). Hence, it follows from Theorem 1 that, with the estimator gain
given by (20), the error-state system (8) of the delayed neural network
described by (1) and (4) is globally exponentially stable. This ends the
proof of Theorem 2.

Remark 1: Notice that in Theorem 2, the matrix inequality (21) is
linear on the parameters "1 > 0, "2 > 0, "3 > 0, P > 0, and Q.
Therefore, by using the Matlab LMI toolbox, it is straightforward to
design the neuron state estimator which guarantees the global expo-
nential convergence of the error dynamics. Furthermore, if the delay is
constant [1], [9], [10], [15], [17], we just need to let d = 0 in our main
results.

IV. A SPECIAL CASE

In the literature, a vast amount of results have been published on the
general topic of the stability analysis of the delayed neural networks.
Various issues have been investigated, such as the asymptotic stability
case or the exponential stability case, the constant delay case or the
time-varying delay case, the delay-independent stability criteria or the
delay-dependent stability criteria, etc., see [1], [4], [10]–[12], and [17]
for some examples. It should be pointed out that, although this letter is
focused on the neuron estimation problem, within the same framework,
the main results can still be generalized to the conventional stability
analysis problem for delayed neural networks.

Consider the delayed neural network (1), and let u� be its equilib-
rium point. For presentation convenience, we can shift the intended
equilibrium u� to the origin by letting x = u�u�, and then the system
(1) can be transformed into

_x(t) = � Ax(t) +W0l (x(t)) +W1l (x (t� h(t)))

x(t) ='(t); t 2 [�h; 0]; h = sup
t2[0;1)

h(t) (24)

where x(t) = [x1(t); x2(t); � � � ; xn(t)]
T 2 n is the state vector of

the transformed system, and the transformed neuron activation function
l(x) = g(x + u�) � g(u�) satisfies

jl(x)j � jMxj (25)

where M 2 n�n is a known constant matrix. Notice that we do not
need the traditional monotonicity and smoothness assumptions on the
activation function l(x).

The stability analysis problem for the delayed neural network of the
type (24) has attracted significant research interests [1], [4], [10]–[12].
Our results derived in the previous section can be used to develop an
alternative criterion for testing the exponential stability of the neural
network (29).

Theorem 3: If there exist positive scalars "1, "2 and a positive–defi-
nite matrix P 2 n�n such that the following linear matrix inequality:

�AP�PA PW0 "1M
T PW1 "2(1�d)

� MT

W T
0 P �"1I 0 0 0

"1M 0 �"1I 0 0

W T
1 P 0 0 �"2I 0

"2(1�d)
� M 0 0 0 �"2I

<0

(26)

holds, then the delayed neural network (24) is globally exponentially
stable.

Proof: The proof follows the same line of the proofs of Theorem
1 and Theorem 2 and is, thus, omitted.

Remark 2: Theorem 3 reveals that the exponential stability of the
delayed network (24) can be checked by examining the solvability of
the LMI (24), which can be readily conducted by utilizing the Matlab
LMI toolbox. In contrast to the existing results on delay-independent
asymptotical stability, such as those given in [1], [4], our LMI approach
has the advantage that the LMIs can be solved numerically and effec-
tively by using the interior-point method [3].

V. NUMERICAL EXAMPLES

Two simple examples are presented here so as to illustrate the use-
fulness of our main results.

Example 1: In this example, we examine the exponential stability
of a delayed neural network.

Consider a two-neuron neural network (24), where

A =
0:8 0

0 0:8
W0 =

1 �2

�2 1
W1 =

1 1

1 1

M =
0:1 0

0 0:1
d = 0:1:

By using theMatlab LMI toolbox, we solve the LMI (26) for "1 > 0,
"2 > 0, P > 0 and obtain

"1 = 12:3045 "2 = 15:9232 P =
1:1342 0:0467

0:0467 1:3459
:

Therefore, it follows from Theorem 3 that the two-neuron neural net-
work (24) is globally exponentially stable. The response of the state
dynamics to the initial condition (10,3) is shown in Fig. 1, which veri-
fies our theoretical conclusion.

Example 2: Now, we demonstrate how to design an estimator for
the delayed neural network. Assume that the delayed neural network
in (1) and (4) is described by the following data:

A =

2 0 0

0 3 0

0 0 2

W0 =

0:2 �0:4 0:4

�0:4 0:2 0:2

0:2 0:4 �0:4

W1 =

0:2 0:2 0:2

0:2 0:2 0:2

0:2 0:2 0:2

V = [0:5 0:5 0:5]T

C = I3 h(t) = 0:4 sin(t) (d = 0:4)

G =0:5I3 F = 0:4I3:
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Fig. 1. x (solid), x (dashed).

Fig. 2. u (dashed), û (solid).

Solving the LMI (19) for "1 > 0, "2 > 0, "3 > 0, P > 0 and R
gives

"1 =1:3156 "2 = 1:1134 "3 = 0:9965

P =

1:3086 0:0003 �0:0002

0:0003 2:4436 0:0004

�0:0002 0:0004 1:3077

R =

2:4939 0 0

0 �0:5009 0

0 0 �0:5009

and, hence, we have

K = P
�1
R =

1:9058 0:0000 �0:0001

�0:0002 �0:2050 0:0001

0:0003 0:0001 �0:3830

:

The true state u1 (respectively, u2, u3) and its estimate û1 (respec-
tively, û2, û3) are displayed in Fig. 2 (Figs. 3 and 4, respectively). The
simulation results imply that, with the obtained estimator gain K , the
error dynamics for the neural network converges to zero exponentially.

Fig. 3. u (dashed), û (solid).

Fig. 4. u (dashed), û (solid).

In other words, the neuron states are tracked very well by the designed
estimator.

VI. CONCLUSION

In this letter, we have dealt with the problem of state estimation for
a class of delayed neural networks. We have removed the traditional
monotonicity and smoothness assumptions on the activation function.
A linear matrix inequality (LMI) approach has been developed to solve
the problem addressed. Specifically, the conditions for the existence of
the expected estimators have been derived in terms of the positive–def-
inite solution to an LMI involving several scalar parameters, and the
analytical expression characterizing the desired estimators has been ob-
tained. We have also shown that the main results can be easily extended
to cope with the stability analysis problem for delayed neural networks.
Finally, two numerical examples have been used to demonstrate the
usefulness of the main results.
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