
Huang et al. 2024 | https://doi.org/10.34133/space.0178 1

RESEARCH ARTICLE

QoS-Aware Precoding for Dual-Polarized 
Downlink Massive MIMO LEO  
Satellite Communications
Yan  Huang1,2, Li  You1,2*, Kezhi  Wang3, and Xiqi  Gao1,2

1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China. 
2Purple Mountain Laboratories, Nanjing 211100, China. 3Department of Computer Science, Brunel 

University, London Uxbridge, UK.

*Address correspondence to: lyou@seu.edu.cn

Low Earth Orbit (LEO) satellite communications (SATCOM) are important for wireless networks and offer 
better global wireless access services than higher altitude SATCOM options. SATCOM performance is affected 
by the number of antennas, which is usually constrained by the satellite space. In this paper, the application 
of dual-polarized technology is considered to assist LEO SATCOM. Compared with single-polarized antennas, 
dual-polarized antennas utilize two different polarization orientations to transmit and receive data. This can 
improve the quality of service (QoS) performance, as it allows for twice the amount of data to be transmitted 
over the same time–frequency resources. Specifically, we characterize the dual-polarized channel in massive 
multiple-input multiple-output (MIMO) LEO SATCOM and investigate the precoding design for enhancing the 
system performance. In particular, a precoding optimization problem is formulated, which aims to jointly 
optimize the system throughput and the QoS performance. We divide the problem into two stages and 
develop novel algorithms for each stage to obtain the precoding vectors. The numerical results demonstrate 
that the dual-polarized technology can improve the system throughput, and the proposed algorithm leads 
to a higher percentage of users achieving their QoS requirements compared to conventional approaches.

Introduction

   Low Earth Orbit (LEO) satellite communications (SATCOM) 
are integral parts of modern space technology [  1 ,  2 ]. They have 
several advantages over the higher altitude counterparts, includ-
ing lower latency, faster data transmission rates, and reduced 
launch costs [  3 ]. As the demands for high-speed internet con-
nectivity and other space-based services continue to grow, LEO 
SATCOM are expected to play an increasingly important role in 
shaping the future of the communication systems. The existing 
works on LEO SATCOM have explored many promising applica-
tions. For example, massive multiple-input multiple-output 
(MIMO) transmission technology has been integrated with LEO 
SATCOM systems to enhance both spectral efficiency (SE) and 
energy efficiency (EE) [  4 –  6 ]. Meanwhile, in [  7 ], the system EE 
has been considered together with the quality of service (QoS) 
performance, and the QoS-aware precoding has been studied to 
enlarge the percentage of users achieving their QoS require-
ments. Considering the time-varying channels, a user scheduling 
and power allocation design has been proposed in [  8 ] based on 
linear precoding, which is capable of ensuring individual QoS 
requirements within a specific time period. However, SATCOM 
performance is greatly affected by the number of antennas [  9 ]. 
Massive MIMO technology can be applied to improve the system 
performance [  10 ], but the number of antennas is still limited due 
to the space limitations of the satellite.

   Another practical way to improve SATCOM performance is 
the utilization of dual-polarized antenna arrays with an addi-
tional polarization dimension, which effectively doubles the 
number of parallel subchannels [ 10 ]. The model of a 2 × 2 dual-
polarized antennas has been established in [  11 ] and has been 
generalized for arbitrary array sizes in [  12 ]. Meanwhile, the 
existence of radiation [  13 ], including the polarization mismatch 
during the propagation in the scattering environment [ 10 ], will 
affect the dual-polarized antenna performance. Moreover, the 
compact antenna array faces inherent issues such as mutual cou-
pling effects, which result in energy interchange among elements 
and impact antenna pattern, impedance characteristics, and 
reflection coefficients, ultimately affecting system performance 
positively or negatively [  14 ,  15 ]. To characterize the effects, both 
the Z-parameter and the S-parameter formulation of the mutual 
coupling model have been intensively investigated [  16 ]. Many 
existing works have incorporated the mutual coupling effects in 
the communication model [  17 –  19 ].

   The dual-polarized antenna array has been extensively applied 
in various scenarios. In [ 10 ], the authors have investigate the 
performance of dual-polarized technology with the assistance of 
the reconfigurable intelligent surface in the presence of polariza-
tion imperfections. In [  20 ], sub-terahertz bands have employed 
dual-polarized antennas to handle space occupancy and enhance 
system SE. Other metrics like EE have also been considered for 
such systems [  21 ]. These findings inspire the application of this 
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technique while considering QoS requirements, as each user 
may require different services with varying QoS requirements 
[ 8 ]. Recent studies have concentrated on maximizing the total 
throughput of QoS-guaranteed SATCOM, with multiple users 
requesting network services simultaneously [ 8 ]. The max–min 
fairness optimization framework has been utilized to ensure 
an acceptable QoS level with dual-polarized SATCOM channels 
[ 3 ]. Furthermore, linear precoding techniques have been uti-
lized to maximize the data throughput in dual-polarized chan-
nels [  22 ].

   Motivated by the aforementioned considerations, this paper 
adopts the dual-polarized massive MIMO LEO SATCOM model 
and focuses on downlink transmission QoS performance. To 
enhance system throughput, we propose a QoS-aware precoding 
design for dual-polarized LEO SATCOM channels. The remain-
der of this paper is organized as follows. We first characterize the 
time-varying dual-polarized channels in massive MIMO LEO 
SATCOM. Subsequently, we propose a precoding algorithm with 
dual-polarized antennas, which can improve QoS performance 
and system throughput at the same time. The simulation results 
demonstrate that the dual-polarized technology can improve the 
system throughput, while the proposed algorithm ensures that 
more users can achieve their QoS require ments. Notations: 
Column vectors and matrices are typeset in lowercase and upper-
case boldface letters, respectively. The M × N vector space is 
denoted by  ℂM×N   . The identity matrix of size M × M is marked 
by I  M﻿. The Hadamard product is represented by ⊙. The Kronecker 
product is denoted by ⊗. The operator  det {. }    denote the deter-
minant operation. The transpose, conjugate, and conjugate-
transpose operations on matrices are denoted by  (. )T   ,  (. )∗   , and 
﻿(. )H   , respectively.   

System model and problem formulation
   In a dual-polarized massive MIMO LEO SATCOM system 
downlink, the satellite-side transmitter serves K user termi-
nals (UTs) and is equipped with a dual-polarized uniform 
planar array (UPA). The UPA has  Nx

t     and  Ny
t    dual-polarized 

elements on the x and y axes, respectively, with half-wave-
length separation. The total number of dual-polarized anten-
nas sums up to ﻿Nx

t N
y
t    ; thus, the number of polarized antennas 

is  Nd
t = 2Nx

t N
y
t    . Besides, each UT is assumed to adopt one 

dual-polarized element.  

Dual-polarized massive MIMO LEO SATCOM 
Downlink Channel
   In this subsection, we describe the dual-polarized downlink 
channel between the satellite and UTs in detail. We assume 
that the channel  Hk ∈ ℂ

2×Nd
t     for UT k follows the Rician dis-

tribution with Rician factor κk﻿, based on which ﻿Hk   can be 
written as
﻿﻿  

 where γk﻿ represents the average channel power associated with 
relative position of the satellite and UT k. The dual polarization 
effects can be considered and are characterized by the matrix 
X, which is given by

﻿﻿   

   The parameter χ measures the channel discrimination ability 
between 2 polarizations, which is known as cross polarization 
discrimination (XPD) [  23 ].

   In  Eq. 1 ,  Hk    denotes the deterministic line-of-sight (LoS) 
part of the channel, which is modeled as [12]

﻿﻿   

   where the UPA response vector for the kth UT can be given by [ 4 ].
﻿﻿   

   where  vx
k
    and  vy

k
    are the array response vectors of the x and y 

axes, given by
﻿﻿   

   The space angles  �x
k
    and  �y

k
    can be calculated using the 

physical angles �x
k
 and �y

k
 [4]. Specially, �x

k
= sin�

y

k
cos�x

k
 and 

�
y

k
= cos�x

k
 [4].

   Meanwhile, the non-line-of-sight (NLoS) part of the channel 
corresponding to random scattering can be modeled as [12]

﻿﻿   

   where  ̃gk ∼  (0, 1)   , and Φ ∈ ℂ 2×2 models the phase shift due 
to the scattering differences among the 4 polarized channels [  24 ].

   In addition, U(ψ) in  Eq. 1  denotes the rotation matrix with 
respect to a given orientation difference ψ between the dual-
polarized antennas at the LEO satellite side and the UT side, 
which can be defined as follows [  25 ]

﻿﻿  

 Based on the above analysis, we set G̃ = g̃ k� and reformulate 
channel Hk as 
﻿﻿   

   For the dual-polarized UPA, the mutual coupling occurs not 
only between 2 elements but also between the 2 ports of co- and 
cross-polarization for each dual-polarized element [  26 ]. Then, 
we define  �d ∈ ℂ

Nd
t ×N

d
t     as the symmetric mutual coupling matrix 

(1)Hk=

(√
�k�k
1+�k

Hk+

√
�k

1+�k

H̃k

)
U(�) ,

(2)X =

⎡
⎢⎢⎢⎢⎣

�
�

1+�

�
1

1+��
1

1+�

�
�

1+�

⎤
⎥⎥⎥⎥⎦
.

(3)Hk = X⊗ vH
k
∈ ℂ

2×Nd
t ,

(4)vk = vx
k
⊗ v

y

k
∈ ℂ

Nx
t N

y
t ×1,

(5)

(6)�Hk =(X⊙�)⊗
(
�gkv

H
k

)
∈ℂ

2×Nd
t ,

(7)

U(𝜓)=Ψ(𝜓)⊗I
N
x
t ×N

y
t
=

[

cos𝜓 − sin𝜓

sin𝜓 cos𝜓

]

⊗I
N
x
t ×N

y
t
∈ℂ

N
d
t ×N

d
t .

(8)

Hk =

[(√
𝜅k𝛾k
1+𝜅k

X+

√
𝛾k

1+𝜅k
�gkX⊙�

)
⊗vH

k

]
U(𝜓)

=

[(√
𝜅k𝛾k
1+𝜅k

X+

√
𝛾k

1+𝜅k

X⊙ �G

)
⊗vH

k

]
U(𝜓).
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of the dual-polarized UPA at the transmitter [  27 ,  28 ]. The down-
link channel is modeled as follows

﻿﻿      

Upper bound of the ergodic rate
   At time t, the satellite sends data signals to the users scheduled 
to receive them. The received signal of the kth UT, denoted by 
yk(t), is expressed as
﻿﻿   

   In  Eq. 10 , sk﻿(t) is the transmit signal for user k with |sk﻿(t)|
2 = 1, 

﻿n  k﻿(t) ∈ ℂ 2×1 is the additive white Gaussian noise with average 
energy N0, and bk(t) ∈ ℂ

Nd
t ×1 represents the precoding vectors 

of user k. Precoding vectors are limited by the satellite’s power 
budget, which can be expressed as

﻿﻿   

   where P tot is the maximum transmit power that the satellite can 
allocate.

   Next, we consider the transmission rate expression based 
on Eq. 10. The right-hand side of Eq. 10 consists of two parts. 
The first part shows the desired signal, and the second part 
displays the interference from other users. Based on the afore-
mentioned analysis, the data throughput for the kth user at time 
t can be expressed as follows

﻿﻿   

   where  C(t) =
∑

�≠k Hk(t)b�(t)b
H
�
(t)HH

k
(t) +N0I2   , and B w is 

the system bandwidth.
   Note that the channel state information (CSI) varies over 

time, and its acquisition accuracy is critical for the perfor-
mance. Considering the pilot training and channel estima-
tion overhead, obtaining the instantaneous CSI (iCSI) at the 
satellite side is challenging [  29 ]. Thus, we propose a precod-
ing design based on the statistical CSI (sCSI) knowledge χ, 
﻿κk﻿, γk﻿, Ψ(ψ) and v  k﻿. It can be noted that the sCSI can remain 
stable for extended periods [  30 ]. In this paper, we assume 
that the sCSI remains unchanged in the continuous time set 

﻿t    if ﻿‖‖‖vk
(
t0

)
−vk

(
t1

)‖‖‖
2

2
≤0.02∗

‖‖
‖
vk

(
t0

)‖
‖‖
2

2
, ∀t0, t1∈ t   , and define 

it as a time block. After that, the statistical channel information 
will change accordingly based on  Eqs. 4  and  5 . We consider the 
ergodic data rate with sCSI. Based on the above transmission 
model, the ergodic data rate at time block  t    is given by

﻿﻿   

   where  �    represents the expectation operator and Rk﻿ remains 
unchanged in time block t with constant bk(t), t ∈ t.

   The value  Rk

(
t
)
    can be estimated via Monte Carlo method, 

but it will lead to high computational complexity. Next, we 
consider deriving a tight upper bound of the ergodic rate based 
on the sCSI [  31 ]. First, we rewrite the  expression as  ﻿   

   Note that  Rk

(

t
)

    is concave with respect to the matrix 
﻿HH
k
(t)Hk(t)   . Thus, the upper bound can be written as
﻿﻿   

   where the expectation expression  �t∈t

{
HH

k
(t)Hk(t)

}
    represents 

the channel correlation matrix at the satellite side for the kth 
UT, given by

﻿﻿   

   where D is a real symmetric matrix given by
﻿﻿   

   If we define
﻿﻿  

then D can be decomposed as D = Q�QT. Thus, we have 
�t∈t

{
HH

k
(t)Hk(t)

}
= H

H

k

(
t
)
Hk

(
t
)
, where

﻿﻿   

   Note that the required CSI knowledge is assumed to be 
invariant when the distance traveled by the satellite is within 
2% of the distance between the satellite and the UTs. It can be 
updated accordingly with large variations of the channel [ 4 ] 
based on  Eq. 4  and  5 . Subsequently,  Rk    can be rewritten as

﻿﻿  

(9)Hk =

[(√
𝜅k𝛾k
1+𝜅k

X+

√
𝛾k

1+𝜅k

X⊙ �G

)
⊗vH

k

]
�dU(𝜓) .

(10)

yk(t)=Hk(t)
∑K

�=1
b�(t)s�(t)+nk(t)

=Hk(t)bk(t)sk(t)+Hk(t)
∑

�≠k
b�(t)s�(t)+nk(t)∈ℂ

2×1
.

(11)
K∑
k=1

‖‖bk(t)‖‖22 ≤ Ptot, ∀ t,

(12)Rk(t) = Bwlog det
(
I2 + C−1(t)Hk(t)bk(t)b

H
k (t)H

H
k
(t)

)
.

(13)
Rk

(

t
)

=Bw�t∈t

{

log det
(

I2+C
−1(t)Hk(t)bk(t)b

H

k
(t)HH

k
(t)

)}

,

(14)

(15)

(16)

(17)

C =
�k�k

1+�k

X
H
X+

�k

1+�k

I2=

⎡
⎢⎢⎢⎢⎣

�k

2
√
�

1+�

�k�k

1+�k

2
√
�

1+�

�k�k

1+�k

�k

⎤
⎥⎥⎥⎥⎦
.

(18)

(19)Hk

(
t
)
=
[
�

1
2QTΨ(𝜓)⊗ vH

k

(
t
)]
�.

(20)
Rk

(

t
)

= Bwlog det
(

I2+C
(

t
)−1

Hk

(

t
)

bk

(

t
)

b
H

k

(

t
)

H
H

k

(

t
)

)

,
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where  C
�
t
�
=

∑
�≠k Hk

�
t
�
b�

�
t
�
bH
�

�
t
�
H

H

k

�
t
�
+N0I2   .   

Problem formulation
   In this paper, we consider optimizing the total data throughput 
of the LEO SATCOM. The throughput of user k in T time 
blocks can be expressed as
﻿﻿   

   where  Rk

(
t
)
    is the upper bound of the ergodic rate based on 

the slow-varying sCSI  Hk    given in  Eq. 20 .
   In the downlink transmission, different services have differ-

ent delay constraints. We assume that user k requests to trans-
mit  Qmin

k
    in τk﻿ time blocks, with the unit being Mbits. Then, 

from  Eq. 21 , we get  Qk =
∑�k

(t)=1
Rk

�
t
�
   . If  Qk ≥ Qmin

k
   , then the 

QoS requirement cannot be satisfied. The throughput success-
fully delivered to user k is given by

﻿﻿   

   where 1(·) is the indicator function.
   In this work, we aim to optimize the successfully delivered 

throughput over the selected time blocks, subject to individual 
delay constraints. We denote  b = {bk

(

t
)

, ∀ t,∀k}   . The precod-
ing problem is formulated as follows

﻿﻿   

   It can be noted that  1    is a fractional nonconvex problem, 
which presents a challenge. In the following sections, we 
will propose a precoding design for the dual-polarized LEO 
SATCOM channels.    

Precoding Algorithm
   Note that  1    involves nonconvex constraints and discontinuous 
constraints. In addition, the resource allocation process also 
involves user scheduling, which makes it challenging to handle. 
In this section, we present a 2-stage algorithm for addressing 
﻿1   , which aims to enhance the QoS performance and optimize 
the successfully delivered throughput in dual-polarized LEO 
SATCOM channels at the same time. In stage I, we maximize 
the number of users who can achieve their QoS requirements. 
Then, in stage II, we allocate time blocks for the selected users 
from stage I, while the precoding vectors are optimized to 
maximize the throughput.

   Specifically, in stage I, we split      into two groups.      includes 
users who can achieve their QoS requirements, while the others 
are in  ∖   . The problem in the first stage can be written as

﻿﻿   

   Methods for handling problem  2    will be given in the later 
sections. Based on the results in  Eq. 24 , we proceed with the 
precoding matrices across all time blocks in stage II, aimed at 
maximizing the successfully delivered throughput. This opti-
mization problem can be formulated as follows

﻿﻿   

   The optimization problems in the 2 stages of the proposed 
system are computationally challenging to handle due to their 
nonconvex nature [  32 ]. Exhaustive search is an intuitive approach. 
For instance, to maximize the throughput, one needs to obtain 
the precoding matrices for every possible time block allocation 
scheme and user scheduling scheme and then obtain the corre-
sponding objective value. The optimal solution is then obtained 
by selecting the time block allocation scheme that achieves the 
maximum throughput, along with the corresponding precoding 
matrices. However, the exponential growth of the complexity of 
exhaustive search with the number of time blocks and number 
of users makes it impractical. Hence, alternative algorithms need 
to be developed to handle these 2 problems.  

Stage I: User selection algorithm
   We propose a user selection algorithm in this subsection to 
ensure the QoS level for the majority of users. This approach 
involves constructing an alternative problem by introducing 
auxiliary variables 

{
�k
}
k∈

 for an arbitrary subset of users,  
[32], as detailed below
﻿﻿  

﻿﻿   

   It is obvious that the optimal αk﻿ should satisfy that αk﻿ ≤ 1. In 
addition, it is worth noting that the QoS requirement for a user 
﻿k can be fulfilled if and only if the optimal αk﻿ = 1. Consequently, 
the problem of maximizing the number of users whose QoS 
requirements are satisfied can be rephrased as identifying the 
largest subset of users      such that the optimal  �k = 1, ∀k ∈    .

   Next, we propose a user selection algorithm to handle  4   . The 
algorithm removes one user with the smallest αk﻿ ≤ 1 in each itera-
tion, as this user has the largest difference in QoS. This approach 
is intuitive and reasonable based on the above analysis.

   In step 3 of Algorithm 1, we encounter the nonconvex opti-
mization problem, which poses significant challenge. In order 
to address this issue, we leverage the Lagrange dual transform 
to reformulate the problem. The Lagrange dual transform [  33 ] 
enables us to replace fractional expressions with corresponding 
parameters from an auxiliary variable collection and manipu-
late the ratio outside the logarithmic operator. This approach 
not only facilitates the optimization process but also provides 
insights into the problem structure and enables us to derive 
analytical solutions.

(21)Qk =

T∑
t=1

Rk

(
t
)
,

(22)Gk = Qk ⋅ 1
(
Qk ≥ Qmin

k

)
,

(23)
1:maximize

b

K
∑

k=1

Gk

s. t. (11), (22).

(24)

2: maximize
b,

∣ ∣

s. t. (11),

 ⊆,
∑𝜏k

t=1
Rk

(

t
)

≥Qmin

k
, ∀k∈ .

(25)

3: maximize
{bk(t)}k∈

∑

k∈
Qk

s. t. (11),
∑

�k

t=1
Rk

(

t
)

≥Qmin

k
, ∀k∈ .

(26a)4: minimize
{bk(t)}k∈ ,{�k}k∈

∑
k∈

(
�k−1

)2

(26b)s. t. (11),

�k∑
t=1

Rk

(
t
)
≥ �2

k
Qmin
k

, ∀k ∈  .
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   ﻿

   In particular, with index n, we introduce a set of auxiliary 
matrices  

{
�
n
k

(
t
)}

k∈
∈ ℂ

2×1, n = 1, 2, …   . Then, a set of aux-
iliary subproblems are introduced to ensure convergence to 
the globally optimal point of problem 5. The nth subproblem 
is given by

﻿﻿  

﻿﻿   

   where
﻿﻿   

   An alternating optimization framework is used to iteratively 
optimize the parameters of the subproblems. When  

{
bnk
(
t
)}

k∈
    

and  
{
�n
k

}
k∈

    are fixed, the optimal  
{
�
n
k

(
t
)}

k∈
    can be achieved 

when their first-order derivatives in  Eq. 30  are all equal to zero, 
which is given by

﻿﻿   

   Next, we focus on the optimization of  {
{
bnk
(
t
)}

k∈
,
{
�n
k

}
k∈

}    

with fixed  
{
�
n
k

(
t
)}

k∈
   . Note that  n

5
    is still nonconvex due to 

the fractional term in  Eq. 29 . Then, we apply the quadratic 

transform [ 32 ]. We introduce the set of auxiliary variables 
﻿
{
yn
k

(
t
)}

k∈
    for each problem  n

5
   , and the constraint in  Eq. 29  can 

be transformed into
﻿﻿   

   Thus, we equivalently consider the following problem
﻿﻿   

   We aim to iteratively optimize  
{
�
n
k

(
t
)}

k∈
    and other vari-

ables according to  Eq. 33 . The update of  
{
�
n
k

(
t
)}

k∈
    is outlined 

in  Eq. 31 . For the optimal  
{
yn
k

(
t
)}

k∈
   , the derivative of each 

﻿yn
k

(
t
)
    in  Eq. 32  is calculated and equated to zero, while all other 

variables are kept fixed, which is given by
﻿﻿   

   Next, we only need to find the optimal  
{
bnk
(
t
)}

k∈
    and 

﻿
{
�n
k

}
k∈

   , which is listed as follows
﻿﻿   

   Note that with other variables fixed,  n
7

    is a convex problem 
with cone constraints. Algorithm 2 formally describes an itera-
tive algorithm to handle it, which is a second-order cone pro-
gramming (SOCP) problem that can be optimally solved using 
existing techniques, such as the interior-point method [ 30 ]. 
The initial αk﻿ is set as 0 for each user so that the initial b  k﻿(t) 
only needs to satisfy  Eq. 11 . The convergence analysis will be 
given in the later subsections.        

(27a)n
5 : minimize{

bn
k(t)

}
k∈

,
{
�n
k

}
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Stage II: Throughput optimizing algorithm
   We propose an algorithm to handle  3    in this subsection with 
the user selection obtained from the “Stage I: User selection 
algorithm” section. Specifically, we utilize the weighted mini-
mum mean-square error (WMMSE) method [ 32 ] and employ 
the block coordinate descent method [ 32 ] to reformulate the 
original optimization problem as a sequence of subproblems. 
In each iteration, one of the subproblems involves the optimiza-
tion of the precoding matrices.

   To overcome the challenge of the sum-of-logarithms term 
with a fractional expression in each logarithmic operator in  3   , 
we leverage the connections between WMMSE and the rate 
expression.

   First, we consider the linear receiver filter as follows
﻿﻿   

   The mean-square error of data transmission of the kth user 
at the tth time block is calculated by using the receiver filter 
﻿uk
(
t
)
∈ ℂ

2×1    of the user k and considering the mutual inde-
pendence of signal vectors and noise, which is expressed as 
follows

﻿﻿   

   Next, we introduce a set of auxiliary variables  
{
wk

(
t
)}

k∈
    

for the tth time block and define the following functions [ 32 ]
﻿﻿   

   Meanwhile, with given  
{
bk
(
t
)}

k∈
   ,  rk

(
t
)
    is the lower bound 

of the rate expression in  Eq. 20 . Note that when the other two 
are fixed,  rk

(
t
)
    is a concave for  
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t
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k∈
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{
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   , and 

﻿
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   . Specially, the optimal  
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(
t
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is given by

﻿﻿  

﻿﻿   

   where  ek
(
t
)
    in  Eq. 37b  is obtained by plugging  Eq. 37a  into 

 Eq. 35 . We use  rk
(
t
)
    to replace the rate expression in  3    and 

introduce the index m; the problem is transformed as follows
﻿﻿   

   Next, the block coordinate descent method [ 32 ] is applied. 
Specially, we optimize the 3 sets of variables in  m

8
    iteratively. 
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   ,  
{
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    and  

{
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(
t
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    can be 

optimized via Eqs. 37a and 37b, respectively. Next, we focus on 
the optimization of the precoding matrices.

   For convenience, we omit the iterative number in the block 
coordinate descent method and remove the irrelevant terms. 
The problem turns into

﻿﻿   

   Since  ek
(
t
)
    is a quadratic function of  

{
bk
(
t
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k∈
   ,  9    is a 

convex problem with cone constraints. Algorithm 3 formally 
describes an iterative algorithm to handle it, which is an SOCP 
problem that can be optimally solved using existing techniques, 
such as the interior-point method [ 30 ].
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Convergence and computational complexity analysis
   In stage I, it can be observed that Algorithm 2 involves the 
Lagrange dual transform and the interior-point method. It is 
demonstrated in [ 33 ] that the Lagrange dual transform is guar-
anteed to converge, with the weighted sum rate monotonically 
nondecreasing after each iteration. Next, we analyze the com-
plexity of Algorithm 2. Assuming equal candidate sizes for 
each user, the main complexity of Algorithm 2 lies in step 3. 
Specifically, it is step 4 in Algorithm 2 that requires handling 
of the SOCP problem in each iteration. This problem has 

(
�kK + K

)
 variables and 

(
�kK + K

)
 constraints. From [30], 

the complexity of each iteration is, 
(

(

�kK+K
)3
)

 and the 
number of iterations is 

�√
�kK + K

�
, so the total complexity 

can be given by 
(
K
(
�kK+K

)3.5).
   In stage II, it is worth noting that Algorithm 3 is composed of 

the WMMSE method and the interior-point method. It has been 
shown in [32] that the WMMSE method will always converge. 
We also analyze the computational complexity of Algorithm 3 by 
assuming identical candidate sizes for each user [32]. The primary 
computational complexity in each iteration of Algorithm 3 comes 
from the SOCP problem in step 4. Since the input relies on the 
result of stage I, we assume that the problem has 

(
N2

)
 variables 

and 
(
M2

)
 constraints. From [30], the complexity is 

(
N2
2
M2

)
, 

and we assume a number of iterations, denoted as N D. The total 
complexity is given by ﻿

(
NDN

2.5
2

M2

)
   .    

Simulation results

   We present simulation results to evaluate the proposed algo-
rithms’ performance in this section, using parameters detailed 
in the system model in [23]. The simulation operates in the 
Ka-band, and we provide relevant parameters in Table 1 [23].

   According to [ 29 ], the downlink channel power can be cal-
culated as follows

﻿﻿   

   where G sat and G ut represent the antenna gains of the transmit-
ter and the receiver, respectively. The noise power, denoted by 
﻿N 0, is defined as k BΔ BT n, with k B being the Boltzmann constant 
and T n = 300 K being the noise temperature [ 29 ].

   In stage I, the cardinality of the object function      decreases 
after each iteration, so the iterations will always converge, thus 
is omitted. In stage II, the iterative process is shown in Fig.  1 . 
Note that it converges rapidly for different power budgets.         

   Next, we conduct simulations to compare the performance 
of the proposed algorithm under different XPD values in dual-
polarized LEO SATCOM channels. Specifically, we maintain 
all other factors constant while varying XPD at 3 dB, 5 dB, and 
12 dB [ 23 ]. We investigate changes in system throughput and 
QoS performance.

   In Fig.  2 , we define η as the ratio between the number of 
users whose QoS requirements are satisfied and the total 
users [8], which represents the QoS performance. In the 
dual-polarized LEO SATCOM channels, for each XPD, the 
value of η follows the same downward trend, which can be 

categorized into two stages. In particular, the value of η stays 
steady before reaching a certain threshold. It exhibits a grad-
ual decline, with a progressively increasing rate of descent 
before reaching a certain threshold. Before that point, the QoS 
constraints are too small compared with the data rate and, thus, 
do not contribute to the performance of η. Note that increasing 
XPD can improve the signal to interference plus noise ratio 
(SINR) of received signals, thereby enhancing the QoS perfor-
mance. However, the relationship between the XPD and η is 
nonlinear. When we gradually increase the XPD and it is rela-
tively large, the matrix X in  Eq. 2  approaches the identity 
matrix; thus, the change of η is rather small. Figure  3  compares 
the system throughput under different XPDs. The changing 
patterns of Figs.  2  and  3  exhibit remarkable similarity, with the 
underlying causal factors being almost identical.                

   Afterward, we conduct simulations to compare the perfor-
mance of dual- and single-polarized MIMO SATCOM chan-
nels. The single-polarized MIMO SATCOM system has the 
same number of antennas with the dual-polarized antennas. 
The system model of the single-polarized channels is similar 
to that of [ 16 , 17 , 27 ].
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Fig. 1. Convergence performance versus the number of iterations.

Table 1. Simulation parameters

Parameter Value

System bandwidth Bw 800 MHz

Carrier frequency 20 GHz

Rician factor κk 12 dB

Antenna gain Gsat, Gut 3 dB

Satellite orbit altitude 1,000 km

Number of satellite antennas Nx
t
, N
y

t
, Nd
t

8, 8, 128

Number of UTs K 25

Number of time blocks 5
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   In Fig.  4 , η has the same definition with that in Fig.  2 . Figure 
 5  evaluates the system throughput of dual- and single-polarized 
antennas, with respect to the QoS requirements. In particular, 
for different antenna types, the throughput follows the same 
downward trend, which can be categorized into 2 stages. It stays 
steady before reaching a certain threshold and exhibits a grad-
ual decline, with a progressively increasing rate of descent. Note 
that the use of dual-polarized antennas in MIMO communica-
tion enables the simultaneous transmission and reception of 
signals in two different directions, resulting in increased system 
throughput. The changing patterns of Figs.  4  and  5  exhibit 
remarkable similarity, with the underlying causal factors being 
almost identical.                

   Finally, we conduct simulations to compare the performance 
between algorithms presented in this work and the max–min 
fairness precoding algorithm. The max–min fairness precoding 
algorithm, formulated as proportional fairness [ 3 ], aims to 

maximize the transmission rate of the worst user for fair dis-
tribution as follows

﻿﻿   

   Figure  6  shows the percentage of users achieving their QoS 
requirements, while Fig.  7  evaluates the system throughput of 
the proposed algorithm and the max–min fairness precoding 
algorithm, with respect to the QoS requirements. We set the 
﻿η = 0 and Throughput = 0 when all users cannot achieve their 
QoS requirements. It can be noticed that the proposed algorithm 
shows significant improvement, compared with the max–min 
fairness framework. Meanwhile, from Fig.  6 , note that when 
QoS rises to a certain threshold, the max–min fairness precod-
ing algorithm will cause the majority of users to fail to meet their 
QoS requirements, resulting in a sharp drop in system through-
put in Fig.  7 .                   

(41)f =maximize
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Fig. 4. Performance comparison between different antenna types on satisfied user 
proportion.
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Fig. 5. Performance comparison between different antenna types on system throughput.
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Conclusion

   This study focused on optimizing the QoS-aware precoding 
design for the downlink massive MIMO LEO SATCOM. 
Through dual-polarized antenna technology, we jointly opti-
mized the system throughput and QoS performance, account-
ing for slow-varying channel conditions. To tackle this problem, 
we proposed an algorithm consisting of two stages. In stage I, 
we employed iterative optimization with the Lagrange dual 
transform and proposed a user selection algorithm that ensures 
the QoS level of the majority of users. In stage II, we applied 
the WMMSE method and the block coordinate descent method 
to handle the precoding problem based on the results in stage 
I. Numerical results demonstrated that the proposed algorithm 
enables more users to achieve their QoS requirements, while 
the dual-polarized technology outperforms others in terms of 
system throughput.   
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