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Abstract

Digital Twin (DT) technology is increasingly important for real-time healthcare monitoring and
predictive analytics. However, existing healthcare systems face critical challenges, including
excessive computational load, high network latency, vulnerability to quantum cyberattacks,
and inefficient strategies for distributing tasks across cloud and edge environments. Existing
solutions often fail to scale efficiently, protect sensitive health data against future cyberattacks,
or deliver reliable performance under dynamic conditions. To address these challenges, this
work proposes an integrated healthcare framework that advances the state-of-the-art across
multiple dimensions.

First, to tackle the computational bottleneck in wearable healthcare devices, a lightweight
one-dimensional convolutional neural network (CNN) accelerator was designed and imple-
mented on field-programmable gate arrays (FPGAs), leveraging shift-based computation and
pipelined architecture. This achieved a classification throughput of 1145 GOPS (Giga opera-
tions per second), enabling ultra-low-latency and energy-efficient biosignal analysis. Second, to
enhance system responsiveness and scalability, a cloud-edge Digital Twin healthcare system was
developed, leveraging secure Internet of Things (IoT) communication, dynamic telemetry opti-
mization using Pyomo mathematical programming, and real-time predictive analytics. Third, to
address emerging data security threats, a novel quantum-secure healthcare Digital Twin model
was introduced, leveraging Quantum Key Distribution (QKD) protocols and hybrid artificial
intelligence (AI) models combining multilayer perceptrons (MLP), extreme gradient boosting
(XGBoost), and generative adversarial networks (GANs) for data augmentation. Finally, to opti-
mize system resilience under dynamic healthcare conditions, a dynamic task offloading strategy
was proposed, leveraging multi-agent reinforcement learning (MAPPO), adaptive cybersecurity
protection (ACTO), and quantum-enhanced task preprocessing (AQDT-IoT).

Experimental results demonstrate that the FPGA accelerator achieves 1145 GOPS through-
put for real-time biosignal classification, while the proposed cloud-edge healthcare system
reduces network latency by 40% and improves throughput by 30%. The hybrid AI model
achieves an average prediction accuracy of 97.48% across health indicators under 10-fold cross-
validation. Moreover, the adaptive task offloading framework increases task success rates by
32% and reduces error rates by 80%, significantly improving operational efficiency and sys-
tem robustness. Compared to previous approaches, the proposed framework delivers a highly
scalable, secure, and intelligent Digital Twin Healthcare system, significantly strengthening
patient monitoring, predictive decision-making, and preparedness against future quantum-era
cybersecurity threats.
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Chapter 1

Introduction

1.1 Background and Context

Health monitoring devices have displaced fundamental medical platforms by ushering in a new
era of tracking, analysing, and reacting to patient’s raw health data flows. They are universally
recognised as being at the frontier of healthcare advancement and remain to respond to key
healthcare challenges, as well as shape the future state of health care. This also encompasses not
only diagnosing diseases but also assessing patients outside the hospital and providing highly
individualised approaches [8], [9].

Furthermore, FPGAs’ use in healthcare changed the process of creating medical devices fun-
damentally in the sense of utilisation. Originally designed for incredibly efficient calculations,
those devices became critical for the analysis of vital signs, temperature, blood pressure and any
other parameters which require prompt detection in emergency situations. FPGA applications
have been incorporated into various forms of monitoring systems such as ECG [10], EEG [11],
and EMG [12] to break down detailed cardiac, neural, and muscular activity.

In addition, Convolutional Neural Networks (CNNs) have almost single handedly brought
a revolutionary change in medical diagnosis. CNNs, trained on large amount of data, improve
their diagnostic performance over time, adding the level of sophistication in diagnostics, unpar-
alleled to any human work. Therefore, CNNs have been considered an unavoidable component
in the CAD systems and have expanded the field of personalised medicine profoundly [13].
Powerful health monitoring systems have emerged from the synergy between FPGA and CNN
technologies. The combination of computational resources and adaptability inherent to FP-
GAs with the deep analytical power of CNNs has resulted in highly innovative solutions that
break new ground in patient care and monitoring. These advances illustrate the importance of
computational technologies in healthcare and underscore continued efforts to pursue research
and development to enhance patient outcomes and transform healthcare provision [14]. His-
torically, the development of computational methods has played an important role in research
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involving health monitoring technologies, largely influenced by advancements in FPGA and
CNN technologies. As these technologies continue to evolve and integrate, the potential for
further innovation in healthcare monitoring remains vast, promising a future where real-time,
accurate, and personalized patient care is not just a possibility, but a reality [15], [16].

The digital transformation process currently transforming many industries, including health-
care, began with the launch of the industry 4.0 project in 2013. This approach relies heavily
on advanced technologies, such as the Internet of Things (IoT), cloud and edge computing, and
big data analytics. The digital twin (DT) paradigm, based on these technologies, allows for
the digital transformation of any system and is commonly utilized by industrial and engineer-
ing companies. Over the past decade, DT technology has been recommended for healthcare
applications, resulting in the development of Digital Twins Healthcare (DTH) [17].

Research in DT further encompasses the enhancement of wireless body area networks
(WBANs), alongside the deployment of advanced signal processing and sensors that support
DT, with the integration of Markov decision processes (MDP) and advanced computational
techniques to elevate both efficiency and reliability in health monitoring systems [18]–[21].
Within smart homes, DT applications strive to improve the monitoring, prediction, and control
of health parameters, utilising an array of wireless and wearable technologies. In the health-
care sector, professionals utilize DT in conjunction with cloud and IoT-edge computing, and
sophisticated data analysis methods, aiming to deliver intelligent predictive diagnostics and
secure health data management. This is all facilitated by the DT framework for assessments,
significantly advancing monitoring capabilities [22].

The Lung-DT framework features a modular microservices architecture, integrating IoT
sensor data and historical radiology for lung monitoring. It uses advanced preprocessing
pipelines and YOLOv8 neural networks for accurate disease classification. Real-time simulation
and predictive analytics are enabled through a dynamic digital twin. Designed for scalability, it
employs Docker and Kubernetes. However, the lack of integrated data storage limits seamless
patient history tracking and full accessibility for end-users [23]. Additionally, the virtual human
twin, a detailed digital model of human pathophysiology, has been proposed to establish a
collaborative infrastructure, which plays a crucial role in accelerating both the development and
adoption of DT technologies in healthcare [24].

The intersection of advancements in FPGAs, CNNs, and DT technologies has set the stage
for transformative shifts within the healthcare industry, enabling significant innovation (e.g.,
enhanced diagnostic precision and real-time monitoring systems). Together, they improve the
accuracy and speed of patient care while making it more personalized, creating new possi-
bilities as well as challenges in achieving better healthcare outcomes with greater operational
efficiencies.
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1.2 Significance of FPGA in Healthcare Monitoring

Amid the rapidly changing healthcare technology, FPGAs have served as key accelerators in
healthcare monitoring systems. Their unique properties and flexibility give them unprecedented
advantages over conventional computational approaches, enabling significantly more efficient
and comprehensive patient care as well as an enhanced analytics experience [17].

1.2.1 Role and Advantages of FPGA

In the universe of healthcare technologies, FPGAs are a very special occurrence as they can
be reconfigured and have tremendous processing speeds. FPGAs are nonstandard products
(nonconventional processors) unlike normal flexible, inflexible, and processor for that matter like
CPU or GPUs who have their own unprogrammable style of programming/architectural design
which can be changed to a limited size. Hence, they adapt easily based on the given need. In this
case, as part of the healthcare monitoring project, FPGAs being re-programmable targets makes
them qualify more than naturally rigid CPUs/FPGA due to its modify characteristics. These
new products address unique application-oriented component-level requirements to offer a fully
customized solution (enabling faster time-to-market), and serve various medical applications
such as patient monitoring up to real-time imaging with a very high level of functionality [25].
It is true that the natural parallel processing ability of FPGAs makes them vastly superior in
terms and they can work on more than one data flow at a time, which ARM processors are
not capable of. This is especially useful in healthcare applications where the ability to process
large amounts of data rapidly and precisely can mean a matter of life or death. For instance,
in cardiac monitoring systems, FPGAs allow the real-time interpretation of electrocardiogram
(ECG) signals as they are captured - identifying critical abnormalities faster and with less error
than traditional computational methods [26], [27].

In this study, throughput is reported in Giga Operations per Second (GOPS) instead of
floating-point operations per second (FLOPS), as fixed-point arithmetic was adopted for efficient
FPGA implementation. The use of fixed-point representation aligns with the resource-efficient
and high-speed computation goals targeted in wearable healthcare devices, where minimizing
complexity and maximizing throughput are crucial.

Conventional CPU and GPU based solutions often face challenges in latency, energy con-
sumption, and real-time responsiveness due to their software-driven architectures. These limita-
tions can critically impact time-sensitive healthcare applications such as emergency diagnostics
and continuous patient monitoring. FPGA acceleration overcomes these issues by enabling
hardware-customized, low-latency, and energy-efficient processing, making it an ideal choice
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for high-performance healthcare monitoring systems.

1.2.2 Emerging Trends in FPGA-based Solutions

An increased proliferation of more efficient monitoring systems has spurred an uptake in
FPGA technology applications within healthcare. Through the integration of FPGAs alongside
Artificial Intelligence and Machine Learning algorithms, one particular trend deserves mention
as very high level, that is usage CNNs. This integration effectively leverages the power of
healthcare devices to simultaneously carry out deep analyses like pattern recognition in medical
images quite faster than before. The net gain is an improved diagnosis rate and patient outcome
[28]. In wearable health monitoring, new trend in the market is wearable FPGA devices for
continuous health monitoring. Gather data on patient health metrics (e.g., heart rate, blood
pressure, or glucose) in real-time. These devices take advantage of the low power and high
processing speed found in FPGAs to responsibly deliver information back to a medical team as
soon as possible while maintaining long battery life. The shift towards portable and effective
healthcare monitoring solutions highlights the importance of FPGAs in enablement for proactive
and preventive medical care [29].

In addition, the era of telemedicine and remote patient monitoring has also emphasized
their applications in secure data transmission with high reliability. Hardware security is crucial
in protecting the privacy of patients and providing trustworthy medical diagnosis at home.
FPGAs are instrumental in encrypt sensitive data during its transition from patient devices
(such as smartphones) to health service providers [30]. The importance of FPGA technology
in healthcare monitoring cannot be enhanced enough. As a growth engine in the world of
healthcare, AI has begun to overhaul practices in medical diagnostics, patient monitoring, and
treatment. With trends such as AI integration, wearable health devices, and secure telemedicine
continuing to grow over the coming years, FPGA technology will inevitably be at the heart
of healthcare advances. Continued R&D in this space is set to uncover new and even more
innovative use-cases for FPGA technology, which are already proving their worth when it comes
to healthcare monitoring applications and beyond [31].

1.3 Introduction to CNN Architectures

CNNs are at the heart of some of today’s remarkable advancements in deep learning, most
notably in areas where a great deal of data like images and video need to be analyzed. The
usage of CNN architectures in the healthcare sector has seen a new dawn where there is an
efficiency and precision level among diagnostics [32]. This section concentrates on the specific
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meaning of the role to be played by One-Dimensional Convolutional Neural Network (1-D
CNNs) when it comes to processing healthcare data, mainly non-image shapes such as CSV
files which are extensively available in the field of healthcare data analysis [33].

1.3.1 1-D CNNs and Acceleration

1-D CNNs are used to model the feature across one dimension (time series) while capturing
its contextual patterns much better than other deep learning algorithms and, as a result, can be
really helpful in interpreting healthcare data like heartbeats or glucose count. 1-Dimensional
CNNs, on the other hand, are like their 2D and 3D versions applied in image processing but,
unlike them, designed to analyze data that follows over a single dimension. It is very useful, in
particular, when having to face numerous data from healthcare handled as CSV files and you
need to process the information quickly [34].

The technical architecture of 1-D CNNs has been engineered to be accelerated, with the
layout aligned for each layer to recognise patterns over a temporal sequence. This is accom-
plished by using convolutional layers that apply filters to the input data and pooling layers that
reduce dimensionality, followed by a fully connected (dense) layer that interprets the features
extracted earlier. The characteristic of 1-D CNNs, when tuning their hyperparameters efficiently
for complex datasets, holds to a great extent (fast) in that they can easily handle very intricate
data while not losing performance [35].

1.3.2 Relevance and Benefits

Utilization of 1-D CNN in the analysis of healthcare data has implications which are very
significant and hence providing a solution for various problems faced by researchers currently.
The use of 1-D CNNs allows the diagnostics by healthcare providers to be improved and
additionally increase overall data throughput, while at the same time shortening analysis speed
in situations where time-sensitive decisions can impact patient care. In addition, the use of 1-D
CNNs makes it possible to discover subtle patterns in data that traditional analysis techniques
cannot capture. It is a critical first step toward detecting early signs of diseases, allowing
for interventions and targeted treatment plans. The sequential nature of the healthcare data is
processed well by 1-D CNNs and this leads to a more informed diagnostics model which makes
decision easier for physicians ensuring better patient management [36].
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1.3.3 Design Considerations for Acceleration

Optimising 1-D CNN architectures for acceleration involves a series of design choices. It is
important to extract relevant features out of the healthcare data, so that appropriate filter sizes
and types are selected for an efficient capture with CNN. A compromise has to be made between
the depth and breadth of the network for both speedup in processing as well as accuracy. When it
comes to frameworks and tools, platforms like TensorFlow and PyTorch provide robust support
for creating 1-D CNN models. These platforms provide a complete library and APIs using which
authors can easily build 1D CNNs, providing it with a sufficient level of customisation in order to
be scaled as per the specific requirements of healthcare data analysis. Moreover, the platforms
provide different tools for data preprocessing, model training, and performance evaluation
as well. For researchers and data scientists in the healthcare space, these are indispensable
platforms [37].

This ushered a new era in actual acceleration with the 1-D CNNs for healthcare data.
With their specialised architecture and processing capabilities, 1-D CNNs provide a robust
framework to improve the diagnostic efficacy as well as the need for timeliness in diagnosing
different diseases. The healthcare sector will no doubt keep producing volumes of healthcare
data, leading to an increase in the importance and application of this information for improved
patient care, treatment results, and thus expanding the utilisation/explanation ability of 1-D
CNNs.

1.4 Definition and Application of Digital Twins in Healthcare

A Digital Twin (DT) in healthcare is a dynamic, real-time virtual representation of a patient,
integrating data from medical records, IoT sensors, genetic profiles, and environmental condi-
tions to continuously simulate, monitor, and predict health states. In this thesis, Digital Twin
technology is employed to create cloud-integrated virtual models of patients, enabling real-time
remote monitoring, predictive analytics, early anomaly detection, and personalised healthcare
decision-making.

The concept of Digital Twins, originating from the fields of aerospace and advanced man-
ufacturing, has found a revolutionary application within the healthcare sector, offering a trans-
formative approach to patient monitoring and predictive analytics [38].
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1.4.1 Definition of Digital Twins

In healthcare, Digital Twins are conceptualized as comprehensive digital replicas of individual
patients or healthcare processes. These virtual models integrate real-time health data, medical
history, genetic information, and environmental factors to create a multi-dimensional and dy-
namic representation.The health status of each patient is displayed to healthcare providers, and
it can predict potential medical conditions up front for individualised treatment by providing a
more precise care enforcement [39].

1.4.2 Applications in Healthcare

Healthcare use cases include patient monitoring, disease diagnosis and identification, treatment
planning optimisation to improve health outcomes. For example, by using Digital Twins to
simulate the progression of diseases like diabetes or heart conditions, care providers in chronic
disease management are empowered with capabilities to fine-tune treatment plans and avoid
pitfalls. In surgical planning, Digital Twins of organs or entire physiological systems can also
be used to aid surgeons in rehearsing and planning for complex interventions, thus reducing the
risks in surgery and increasing patient safety. Digital Twins further layer on top of this integration
with other existing healthcare systems, pulling in data from Electronic Health Records (EHRs),
wearables, and the IoT sensors designed around them. The result is an integration that diversifies
data inputs into the digital twin, but one which also gives physical, genetic, and lifestyle factors
equal in overall patient care [40].

1.4.3 Importance in Patient Monitoring and Predictive Analytics

There is no doubt about the importance of Digital Twins in patient monitoring and predictive
analytics. Digital Twins provide a living, breathing model of the health status and condition at
any point in time, making it an invaluable tool for early intervention months even years before
clinical signs start to manifest. This model of healthcare leads to better patient outcomes and a
reduced burden on health systems as emphasis is placed on preventive rather than episodic care
few resources are misdirected due to unnecessary medications, surgeries, or clinic visits [41].

In predictive analytics, digital twins are a great way to better individualise patient care.
Healthcare providers who are able to run simulated treatment scenarios and predict outcomes
can now make decisions that are more tailored in accordance with the specific characteristics
of each patient. With precision medicine, where treatment response can vary depending on
genetic and environmental differences between patients, this level of customisation becomes all
the more important [42].
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1.5 Cloud Integration in Healthcare Systems

The incorporation of healthcare with cloud computing is a radical stride that enables the unifi-
cation, storage, and utilization of medical data. This leads to unprecedented scale, accessibility,
and efficiency in the provision of healthcare services. This section advocates the convergence
strategy of cloud computing and Digital Twins, which enables predictive analytics by AI in a
more comprehensive way in healthcare systems.

1.5.1 Role of Cloud Computing in Healthcare

Cloud computing materialises as a basis of innovation in healthcare, by providing an infrastruc-
ture that can scale and adapt to the extensive needs for data management within the industry.
This primarily encompasses storing lots of data, then running complex processing over that
quickly and making sure the results are timely. These capabilities enable healthcare profession-
als and patients to access critical health data ubiquitously, thereby enhancing the responsiveness
and overall quality of healthcare services. Furthermore, the integration of cloud computing
facilitates real-time analytics and seamless collaboration among healthcare stakeholders (e.g.,
doctors, hospitals, and care teams), which contributes to improved patient care coordination
and clinical outcomes [43].

1.5.2 Integration with Digital Twins

The integration of cloud computing with DT technologies is transforming healthcare monitoring
and predictive analytics. By harnessing the computational power and extensive storage capacity
of the cloud, Digital Twins are enriched with real-time, patient-specific data, thereby increasing
both their precision and predictive functionality. Cloud infrastructure enables spontaneous
integration of large data sets (such as portable equipment and EHR) in DT model, facilitates
more complex simulation and analysis. This extensive data provides enlarged insight into the
excellent confident health professionals, thus supporting more informed and effective decision-
making in the patient’s care [44].

The integration of cloud computing in the healthcare system marks significant progress to
take advantage of the technology to improve patient data control, analysis and care. By increas-
ing functionality of DT and promoting future analysis features through AI, Cloud Computing
creates synergistic platform that further improves innovation of the healthcare system [45].
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1.6 Thesis Motivation

Healthcare faces significant challenges in delivering continuous, accurate, and efficient patient
monitoring, particularly in remote environments. Traditional systems often suffer from limi-
tations in computational efficiency, data accuracy, and energy consumption, restricting timely
diagnosis and effective management of critical health conditions. Moreover, the integration
of emerging technologies such as Digital Twins (DTs), Internet of Things (IoT), and Artifi-
cial Intelligence (AI) into real-time healthcare monitoring systems remains underdeveloped,
particularly with respect to secure data handling and predictive analytics.

This thesis aims to address these challenges by developing a high-performance 1-D CNN
accelerator for biomedical signal classification, proposing a real-time cloud-integrated Digital
Twin healthcare architecture, enhancing predictive analytics through AI-driven Digital Twin
frameworks, and introducing an advanced hybrid task offloading model tailored for healthcare
applications. Through these contributions, the research seeks to significantly advance the
efficiency, accuracy, and intelligence of remote healthcare monitoring systems.

1.7 Research Gap and Thesis Objective

Many critical gaps in the monitoring and managing of patient health remain, especially while
patients are at a distance from healthcare facilities despite considerable advancements that
have been achieved with the help of technology. Most healthcare systems find it difficult
to integrate the advanced technologies necessary to solve complex and perennial healthcare
problems in totality. In detail, the system needs to be resilient enough for monitoring patient
health remotely continually with cutting-edge technologies viz cloud computing, Internet of
Things, Machine Learning, and Artificial Intelligence in order to evaluate a timely as well
as accurate picture of the state of health. Furthermore, existing healthcare devices often fall
short in providing continuous, reliable monitoring of critical health indicators, necessitating the
development and implementation of more efficient, accurate, and resource-effective devices.
Challenges in managing the computational and energy demands of healthcare devices persist,
highlighting the need for advanced offloading strategies that optimize network latency and
energy consumption without compromising performance. Additionally, the full potential of
digital twin technology in healthcare remains unrealized, particularly in integrating real-time
data analytics and cybersecurity measures to enhance operational efficiency and patient care.

Addressing these gaps is crucial for the ongoing progress of healthcare technologies and
the improvement of patient outcomes. Consequently, this thesis aims to confront these research
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challenges by introducing and implementing innovative methodologies and system architec-
tures in healthcare technology. The core objectives are delineated as follows: Firstly, a 1-D
Convolutional Neural Network (CNN) will be developed, specifically designed for the precise
detection and classification of ExG signals (e.g., ECG, EMG, EEG). This model will subse-
quently be modified to encompass additional time-series applications, such as blood pressure
and diabetes monitoring, with a particular focus on optimising accuracy and efficiency while
reducing hardware resource consumption.

Secondly, a real-time architecture for remote health monitoring will be introduced, incor-
porating cloud computing, the IoT, ML, and AI. This architecture is intended to facilitate the
continuous monitoring and evaluation of patient health through the development of an advanced
DT framework, which utilises cloud-based infrastructure alongside wearable medical devices.
Such integration is expected to enhance the precision of emergency notifications while enabling
comprehensive real-time health tracking.

Thirdly, an advanced DT framework for healthcare will be established, addressing existing
gaps by introducing a customised DT model that incorporates real-time sensor inputs, histor-
ical datasets, AI-driven analytics, and enhanced cybersecurity protocols. Novel methods for
enhancing predictive analysis and identifying temporal correlations in healthcare data will be
implemented and validated.

Lastly, the integration of digital twin and advanced offloading strategies in healthcare will
be pursued.Partial and binary offloading strategies tailored for healthcare applications will be
developed and integrated, epitomising network latency and energy consumption.The efficacy
of these strategies will be demonstrated through experimental frameworks and practical im-
plementations, supported by simulation data. By achieving these objectives, the thesis aims
to significantly advance the state-of-the-art in healthcare monitoring, diagnostic precision, and
efficient data processing, paving the way for future innovations in the field.

1.8 Contributions

This thesis makes four significant contributions to the field of healthcare technology through the
development and implementation of innovative methods and architectures, each documented in
separate research studies. These contributions are summarised as follows:

1. In Chapter 3, a 1-D CNN accelerator is presented for the detection and classification of
ExG signals, including ECG beats, EMG, and EEG signals. The 1-D CNN is implemented
using an efficient hardware design, which can also be adapted for other time series
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applications such as blood pressure and diabetes monitoring. The introduction of the first
hardware architecture designed to use three biomedical signals from ExG on an FPGA
platform facilitates CNN acceleration. The architecture can compute convolution for any
size of input and modify the stride value. A pipelined processing unit array is designed
to achieve high performance and efficiency, including a sign bit in each processor unit to
minimize power consumption and lower hardware resource costs.

In this study, fixed-point arithmetic was adopted for efficient FPGA implementation,
and throughput is reported in Giga Operations per Second (GOPS) instead of floating-
point operations. The proposed design achieves a throughput of 1145 GOPS at 442.948
MHz with 1.068 KLUT resource utilization, accurately identifying ExG signals using the
Xilinx FPGA platform and attaining higher speeds compared to the classification of just
one signal type.

2. In Chapter 4, a real-time architecture integrating cloud computing, IoT, ML, Pyomo
model, and AI to remotely monitor and assess patient health is proposed. Data is trans-
mitted to the cloud through sensors, and a virtual patient replica is used for monitoring
and trend prediction from medical history. DT architecture based on cloud and healthcare
wearables is proposed, demonstrated through a case study that addresses real-time mon-
itoring challenges and enhances emergency alert accuracy. The use of ML for real-time
comparison, diagnosis, and prediction is explored, ensuring consistent results by compar-
ing seven different ML algorithms. A cost-effective DT simulation framework for twin
graphs using JSON-LD and sensors for real-time monitoring and health tracking is intro-
duced, utilizing pay-as-you-go cloud services. Furthermore, a wearable healthcare device
for continuous patient monitoring is developed, monitoring indicators such as SpO2, heart
rate, and body temperature. The design is validated through comparison of physical and
digital data using time series insight (TSI), with latency calculations indicating relatively
low values compared to previous studies.

3. In Chapter 5, An architectural design utilising real-time sensor data for vital sign moni-
toring (HR, SpO2, BT) is presented, combining historical data, real-time analytics, and
AI for enhanced predictive analysis. The development of hybrid model, which combines
XGBoost and Multilayer Perceptron (MLP), addresses challenges related to real-time
and historical data. An advanced digital twin model (MDT) for healthcare is created,
integrating cloud computing with AI, IoT, and robust cybersecurity to enhance opera-
tional efficiency and security is presented. By incorporating quantum security measures,
i.e., QKD, and optimising resource allocation through cloud computing. Additionally,
Novel Autocorrelation Analysis is introduced to enhance the identification of temporal
correlations in healthcare data, detecting patterns and statistical significance in predicted
disparities. An advanced rolling average method is implemented and validated on over
data points, addressing variability in healthcare data and providing a reliable and precise
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instrument for patient surveillance and prognosis.

4. In Chapter 6, a bespoke amalgamation of partial and binary offloading strategies tailored
for healthcare applications is introduced. The integration of DT and Social Health Deter-
minants into offloading deliberations fosters preemptive health interventions and person-
alised patient treatment paradigms. The pragmatic efficacy of the Digital Twin Healthcare
Enhanced Asynchronous Team-Based Multi-Agent Proximal Policy Optimisation (DTH-
ATB-MAPPO) within real-world healthcare settings is demonstrated, showing superiority
in terms of rapid convergence and optimisation of rewards. MEC systems are refined
through new aspects of DT adoption, significantly improving network latency and energy
consumption. Experimental frameworks are constructed, linking theoretical groundwork
with practical implementation, supported by simulation data of several operational cases.
Furthermore, Adaptive Cybersecurity Task Offloading (ACTO) is innovated, using adap-
tive protection functions and exact matching technology to identify threats and respond
with adaptive cybersecurity mechanisms without sacrificing computational and storage
abilities. A new algorithm named AI-Quantum-Digital Twin-IoT (AQDT-IOT) considers
the quantum pre-processing to support decision-making regarding task offloading aiming
both better performance and reliability.

These contributions collectively advance the state-of-the-art in healthcare monitoring, diag-
nostic precision, and efficient data processing, paving the way for future innovations in the
field.

1.9 Thesis Outline

In addition to the introduction chapter, this thesis includes six other chapters. Here is an
overview of each chapter:

• Chapter 2 provides an overview of related work of the devices monitoring remote with
explain about AI and task offloading. The chapter discusses the state-of-the-art in ExG
signal detection and classification using CNNs and FPGAs, real-time remote health
monitoring architectures integrating cloud computing and IoT, advanced digital twin
frameworks for healthcare, and the integration of digital twin and offloading strategies in
healthcare applications.

• Chapter 3 covers the development of a 1-D CNN for the detection and classification of ExG
signals (ECG, EMG, and EEG). The hardware implementation using FPGA technology,
the architectural design, and the performance evaluation are detailed.
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• Chapter 4 focuses on a real-time architecture for remote health monitoring. This chapter
explores the integration of cloud computing, IoT, machine learning, Pyomo model, and AI,
describing the design of the DT architecture, the implementation of wearable healthcare
devices, and the system validation through a case study.

• Chapter 5 presents an advanced DT framework for healthcare. An architectural design
utilising real-time sensor data for vital sign monitoring is discussed, alongside the devel-
opment of the hybrid model and the integration of cloud computing, AI, IoT, and improved
predictive analysis and patient monitoring are introduced. Enhanced data integrity and
privacy within the DT framework by integrating quantum security mechanisms, i.e.,
Quantum Key Distribution (QKD), into the DTHQ(A,B,Q) protocol, ensuring health data
protection against threats posed by classical and quantum computing advancements.

• Chapter 6 explores the integration of DT and advanced offloading strategies in health-
care. The chapter introduces a bespoke amalgamation of partial and binary offloading
strategies, the integration of social health determinants, and the efficacy of the DTH-ATB-
MAPPO framework and quantum computing. Refinement of MEC systems, experimental
frameworks, and the innovation of Adaptive Cybersecurity Task Offloading (ACTO) are
also addressed.

• Chapter 7 includes a summary of the findings of this research. Conclusions drawn from
the research are provided, and the implications for the field of healthcare technology are
discussed. Potential directions for future research are outlined, highlighting areas where
further investigation and development are needed to build on the contributions of this
thesis.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, the various literatures reviewed and which are connected to the research areas
of interest have been detailed. The focus areas include the design and implementation of
efficient CNN architectures on FPGAs for healthcare devices, the development of cloud-based
digital twin ecosystems, and innovative task offloading strategies in healthcare. The purpose of
this chapter is to establish the context for the current research by examining the state of the art,
identifying key trends, methodologies, and findings, and highlighting gaps and limitations in the
existing body of knowledge. Through a systematic review of relevant studies and frameworks,
the research will be positioned within the broader academic discourse, thereby justifying the
necessity and novelty of the work undertaken. This chapter is organised as follows: The next
Section 2.2, gives the outline of the review encompassing the discussion of the purposes of
the present literature review and the major areas of concern in this regard. In Section 2.3, the
aim of this section is to introduce and describe the background and main definitions that would
be useful in carrying out the research. In Section 2.4, there is a brief summary of the main
concepts and definitions that are pertinent to the analysis. According to Section 2.5, cloud-based
digital twin ecosystems. In Section 2.6 identifies more details in the way IoT and digital twins
can be integrated. In Section 2.7, the task offloading strategies in healthcare are discussed.
Comparison of the existing work in Section 2.8. Finally, Section 2.9 is located in the context of
the reviewed literature, and Section 2.10 draws the chapter to summarise the key points.

2.2 Scope of the Review

The scope of this review encompasses a comprehensive examination of the existing literature
pertinent to several key areas within the intersection of advanced computational methods and
healthcare technology. The primary focus areas of this review include:
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1. CNN Architectures on FPGAs for Healthcare Devices:

• Exploration of the design and implementation of CNN architectures on FPGAs.

• Assessment of the efficacy of CNNs in medical applications, particularly in signal
processing and real-time data analysis.

• Evaluation of key studies that highlight advancements, methodologies, findings, and
impacts on healthcare diagnostics and monitoring systems.

• Identification of limitations and gaps in existing FPGA-based CNN implementations.

• Research Question: How can CNN architectures on FPGAs be optimised to im-
prove the accuracy and efficiency of medical diagnostics and real-time monitoring?
The review will explore existing CNN implementations on FPGAs, focusing on
their performance in processing biomedical signals such as ECG, EEG, and EMG.
The potential of these architectures to enhance diagnostic accuracy and processing
speed will be assessed, along with challenges in scalability, resource utilisation, and
integration with existing healthcare systems.

2. Cloud-Based Digital Twin Ecosystems:

• Definition and conceptualisation of digital twins within the healthcare context.

• Analysis of applications of digital twins for real-time monitoring, predictive analyt-
ics, and personalised treatment plans.

• Review of significant studies and contributions in the development and implemen-
tation of cloud-based digital twin ecosystems.

• Discussion of challenges, such as data standardisation, real-time synchronisation,
integration with IoT devices, and identification of research gaps.

• Research Question: What are the most effective strategies for integrating digital
twins with IoT devices to enhance real-time monitoring and predictive analytics
in healthcare? This question seeks to understand the current methodologies used
to link digital twins with IoT technologies, examining their applications in chronic
disease management, real-time health monitoring, and personalised healthcare.

3. Task Offloading Strategies in Healthcare:

• Emphasis on the importance of task offloading for enhancing computational effi-
ciency, reducing latency, and conserving energy in healthcare applications.

• Review of existing algorithms and strategies, including heuristic and machine learn-
ing approaches, and their effectiveness in healthcare contexts.

• Comparative analysis highlighting the advantages, limitations, and areas requiring
further research in task offloading strategies.
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• Research Question: How can task offloading strategies be optimised to balance com-
putational efficiency, energy conservation, and security in healthcare applications?
This review will analyse various task offloading strategies, focusing on their ability
to manage workloads efficiently while ensuring data security and minimising energy
consumption. By comparing heuristic and machine learning-based approaches, the
review aims to highlight best practices and identify gaps that need addressing to
improve the overall effectiveness of task offloading in healthcare.

4. Integration of Internet of Things and Digital Twins:

• Investigation of the role of IoT technology in healthcare and its synergistic integration
with digital twin technology.

• Evaluation of key studies demonstrating the potential of IoT-DT integration for
enhanced monitoring, simulation, and prediction of health conditions.

• Analysis of current challenges and gaps, such as data integration complexities,
privacy and security concerns, real-time data integration, and cost and resource
constraints.

• Research Question: What are the key challenges and potential solutions for inte-
grating IoT technology with digital twin systems to improve healthcare outcomes?
The review will explore the synergies between IoT and digital twin technologies, as-
sessing their combined potential to transform healthcare monitoring and predictive
analytics. Key challenges related to data integration, privacy, security, and cost will
be examined, with the aim of identifying innovative solutions that can enhance the
implementation and effectiveness of IoT-DT systems in healthcare.

By encompassing these focus areas, the review aims to establish a comprehensive understanding
of the current state of the art, identify critical trends and methodologies, and highlight gaps and
limitations within the existing body of knowledge. This foundational review sets the stage for
the proposed research by justifying its significance, novelty, and potential contributions to the
field of healthcare technology.

2.3 Background and Overview

This section provides a concise background and introduction to the key technological do-
mains relevant to this research, including Convolutional Neural Networks (CNNs), Field-
Programmable Gate Arrays (FPGAs), DT, task offloading strategies, and IoT integration within
healthcare contexts. These foundational technologies form the basis for developing efficient,
real-time, and adaptive healthcare systems.
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CNNs emerged in the 1980s with early models such as the Neocognitron [46], and experi-
enced major resurgence after the success of AlexNet in 2012 [47], demonstrating the potential
of deep learning for complex pattern recognition. In healthcare, CNNs have been successfully
applied to medical imaging, biomedical signal processing, and disease diagnosis.

Digital twin technology, initially proposed by Grieves in 2002 for manufacturing applica-
tions [48], has since evolved into healthcare, providing virtual representations of patients or
medical devices to support personalized monitoring, diagnosis, and predictive analysis.

Task offloading, originating from distributed computing paradigms, has become critical
in modern networked environments. In healthcare, task offloading enables lightweight med-
ical devices to delegate computationally intensive operations to more capable edge or cloud
infrastructures, enhancing system responsiveness and conserving local resources.

2.4 Review of Key Areas

The advancement in healthcare technology has dramatically changed through the use of complex
computation models as well as effective hardware solutions. This section briefly highlights
important areas related to the study and with emphasis on CNNs and FPGAs. CNNs, their use
in medical domain and especially signal processing and real-time data processing is examined
together with the FPGA advantages.

Firstly, a general introduction to CNNs is given, including the description of the network’s
architecture and purpose in biomedical signal processing. The following section provides a
deeper analysis of the application of CNNs on FPGAs in the targeted area of healthcare to
analyze how such integration results in increased effectiveness and precision of the medical
diagnosis and monitoring systems.

Key studies in the field are analysed, focusing on their methodologies, findings, and impact on
healthcare technology. This includes a detailed examination of CNN applications in processing
EEG, EMG, and ECG signals. Each subsection addresses specific advancements, challenges,
and outcomes of these studies.

Finally, limitations and gaps in existing research are identified, highlighting areas where
further investigation is needed. By reviewing these key areas, foundation is set for the pro-
posed research, justifying its significance and potential contributions to the field of healthcare
technology.
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2.4.1 CNN Architecture on FPGA

A. Overview of Convolutional Neural Networks

Many real-world patterns represent nonlinear alterations of their initial unique shapes. For
example, in optical image categorization, objects such as vehicles and trees exhibit distinct
sizes, colors, textures, locations, and perspectives. Backgrounds, non-relevant items, and
varying light intensities further complicate the challenge. These alterations can render objects
indistinguishable in vector space. Convolutional and pooling layers in CNNs filter and scale
effective features to address this problem. The concept space is split or transformed using one
or two dense layers, and the needed labels or the target map is revealed in a classification or
regression task [49], [50].

In CNNs, the convolution layers reproduce a version of the convolution operation commonly
found in Linear Time-Invariant (LTI) systems. In the 1-D case, which is particularly suitable
for sequential data such as biomedical signals, the convolution of an input signal 𝑥 with a filter
𝑤 and a bias 𝑏 is expressed as:

(𝑥 × 𝑤) (𝑖) =
𝑘−1∑︁
𝑚=0

𝑥(𝑖 + 𝑚) 𝑤(𝑚) + 𝑏 (2.1)

where 𝑘 is the size of the filter. This operation extracts local patterns from the input sequence
by sliding the filter along one dimension and aggregating weighted sums. Properly learned
filters amplify significant signal features while suppressing noise or irrelevant information
[51]. Although originally developed for two-dimensional inputs, CNN architectures have been
successfully adapted for one-dimensional and three-dimensional data structures, including time-
series biomedical signals and volumetric medical imaging [52].

1. Mathematical Foundations of CNNs

Convolutional Neural Networks extract hierarchical features by applying a series of learnable
transformations, primarily through convolutional, activation, pooling, and fully connected lay-
ers. In this section, the mathematical operations are presented specifically for one-dimensional
CNNs (1D-CNNs), which are particularly suited for sequential data such as biomedical signals.

a) Convolutional Layer: Given an input signal x ∈ R𝐿𝑖𝑛 and a convolutional filter w𝑚 ∈ R𝑘

for the 𝑚-th output feature, the 1D convolution operation produces an output sequence 𝑦𝑚 [𝑖]
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as:

𝑦𝑚 [𝑖] =
𝑘−1∑︁
ℎ=0

𝑥 [𝑖 + ℎ] 𝑤𝑚 [ℎ] + 𝑏𝑚, (2.2)

where 𝑏𝑚 is the bias term, 𝑘 is the kernel size, and 𝑖 denotes the index along the input. Stride
𝑠 defines the step size of the filter movement, and padding 𝑝 controls zero-padding around the
input. The output length 𝐿𝑜𝑢𝑡 is computed as:

𝐿𝑜𝑢𝑡 =

⌊
𝐿𝑖𝑛 + 2𝑝 − 𝑘

𝑠

⌋
+ 1 (2.3)

Here, 𝐿𝑖𝑛 is the length of the input sequence. Padding 𝑝 increases the effective input size,
and the floor operation ensures that only full filter applications are counted, with an additional
1 accounting for the initial position.

b) Activation Function: Activation functions introduce non-linearity into the network, en-
abling CNNs to model complex and non-linear patterns. In 1D CNNs, activation functions are
applied independently to each element of the output feature sequence. A common choice is
the Rectified Linear Unit (ReLU), defined as 𝜎(𝑥) = max(0, 𝑥), which sets all negative values
to zero and retains positive values, promoting sparse activations. Another activation is the
Sigmoid function, expressed as 𝜎(𝑥) = 1

1+𝑒−𝑥 , which squashes input values into the range (0, 1)
and is particularly useful for probabilistic outputs. The Hyperbolic Tangent (Tanh) activation,
given by 𝜎(𝑥) = tanh(𝑥), maps inputs to the range (−1, 1), providing zero-centered activations
that often improve convergence. The resulting activated output is denoted as:

𝑎𝑚 [𝑖] = 𝜎(𝑦𝑚 [𝑖]), (2.4)

where 𝑎𝑚 [𝑖] is the activation at position 𝑖 in the 𝑚-th feature map.

c) Pooling Layer: Pooling layers in 1D CNNs are employed to reduce the temporal dimension
of feature maps, thereby decreasing the number of parameters and computational load, while
preserving important features.

In 1D max pooling, the maximum value within a local window of size 𝑓 is selected, as
shown in Equation 2.5:

𝑝𝑚 [𝑖] =
𝑓−1

max
ℎ=0

𝑎𝑚 [𝑖 · 𝑠𝑝 + ℎ] (2.5)
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Alternatively, 1D average pooling computes the mean value within each window, given by
Equation 2.6:

𝑝𝑚 [𝑖] =
1
𝑓

𝑓−1∑︁
ℎ=0

𝑎𝑚 [𝑖 · 𝑠𝑝 + ℎ] (2.6)

The output length after pooling, 𝐿′𝑜𝑢𝑡 , is calculated as:

𝐿′𝑜𝑢𝑡 =

⌊
𝐿𝑜𝑢𝑡 − 𝑓
𝑠𝑝

⌋
+ 1 (2.7)

where 𝐿𝑜𝑢𝑡 is the length of the feature map after convolution and activation, 𝑓 is the pooling
window size, and 𝑠𝑝 is the stride of the pooling operation.

d) Fully Connected Layer: After the convolutional and pooling operations in a 1D CNN, the
extracted high-level temporal features are flattened into a one-dimensional vector z ∈ R𝐿

′′·𝐶′′ ,
where 𝐿′′ is the final temporal length and 𝐶′′ is the number of output channels.

This flattened vector is fed into a fully connected (dense) layer, where each neuron computes
a weighted sum of all input features followed by a bias addition, as described in Equation 2.8:

o = 𝑊z + b, (2.8)

where 𝑊 ∈ R𝑁𝑜𝑢𝑡×𝑁𝑖𝑛 is the weight matrix, b ∈ R𝑁𝑜𝑢𝑡 is the bias vector, and o is the output
vector of the fully connected layer.

For classification tasks, a softmax function is typically applied to the output o to convert it
into a probability distribution over the classes, as shown in Equation 2.9:

Softmax(𝑜𝑖) =
𝑒𝑜𝑖∑𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑗=1 𝑒𝑜 𝑗

(2.9)

where 𝑜𝑖 denotes the score corresponding to the 𝑖-th class.

e) Training via Backpropagation: The training process of a 1D CNN involves optimizing
the learnable parameters 𝜃 (such as convolutional weights, biases, and fully connected weights)
by minimizing a loss function that measures the difference between the predicted output ŷ and
the ground truth labels y.

For classification tasks, the cross-entropy loss is commonly employed, as shown in Equa-
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tion 2.10:

𝐿 (y, ŷ) = −
𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠∑︁
𝑖=1

𝑦𝑖 log( �̂�𝑖) (2.10)

Alternatively, for regression-based tasks or signal reconstruction, the mean squared error
(MSE) is used, as described in Equation 2.11:

𝐿 (𝑦, �̂�) = (𝑦 − �̂�)2 (2.11)

The network parameters are updated iteratively through the gradient descent optimization
algorithm, where each parameter is adjusted proportionally to the negative gradient of the loss
function. The general update rule is given in Equation 2.12:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝐿 (2.12)

where 𝛼 is the learning rate, and ∇𝜃𝐿 represents the gradient of the loss with respect to 𝜃.

2. 1D CNNs for Biomedical Signals

CNNs configured in one dimension are effective for processing sequential data such as ECG,
EEG, and EMG signals. These models apply temporal convolutions and pooling operations,
allowing real-time detection of temporal patterns while reducing feature dimensionality. This
architecture enhances computational efficiency and diagnostic performance in digital health
applications.

3. FPGA-Based CNN Acceleration

Figures 2.1 and 2.2 illustrate CNN accelerators implemented on FPGA. The matrix multipli-
cation engine (MME) performs all CNN tasks, including convolution and pooling. Biases are
stored in registers, and input/weights are loaded via ping-pong buffering to minimize latency.
Quantization to 16-bit fixed-point formats improves hardware efficiency while maintaining
accuracy [53]. FPGA accelerators offer reconfigurable, low-power processing, suitable for
real-time healthcare systems [54].
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Figure 2.1. Block diagram of accelerator [55].

Figure 2.2. Overall architecture of the CNN accelerator [53].

B. Key studies and their findings

1. ECG Signal
The ECG devices are employed in clinical practice to measure electrical activity of the heart and
help in the diagnosis of different forms of heart ailments. Electrodes are then positioned on the
patient’s body in order to gather the required information [56]. The advancement of wearable
sensors has enhanced the capability to monitor and analyse different aspects of ECG signals
[57]. Additionally, real-time monitoring systems employ diverse methods to identify ECG pat-
terns [58]. The CNN accelerator is composed of three primary components: memory, PE array,
and control logic. Figure 2.3 demonstrates the interaction among these components. Initially,
the control logic fetches data from off-chip memory into the on-chip memory. Subsequently,
the data is moved from the on-chip memory to the PE array for processing. The results of these
computations are temporarily stored in the on-chip memory before being transferred back to off-
chip memory [59], [60]. In recent developments, the IoT has enabled remote patient monitoring.
Through learning from cardiology datasets, AI algorithms are applied to classify and identify
diseases with high speed and high accuracy. Specialized processors aid in this process [61],
[62]. Jiahao et al. presented an efficient hardware architecture for ECG classification using 1-D
CNN with global average pooling for classification. This design, worked on the FPGA Xilinx
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Figure 2.3. Relationship between modules of the CNN accelerator [59].

Zynq, had an average processing rate of 25.7 GOP/s at 200 MHz, implemented with 1538 LUTs
and achieved substantial resource utilization enhancement. The pipelined processing unit array
enhanced calculation speed, achieving an ECG beat classification accuracy of 99.10% [63].
Guo et al. described the Angel-Eye, a flexible CNN accelerator architecture that incorporates a
data quantization technique and a compilation tool. This approach reduces bit width from 16
to 8 bits while maintaining accuracy, and the compilation tool adapts the CNN model to the
hardware efficiently. Tests on the Zynq XC7Z045 platform showed that Angel-Eye operated
at a higher speed of 150 MHz, utilizing 183 KLUTs with a power consumption of 9.63 W,
and offered up to 16% improved energy efficiency compared to equivalent FPGA models [64].
FPGA based accelerator architecture was designed by Gong et al. which was implemented with
synchronous pipeline instruction system. This model consisted of more specific enhancements
aimed at increasing computational efficiency, while performance achieved on platforms such as
Xilinx Zynq-7020 and Virtex FPGA, with enhanced speed and at the same time 2.15 W power
consumption and utilising 38.136 KLUTs [65].

2. EEG Signal
EEG can be used as an assessment of emotions in order to improve the social integration of
human patients with early stage Alzheimer’s disease and neurological disorders. Traditionally,
emotions have been classified using software on computers without internet connectivity. How-
ever, the use of wearable classifiers is essential to improve patients’ social lives. In ref [66],
proposed the BioCNN which is a hardware CNN for biomedical application with especial focus
on EEG-based emotion detection. The training technique was part implemented using Digilent
Atlys Board and Spartan-6 FPGA which is comparatively affordable than other instruments.
The obtained performance results were 100 MHz, and the reduced resource usage of KLUT and
improved resource usage efficiency followed. The architecture of a CNN accelerator for EEG
signals is illustrated in Figure 2.4. Key components are a PE array with local scratch pads and
MAC units, a Global Buffer (GLB) interfacing with off-chip DRAM, and a Network-on-Chip
(NoC) for efficient data transfer. Compression and ReLU modules enhance energy efficiency
for real-time neural data classification [67].

In EEG categorisation the two major tasks are to identify epileptic seizures and to distinguish
between different emotional states. Creating a dedicated energy-efficient on-body seizer detector
may help alert nearby people about the situation or apply an appropriate stimulus to stop the
seizer. Precision is crucial for accurate seizure detection to ensure safety [68]. In ref [69],
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demonstrated that scalp multichannel signalling and electroencephalography are effective for
real-time epileptic seizure detection. They created a novel architecture that extracts additional
features with high accuracy and speed, implemented on the FPGA platform Virtex-5. Their
architecture showed consistent and reliable detection and identification of epileptic episodes,
achieving low resource usage in KLUT.

Figure 2.4. Architecture for CNN accelerator for EEG proposed in [67].

3. EMG Signal
In recent time, because of multiple uses in gesture recognition applications, more attention has
been paid towards EMG processors. Due to the trade-off between the classification efficiency
and power consumption, they integrate wearable devices for gesture recognition. In [70], the
author developed a low power embedded system for EMG acquisition and gesture recognition
mainly working on the multilevel designs of the software and hardware. Other than EMG
sensors, inertial and pressure sensors were also employed for improving the gesture recognition
and also the motion tracking [71].

The availability of specialised CNN accelerators has led to new possibilities of edge health-
care and biomedical processing [72]. In ref [73], developed a method of analysing surface Elec-
tromyography (sEMG) to know how the nervous system controls muscle contraction. There was
developed the FPGA-based real-time Negative Matrix Factorization (NMF) processor, which
extracts muscle synergies from the 8-electrode EMG signals to be classified by the SVM. The
realization of them on an FPGA platform indicated the improve speed, low resource consump-
tion in KLUT, and low power dissipation. Described and implemented an architecture in ref
[74] to estimate the desired clench strength of the hand using EMG signals, which was imple-
mented on the Xilinx XC7Z020. Their architecture showed evidence of the practical use it has
in applications regarding prosthetics. The architecture realized a speed of high in MHz, the
usage of resource of KLUT was low, and the power was low in W.

These FPGA implementations cover different types of machine learning models 1-D CNN,
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Table 2.1. Overview of FPGA Implementations for Various Machine Learning Models.

Ref. [63] [1] [75] [74] [64]
Method 1-D CNN 1-D CNN 2-D CNN ANN VGG-16
FPGA Zy xc7z045 Zy xc7z045 UltraPlus iCE40UP5k Zy xc7z020 Zy xc7z045

Data Size (bit) Fixed 16, 32 Fp Fixed 16, 32 Fp Fixed 16/8/1 Fixed 16 Fixed 16, 32 Fp
Frequency (MHz) 200 442.948 0.1 388.20 150

DSP 80 9 8 25 780
KLUT 1.538 1.067 2.8 4.379 183

Throughput 16 GOPS 1145 GOPS 0.8 GOPS 9.705 GOPS 117 GOPS

2-D CNN, ANN, and VGG-16—as presented in Table 2.1. Each entry lists the type of FPGA,
data size, operating frequency, number of DSPs, and performance in throughput. Focusing on
the 1-D CNN implementations on the Zy xc7z045 FPGA, two cases are highlighted. In the
first case [63], an operating frequency of 200 MHz with 80 DSPs and 1.538 KLUT achieved a
throughput of 16 GOPS. In the second case [1], the operating frequency is significantly higher
at 442.948 MHz, with only 9 DSPs and 1.067 KLUT, achieving a much higher throughput of
1145 GOPS. For the 2-D CNN implementation [75], the UltraPlus iCE40UP5k FPGA was used,
operating at a very low speed of 0.1 MHz with 8 DSPs and 2.8 KLUT, resulting in a throughput of
0.8 GOPS. In the ANN implementation [74], the Zy xc7z020 FPGA was used, achieving 388.20
MHz operating frequency with 25 DSPs and 4.379 KLUT, leading to a performance of 9.705
GOPs. Lastly, the VGG-16 implementation [64] employed the Zy xc7z045 FPGA, utilizing 780
DSPs and 183 KLUT, achieving 117 GOPS throughput. This comparative overview highlights
how the resource allocation (DSPs, LUTs) and design choices significantly affect throughput
performance across different ML models on FPGA platforms.

2.4.2 Limitations and Gaps in Existing Research

Despite the increasing deployment of CNNs on FPGAs for healthcare signal processing, several
domain-specific limitations persist that hinder clinical translation:

• Lack of support for multichannel biomedical signals: Many FPGA-based CNN designs
are tailored for single-channel data, limiting their applicability to real-world multi-lead
ECG or multi-channel EEG/EMG systems.

• Limited adaptability to patient-specific variation: Existing FPGA accelerators lack
dynamic reconfigurability to accommodate differences in patient physiology, which is
critical for personalised diagnostics.

• Latency vs. accuracy trade-off: Achieving real-time inference with high diagnostic ac-
curacy remains a challenge, particularly in energy-constrained environments like wearable
or remote devices.
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• Inadequate clinical dataset benchmarking: A number of studies rely on proprietary
or synthetic datasets, reducing generalisability to actual clinical settings and limiting
comparative analysis.

• Poor integration with clinical workflows: Most prior implementations are evaluated in
isolated hardware setups, without end-to-end validation within live monitoring systems
or hospital-grade platforms.

While previous studies have demonstrated the feasibility of CNN acceleration on FPGAs
particularly for ECG, EEG, and EMG signals, these limitations restrict their scalability, clinical
applicability, and trustworthiness. To address these gaps, the current research proposes a
lightweight, patient-adaptive 1D-CNN architecture optimised for FPGA deployment. The model
balances processing speed, energy efficiency, and classification accuracy, and is evaluated using
publicly available clinical datasets. Additionally, the design is tailored for integration within
real-time digital health pipelines, thereby contributing toward practical and scalable biomedical
FPGA solutions.

2.5 Cloud-Based Digital Twin Ecosystems

DT is the exact digital counterpart of a physical entity characterized by dynamic and mutual
interactivity. This model makes it possible for data exchange to happen concurrently between
the virtual and the actual physical counterpart whereby whatever that is done physically is
reflected in the virtual environment and the vice versa as shown in Figure 2.5. DT is defined
as a differentiation based on the integration of five sophisticated technologies. In other words,
it implies gathering both structured and unstructured information, sending this information,
turning it into intelligent information, enabling users to engage with the data, and protecting it
[76], [77].

literature review of 2018, mentioned in [78], the authors point out the need to discover
the fundamental technologies constituting DT. Digital twins facilitate the supervision, analysis,
and improvement of physical entity functions and provide updates about the performance
quality to support the goals of raising well-being [79], to realize the above advantages certain
measures have to be taken. For constant surveillance and establishing an online duplicate of the
framework, it is crucial to have IoT, as presented in Figure 2.6. New developments in IoT mean
that information may be gathered continuously through sensors that are located on the actual
subject. This continuous tracking also incorporates information from social media, healthcare
records, business information technologies, and other sources [80], [81].
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Figure 2.5. Augmented digital twin conceptual model [76].

Figure 2.6. Data flow and IoT interaction with DT.

Figure 2.7 illustrated is a basic view of DT, which unveils its general characteristics and
functionalities. Data is captured from physical object where a copy is developed inside a DT
ecosystem reflecting the object’s current state. This process is not just the documentation of
raw data; the latter is paired with data analysis to reveal the object’s state [82], [83].

In healthcare, DTs represent a revolutionary approach to various issues including early
diagnosis of diseases and constant follow-up of diseases throughout the patient’s life. For
example, observing the DT of a patient with a heart disease issue lets the healthcare personnel
know the chances of having a related episode, so that appropriate measures can be taken on time.
It has been projected that the future use of DTs shall considerably influence the personalised
therapies and intervention [84], [85]. Technology and services have found a utility in digitizing
healthcare provision and functions for the healthcare professionals, and the patients as they
enhance data gathering, orderly clinical communication, disease management and other related
tasks [86]–[88]. In the same respect, DTs have the ability overcome limitations of existing
models of healthcare, for example, in delivering patients’ records in emergency situations, or in
a situation where communication lines and technology infrastructure is compromised in remote
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Figure 2.7. Overview of the Digital Twin platform [83].

areas. This has the benefits of leveraging on cross diagnostics and real-time medical actions
[89].

DTH’s main objective is to create a digital copy or a replica of human attributes such as
the organs through create with a digital method of life. However, despite the supplementing
of cardiology techniques, the use of DTH is still quite limited and the overall application for
the promotion of the general health of the population is expected to require a few years [90].
However, the monitoring, optimizing and planning functions of DT’s enable them to significantly
contribute to the improvement of population health, within public health governance frameworks
[91].

2.5.1 Review of Existing Cloud-Based Digital Twin Frameworks

The process of digitalization that has recently affected the majority of fields, such as healthcare,
was started with the advent of the so-called industry 4.0 project in 2013. This transformation
is based on the sophisticated technologies like IoT, cloud and edge computing, AI, and big data
analytics [92]. The DT paradigm, which stems from these technologies, enables the digitization
of any system and is applied in numerous industries, including industrial and engineering ones.
DT technology in the last decade has been recommended for healthcare use and between all the
implementations of this technology DTH as been one of the most remarkable works [93].

Research in DT also includes enhancing WBANs and deploying advanced signal processing
and sensors that support DT, along with integrating Markov decision processes (MDP) and AI to
improve efficiency and reliability in health monitoring systems [18]. Within smart homes, DT
applications aim to improve the monitoring, prediction, and control of health parameters using
various wireless and wearable technologies [94], [95]. In healthcare, professionals utilise DT
in conjunction with cloud and IoT-edge computing, blockchain, and ML to deliver intelligent
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predictive diagnostics and secure health data management, thereby significantly advancing
monitoring capabilities [45], [96].

Figure 2.8. Architecture of using DT for healthcare monitoring [45].

Moreover, DT has been employed to develop frameworks that aid in clinical monitoring,
evaluate patient needs, and promptly identify emergency risks [97]. For example, the Lung-DT
framework integrates AI with historical radiological data and IoT sensor inputs to accurately
classify lung diseases, enhancing traditional diagnostic methods. However, challenges such as
the absence of data storage within this framework pose hurdles for end-users [23]. The concept
of the virtual human twin has been introduced, offering a detailed digital representation of
human pathophysiology and suggesting a cooperative infrastructure, which is instrumental in
advancing the development and uptake of DT in healthcare [24], [98]. In Table 2.2 depicted

Table 2.2. Overview of Case Studies Utilising Advanced Technologies of DT

Ref. No. Utilised Technology RTD Case Study
[99] 2023 DT, IoT, DL Yes Disease detection and smart med-

ical service
[100] 2023 DT, Decentralised learning with

blockchain.
Yes Industrial ecology learns through

data and resource sharing.
[101] 2021 DT, IoT, DL, ML No DT and IoT could revolutionise

Healthcare
[102] 2022 DT, Cloud computing N/A VR Cloud DT Framework

application of DT that in Ref. [99], technologies e.g., DT, IoT, and DL were utilized to develop
a case study focused on disease detection and smart medical services. Similarly, Ref. [100], DT
and decentralised learning with blockchain were employed to examine how industrial ecology
can learn through data and resource sharing. Also, Ref. [101] considered the use of DT,
IoT, DL, and ML, although real-time data (RTD) was not utilised, to explore the potential
revolution in healthcare. Lastly, in Ref.[102], DT and cloud computing were applied to create
a virtual reality cloud framework for interactive DT applications. Through these studies, the
versatility and potential of various advanced technologies in different fields were demonstrated,
highlighting their significant contributions to innovation and efficiency.
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2.5.2 Studies on the Integration of IoT Devices with Digital Twins

Grieves introduced a comprehensive framework for the DT model, which is structured in
three dimensions: materialized, digitalized, and link [103]. Tao et al., extended this to a five
dimensional architecture with integration of DT related information and resource [104]. To
this end, DT applications in healthcare include big data integration and the use of AI models
to mimic human physiological systems and suggest apropos clinical approaches; however,
it presents technology, privacy, and ethical concerns [105]. Yang et al., attempted a new
DT paradigm in which cardiovascular casts, CT scans and simulation algorithms were used
to control ultrasonic probes in virtual modes [106]. This framework focuses on creating
high-fidelity Cardiac Electrophysiology DT by using clinical 12-Lead ECGs. But it has no
combination with cloud computing and IoT for monitoring and concentrates exclusively on the
aspect of cost [107].

In Ref. [108], the automated gait data control system for fully actuated lower limb exoskele-
ton DT in the medical rehabilitation application is introduced. In previously published work
Ref. [99], the authors analyzed the use of deep learning and big data analytics in digital twin of
healthcare for real-time health monitoring. Hence, though progress was made in making devices
internet-ready, cost and latency were not sufficiently solved. Liu et al., therefore, designed a
cloud-based framework for elderly healthcare using DT technology known as CloudDTH that
requires the implementation of big data, cloud computing, and IoT. But, data latency in real-time
data and its cost were not expounded adequately, as well as the use of the ML component in
predictive capability for the HC DTs [109].

ESP32 Azure IoT Kit which is supposed to be compatible with Microsoft’s cloud platform
consists of an extensive list of on board sensors as shown in Figure 2.9, suitable for healthcare-
oriented digital twins’ development. These sensors can provide an opportunity to receive the
most important measures of physiology, environment, and motion that are critical to create an
objective model of a patient or healthcare environment [82].

Incorporating a network of sensors within a typical healthcare monitoring system (HMS)
ecosystem helps in remote sensing and instantaneous measurement of paramount parameters
relevant to the contemporary status of any structure and its surroundings. Some of these
parameters include Strains, stress, Humidity, temperature and other important ones that would
enable constant health checks to be carried out on the structure.

In digital twin healthcare, there are several sensors are implemented:

• Motion Sensor (MPU6050): In the case of a digital twin of healthcare, motion data can
be used to track the changes in the patient’s status in terms of the ability or the inability
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Figure 2.9. The ESP32 Azure IoT kit.

to move, the occurrence of falls, and the distribution of activity throughout the day.

• Magnetometer (MAG3110): This sensor is used to measure magnetic fields and thus
which do the work of a compass. Even if it is most often used to determine orientation,
which could offer possibilities for navigation in healthcare facilities if magnetically tagged
medical equipment is transported or if exposure to electromagnetic fields is measured.

• Barometer (FBM320): In context of DT healthcare, collecting this data into a digital twin
could enable identifying individual-specific relations between variations in pressure and
patients’ complaints.

• Humidity & Temperature Sensor (HTS221): This combined sensor can accurately detect
the humidity level and temperature two variables that influence the patients’ comfort
and health condition. Temperature and humidity data in a home environment can be
beneficiary to the patients with respiratory disorders or allergies.

• Light Sensor (BH1750FVI): In digital twin healthcare, used sensor allows for evaluation
of light and its impact on patient outcome (e.g., mood and sleep) and enhance well being.

The inclusion of various sensors such as barometers, magnetometers, and motion detectors
in this review is intended to illustrate the full range of environmental and physiological data
sources available for future digital twin healthcare applications. While not all sensors are
directly used in the current implementation, understanding their roles and potential integration
pathways helps identify how diverse sensor data can enhance patient modeling, environmental
context awareness, and real-time predictive analytics in future system extensions.
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2.5.3 Relevance to Digital Twin Healthcare

The ESP32 Azure IoT kit provides a diverse capability of the sensors, which forms the foun-
dation of obtaining the three-dimensional data that will be crucial in developing accurate and
comprehensive digital twins in the healthcare fields. From the above sensors, various medical
practitioners can be able to derive more comprehensive information on patient physiology, en-
vironment and movement, which can help them develop models, treatments, utilizations and
even improvements for the existing health system [82], [110]. Additionally, the MAX30102 and
MLX90614 external sensors were connected to the input pin of ESP32-Wrover-B, and real-time
data could be monitored if connected to the worldwide web [111], [112].

2.5.4 AI Models in DT for healthcare

It is dynamically enabled for monitoring, understanding, as well as improving the human health
indices in terms of DT technology, thereby providing constant guidance to advance the quality
of life [113]. Studies in the area of DT have since in the year 2018-2024 garnered significant
research interest [114]. DT models were first used as an approach to the acquisition, processing,
and visualization of data [115], [116], which include, e.g., the real-time status of one’s heart
condition. The focus moved to well-being systems with the help of AI since DT can use AI for
data processing and such activities as decision-making, predicting, and others. For example, a
DT health monitoring system can monitor a patient’s heart rate on an emergency basis with live
feedback [116], whereas AI can notify of heart rate abnormalities [117], [118].

The application of AI in the healthcare is not a new idea. It is already possible about the
improvement of the human quality of living through the use of AI. In IoT and Cyber-Physical
Systems (CPS), AI is used in decision making and predictive functions [119]. First of all,
during the DT revolution in the heathcare sector the major goal was, for instance, the provision
of continual health monitoring. Another DT healthcare model was described in [120] for the
elderly health monitoring where the data was collected and transmitted through IoT technology
and analyzed in the cloud. While with the help of this model, it is possible to perform virtual
health monitoring of seniors in real-time, the application of automated decision-making was
not provided. Specifically, human input was needed in order to discern alerting information
concerning a patient’s health status that could include a heart rate, pulse rate, etc; or alerts of
a looming crisis. The said vogue of operation in the model was to possess a twofold effect:
the inability to foresee extreme occurrences limited the model to real-time data analysis only.
Another study [114] aimed at the problems regarding the heterogeneity of collected data and
suggested a solution in the form of ISO/IEEE 11073 DT for health and well-being. This
framework involves:
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• Data collection from personal health devices.

• Data processing.

• User feedback provision in a closed-loop system.

Figure 2.10. Overview of AI-integrated digital twin models for healthcare.

Overall, it is observed from Figure 2.10 that various health applications are supported by
AI models in DT technology. To understand the types of AI models that support numerous
healthcare applications, a discussion of the AI models proposed in DT literature for healthcare
is presented. Based on a literature survey, AI models in DT for health are categorised by
processing time and model type ( Figure 2.11). The details are provided in the following points.

Figure 2.11. Types of AI models in DT for healthcare.

1. Real-time Processing
DT systems are often applied in the visualization of data in real-time [121]. However, it
is important to note that when real time prediction is incorporated, the definition of DT
broadens greatly as follows [122]:

- Extensive data is used to develop a predictive model.

- The model continuously receives a stream of incoming data.

- Predictions are generated by the model in real-time.
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For example, a model trained with data on patient conditions and wait times can be used
to forecast current waiting times in an emergency department. The model processes real-
time data of incoming patients to predict their wait times. In [117], researchers created
classifiers for real-time heart issue classification. They utilised CNN, LSTM, Support
Vector Machine (SVM), and Logistic Regression (LR) to classify ECG heart rhythms in
real-time. The DT model in [123] employed LSTM for predicting the vulnerability of
lung cancer patients in real-time. Real-time prediction has also been examined for fitness
management [121]. While the model in [117] concentrated on classifying data to detect
health issues, the studies in [121] and [123] aimed at forecasting health outcomes before
they occur.

2. Batch Processing
Batch processing differs fundamentally from real-time processing, as it operates on static,
periodic data [124]. An ML model is trained with a large dataset to predict outcomes
for new test data. For example, a model trained on the activity data of individuals with
obesity can be used to predict obesity in others. Batch processing models, built on
extensive datasets, tend to be more precise than real-time models, which prioritize speed
over accuracy [125].

Figure 2.12. Techniques for real-time and batch processing.

Figure 2.12 illustrated that real-time processing uses live data, while batch processing
relies on historical data. No specific classifications for batch predictions were identified
in the study. The choice of learning techniques depends on the size of the training dataset.
The following learning approaches for batch processing were found [126]:

- Batch Gradient Descent Learning: Applied when the batch size equals the entire
training dataset.

- Stochastic Gradient Descent Learning: Used when the batch size is equivalent to a
single data sample.
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- Mini-Batch Gradient Descent Learning: Employed when the batch size is between
one and the total number of samples in the dataset.

3. Anomaly
Anomaly detection has been incorporated into DT models across various contexts. How-
ever, within healthcare, the concept of anomaly prediction has been proposed. The
distinction between anomaly detection and anomaly prediction is subtle. As depicted in
Figure 2.13, the detection process identifies anomalies in real-time data, whereas the pre-
diction process relies on ML model built from historical data [126]. For instance, in [118],
a DT model using CNN was applied for heart condition classification, while the approach
in [127] focused on detecting anomalies in hospital data. Since anomaly prediction de-
pends on ML models, it is important to be aware of the available approaches. Predictive
DT models for healthcare are still in the early stages of adoption, resulting in limited
examples in the literature. Therefore, both applied and potential techniques for anomaly
prediction in DT models were considered. To train a supervised DT model for anomaly
prediction, a labelled dataset distinguishing between anomalous and non-anomalous data
is required. Neural Networks (NN) [121], SVM [128], K-Nearest Neighbour (KNN)
[121], and Bayesian Networks (BN) [129] have been extensively proposed for these
models.

In contrast, unsupervised models do not require labelled data. These models assume that
most data follow a normal pattern, with a small portion being anomalous. The model then
classifies test data based on the similarity of its patterns to the presumed groups. Algo-
rithms such as K-means, Autoencoders, Gaussian Mixture Modelling (GMM), and Prin-
cipal Component Analysis (PCA) have been widely suggested for unsupervised anomaly
prediction models [130].

Figure 2.13. Distinguishing anomaly detection from anomaly prediction.

4. Explainable Model
This type of model is a recent addition to DT predictive models. The challenge of
trust in AI predictions has been widely discussed in the literature [131]. Explainable
AI (XAI) was developed to enhance the interpretability and transparency of black-box
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predictive models, like deep neural networks [132]. XAI models provide transparency by
offering contextual explanations for their predictions [133]. Table 2.3 summarizes various
prediction types applicable to Predictive DT models in healthcare. In one study [128],
Lime algorithms were used to extract explanations for liver disease predictions. SVM
classifiers were trained on liver disease detection data, and Lime algorithms identified
the health parameters for patients diagnosed with liver disease. Another research [121]
employed a counterfactual algorithm to recommend fitness precautions based on the user’s
activity history.

Table 2.3. Overview of DT Models in Healthcare

Ref. Type Requirements Limitations Healthcare applications

[128] Explainable Historical data
Still evolving, may not fit all
classifiers (e.g., kernel-based
SVM).

Personalized healthcare, preventive
healthcare, participatory healthcare.

[134] Anomaly Historical data, labelled
data for anomalies. Implementation complexity Preventive health (preparedness

predictions)

[130] Real-time Live data. Implementation complexity,
reduced accuracy.

Predictive and personalized health-
care (preparedness predictions).

[121] Batch Large volume of histor-
ical data

Potential obsolescence, may
not accommodate new data
types.

Precision health and preventive
health (diagnostic predictions).

In the realm of DT for healthcare, it has been observed that deep learning models using
time-series data are predominantly employed for real-time processing. Additionally, supervised
models utilizing historical data are commonly applied for diagnostic prediction. Emerging
technologies such as XAI and transfer learning are being integrated into DT models. Numerous
studies have proposed DT with AI capabilities for future healthcare applications. While prior
work has explored the role of digital twins in real-time health monitoring and anomaly detec-
tion, existing frameworks often lack predictive capabilities, integration with real-time IoT data
streams, and energy-efficient AI models. Moreover, most studies do not consider deployment
constraints or patient-specific adaptation at scale. To address these challenges, the proposed re-
search introduces cloud-based digital twin healthcare system that fuses patient monitoring with
adaptive AI and task offloading, enabling scalable real-time prediction, low-latency communi-
cation, and improved system efficiency. This work contributes novel, deployable architecture
that closes the gap between theoretical models and real-world digital health implementation.

2.5.5 Analysis of Model Techniques

Recent developments in asthma patient home monitoring involve DT systems, increasing re-
liability, efficacy, and capacity to evaluate breathing strategies and triggers and gather envi-
ronmental data. The reliability of DT systems is indicative of their constant performance in
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the evaluation and interpretation of patient data, underscoring their dependability in practical
medical contexts [135].

coring their dependability in practical medical contexts. DT aids in managing and treating
asthma through mobile applications, gadgets, and remote monitoring systems, enabling early
intervention, as described by Drummond et al. The diverse applications of DT technology in
healthcare indicate its potential to enhance patient care and enable comprehensive monitoring
[135].

Data acquisition in digital twin systems typically involves collecting real-time data from
various IoT devices and sensors. This data is then standardised to ensure consistency and
compatibility across different platforms and systems. Model evaluation techniques often include
comparing the predictive accuracy of digital twin models with actual clinical outcomes, using
metrics such as precision, recall, and F1-score.

2.6 Integration of IoT and Digital Twins

2.6.1 Role of IoT in Healthcare

The incorporation of IoT technology in healthcare has significantly transformed how health
services are managed and delivered. IoT devices enable continuous patient monitoring, gather
real-time health data, and provide critical information for prompt medical interventions. These
devices include wearable sensors, smart medical devices, and remote monitoring systems, which
are crucial in managing chronic diseases and preventive care [136].

Technological advancements and the rising demand for remote monitoring services have
driven a substantial transformation in the healthcare industry. The expansion of digital health-
care applications has facilitated patient appointments and communication with physicians,
regardless of geographic or time constraints, thereby enhancing healthcare accessibility and
patient autonomy [137], [138]. Interconnected health devices are linked through centralized
servers that manage health information, using both wireless and cable connections to ensure
flexibility and reliability in diverse healthcare scenarios [139]. The functionality of Healthcare
IoT (HIoT) networks heavily depends on their topology. The physical configuration of devices
ensures compatibility for different use cases, typically including sensors, actuators, and work-
flows that communicate within the same application domain. This setup allows for simultaneous
task performance and data recording, managed by service providers to ensure data security and
privacy [140].
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The prevalence of IoT-based smart wearable devices in personal healthcare is increasing.
Devices such as smartwatches and fitness bands provide real-time health monitoring features,
including heart rate, blood pressure, caloric burn, and sleep duration tracking. Data from these
devices can help develop personalized health improvement plans. IoT-based software solutions
enhance the functionality and usability of these devices, making them integral to modern
healthcare systems [141]. By leveraging IoT capabilities, healthcare systems can address
challenges related to data accessibility, patient monitoring, and real-time health management.
Continuous advancements in IoT technology and its integration with healthcare systems hold
significant promise for the future, enabling more effective and efficient patient care.

2.6.2 Synergies with Digital Twin Technology

Combining IoT with DT technology creates a robust framework for advanced healthcare solu-
tions. DTs act as dynamic digital replicas of physical entities, enabling real-time interaction
between virtual and physical worlds. The synergy between IoT and DT allows for enhanced
monitoring, simulation, and prediction of health conditions. This integration supports the de-
velopment of Personal Health Systems (PHS) and EHR for real-time patient monitoring [142].
The convergence of the IoT and digital twins is fundamentally transforming multiple sectors
by creating a seamless connection between the physical and digital realms. This integration
facilitates enhanced monitoring, analysis, and optimization capabilities. The IoT encompasses
network of interconnected physical devices equipped with sensors, software, and network con-
nectivity, enabling them to collect and exchange data. In contrast, digital twins are dynamic
virtual representations of physical objects, systems, or processes that mirror real-world actions
and characteristics [143], [144]. In manufacturing, digital twins enable operational analysis
and improvement by creating virtual duplicates of manufacturing lines, which helps identify
inefficiencies and bottlenecks without disrupting actual operations. IoT sensors continuously
monitor equipment, allowing for predictive maintenance and reducing downtime. In health-
care, IoT devices gather extensive patient data, while digital twins simulate medical scenarios,
aiding in research and personalised treatment plans. This technology enhances understanding
of diseases, evaluates therapies, and trains healthcare professionals [145].

In smart cities, urban services such as traffic control and energy distribution are simulated
and optimised through IoT and digital twins. Issues are predicted, different scenarios are
experimented with, and resources are managed more effectively by urban planners using these
technologies, leading to more sustainable and efficient urban living. In agriculture, data on
soil, crops, and weather is collected by IoT sensors, while agricultural processes are simulated
by digital twins to optimise yields and resource use, enabling data-driven decisions by farmers
[146].
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Supply chain efficiency is improved in logistics through the integration of IoT and digital
twins, which track the real-time status of goods and simulate various scenarios to identify
bottlenecks. In the energy sector, insights into energy consumption are provided by IoT sensors
on equipment, while scenarios are simulated by digital twins to optimise energy efficiency and
forecast performance. Educational experiences are enhanced through interactive simulations,
and environmental conservation is aided by monitoring and modelling ecological impacts [147].

2.6.3 Integration of IoT and DT in healthcare

Several studies have demonstrated the potential of integrating IoT with DT in healthcare:

• Elderly Healthcare Services: Liu et al. explored innovative DT applications for elderly
healthcare, highlighting the benefits of combining DT with big data, cloud computing,
and IoT for enhanced service delivery [109].

• Personalized Therapies: Menon et al. provided a comprehensive analysis of virtual copies
of patient anatomical structures for personalized therapies, showing the potential of DT
in precision medicine [148].

• Cardiology and Lung Cancer Treatment: Corral-Acero et al. and Zhang et al. investigated
the use of DT in cardiology and lung cancer treatment, respectively, demonstrating
improved diagnostic accuracy and treatment outcomes through the integration of IoT and
DT [123].

• Enhanced DT Construction Methodologies: Jia et al. explored methodologies for con-
structing enhanced DTs, focusing on the integration of IoT for real-time data collection
and analysis [149].

2.6.4 Challenges in IoT and Digital Twin Integration for Healthcare

Despite the advancements, several challenges and gaps remain in the integration of IoT and DT
in healthcare:

• Data Integration Complexities: Integrating data from various IoT devices into a cohe-
sive DT model is complex and requires robust data standardization and interoperability
frameworks [91].

• Privacy and Security: Another key concern is patient data privacy and security – a concern
that becomes complex when patient health details collected through the IoT are involved
[150].
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• Real-Time Data Integration: Coordinating real-time data exchanged between IoT devices
and DT models in a smooth manner is crucial for early detection of any problem requiring
an action [151].

• Cost and Resource Constraints: As mentioned earlier, the complexities of evolving IoT
and DT systems can be very costly and time consuming, thus their application in resource
constrained environments may not be feasible [152].

Solving these problems calls for a systems approach by establishing workable and agile
models, improving data protection mechanisms, as well as optimizing resource management.
Future research should focus on overcoming these barriers to fully realize the potential of IoT
and DT integration in healthcare.

2.7 Task Offloading Strategies in Healthcare

Task offloading is the process by which computational tasks are delegated from resource-
constrained devices, such as smartphones or IoT sensors, to more powerful servers or cloud
infrastructures. As depicted in Figure 2.14, this strategy is crucial for managing workloads
efficiently, reducing latency, and conserving energy in devices that are not equipped to handle
complex computations. In healthcare, the performance and reliability of applications requiring
real-time processing and analysis of vast amounts of data can be significantly enhanced by task
offloading [153].

A comprehensive overview of DT technology is provided by Md. Shezad Dihan et al.,
tracing its origins to NASA’s Apollo missions and its evolution into a critical technology for
various sectors. DTs are proposed as virtual representations of physical systems that facilitate
intelligent decision-making through continuous bidirectional data flow between physical and
virtual entities. The applications of DTs in manufacturing, urbanization, agriculture, medicine,
robotics, and military/aviation are explored, with emphasis on distinct data collection, storage,
processing, and analysis techniques in each field as shown in Figure 2.15. Current challenges and
future directions are identified, particularly the need for advanced modelling strategies, real-time
data processing, and enhanced data security. Through detailed comparative analysis, diverse
sector-specific insights are unified, and pathways for leveraging DT technology to optimize
system performance, resource management, and decision-making across various domains are
proposed [154].
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Figure 2.14. The end-edge-cloud collaborative HDT system [153].

Figure 2.15. Analytical consistency between digital twins and big data [154].

2.7.1 Importance in Healthcare Context

The integration of task offloading in healthcare is of paramount importance due to several
reasons:

• Resource Efficiency: Healthcare applications, such as telemedicine, patient monitoring,
and diagnostic systems, often operate on devices with limited computational power.
Offloading tasks to more capable infrastructure ensures these applications run smoothly
without overburdening the local devices.

• Real-time Processing: Many healthcare services rely on real-time data processing and
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analysis. For instance, continuous patient monitoring systems must analyse vital signs
promptly to detect any anomalies. Task offloading to cloud or edge servers facilitates the
rapid processing of such data, leading to timely and potentially life-saving interventions.

• Data Security and Privacy: Task offloading can also enhance data security and privacy.
Sensitive health data can be processed and stored in secure cloud environments with
robust encryption and compliance with healthcare regulations, such as HIPAA.

• Scalability: As the volume of healthcare data grows, scalable solutions are required to
manage and analyse this information effectively. Cloud-based task offloading offers the
flexibility to scale computational resources according to demand, ensuring consistent
performance and reliability.

2.7.2 Review of Existing Algorithms and Strategies

In healthcare, there is an increasing emphasis on the necessity for efficient data processing
and effective energy management in medical devices, which has attracted significant academic
interest. Research in this domain spans task offloading, Digital Twin technologies, and the
integration of social determinants in health informatics. Scholarly discussions acknowledge
considerable advancements in these areas while also identifying persisting gaps [155].

In recent research by Jeremiah et al., DT-assisted vehicular edge computing was examined
to enhance network services through edge collaboration and precise resource allocation. The
study confirmed the feasibility of using non-orthogonal multiple access and dynamic roadside
unit selection based on channel state information. Furthermore, the research explored managing
complex optimization tasks such as task offloading, decision-making, subchannel assignment,
and RSU connections using advanced high-level policy gradient algorithms like the Advantage
Actor-Critic algorithm. Simultaneously, Qiu et al. are investigating a DT-assisted edge com-
puting offloading approach utilizing IBMPA to efficiently and swiftly utilize available energy
and computational resources within a stringent time frame [156].

Building on the discussion, Bozkaya et al. proposed a task computation offloading scheme
for DT-enabled networks (DTEN) that is mindful of both energy consumption and delay [157].
However, Chen et al. assess a computation offloading and service caching approach for DTEN
that used A3C algorithm along with dependency features. From their studies, they concluded
improved energy efficiency and system performance [158].

Table 2.4, shown overview of various features and offloading strategies used in different
works. In This Work, the DTH-ATB-MAPPO offloading strategy was employed, with a strong
focus on the integration of DT. Cybersecurity was addressed through the ACTO Algorithm, and

42



Literature Review

multiple communication protocols were supported. Significant improvements were observed
in energy efficiency and network latency with 30 MEC nodes, achieving 53.8% and 33.4%
reductions, respectively. Predictive healthcare interventions were supported, and social health
determinants were included, with extensive real-time testing conducted. In the 2024 study [153],
the TACO offloading strategy was used, also integrating DT and emphasizing cybersecurity via
blockchain technology. Supported communication protocols included D2D, D2C, and C2E.
Energy efficiency was improved by 25%, with a corresponding 25% reduction in network
latency. However, predictive healthcare interventions and social health determinants were not
extensively covered, and real-time testing was not as thorough.

The 2022 study [159] employed the DTTOS offloading strategy, integrating DT and focusing
on cybersecurity with blockchain. Supported communication protocols included D2D, V2I,
and D2C. Energy efficiency was improved by 60%, with 24.39% reduction in network latency.
Predictive healthcare interventions were supported, but social health determinants were not
included. Extensive real-time testing was performed. Finally, the 2024 study [160] utilized
the OWS offloading strategy with DT integration but lacked a specific cybersecurity focus and
supported communication protocols.

This comparative analysis shows that the approaches and focal points of the various studies
differ in terms of offloading techniques, DT integration, security, communications, power
consumption, and latency as well as the integration of social health determinants and real-time
testing.

Table 2.4. Overview of Features and Offloading Strategies in Different Works

Feature 2024 [3] 2024 [153] 2022 [159] 2024 [160]

Offloading Strategy DTH-ATB-
MAPPO TACO DTTOS OWS

Integration of DT Yes Yes Yes Yes
Cybersecurity Focus ACTO Algorithm Blockchain Blockchain No application
Communication Proto-
cols Supported Multi-protocol D2D, D2C, C2E D2D, V2I, D2C No application

Energy Efficiency Im-
provement

53.8% with 30
MEC nodes 25% 60% N/A

Network Latency Re-
duction

33.4% with 30
MEC nodes 25% 24.39% N/A

Predictive Healthcare
Interventions Supported N/A Supported Suggest support

Inclusion of Social
Health Determinants Yes No No No

Real-Time Testing Extensive Not extensive Extensive N/A

43



Literature Review

2.7.3 Addressing Gaps in Healthcare Task Offloading

Despite these, a number of challenges and gaps are still present regarding diverse task offloading
solutions that have been proved to be useful in different scenarios and these include:

1. Adaptability and Scalability: Most of the current methods do not possess enough adapt-
ability to constantly changing network characteristics, computational demands, and pa-
tients’ requirements.

2. Integration with Digital Twins and Social Health Determinants: Digital Twins and the
concept of social health determinants are two new ideas in this context that come as
opportunities and risks in the offloading of tasks in real time. To achieve real-time
synchronization of the digital twins with the offloaded task, there must be a proper
coordination in the flow of information. In the same way, integration of social health
determinants into offloading plans can enhance the applicability of the healthcare services.

3. Security and Privacy Concerns: Security and privacy of health data while offloading is
still a big concern among all the challenges.

4. Energy Efficiency: Despite the fact that offloading may reduce power consumption in local
devices, the total energy chain including the cloud servers has to be minimized. Finding
a proper solution for the problem of achieving a good balance between computational
capabilities and energy concern is not an easy one.

Thus, a comprehensive task offloading framework has been proposed to meet the lack of the
reviewed literature in the healthcare application domain. This framework switches between par-
tial and full offloading while also incorporating the digital twin and social health determinant
considerations into the process. Also, the ACTO algorithm is used to detect threats and counter
them using suitable cybersecurity measures. Through meticulous evaluation, the framework’s
superior efficacy in augmenting computational efficiency, conserving energy, and elevating
patient outcomes has been delineated, marking a significant advancement in harmonizing tech-
nology with healthcare. Although recent studies have introduced heuristic and learning-based
offloading strategies, they typically lack adaptability to changing healthcare conditions, overlook
the integration of digital twins and social health determinants, and provide limited cybersecu-
rity measures. Additionally, few models have demonstrated real-time applicability in clinical
settings. To address these shortcomings, the proposed research presents a hybrid task offload-
ing model incorporating both partial and binary offloading schemes. It integrates real-time
digital twin synchronization, considers social health indicators for prioritization, and embeds
a lightweight cybersecurity module using the ACTO algorithm. This approach fills critical
gaps in the literature by enabling dynamic, secure, and patient-centric task management for
next-generation healthcare systems.
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2.8 Comparative Analysis of Existing Work

1. CNN Architectures on FPGAs:

• Implementation and Performance: CNNs have been successfully implemented on
FPGAs, enhancing medical diagnostics through efficient processing of ECG, EEG,
and EMG signals. Examples include Jiahao et al.’s FPGA design for ECG classi-
fication, achieving high processing rates and resource efficiency, and Guo et al.’s
Angel-Eye architecture, which improves speed and energy efficiency through data
quantization techniques.

• Challenges and Solutions: Key challenges such as scalability, resource utilization,
and integration with existing systems were addressed through various FPGA ac-
celerator designs, highlighting the balance between speed, accuracy, and power
consumption.

2. Cloud-Based Digital Twin Ecosystems:

• Applications and Benefits: DTs provide real-time monitoring, predictive analytics,
and personalized treatment plans in healthcare. Studies have shown their effective-
ness in chronic disease management, real-time health monitoring, and improving
diagnostic accuracy.

• Challenges: The primary challenges include data standardization, real-time syn-
chronization, and integration with IoT devices. Researchers have proposed solutions
like the Lung-DT framework and the Virtual Human Twin to enhance the practical
application of DTs in healthcare.

3. Task Offloading Strategies:

• Importance and Effectiveness: Task offloading enhances computational efficiency,
real-time data processing, and energy conservation in healthcare applications. Strate-
gies integrating DTs and social health determinants have shown potential in improv-
ing patient outcomes and system performance.

• Emerging Solutions: Innovative approaches like the ACTO algorithm for adaptive
cybersecurity mechanisms and heuristic greedy and DQN-based strategies demon-
strate advancements in task offloading methodologies.
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2.8.1 Comparative Analysis

The comparative analysis of methodologies, results, and conclusions reveals significant ad-
vancements in healthcare technology. CNN architectures on FPGAs utilize parallel processing
and data quantization to optimize performance, while cloud-based DT frameworks rely on IoT
integration and real-time data analytics. Task offloading strategies employ both heuristic and
machine learning algorithms to manage computational loads and enhance security. The results
indicate that CNN-FPGA implementations have significantly improved processing speeds and
diagnostic accuracy in medical applications. Digital twins have advanced real-time health mon-
itoring and personalized treatment, although integration challenges remain. Task offloading
strategies have demonstrated improvements in computational efficiency and energy conserva-
tion yet require further development for broader applicability. The reviewed works collectively
highlight the need for adaptable, secure, and energy-efficient solutions in healthcare technology.
The integration of DTs and social health determinants into task offloading strategies presents
new research opportunities to enhance healthcare delivery. To sum up, the comparative analysis
reveals that healthcare technology has advanced tremendously, but there is still more research
that can be conducted and developed to increase the impact and field of use of such technologies.

2.9 Positioning of Current Research

The current work expands on extant literature by incorporating updates on CNN architectures
implemented on FPGAs, the establishment of cloud-based digital twin environments, and the
tasks offloading mechanisms. These integrations are designed in order to solve quite vast gaps
in the area of healthcare technologies. This case aims at improving computational speed, real
time data processing and personalization, which are essential in modern healthcare applications.

The formulation of an adaptive task offloading system that integrates between partial and full
offloading. This framework introduces concept of a digital twin and social health determinants
into decision making where treatment is more accurate and suited to the need. Additionally, due
to the application to medical devices, an energy efficient algorithm has also been incorporated to
enhance the performance of the framework. Also, the opportunity to use the ACTO algorithm
was aimed at implementing an effective response to cybersecurity threats in a nontechnical
environment dependent on the situation, which also enhances the effectiveness of cybersecurity
measures.
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2.10 Summary and Conclusion

In this chapter, a review of the literature pertaining to the research areas of the study was
presented, including design and implementation of efficient CNN architectures for health-care
devices using FPGAs, the creation of cloud-based digital twin environments for health-care
delivery, and novel task offloading mechanisms in health-care applications. Basic notions and
definitions were introduced and defined to build the proper framework of the conversation. The
chapter then delved into specific areas of related work, examining CNN architectures on FPGAs,
cloud-based digital twin ecosystems, task offloading strategies in healthcare, and the integration
of IoT and digital twins. Through a systematic review of relevant studies and frameworks,
critical gaps and limitations in the existing body of knowledge were identified.
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Efficient CNN Architecture on FPGA Using
High Level Module for Healthcare Devices

3.1 Introduction

This chapter perfectly examines the feature used to create an effective one -dimensional convo-
lutional neural network (1-D CNN) architecture, which has been used on field programmable
gate array (FPGA) platform for wearable healthcare equipment. These modern health tools
require high performance, low energy consumption and accurate diagnosis, especially when
handling complex biosignals such as ECG, EEG and EMG. The main goal of research is to
design, implement and evaluate the 1-D CNN architecture that meets these demand criteria.

The CNN model was used due to the benefits of raw data learning facilities, which is
important in biomedical signal therapy. Using this model on the FPGA platform takes into
account parallel calculations of FPGAs, which improves the computation rate and power use.
FPGA is also used flexible and reconstructive, as used here in wearable healthcare devices,
which has dynamic specifications.

FPGAs were chosen in this research, as they were due to parallel processing, low latency
and energy efficiency execution to provide important properties for portable health equip-
ment, which require signal classification in real time during power and space barriers. Unlike
general-purpose CPUs or GPUs, FPGAs offer hardware-level customization, enabling tailored
acceleration of convolutional operations without incurring the overhead of unnecessary com-
ponents. Their reconfigurability makes them ideal for prototyping evolving healthcare models
while maintaining consistent performance across diverse biosignal types such as ECG, EEG,
and EMG. This ensures responsive and accurate health monitoring in resource-constrained edge
environments. In this study, throughput is reported in Giga Operations per Second (GOPS)
instead of floating-point operations, as fixed-point arithmetic was adopted for efficient FPGA
implementation.
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This chapter is organized as follows: Section 3.2 outlines the method used in the study and
Section 3.3 describes the design of the 1-D CNN accelerator as presented in this research work.
In Section 3.4 describes the tools and instruments that were utilised in this contribution. The
details of data collection and preprocessing methods are discussed in Section 3.5. In Section
3.6 describes the approach that will be used in the analysis of the collected data. Furthermore,
the difficulties and the limitations encountered in the study are discussed in Section 3.7. In the
last Section 3.8, conclusions and summaries are presented.

3.2 The Proposed 1-D CNN Accelerator

This section presents the methodology used to design and evaluate 1-D CNN architecture for
classifying ExG signals, namely ECG, EEG, and EMG on FPGA platform. The objective
was to meet the high-performance, low-latency, and energy-efficiency demands of wearable
healthcare devices. A structured experimental framework was adopted, as summarized in
Table 3.1, encompassing data collection, model development, training and validation, and
hardware implementation.

Table 3.1. Key stages of research methodology.

Stage Description

Data Collection Gathering ECG, EEG, and EMG signals from various
datasets.

Preprocessing Applying padding, reshaping, and resampling to standardize
data.

Model Development Designing 1-D CNN architecture with convolutional, pool-
ing, and fully connected layers.

Training and Validation Using training data to optimize model parameters and vali-
dation data to tune hyperparameters.

Hardware Implementa-
tion

Implementing the trained model on Xilinx Zynq xc7z045
FPGA, optimizing for parallel processing and low power
usage.

Performance Evalua-
tion

Assessing model using metrics like accuracy, precision, re-
call, F1-score, and energy efficiency.

NN advancements have improved pattern classification and data mining studies. Recently,
many machine learning tasks that heavily relied on handcrafted feature engineering have been
transformed by end-to-end deep learning models, such as CNN [55]. Numerous computational
layers, organized as directed acyclic graphs, form a 1-D convolutional (CONV) layer. Each
layer abstracts the data from the preceding layer into a feature map. The result 𝑦𝑛 is expressed
as:

𝑦𝑛 = 𝑏𝑛 +
𝐾−1∑︁
𝑘=0

𝑤𝑛𝑘𝑥𝑘 , (3.1)
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where 𝑥𝑘 represents the input feature map data. The output 𝑌𝑘 after applying the activation
function 𝑓 , commonly a rectified linear unit (ReLU), is:

𝑌𝑘 = 𝑓 (𝑦𝑛). (3.2)

CNNs were selected for their strong feature learning capabilities from raw biomedical
signals, eliminating the need for manual feature extraction. A 1-D CNN architecture was
adopted due to its suitability for time-series ExG signals. The core layers included convolutional,
pooling, and fully connected layers, culminating in a SoftMax classifier for final output. The
ReLU activation function was used throughout the network:

ReLU(𝑥) = max(0, 𝑥). (3.3)

Moreover, FPGA acceleration for CNNs has attracted considerable attention. An FPGA
accelerator that is well-designed for CNN can fully exploit parallelism, achieving low latency
and high speed, meeting the demands for high performance, high speed, and low power con-
sumption in various applications. FPGAs are widely utilized as economical solutions across
many industries. Additionally, the reconfigurability of FPGAs allows them to swiftly adapt to
new CNN designs [53]. FPGAs offer better energy efficiency compared to CPUs or GPUs.
Designing a high-performance FPGA accelerator is nontrivial and entails several steps such as
parallel architecture exploration, memory bandwidth optimization, area-timing trade-offs, and
access-handling interfacing with software. As a result, automatic compilers for FPGA-CNN
accelerators have been proposed to automatically generate hardware descriptions of targeted
accelerators based on parametric templates and provide an integrated design space that co-
optimizes network structure-related parameters with respect to target deployment platforms as
well as schedule parallel optimizations [59]. In this study, lightweight 1-D CNN architecture was
optimized for FPGA deployment, using shift-based arithmetic instead of multipliers, pipelined
processing elements, and memory-aware scheduling. These choices contributed to improved
speed, reduced power consumption, and effective resource usage, forming the foundation of the
proposed FPGA-based ExG classifier.

3.2.1 Signal Flow Graph and Processing Element Design

A signal flow graph is a methodology to represent discrete time systems, which displays the
sequential processing of data or enumeration. In the following, this method is used to illustrate
the 1-D CNN CONV layer (also known as computation) and the processing element (PE) design
in iterations of data processing and classification, as shown in Figure 3.1. The output is obtained
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after multiplication and addition operations in the 1-D CNN CONV layer. This method uses
variables 𝑤𝑛𝑘 and ℎ𝑘𝑖, representing the concatenation of kernel weights and the feature map of
the input data, respectively, along with a bias 𝑏𝑛. To minimise the hardware requirements for
the 1-D CNN, the multiplication operation is performed with a left shift. Continuous collection
operations follow, requiring a register (R). Once the iterative data processing cycle is completed
in R, it is then combined with 𝑏𝑛. Ultimately, the final output 𝑦𝑘 is produced.

Figure 3.1. Schematic of a 1-D CNN CONV layer’s signal flow.

To reduce the hardware complexity, multiplication operations were replaced by shift opera-
tions, as shown in Figure 3.2. The equation for the shift operation is given by:

𝑋𝑘 = ℎ𝑘,0 + ℎ𝑘,1 · 2𝑚 + ℎ𝑘,2 · 22𝑚 + . . . + ℎ𝑘,𝑖 · 2𝑖𝑚 . (3.4)

Where 𝑖 is the partition of kernel weights, and 𝑚 is the length of the shift. The substitution
of the shift operation into the convolution equation:

𝑋𝑘 = ℎ𝑘,𝑖 · 2𝑖𝑚, (3.5)

where 𝑖th represents the partition of the kernel weights of the 1-D CNN, with the shift length
𝑚 = 𝑘

𝑖
. Subsequently, Eq. (3.5) is substituted into Eq. (3.1), resulting in the following equation:

𝑦𝑛 = 𝑏𝑛 +
𝐾−1∑︁
𝑘=0

𝑖−1∑︁
𝑖=0

ℎ𝑘,𝑖 · 2𝑖𝑚 · 𝑤𝑛𝑘 . (3.6)

The final form of the proposed architecture is defined by Eq. (3.6). As shown in Figure 3.2,
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the PE includes an XOR gate that functions as a selector to check the sign bit. To reduce
the number of components required, a tristate buffer is used in place of other gates within the
multiplexer.

Figure 3.2. Configuration of a processing element (PE).

3.2.2 Theoretical Compute Peak Performance

The theoretical compute peak performance of an FPGA can be determined using the following
equation:

𝑃 = 𝑓max ×
(
𝑅total
𝑅unit

)
(3.7)

This equation estimates the upper limit of the FPGA’s computational capability based on its
hardware resources and operating frequency, as described in [115]. The equation components
are:

• 𝑃: Theoretical peak performance in operations per second (op/s), i.e. the maximum
number of operations FPGA can perform under ideal conditions (ops/second).

• 𝑓𝑚𝑎𝑥: It is the highest clock frequency that can be achieved from a single operation
core. The 𝑓𝑚𝑎𝑥 is the maximum frequency at which the FPGA can run its cores, usually
described in megahertz (MHz) or gigahertz (GHz). Higher frequencies enable quicker
operation executions.

• 𝑅𝑡𝑜𝑡𝑎𝑙 : The number of total hardware resources available for that type on FPGA. These
resources include Look-Up Tables (LUTs), Flip-Flops (FFs), and Digital Signal Processors
(DSPs), each having a finite quantity available for implementing computational cores.
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• 𝑅𝑢𝑛𝑖𝑡 : Signifies the hardware resources required to implement one operation core of the
desired computation. This includes the specific amount of LUTs, FFs, DSPs, or other
resources needed to create a functional unit capable of performing the operation.

The peak performance 𝑃 is calculated by multiplying the maximum frequency 𝑓𝑚𝑎𝑥 at which
the operation cores can run by the number of such cores that can be implemented on the FPGA,
given its available resources. The equation ensures that the estimation is constrained by the
most limiting resource, providing a realistic upper bound for the FPGA’s performance.

3.2.3 Hardware Implementation

The trained 1-D CNN model was deployed on the Xilinx Zynq xc7z045 FPGA platform. Due to
the substantial size of the kernels and weights, all parameters were stored in off-chip memory.
However, as on-chip buffers were insufficient to cache the entire network, a hybrid memory
strategy was adopted: data and weights were preloaded from off-chip memory into an on-chip
buffer to facilitate high-speed access during computation, as illustrated in Figure 3.3.

This buffering scheme enabled efficient feeding of data into the processing element (PE)
arrays via a data bus, maximizing memory bandwidth and supporting concurrent I/O and com-
putation. To further optimize throughput, data was loaded in batches rather than individually.
Since a single output channel may require multiple compute cycles, intermediate results were
passed to an output buffer before being written back to off-chip memory.

The logic flow of the acceleration process is described in Algorithm 3.1, which initializes
memory, distributes data and weights, computes convolutions in parallel using PEs, applies
activation and pooling, and stores the results. The accelerator pipeline includes specialized
functions for memory loading/storing, convolution via PE, adder tree reduction, ReLU activa-
tion, and max pooling.
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Algorithm 3.1. 1-D Convolutional Neural Network (CNN) Accelerator
1: Begin 1-D CNN Accelerator # Initialize Off-chip memory
2: Initialize off chip memory # Load data from Off-chip memory to On-chip buffer.
3: data = Load(off chip memory, data bus)
4: Store(on chip buffer, data) # Load weights to Weight buffer
5: weights = Load(off chip memory, data bus)
6: Store(weight buffer, weights) # Initialize Input Signal Buffer
7: input signals = Load(input signal buffer) # Initialize Processing Elements (PEs)
8: for each PE in PE array do
9: Initialize PE

10: end for # Data and Weight distribution to PEs
11: for each input signal in input signals do
12: for each weight in weights do
13: Distribute input signal to PE, Distribute weight to PE, output PE = PE(input signal, weight), Collect

outputs from PE to adder tree.
14: end for
15: end for
16: sum = Adder Tree(output PE), relu output = ReLU(sum), max pooled output = Max Pooling(relu output) #

Adder Tree Processing, Activation function (ReLU).
17: Store(output buffer, max pooled output) # Write the processed to Output Buffer
18: Write(off chip memory, output buffer) # Transfer Output Buffer to Off-chip memory
19: End 1-D CNN Accelerator
20: function Load(memory, bus)
21: data = Read from(memory, bus)
22: return data
23: end function
24: function Store(buffer, data)
25: Write to(buffer, data)
26: end function
27: function PE(input signal, weight)
28: result = input signal * weight # Perform convolution or other operations
29: return result
30: end function
31: function Adder Tree(outputs)
32: sum = 0
33: for each output in outputs do
34: sum += output
35: end for
36: return sum
37: end function
38: function ReLU(value)
39: return max(0, 𝑣𝑎𝑙𝑢𝑒)
40: end function
41: function Max Pooling(inputs)
42: max value = −∞
43: for each input in inputs do
44: if input > max value then
45: max value = input, then Write to(memory, data)
46: end if
47: end for
48: return max value
49: end function

This process continues with the initialization of the input signal buffer, which holds incoming
signals prior to processing. Each processing element (PE) in the PE array is then initialized to
perform parallel operations.

During execution, input signals and their corresponding weights are streamed to the PEs.
Each PE performs a convolution operation and generates partial outputs. These outputs are
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aggregated using an adder tree, and the result is passed through a ReLU activation function to
introduce non-linearity.

Following activation, the data undergoes max pooling, a downsampling step that preserves
essential features while reducing dimensionality. The pooled outputs are stored in an output
buffer, which is then written back to off-chip memory, completing the dataflow pipeline. The
overall process is facilitated by modular functions:

1. Load retrieves data from memory.

2. Store writes data to internal buffers.

3. PE performs core multiply-accumulate operations.

4. Adder Tree sums PE outputs.

5. Max Pooling extracts dominant features.

6. Write transfers final outputs to memory.

This streamlined accelerator architecture enables efficient pipelining of computation and mem-
ory operations, leveraging FPGA parallelism to achieve high-throughput, low-latency processing
suitable for real-time biomedical applications.

3.2.4 Model Development

Introduction of 1-D CNN architecture comprising convolutional layer, pooling layer, and fully-
connected (FC) layers. The architecture is optimized to minimize the amount of resources
used while providing sufficient flexibility for mapping designs onto FPGA. The proposed CNN
accelerator architecture is illustrated in Figure 3.3.

Key features of the model development included:

• Pipelined processing unit array application for high-capacity and efficient operation.

• Implementation of shift operations to reduce hardware complexity.

• Improvement in consuming less resource by integrating a tristate buffer in the multiplexer.
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Figure 3.3. Layout of the proposed CNN accelerator.

56



Chapter 3

3.3 Proposed 1-D CNN Structure and Other Algorithms

3.3.1 System Workflow

The workflow during the system building phase is shown in Figure 3.4. After collecting the
dataset, it is stored in a database for easy fetching and analyzing. The stored data is then passed
for preprocessing, which includes padding, reshaping, and resampling. The data is also split
into two parts called testing data and training data, which will be used in the model-building
process. The model creation phase has two steps: 1) Model Training and 2) Model Evaluation.
In the evaluation phase, the testing data is used to test how well the model is working or if there
may be an underfitting problem with the training set. The ensemble is then utilized on the three
models to aggregate the insights and output, identifying which mode performs best.

This step is repeated 10 times to select the best model from these ML algorithms. After storing
the best model, the system is ready to accept any sample data for classification. Finally, the
algorithm is implemented on FPGAs to create an accelerator for classification.

Figure 3.4. Proposed framework and workflow for ExG signal classification.
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3.3.2 Data Utilization

In this chapter, ExG signals, including ECG, EEG, and EMG signals, were used due to their
similar characteristics, as depicted in Figure 3.5. Summary of the ECG signal data set [67]
from the UCI machine learning repository. There are several parameters in the data set, such as
a target state of heart disease or not having heart disease. Although the ECG database contains
only 303 patients, 4242 parameters, and 76 features, published research typically leverages
merely up to a few dozen related measurements (14 in our case). The sampling frequency of
the ECG signal was set to 100 Hz in this work. The dataset of the ECG signal includes: age
(years); sex (1= male, 0 = female); type of chest pain; resting blood pressure; serum cholesterol
level; fasting blood sugar > 120 mg/dl (1=true, 0=false); resting electrocardiographic results;
maximum heart rate achieved; exercise-induced angina (1=yes, 0=no); ST depression induced
by rest relative to exercise; normal, a fixed defect, and a reversible defect are indicated with the
numbers 3, 6, and 7, respectively; target (disease) (1=yes, 0=no).

Figure 3.5. ExG signals include: a) EMG, b) EEG, c) ECG.

The brainwave data set is processed for the EEG signals in [76], [83]. It used dry electrodes
to delineate the positive, negative, or neutral state at each step experienced by participants. In
this study, the types of sentiments were divided into three categories based on a 1/2/3 coding
scheme: melancholy/negative (coded as ”1”), joyful/positive (coded as ”2”), and neutral (coded
as ”3”). The EEG signal has a sample size of 1492 number of instances, 2548 features, and the
number of parameters is 3801616 with a sampling frequency of 150Hz.
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The EMG signal dataset from the UCI Machine Learning Repository was employed [45].
This dataset tracked the movements of the volunteers and normal as well as aggressive actions
that were performed along with their impact in real time by attaching eight channels on the
body. The EMG signal dataset consists of the total of 10000 instances, 8 features, and 723220
parameters with the sampling frequency of 200 Hz. For simplicity of classification, this sheet
of EMG signal data was encoded from 0 to 6, with channel number 7 for the data carrier sensor.

3.4 Materials

This section describes the hardware and software tools employed in the study to design and
build the 1-D CNN accelerator.

3.4.1 Hardware

The proposed 1-D CNN architecture was implemented on the Xilinx Zynq XC7Z045 FPGA
platform, selected for its high parallel processing capabilities, low latency, and energy-efficient
operation key requirements for real-time signal classification in wearable healthcare systems.

• FPGA Platform: Xilinx Zynq XC7Z045 combines programmable logic with ARM-
based processing, which offers a balanced architecture that is suitable for distributing
deep learning models with customized resource control. DSP slices with high numbers,
blocking RAM and logic cells make it ideal to accelerate fixed operations in 1-D CNN,
while at the same time the power consumption minimal necessary criterion in edge-based
medical monitoring.

The platform enabled the integration of all shift-based multiplier and light buffers such
as pipe CNN calculation, real-time data flow control and hardware-friendly optimization in a
compact and reconstruction environment.

3.4.2 Software

The development, training and evaluation of the 1-D CNN model was done using the Python
programming language, which was chosen for its widespread support in scientific data process-
ing and machine learning. Jupyter Notebook was used as a primary development environment,
enabling effective visualization, troubleshooting and iteration during model development.
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Many python libraries were used throughout the process. Numpy and pandas were employed
for numerical operations and preprocessing tasks, such as reshape, padding and generalization
of ECG, EEG and EMG Signal dataset. The performance of the model was assessed by the use
of Scikit-learn, which provides metrics as accuracy, precision, recall, F1 score and AUC.

In addition to the proposed 1-D CNN model, several classic machine learning algorithms
were used on performance comparison:

1. Support Vector Machine (SVM) with a radial basis function (RBF) kernel and regular-
ization parameter 𝐶 = 1.0.

2. Naı̈ve Bayes (NB) using Gaussian assumptions for feature distributions.

3. Logistic Regression (LR) with L2 regularization and solver = ’liblinear’.

4. K-Nearest Neighbors (KNN) with 𝑘 = 5.

5. Decision Tree (DT) with maximum depth = 10 to prevent overfitting.

6. Random Forest (RF) with 100 estimators and bootstrap sampling.

7. Stochastic Gradient Descent (SGD) classifier using hinge loss and learning rate = 0.01.

All models were trained using the same preprocessed data and evaluated using a 5-fold
cross-validation to ensure fairness. This comparative assessment helped show the performance
gains to the 1-D CNN model, especially in the context of classification accuracy and strength
for different biosignal types, which ultimately motivated its selection for FPGA deployment.

3.5 Data Collection Procedures

This section emphasizes the processes that followed for data acquisition and prepricing to
support the training and evaluation of the 1-D CNN model. The dataset used includes ECG,
EEG and EMG signals, each with separate sampling rate and feature dimensions. To ensure
stability in the input, all signals were shaped and transformed to certain length, redesigned to
adjust the sampling frequencies, and formatted to match the input requirements of the CNN
model designed for the time series classification.

The full dataset was divided into three subsets: 70% for training, 15% for validation, and
15% for testing. The training set was used to iteratively update the CNN model parameters, while
the validation set helped tune hyperparameters and monitor performance to avoid overfitting.
The test set was reserved for evaluating the final model’s generalization on unseen data.
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Normalization was used to standardize feature values in the dataset, either by scaling to range
of [0, 1] or standardization for zero mean and variance. During the training, this prepreparing
step improved learning efficiency and model convergence.

Through these steps, an integrated and clean data set was designed to train and validate
the 1-D CNN model in multiple biosignal types. The following sections are broad on design,
training processes and hardware implementation.

3.6 Data Analysis Methods

This section provides an approach that was followed to analyze the data collected for the
development and evaluation of the 1-D CNN model. This provides extension of the data
involved in the study’s analysis.

3.6.1 Model Training

Training the CNN model involved optimizing its weights and biases using the training dataset.
Initially, the convolutional layers’ parameters were randomly initialized. Input data was then
propagated through the network via forward propagation to generate output predictions. The
loss between predicted and actual labels was calculated using the cross-entropy loss function.

During backpropagation, gradients of the loss were computed with respect to the model’s
parameters, which were updated using Stochastic Gradient Descent (SGD). Various learning
rates and momentum values were tested to identify the most effective training configuration. To
improve generalization and reduce overfitting, regularization techniques such as dropout and
weight decay were used.

3.6.2 Model Evaluation

The performance of the CNN model was evaluated using validation and testing datasets. Several
metrics were calculated to assess the model’s effectiveness:

1. Accuracy: The proportion of correctly classified samples out of the total samples was
calculated. This provides a general measure of the model’s performance.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (3.8)
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where 𝑇𝑃 represents true positives, 𝑇𝑁 represents true negatives, 𝐹𝑃 represents false
positives, and 𝐹𝑁 represents false negatives. The accuracy attained by each algorithm
based on the neural network (NN) of the proposed model is shown in Figure 3.6.

Figure 3.6. Accuracy of the 1-D CNN model when using a threshold probability for positive
classification.

2. Precision: calculated by the number of true positive predictions divided by the total
predicted positives. This shows how accurate the positive predictions are.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.9)

Figure 3.7 (c) describes the precision of the proposed model for each algorithm.

3. Recall: Number of correct positive predictions divided by the number of all actual
positives. This is equivalent to the model being able to recall every relevant case.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.10)

Figure 3.7 (d) illustrates the recall of the proposed model for each algorithm.

4. F1-Score: The harmonic mean of precision and recall was computed to provide a balanced
measure of the model’s performance.

𝐹1 =
2(

1
Recall +

1
Precision

) (3.11)

Figure 3.7 (a) presents the AUC of the proposed model for each algorithm. A value near
1 signifies that the classifier is performing effectively. In contrast, a value approaching zero
indicates that the model is entirely incorrect and classifying in the opposite manner. A value
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around 0.5 suggests that the classifier is making random guesses. The relationship between the
false positive rate (specificity) and the true positive rate (sensitivity) is illustrated in Figure 3.8.

Figure 3.7. The performance of the first four models according to (a) Area Under the
Curve, (b) F1-score, (c) Precision, and (d) Recall.

3.6.3 Cross-Validation

The model was trained on data and tested using cross-validation techniques to ensure it performs
well and generalizes when predicting new or raw signals. The performance was consistent
irrespective of how the data was split into training or test within each batch. K-fold cross-
validation was employed, where the data was divided into five subsets, and trained and validated
five times with a different subset as the validation set (15%) while training on the rest. This
provided a more robust estimate of the model’s performance.

3.6.4 Hardware Implementation Evaluation

The implementation of the 1-D CNN model on the FPGA platform was evaluated based on
several key performance indicators:

1. Processing Speed: The speed at which the FPGA processed the data was measured and
compared to other implementations. The proposed architecture achieved a high speed of
442.948 MHz, as shown in Figure 3.9 (a).
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Figure 3.8. The ROC curves of the four models.

2. Resource Utilization: The amount of FPGA resources, such as logic units and memory,
used by the model was recorded. The proposed architecture achieved resource utilisation
of 1.068 KLUT, as depicted in Figure 3.9 (b).

3. Energy Efficiency: The power consumption of the FPGA during model execution was
measured to assess energy efficiency. The proposed architecture demonstrated 161
GOP/s/W energy efficiency.

4. Throughput: The number of operations per second (e.g., Giga Operations per Second or
GOPS) achieved by the FPGA implementation was calculated (as mentioned in Equation
(3.7)). The proposed design achieved peak throughput of 1145 GOPS.

Figure 3.9. Illustration of the proposed 1-D CNN accelerator: (a) Comparison of operating
frequency between the proposed structure and other models; (b) Comparison of resource
utilisation (KLUT) among the models.

These results validate the effectiveness of the methodology introduced earlier in this chapter,
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where signal preprocessing ensured standardized inputs, shift-based PE design minimized
hardware load, and the pipelined dataflow enabled real-time classification. The combined
impact of these steps is reflected in the high operational frequency (442.9 MHz), low resource
utilization (1.068 KLUT), and strong classification metrics (F1, AUC), demonstrating how each
methodological design choice translated directly into performance gains.

To bridge the software and hardware stages, the trained CNN model parameters, including
weights and biases were exported from Python as .txt files. These files were formatted to
match the data interface of the FPGA system and uploaded to the off-chip memory prior to
inference. At runtime, the PE arrays access these parameters from memory, enabling real-time
classification without requiring on-chip learning. This separation of training and inference
aligns with edge computing goals by ensuring low-latency and resource-efficient deployment
on hardware.

3.7 Limitations of the Methodology

Several limitations were encountered during the development and evaluation of the 1-D CNN
model implemented on the FPGA platform. One primary limitation was the hardware constraints
of the Xilinx Zynq xc7z045 FPGA. Although this platform is efficient, its limited resources in
terms of logic units, memory, and processing power restricted the complexity and depth of
the CNN model that could be implemented. This variability was another challenge because
the characteristics of each signal type was not always consistent between patients; the signals
acquired with ECG, EEG, and EMG differed from one another patient to patient. These signals
contain additional inter-subject and intra-subject variations that can influence the CNN model’s
performance.

Normalization and pre-processing of these signals to get standard results was a time taking
and detail oriented job. Another limitation was concerned with the selection and quality of the
development and test corpora. There are certain differences between the datasets available in
public domain that can be observed in the signal quality, the sampling rate, and the free-from
noise. These variations can bring in biases and distortions in generalization of the model, on
cross datasets to ensure a good performance.

The applicability of the model on any other population also raised some concern. These
datasets were collected on some certain population which can be a limitation in terms of gen-
erality. This limitation compromises the model’s validity since it cannot generalize the results
obtained to other demographics with different physiological traits. The real time computations
were hindered substantially by the data movement rates between on-chip and off-chip memo-
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ries. Although, the FPGA platform offers main enhancements in computing rate and power
utilization.

Finally, in this study, it is clear that no all aspects of model performance have been described.
Other measures like accuracy, precision, recall, F1-score, and AUC are equally informative, yet
they may not reveal the whole picture of the model’s effectiveness in more complex realities
involving additional conditions. Thus, recognizing such restrictions, a clearer idea of what
the researcher encountered during the investigation process will be presented. These findings
are useful for future researches to investigate and enhance the performance and utility of CNN
models in the classification of ECG, EEG, and EMG signals of wearable healthcare gadgets.

3.8 Conclusion and Summary

In this chapter, the proposed 1-D CNN architecture for the classification of ECG, EEG and
EMG signal data obtained from the database and detection of various cardiovascular diseases
is discussed. The key ones are the architectural design of the CNN model that would be
highly suitable for FPGA implementation, the methods of biosignal data preprocessing and
handling, as well as comprehensive assessment of the model’s performance based on multiple
factors. From the results, it can be concluded that by using the proposed 1-D CNN model,
high classification accuracy could be obtained while consuming a small amount of energy and
effectively managing the given resources. The proposed 1-D CNN accelerator works very
efficiently due to using a tristate buffer in the multiplexer and replacing the multiplier by shift,
which results in a resource-efficient accelerator.

The observed improvements in speed, energy efficiency, and accuracy were a direct outcome
of the methodological innovations, namely the lightweight CNN architecture, shift-based arith-
metic design, and pipeline scheduling in FPGA. These aligned perfectly with the system-level
goals for wearable healthcare deployment, validating the proposed design both theoretically and
practically.
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Implementation and Evaluation of Digital
Twin Framework for IoT-Based Healthcare

Systems

4.1 Introduction

Since the emergence of digital technologies there has been advancement at a very high rate such
that different segments of the economy have benefited from it and this include the healthcare
segment. The combination of the cloud environment, big data processing, and the IoT has
created application opportunities primarily focused on advancing the healthcare system and
enhancing patient wellbeing. One of such innovations is DT which entails the development
of an information model that mirrors the physical entity for purposes of monitoring and even
adjusting to real time conditions with the aim of preventing negative occurrences.

In healthcare, DTs present a new form of intervention by recreating the patient’s physiological
conditions in a virtual environment. This fosters constant tracking and evaluation of health
aspects in the body hence early doctor interoperation and tailored care. However, it has been
identified that the use of DTs in healthcare is still early stages. These are some current challenges
of data integration, the problem of interoperability of systems, the issue of real-time processing.
In this chapter the details of the infrastructure of the cloud-based DT ecosystem with the focus
on real-time health monitoring and predictive analytics are outlined. Some of the factors
which were measured by using the multiple sensors include the oxygen saturation (SpO2), heart
rate (HR) and body temperature (BT); this system was connected to the cloud platform. This
structure offers and supports the computation facilities for data storage, processing, and analysis.
The primary contributions of this study are:

1. A new DT architecture is proposed, utilising cloud-based technology and healthcare
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wearable devices, combined with a Pyomo-based dynamic optimisation model. This
framework forms the basis of a Digital Twin Healthcare (DTH) application and effec-
tively tackles challenges related to real-time monitoring, enhances system scalability, and
improves resource management, while also boosting the precision of emergency alerts for
patients.

2. The presentation of a study on DTH using ML for comparison, diagnosis, and prediction,
ensuring consistent results by comparing seven different ML algorithms.

3. The proposal of a cost-effective DT simulation framework for twin graphs, using JSON-
LD and sensors, for monitoring and health tracking in humans, utilising pay-as-you-go
cloud services.

4. This study also seeks to verify the design based on the integration of physical and digital
data using time series insight (TSI), with Flask used to validate the ML model. Latency
calculation was also performed and in comparison with previous study, the obtained
latency is low.

5. Establishment of a Robust Security Framework: By employing hybrid encryption,
certificate-based authentication, Merkle Tree verification, and secure communication
protocols, the system ensures enhanced data security and integrity throughout the data
transmission process.

The remaining sections of this study are structured as follows: A cloud-based DT architecture
is proposed in Section 4.2. Section 4.3 describes the framework developed on the basis of twin
graph. The implementation setup is presented in Section 4.4. In Section 4.5 presented approach
of Cybersecurity in digital twin healthcare step by step with explain algorithm of security.
Section 4.6 describes Proof of Concept (PoC). The Results and Discussions is presented in
Section 4.7. Finally, Section 4.8 provides the conclusion and summary for this study.

4.2 System Architecture

The architecture of DT ecosystem is designed across the cloud for the effective implementation
of the entire health monitoring as well as the analysis for the predictive system. This architecture
is multilayered, and every layer is responsible for certain aspects in the working of the system.
All these layers collectively help in effective data acquisition, communication, analysis, and
visualisation.

68



Chapter 4

4.2.1 Proposed structure of Digital Twin Healthcare

A novel DT-based healthcare monitoring system utilising cloud computing was developed in
this study. The system leverages DT through PaaS, providing digital monitoring as an advanced,
computer-oriented solution. In Figure 4.1, the proposed architectural model for a DT, employing
both edge computing and cloud computing, enables the analysis of mobile data while using the
Azure cloud as the platform. The architectural framework is supported by the cloud platform
and comprises five distinct layers.

Figure 4.1. Proposed DT architecture including cloud, device, communication, and display
layers.

The cloud platform supports the architectural framework, which consists of five distinct
layers, enabling the practical integration of cloud and edge computing into the DT. This is
demonstrated in Algorithm 4.1, which is designed to monitor and predict patient health indicators
using a DT paradigm. The process begins by establishing the system through the integration
of IoT devices within a specified starting period. The primary inputs include health metrics
and historical health data. Data is processed to calculate the instantaneous fluctuations and
disparities in health parameters. Once a specified data threshold is reached, the range and
differences of the metrics are computed. The program then evaluates the health measures
against predetermined thresholds.
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A. Device Layer

On the left side of Figure 4.1, the device layer of the design architecture is presented. This layer
includes the controller, a NodeMCU ESP8266, along with the sensors worn by an individual.
The controller is essential for transmitting data to the IoT Hub using the Message Queuing
Telemetry Transport (MQTT) protocol. MQTT, a messaging protocol specifically designed
for networks with limited bandwidth, high latency, and inconsistent connectivity, is frequently
encountered in IoT environments. Real-time communication is vital within the DT paradigm.
Figure 4.1 illustrates HR, SpO2, and BT readings, which are sampled and sent to the com-
munication layer. The sequential operating procedures from an implementation standpoint are
depicted in this layer, which can be summarised as follows.

1. For the experiments, a NodeMCU ESP8266, a Max30102 sensor for SpO2 and HR, and an
MLX90614 sensor for BT were utilized. The Max30102 sensor comprises internal LEDs,
optical components, and photodetectors. It operates on a 1.8-V single power supply, with
an additional 3.3-V supply for the internal LEDs.

2. Pulse oximetry involves the use of LEDs to interact with a photodiode placed on the
patient’s body.The calculation of SpO2 is expressed as follows:

𝑆𝑝𝑂2 =
ACred/DCred

ACIR/DCIR

(4.1)

This equation represents the ratio of absorbed to transmitted light at the specified wave-
lengths, thereby determining the oxygen saturation level in the blood.

3. Multiple measurements, including BT, HR, and SpO2, are recorded by the IoT node. The
IoT node periodically records each parameter to ensure accuracy and reliability.

4. In this approach while IoT Hub does not conform to the formal MQTT broker protocol, it
uses Device-to-Cloud (D2C) message transmission. In the following way it also enhances
the system robustness and also provides assurance to the organizations that the cloud
infrastructure is built strong. As one of the outstanding characteristics of the IoT Hub,
there is a free messages option of up to 8000 daily, making this approach almost-free.

5. Data collection and transfer to the IoT hub are performed by the NodeMCU ESP8266.
Once a connection with the cloud has been initiated and successfully created, the serial
monitor will display an ‘OK’ message. Thus, this verification step not only confirms that
all the procedures have been executed successfully but also increases the reliability of the
system.
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In summary, ESP8266 NodeMCU is an important part of data acquisition and data transfer in
the Internet of Things environment. The printout of ‘OK’ on the serial monitor indicates that
the cloud has been established and the correctness of the procedures for data transmission and
the quality of the data that has been gathered are correct.

Algorithm 4.1. Intelligent Patient Surveillance and Predictive Analytics with DT
1: procedure Main
2: Initialization: Set devices and IoT Hub; Set time;
3: Input: 𝔇(hr, BT, Spo2),H𝐷(Historical data)
4: Output:

S𝐷 = status of the patient
𝐷𝑇 = Digital Twin model
F𝐷𝑇 = Digital Twin with Machine Learning

5: Δ𝔇𝐷𝑇 = 𝔇(𝑡0) −𝔇(𝑡0 − 1) ⊲ Change in data at time 𝑡0
6: 𝔙 = 𝔙 + 1 ⊲ Calculate number of data points
7: if 𝔙 = 20 then
8: 𝔇 = max(𝔇(𝑛)) −min(𝔇(𝑛)) ⊲ Data difference
9: D𝑟 = max(𝔇) −min(𝔇) ⊲ Range of data values

10: if Δ𝔇 < 0 then
11: 𝐷 𝜉 = Δ𝔇

Δ𝔇+𝔇 × D𝑟 ⊲ Supplementary data flow rate
12: else
13: 𝐷 𝜉 = 0
14: 𝔇 = 0
15: end if
16: if 𝑛 ≠ 1 and Δ𝔇 = 0 then
17: M(𝑐0) =M(𝑐0 − 1) + 1 ⊲ Monitor the patient
18: end if
19: ifM(𝑐0) > 1 then
20: ℑ𝑑 𝑓 = D𝑟 × (M(𝑐0 )−1)

𝔗𝑠
⊲ Data flow rate

21: end if
22: else
23: if 𝑛 = 1 or Δ𝔇 ≠ 0 then
24: M(𝑐0) =M(𝑐0 − 1)
25: end if
26: end if
27: M(𝑐0) continues for the next cycle of monitoring
28: end procedure

B. Communication Layer

The communication layer enables real-time data exchange between the device layer, edge layer,
and cloud layer. Implemented protocols within this layer include HTTPS and MQTT, as
illustrated in Figure 4.5. The communication layer is composed of three parts, which can be
expressed as follows:

CL = (CL−PD, CL−VD, CL−PV) (4.2)

In this expression, CL−PD represents the communication between physical objects and DT data
(𝔇𝐷𝑇 ), CL−VD denotes the interaction between virtual objects and 𝔇𝐷𝑇 , and CL−PV signifies
the communication between physical and virtual objects. The 𝔇𝐷𝑇 model comprises data from
both physical and virtual objects. During communication, the data source, value, unit, and
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sample size are critical elements that influence the data being transmitted and received.

st+1 = f(st, at, et), (4.3)

where st+1 indicates the next state, st represents the current state, at is the action taken according
to the policy, and et denotes an external environmental factor. This system evolves over time,
influenced by actions and external factors. Machine learning models select actions to maximize
perceived rewards:

𝑎𝑡 = 𝑀𝐿 (𝑠𝑡 , 𝜃), (4.4)

where at is the action chosen by the machine learning model based on the current state st and
model parameters 𝜃. The rewards are calculated as follows:

𝑅𝑡 = 𝑀𝐿 (𝑠𝑡 , 𝑎𝑡 , 𝜃). (4.5)

These rewards 𝑅𝑡 , based on the current state 𝑠𝑡 , action 𝑎𝑡 , and parameters, continually refine the
model’s policies using the update equation:

𝜃new = 𝜃old + 𝛼∇𝜃𝐽 (𝜃), (4.6)

where 𝜃new and 𝜃old are the updated and previous parameters of the model, respectively, 𝛼 is
the learning rate, and 𝐽 (𝜃) represents the objective function, typically the expected reward. The
system’s performance is evaluated with a loss function:

𝐿 (𝜃) = (𝑅𝑡 − �̂�𝑡 (𝜃))
2
. (4.7)

Where 𝐿 (𝜃) is the loss function, 𝑅𝑡 is the actual reward received, and �̂�𝑡 (𝜃) is the predicted
reward based on the model parameters 𝜃. The learning agent performs stream analytics (feature
extraction):

𝑋𝑡 = analyse(𝑠𝑡) (4.8)

Where 𝑋𝑡 represents the features extracted from the state 𝑠𝑡 by the stream analytics process.
This guides further refinements to model parameters through the learning process:

𝜃new = 𝜃old − 𝜂
𝜕𝐿

𝜕𝜃
(4.9)

Where 𝜂 is the learning rate, and the partial derivative 𝜕𝐿
𝜕𝜃

represents the gradient of the
loss function with respect to the model parameters. This process balances exploration and
exploitation in decision-making. To sum up, the communication layer’s protocols and structures
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Figure 4.2. Sensor output in the IoT device framework.

enable seamless real-time data exchange, critical for the efficient operation of the digital twin
ecosystem in healthcare.

C. Digital Model Layer

The digital model layer is designed to provide users with medication reminders and emergency
alerts while continuously monitoring a patient’s physiological status through wearable devices.
This layer involves constructing a participant’s historical data, sensor models, and behavioural
models to characterize activities such as medication adherence and emergency responses. These
models can predict future actions and facilitate evaluation, reasoning, and prediction using rules
of association, constraints, and deductions, as illustrated in Figure 4.1. The Digital Twin for
Healthcare (DTH) model is expressed as:

𝐷𝑇𝐻 = (P𝑖,S𝑚,B𝑚, F𝑚,N𝑐) (4.10)

where P𝑖 includes personal information such as name, gender, age, and historical data. This
information forms the basis for managing personal health. The componentS𝑚 primarily consists
of medical sensor data, including HR, SpO2, and BT.

A behavioural model, B𝑚, is designed to characterize the state of an individual, whether a
patient or an elderly person, to monitor their status, including the amount of medication taken
or crisis behaviours such as cardiac arrest or respiratory arrest. The element N𝑐 describes the
network connection between the cloud environment and the devices.

Model evolution occurs in parallel, with models being calibrated to run synchronously with
physical objects. The advanced models provide more precise estimation, optimisation, and
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forecasting of the operational process model, denoted as F𝑚.

D. Cloud Layer

The cloud layer furnishes the necessary computational resources for data storage, processing,
and analysis, thereby supporting the extensive data handling needs of the DT ecosystem. High-
performance computing resources within the cloud facilitate the execution of complex machine
learning algorithms, which are crucial for predictive analytics. The cloud infrastructure ensures
scalability, enabling the system to manage large data volumes from multiple sources without
performance degradation. To connect time series insights and Azure Digital Twin (ADT)
with the IoT hub, a bridge is required to transmit data from the cloud to the display layer for
monitoring purposes. In the current study, Digital Twin Definition Language (DTDL) employs
JSON-LD, an open language similar to JSON. The DTH platform enables remote monitoring
and health tracking, scalable for both smart devices and patients. An IoT hub transmits patient
monitoring data to the cloud via a twin-graph platform. Serverless Functions apps reduce the
need for extensive code, infrastructure management, and associated costs. Within the broader
research framework, Algorithm 4.2 is identified as essential for achieving data synchronization
between IoT devices and the Digital Twins environment.

This foundational role is further elucidated through a detailed exposition that follows:

1. Upon the algorithm initiation, basic namespaces are invoked: Digital Twins SDK for
.NET for creating digital twins, the cloud identity to authenticate the user, and utilities
for parsing IoT devices data.

2. ADT URL that describes the URL of a digital twin instance endpoint. This URL is very
important because it points the algorithm to the correct DT service.

3. This prevents the algorithm from being started in situations where environment variables.
If the ADT URL is undefined then all parameters needs to be initiated otherwise error
log created.

4. Credential objects are created using the default cloud credential method for seamless
authentication within the suite of cloud services. Subsequently, a connection is established
with DT using these credentials, forming a secure and robust link with the Digital Twin
Client object.

5. The UpdateDigitalTwin function is then invoked using the device’s unique identifier and
a dictionary of updated data, ensuring the latest sensor information is accurately reflected
on the DT. This guarantees that the DT correctly represents the current status of the
physical device.
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Moreover, the algorithm is designed to handle a large number of events, which minimising
latency and provides frequent updates of digital twins, and enhance of performance and in-
creasing the number of events. The system’s scalability that is evident from the communication
protocols outlined in Table 4.1 shows that the architecture of the system is well equipped to
deal with the increased volume of traffic and the load. Integration with the system architecture
is achieved in Algorithm 4.2 which allows for updates to the digital twins and representation of
changes in the physical environment. This algorithm works together with IoT Hub for device
management and digital twin for modeling and simulating a real world, which is very useful
for monitoring, analysing, and responding of this system as demonstrated the Proof of Concept
(PoC) mentioned in the Subsection 4.6.2

Algorithm 4.2. Digital Twin Data Update
1: Start
2: Import necessary libraries
3: Input: E (EventGridEvent), L (log)
4: Output: Status of the update
5: A𝑈 ← getenv(′𝐴𝐷𝑇 𝑈𝑅𝐿′)
6: if httpClient is true then
7: curl easy setopt(httpClient)

8: end if
9: if A𝑈 = null then

10: L.LogError(”Error: ’ADT URL’ is not set”)
11: else
12: C ← Credentials() % Default cloud credential
13: DTC ← (A𝑈 , C) % Digital Twin Client
14: L.LogInformation(”𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑡𝑜𝐴𝐷𝑇”) % Log the connection status
15: if E ≠ null and E .Data ≠ null then
16: DM ← JObject.Parse(E .Data) % Device Message
17: DI ← DM .GetValue(′𝐼𝑜𝑇𝐻𝑢𝑏𝐼𝑑′).ToString() % Device ID
18: DS ← DM .GetValue(′𝐷𝑒𝑣𝑖𝑐𝑒𝐷𝑎𝑡𝑎′).ToString() % Device Data
19: L.LogInformation(”𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷 : ” + DI + ”, 𝐷𝑒𝑣𝑖𝑐𝑒𝐷𝑎𝑡𝑎 : ” + DS) % Log

device information
20: UD ← new Dictionary<string, object>()% Update Twin Data
21: UD .Add(”𝐷𝑒𝑣𝑖𝑐𝑒𝐷𝑎𝑡𝑎”,DS) % Add device data to dictionary
22: DTC.UpdateDigitalTwin(DI,UD) % Send update to Digital Twin
23: end if
24: end if
25: End of function
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E. Display Layer

As illustrated in Figures 4.1 and 4.2, the importance of the display layer within the DT system,
primarily based on a cloud platform, is highlighted. This layer fundamentally integrates Time
Series Insights (TSI) for data analytics and storage for data preservation. Conversely, the ADT
Explorer is designed specifically for the visual exploration and management of DT. Function
Apps play a crucial intermediary role, facilitating the connection between TSI and the Twin
Graph. This connection enables efficient data flow and processing through Visual Studio’s
capabilities. At the core of the architectural framework is DTDL, which defines the models of
the DT, while the Twin Graph visually depicts the interconnections between these models. The
layer is optimized with a variety of output channels, including JSON-LD for data exchange,
SMS for immediate alerts, and notifications via mobile, online, and email interfaces.

Real-time data from various inputs, such as HR, SpO2, and BT monitors, is aggregated at
both physical device and DT layers. This data is encapsulated within a state st and transitions
based on internal dynamics and external feedback, as shown by the equation:

𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑦𝑡) (4.11)

which showcases the system’s adaptive capabilities. The data is processed:

𝑃𝑑 = process(data) (4.12)

data analysis is denoted by:

𝐴𝑟 = analyse(data) (4.13)

and monitoring for critical thresholds to generate alerts is given by:

𝑁𝑎 = alert(data) (4.14)

with all outputs displayed in a comprehensive alert system designed to assist medical staff in
real-time decision-making:

𝑉𝑑 = display(visuals) (4.15)

This integration not only supports immediate responses but also creates a continuous feedback
loop, thereby improving the system’s accuracy and responsiveness. In addition, healthcare
services involving DT data encompass the physical and digital states of items, as well as

76



Chapter 4

information on services and the fusion of these two states, as illustrated below:

𝔇𝐷𝑇 = (D𝑃𝐴,D𝐷𝑂 ,D𝐻𝑆,D𝐹) (4.16)

where 𝔇𝐷𝑇 represents DT data from both physical and virtual objects,D𝑃𝐴 is the physical asset
data, D𝐷𝑂 is the digital object data, D𝐻𝑆 is the historical data from hospital records at time 𝑡0,
and D𝐹 is the fused data. The equivalent value at the current time, denoted by, is expressed as:

Δ𝔇𝐷𝑇+ = 𝔇(𝑡0) −𝔇(𝑡0 − 1) (4.17)

The responsibilities for data processing, which illustrate data transfer and processing in the
proposed architecture, are explained in Subsubsection 4.2.1.

4.3 Framework Established Based on Twin Graph

In Figure 4.3, a patient is connected to two sensors via a knowledge graph, allowing for
the integration of multiple sensors and monitoring capabilities. An integrated environment
is created for monitoring SpO2, HR, and BT in the cloud. Machine learning is employed
to predict patients’ future states, showcasing the development of a novel architecture with
multiple applications. Figure 4.4 depicts the implementation through the use of ADT Explorer.

Figure 4.3. Configuration of DT utilizing twin graph.

Additionally, the provided code establishes a digital interface that enables the monitoring of BT,
SpO2, and HR, which is a crucial component of the system. In Section 4.4, machine learning is
used as an example to demonstrate how to develop a novel architecture with several applications.
The process begins by creating a DT instance, implementing role-based authentication, and
feeding the DT with data from IoT and edge devices via REST APIs. Once a DT instance is
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established, the environment’s operator can assign specific roles to members and doctors. ADT
facilitates queries, model modifications, and data visualization using Explorer. ADT models
are authored in DTDL and stored as JSON-LD files.

Figure 4.4. Deployment of DT in ADT explorer.

4.4 Implementation Setup

In this study, a DT platform for intelligent healthcare systems was developed, utilising the cloud,
wearable devices, data analytics, and machine learning to create virtual patient replicas. This
approach enhances collaboration and enables remote patient monitoring. The platform consists
of both a physical and a virtual element, each elaborated upon in detail in their respective
sections. The functionality and implementation of the physical element were described ac-
cording to Algorithm 4.1. The virtual element’s establishment, including data transfer, storage,
processing, and decision-making processes, were outlined in Algorithm 4.2. Additionally, the
procedure for managing the implementation process will be demonstrated. Machine learning
techniques were employed to train the model using seven different algorithms, from which the
optimal predictive algorithm was selected and classified on the ML platform.

In Figure 4.5, the sequence diagram illustrates the communication exchanges and interactions
among various system entities. This diagram effectively portrays the generation, validation, and
processing of telemetry data by different components, providing a comprehensive view of estab-
lishing a DT environment for healthcare. It outlines the mechanisms for managing bidirectional
data transmission. Telemetry data is received by the user’s device from a client source, validated
by the ”Data Validation” participant, and then transmitted to multiple recipients. The diagram
includes a ”Main loop” iteration, which handles errors via the ”Error Handling” participant
and displays data through the ”Real Time Visualisation” participant. The deployment of the
ML model is performed by the ”ML Model” participant, while data archiving is handled by the
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Figure 4.5. Diagrammatic representation of the DT sequence model.

”Data Archiving” participant. Automated alerts and actions are triggered by the ”Automated
Alerts and Actions” participant. The telemetry data is enhanced by the end user through the
”Data Enrichment” participant, resulting in an ”Enriched telemetry data” message.

Table 4.1. Network Configuration Parameters

Parameter Value
Scenario Indoor/Outdoor

Channel Band / Bandwidth 2.4GHz / 20MHz
BS/UE Tx Power 20/15 dBm

Traffic MQTT, Sensor Data
Packet Size 1024 bytes

Data Transmission Frequency 2-8 Hz
Solver GLPK (Linear Programming

Solver)
Communication Protocols MQTT over SSL/TLS, I2C

Security TLS with X.509 Certificates

The specifications outlined in Table 4.1 illustrate the robust framework of our digital twin
system, highlighting the emphasis on security through TLS with X.509 certificates and the use
of efficient data transmission protocols like MQTT over SSL/TLS. Adjustable data transmission
frequencies (2-8 Hz) allowed for flexibility in patient monitoring. The GLPK solver optimized
telemetry frequency, improving system responsiveness, while Merkle Tree validation ensured
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data integrity.

A. Pyomo Model with Digital Twin

The Pyomo model was integrated into the DT framework to optimise telemetry transmission
and manage resources. As illustrated in Figure 4.1, Pyomo’s linear programming functionality
dynamically adjusts telemetry frequency and prioritisation in response to network conditions,
reducing latency and maintaining efficient CPU and network performance.

To ensure efficient use of computational and communication resources while maintaining
low-latency data transmission, Pyomo based optimisation model was incorporated into the
proposed DTH system. Pyomo, a Python based open-source optimisation modelling framework,
was selected for its ability to handle both linear and mixed integer programming problems in
real time.

In this context, Pyomo dynamically adjusts the telemetry transmission frequency for each
physiological signal (e.g., HR, SpO2, BT) based on system load, network constraints, and the
urgency level of each metric. The model continuously monitors incoming data and assigns
priority levels using real-time, rule-based conditions such as:

• If HR exceeds the critical threshold (e.g., >120 bpm) while SpO2 and BT remain within
normal ranges, HR is flagged as critical, and its telemetry frequency is increased.

• If all metrics remain stable, telemetry frequency is reduced to conserve bandwidth and
processing power.

• If multiple metrics are abnormal, their transmission is optimised jointly based on severity.

Mathematically, this process is formulated as an optimisation problem. Let:

1. 𝑇𝑖 be the telemetry frequency for physiological signal 𝑖 ∈ {HR, SpO2,BT},

2. 𝑃𝑖 ∈ {0, 1} indicate whether signal 𝑖 is prioritised (1) or suppressed (0),

3. 𝐶 be the total available communication bandwidth (e.g., bytes/second),

4. 𝐵𝑖 be the bandwidth requirement of each signal per transmission.

The objective is to maximise the clinical relevance of transmitted data while minimising
bandwidth usage:
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max
∑︁
𝑖

𝑃𝑖 · Urgency𝑖 − 𝜆
∑︁
𝑖

𝑇𝑖 · 𝐵𝑖 (4.18)

Subject to: ∑︁
𝑖

𝑇𝑖 · 𝐵𝑖 ≤ 𝐶 (4.19)

𝑇min
𝑖 ≤ 𝑇𝑖 ≤ 𝑇max

𝑖 ∀𝑖 (4.20)

𝑃𝑖 =


1 if Metric𝑖 ∉ Normal Range

0 otherwise
(4.21)

Here, Urgency𝑖 is a dynamically computed weight reflecting the clinical criticality of metric
𝑖, and 𝜆 is a regularisation parameter that balances transmission urgency with bandwidth usage.
For example, if HR is elevated but other metrics remain within normal limits, the model
automatically suppresses transmission of less urgent data to preserve resources.

The integration of Pyomo enables the system to intelligently drop non-critical data, avoid
congestion, and maintain reliable performance under varying network conditions. The benefits
of this optimisation are evident in Figure 4.19 and Figure 4.20, which demonstrate significant
reductions in latency and improved system efficiency. Algorithm 4.3 describes the process of
telemetry optimisation and resource monitoring.
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Algorithm 4.3. Telemetry Optimization and Resource Monitoring with Pyomo
1: procedure Telemetry Transmission and Optimization
2: Initialization:
3: Connect devices to IoT Hub
4: Initialize Pyomo model for optimization (set frequency, priority)
5: Measure initial network and CPU usage
6: Step 1: Data Collection and Telemetry Generation
7: Generate telemetry data (normal and abnormal) for heart rate, SpO2, and temperature
8: Log telemetry data and send to cloud
9: Step 2: Pyomo Model Optimization

10: Define variables for telemetry frequency and priority in the Pyomo model
11: Set constraints on frequency and priority ranges
12: Solve the Pyomo model to minimize latency 𝐿
13: Step 3: Transmit Telemetry and Measure Resource Usage
14: Send telemetry data to the cloud
15: Measure CPU usage and network usage before and after telemetry transmission
16: Calculate data sent during transmission
17: Step 4: Log Resource Efficiency
18: Log CPU usage, network usage, and telemetry data in the resource efficiency log
19: Step 5: Update Telemetry Transmission Frequency
20: Adjust telemetry transmission frequency based on Pyomo model results
21: Update frequency for the next telemetry transmission cycle
22: Repeat the Process:
23: Continue generating telemetry, optimizing transmission, and monitoring resources in

the next cycle
24: end procedure

B. Data Acquisition

Accurate predictions were achieved through the utilization of diverse data, feature extraction,
and historical information. Data were sourced from the MIMIC-III clinical database [161].
To validate the model, an application was developed for a group of volunteers, implementing
the proposed DTH design as outlined in Section 4.2. Data were directly collected from these
volunteers. Vital metrics were labelled using medically accepted ranges, with abnormal signs
classified when they exceeded typical physiological limits. These metrics were obtained from
academic literature and various reputable websites. Specifically, BT was considered normal
within the range of 36.5 °C to 37.3 °C; heart rate was considered normal between 60 and 100
beats per minute; and SpO2 levels were deemed normal at 95% or higher [162], [163]. This
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rigorous labelling process ensured the reliability of the data used for training and validating the
machine learning model.

C. Data Analysis and Pre-processing

The data used for modelling underwent thorough statistical analysis, including the creation of
histograms and outlier graphs. Real-time data transmission from sensors and the NodeMCU
may result in data loss or the presence of outliers. To address missing data, mean values or other
statistical imputation methods were employed, and feature selection was used to reduce the
input data. The Pearson correlation coefficient was utilized to examine variable dependence,
as outlined in Algorithm 4.4. This algorithm processes three primary inputs: BT, HR, and
SpO2. These inputs, derived from sensor data, are susceptible to outliers and missing values
due to transmission losses or sensor inaccuracies. To ensure the accuracy and applicability of
the data, several preparatory actions were undertaken. Normalization was used to regulate the
volume of the datasets for the allowable analysis range while formatting checked whether the
data structure complied with the analytic platform. The relationships between the variables were
further determined by finding the coefficient of correlation by the Pearson method. Recognising
dependencies between the features allows for the identification of which variables are not needed
and give insight into the nature of the dataset.

D. Data Standardisation and Model Evaluation

To normalise the data the StandardScaler technology was used so that all features are proportional
to one another. For the modelling process, 75% of data was used for training purpose and the
25% of data was used for testing purpose. This split was selected to give an objective assessment
of the model’s performance.

In this study, seven classical machine learning classification algorithms were used to assess
and compare the results in this study [164], [165]. These algorithms are Random forest, Gaussian
Naı̈ve Bayes(GNB), logistic regression, K-Nearest Neighbour(KNN), Decision tree, XGBoost,
Support vector machine(SVM). Every algorithm was chosen with respect to its characteristics
and applicability to various aspects of the classification tasks. XGBoost is a highly efficient
gradient boosting technique that is widely used for working with big data sets. The model was
optimized using the following hyperparameters: a learning rate of 0.01, a maximum depth of
3, and 100 estimators. These values were selected after performing grid search to tune the
hyperparameters, ensuring that the model achieved the best possible predictive performance.
As a result, the XGBoost model delivered high accuracy and efficient real-time predictions of
health outcomes.
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Algorithm 4.4. Data preprocessing functional element
1: Input: BT, HR, 𝑆𝑝𝑜2

2: Output: Results
3: Results← list()
4: for feature ∈ [BT, HR, 𝑆𝑝𝑜2] do
5: if isNormalized(feature) is True then
6: removeOutliers(feature)
7: resize(feature)
8: format(feature)
9: Results.append(feature)

10: else
11: continue
12: end if
13: end for
14: return Results

4.5 Approach of Cybersecurity in Digital Twin Healthcare

Figure 4.6 presents a comprehensive framework designed to fortify the cybersecurity infras-
tructure of a DTH system. At the core lies the safeguarding of patient data, around which the
entire model is constructed. This is epitomised by the Patient Data Security segment, which en-
capsulates pivotal cybersecurity measures such as hybrid data encryption and certificate-based
authentication. These measures are essential for ensuring the confidentiality and integrity of
patient information.

Furthermore, the Merkle Tree integrity check and secure communication components pro-
vide a robust foundation for verifying the consistency and security of the data, while cyber
threat prediction focuses on proactive identification of potential security breaches. Collectively,
these elements form the bulwark against cyber threats, pivotal in maintaining the trust and safety
required in healthcare environments.

The framework also delves into the organisation requirements specification, dissecting both
the functional and non-functional requirements necessary for a thorough investigation into the
system’s necessities. Subsequently, cost model analysis evaluates the financial aspects, crucial
for sustainable implementation.

In the assessment of cloud supporting step, the system’s elasticity, communication, process-
ing, and infrastructure control are scrutinised, along with availability and security protocols.
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Figure 4.6. Integrated framework for digital twin healthcare cybersecurity.

This assessment is vital for ensuring compliance with regulatory requirements and uphold-
ing privacy and data confidentiality. To bolster security, a novel hybrid encryption technique
has been developed, combining the strengths of symmetric and asymmetric encryption systems.
This approach leverages the resilience of public-key encryption with the efficiency of symmetric
encryption, enhancing overall security. The algorithmic procedure is outlined in Algorithm 4.5.
Also, Algorithm 4.5 details the certificate-based authentication method, crucial for establishing
trust in the heterogeneous IoT landscape. To ensure data integrity throughout its lifecycle, the
research incorporates a Merkle Tree-based integrity validation technique. In addition, the hand-
shake process ensures the efficiency and safety of data transmission by establishing the channels
of communication. Moreover, the real-time data analysis capability inherent in DT allows for
the prediction and prevention of security breaches. This ensures the safety and preservation of
healthcare data, as detailed in Algorithm 4.5. In Figure 4.7, the cybersecurity process flow
for DTH systems is illustrated. Initially, data is encrypted using a hybrid encryption technique
that combines symmetric and asymmetric methods. This ensures that data is protected from
unauthorised access.

Modifications in organisational routines are addressed in the subsequent module, reflecting
the changes brought about by the integration of the DTH system. It encompasses alterations
in accounting practices, customer relationships, public image, flexibility, business continuity,
compliance, benefits, and the identification of potential risks and challenges.

Lastly, the approach step posits innovative approaches such as anomaly detection, enhancing
the security framework. The integration of real-time threat intelligence sharing, and adaptive
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Figure 4.7. Cybersecurity process flowchart for DTH system.

encryption algorithms, for privacy preservation further contribute to the cutting-edge nature of
the system.

In summary, the illustrated framework provides a strategic approach to securing DTH
systems, ensuring comprehensive protection and resilience against cyber threats, while fostering
advancements in healthcare technology.
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Algorithm 4.5. Hybrid Security Framework for Encrypted Data Transmission with Integrity and Threat
Detection

1: Input: Data 𝐷, Data Blocks 𝐷𝐵[1 . . . 𝑛], Public Key 𝑃𝐾 , Symmetric Key 𝑆𝐾 , Device
Certificate 𝐷𝐶, Certificate Authority 𝐶𝐴, Secure Channel 𝑆𝐶, Real-time Data 𝑅𝑇𝐷,
Historical Data Patterns 𝐻𝐷𝑃, Merkle Root 𝑀𝑅

2: Output: Transmission Status, Alert (if any)
3: function UnifiedSecureTransmission(D, DB, PK, SK, DC, CA, SC, RTD, HDP, MR)
4: # Step 1: Authenticate the device
5: 𝑠𝑡𝑎𝑡𝑢𝑠← AuthenticateDevice(DC, CA)
6: if 𝑠𝑡𝑎𝑡𝑢𝑠 == ”Failure” then
7: return ”Authentication Failed”
8: end if
9: # Step 2: Check data integrity using Merkle tree

10: 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑢𝑠← CheckIntegrity(DB, MR)
11: if 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 == ”Invalid” then
12: return ”Data Integrity Check Failed”
13: end if
14: # Step 3: Encrypt the data using hybrid encryption
15: 𝐸𝐷, 𝐸𝑆𝐾 ← EncryptData(D, PK, SK)
16: # Step 4: Establish a secure communication channel
17: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑡𝑎𝑡𝑢𝑠← TransmitData(ED, SC)
18: if 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑆𝑡𝑎𝑡𝑢𝑠 == ”Not Sent” then
19: return ”Transmission Failed”
20: end if
21: # Step 5: Monitor real-time data for threats
22: 𝑡𝑤𝑖𝑛 𝑑𝑎𝑡𝑎 ← mirror data(RTD)
23: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 ← compare(twin data, HDP)
24: if 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 detected then
25: generate alert
26: end if
27: return ”Transmission Successful”
28: end function
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4.6 Proof of Concept

4.6.1 Integration of IoT Devices in Healthcare Monitoring

Figure 4.2 illustrated the integration of IoT devices within a physical model, demonstrating the
transmission of health data. The serial monitor on the left captures output from an ESP8266
module, including telemetry such as heart rate and temperature readings. These data points,
which are timestamped sequentially, are transmitted to an IoT node, as indicated by the dashed
red lines. The physical model on the right delineates the configuration of connected devices:
the NodeMCU ESP8266 microcontroller, the MAX30102 pulse oximeter, and the MLX90614
infrared thermometer, culminating in the representation of a patient model. This setup exem-
plifies the practical application of IoT in patient health monitoring, showcasing the cohesive
operation of sensor devices and data relay mechanisms as discussed in Subsection 4.2.1.

4.6.2 Schematic and Data Flow in Digital Twin Health Monitoring

Figure 4.8 demonstrated the schematic design of a health monitoring system within the digital
twins environment. In this study, the Azure cloud platform was employed to implement the
system. The ESP8266 Sensor Hub is shown as a central node, connected to the sensor interface
and the saturation interface, indicating the collection of data from various sensor sources. The
patient information interface, which serves as a hub for patient-specific data, is bidirectionally
connected to both sensor interfaces, allowing for the reciprocal flow of health-related metrics.
This model exemplifies the modular approach adopted in digital health solutions, where patient
data is centralized, and sensor information is seamlessly integrated for comprehensive health
management and monitoring.

Figure 4.8. Configuration of the DT Model for health monitoring.

The interface within the digital twins explorer, depicted in Figure 4.9, shows sensor data
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from various health-monitoring devices. Blood oxygen saturation and heart rate, measured by
a MAX30102 sensor, and body temperature, gauged by an MLX90614 sensor, are displayed.
These metrics are updated dynamically, demonstrating the system’s capability to monitor patient
vitals. The immediacy of data acquisition is confirmed by the timestamps associated with
each measurement, indicating the potential for this system’s deployment in continuous health
monitoring applications.

Figure 4.9. Live data feed from health monitoring sensors.

Figure 4.10 shows the invocation logs of a function app, which acts as an intermediary
between the IoT Hub and DT. From the logs, it can be observed that upon receiving an event
trigger, a connection to DT service is successfully established by the function. The logs provide
details about the device ID, the authentication method, and the precise time the message was
enqueued, confirming the processing of telemetry data. The encoded message body, which
contains vital sensor readings, indicates that the data is subsequently decoded and applied
within DT environment to update the twin’s state.

Figure 4.10. Invocation logs for function app synchronizing IoT and DT.

4.6.3 Analysis and Visualisation of Biometric Data in Digital Twins

Figure 4.11 illustrates a tabulated excerpt of biometric data extracted from TSI. The columns
display timestamped readings of BT, HR, and SpO2, each associated with corresponding event
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counts. The data, organised chronologically, reflect the continuous telemetry captured from
patient monitoring sensors. This table supports the data structure used for subsequent temporal
analysis.

Figure 4.11. Tabulated biometric data from time series insights.

In Figure 4.18, a graphical representation of biometric readings over time, visualized in
TSI. Trends for heart rate, SpO2, and body temperature are plotted against time, illustrating
the fluctuations and stability within the captured data streams. Each line represents a different
biometric parameter, providing a comprehensive view of the patient’s physiological status. This
visualization is crucial for validating the monitoring capabilities of the deployed digital health
solution, as discussed in Subsection 4.2.1.

4.7 Results and Discussions

4.7.1 Model Evaluation and Comparison

This study compared seven ML models to determine the most suitable algorithm for real-time
deployment in Digital Twin Healthcare (DTH) systems. The evaluation considered accuracy,
precision, recall, F1 score, AUC, computational time, and cross-validation stability.

Model Selection Rationale: Although Random Forest (RF) and Decision Tree (DT)

90



Chapter 4

achieved comparable accuracy to XGBoost, the final selection of XGBoost was based on
its superior F1 score, AUC, and cross-validation consistency. Its robustness, efficiency, and
generalization ability make it well-suited for real-time healthcare scenarios.

Figure 4.12 shows the accuracy of all models, with XGBoost achieving the highest at
99.06%. Figure 4.13 presents confusion matrices that reveal classification performance across
all models.

Figure 4.12. Comparison of model accuracy.

Figure 4.14 illustrates the performance in terms of precision, recall, and F1 score. XG-
Boost consistently outperformed others, especially in recall and F1 score, which are critical in
healthcare to avoid false negatives.

The ROC and AUC analysis (Figure 4.15) further highlights XGBoost’s classification power.
Computation time (Figure 4.16) showed minimal overhead for XGBoost, confirming its feasi-
bility for real-time tasks.

Table 4.2 summarizes cross-validation accuracy (cv=20). XGBoost achieved the best sta-
bility with the highest CVA (99.58%) and lowest standard deviation.

4.7.2 Deployment and Real-Time Prediction

Following model selection, XGBoost was deployed using Flask on a cloud-based platform with
support for real-time predictions and alerting. Figure 4.17 shows API testing via Postman,
where the deployed model delivered accurate predictions with 98% real-time accuracy.

This deployment confirms the model’s practical value and readiness for real-time patient
monitoring within a Digital Twin ecosystem.
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Figure 4.13. Confusion Matrices of evaluated classifiers.

Figure 4.14. Precision, Recall, and F1 Score comparison.
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Figure 4.15. ROC and AUC analysis.

Figure 4.16. Model computation time.

Table 4.2. Cross-validation results (cv=20)

Model CVA (± std) Test Accu-
racy

D-Tree 0.9895 ± 0.0125 0.9874
GNB 0.9013 ± 0.0326 0.8522
KNN 0.8790 ± 0.0402 0.8365
LR 0.8508 ± 0.0510 0.8208
RF 0.9937 ± 0.0096 0.9874
SVM 0.9212 ± 0.0425 0.9057
XGBoost 0.9958 ± 0.0084 0.9906
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Figure 4.17. API Deployment Testing for Real-Time Prediction.

4.7.3 Web Portal

The web application was developed to visualize patient data and facilitate monitoring by health-
care providers and caregivers. Its core function is to integrate a Digital Twin (DT) using cloud
infrastructure, Azure Digital Twin (ADT), and machine learning (ML) models for real-time
prediction and alerting.

The portal supports data ingestion from wearable sensors, displays both physical and digital
representations of vital signs, and triggers notifications (e.g., SMS or email) for abnormal
conditions. The cloud backend manages data storage, stream analytics, and application logic to
ensure seamless updates and reliable operation.

As shown in Figure 4.18, the system was tested successfully, uploading sensor readings
to the cloud and enabling predictive diagnostics. The digital model was constructed using
sensor specifications, historical data, and real-time telemetry. Through Time Series Insights
(TSI), physical and digital metrics were compared, showing high fidelity and accurate DT
synchronization.

4.7.4 Model Performance Analysis

The Figure 4.19 shown the comparison of telemetry transmission latency for our model. It is
observed that the latency increases steadily over time both cases. However, with Pyomo model
optimised latency, maintaining it around 20-25 milliseconds, while without Pyomo, latency
peaks at 40 milliseconds. This improvement demonstrated integrating Pyomo model achieved
a 32% reduction in telemetry transmission latency.

Figure 4.20 presents 3D comparison of DT system performance with and without Pyomo
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(a) Prototype testing.

(b) Physical object (Sensors).

(c) Digital twin implementation.

Figure 4.18. Monitoring data (HR, SpO2, and BT) accessing the cloud server using the
dashboard on the cloud in TSI: (a) Prototype testing, (b) Physical object (Sensors), (c)
Digital twin implementation.

Figure 4.19. Comparison of Transmission Latency Over Time.
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optimisation. The three axes represent:

1. X-axis: Runtime in seconds (how long the system runs during telemetry tasks).

2. Y-axis: Amount of data sent in bytes.

3. Z-axis: CPU usage percentage during that runtime.

The red line traces the performance of the system without Pyomo, while the blue line traces
performance with Pyomo. Each point on the lines corresponds to one measurement of system
behavior. The goal is to compare how resource usage and efficiency evolve over time for the
two setups. For example, at a runtime of around 35 seconds, the DT system without Pyomo (red
line) sends approximately 220,000 bytes but experiences a sharp CPU usage spike above 42%.
In contrast, the DT with Pyomo (blue line) at the same data volume maintains a more stable
CPU usage of around 30%, demonstrating better efficiency. This stability, visible through the
smoother blue line, confirms that Pyomo helps to intelligently manage data flow and CPU usage
under changing loads. It adapts telemetry frequency in real time, which is particularly valuable
in healthcare where system reliability and low-latency responses are critical.

Figure 4.20. Performance Comparison of Runtime, Data Transmission, and CPU Usage
for Digital Twin Systems with and without Pyomo.

The Figure 4.21 other results showed an improvement in system response time when the
proposed model is incorporated. As seen from the presented model, gains in optimization lead

96



Chapter 4

to a nearly 52% improvement in response time improving the capability of the system to handle
and respond to data.

Figure 4.21. Response Time Comparison.

4.8 Conclusion and Summary

This study developed a system prototype utilizing DT methodology, IoT, ML, and AI techniques
to enhance data interaction and integration within healthcare. This approach enables intelligent
monitoring of physiological parameters such as HR, SpO2, and BT. The implementation of DT
in healthcare can greatly support cloud-based services for elderly individuals and those with
chronic medical conditions. The system is integrated with a graphical user interface based on
ADT in real-time, allowing clinicians and patients to manage or monitor health effectively.

The wearable prototype is designed to be lighter, smaller, and more cost-effective, facilitating
the monitoring of patients’ vital signs. By employing edge computing methodologies, the
system provides prompt and reliable local assessments while mitigating latency and detecting
anomalous situations. The portability and wireless nature of the device enhance its ease of
relocation. Machine learning was utilized to develop predictive models and process data,
achieving 98% accuracy and 99.3% precision in real time using the XGBoost algorithm.
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Hybrid Cloud-Edge Digital Twin System
with Quantum-Secured Real-Time

Healthcare Monitoring

5.1 Introduction

In the context of Industry 4.0, which involves the convergence of advanced computational and
communication technologies, the relevance of DTs in healthcare continues to grow. Several
key challenges must be addressed to fully harness their potential, i.e., reducing latency in
real-time monitoring, enabling personalised health management, and ensuring the integrity and
security of healthcare data. These issues require a comprehensive approach that integrates cloud
computing, edge computing, AI, and advanced security mechanisms, e.g., quantum-resistant
cryptography and Quantum Key Distribution (QKD) [166]–[171].

In response to these challenges, the current chapter proposes a novel framework for DT in
healthcare, contributing the following key innovations:

1. A patient-centric framework that leverages edge computing to reduce latency in health-
care data processing while adapting to individual patient needs for real-time monitoring
and predictive analytics. This includes the QDTHS Algorithm, which enhances data
transmission efficiency and security.

2. Enhanced data integrity and privacy within the DT framework by integrating quantum
security mechanisms, i.e., Quantum Key Distribution (QKD), into the DTHQ(A,B,Q)
protocol, ensuring health data protection against threats posed by classical and quantum
computing advancements.

3. The application of AI-driven predictive models for accurate health metrics analysis, using
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multi-dimensional techniques to track correlations between various health indicators and
enable early detection of potential health issues. The QHIM Algorithm supports resource
allocation and real-time predictive analytics.

4. Optimised scalability and resource management through cloud computing solutions that
dynamically adjust to healthcare data demands, ensuring reliable system performance and
minimising operational costs.

This chapter is organised as follows: Section 5.2 details the proposed DT model architecture.
Section 5.3 explains the integration of quantum security into healthcare systems. Section 5.4
presents security evaluation and verification. Section 5.5 covers performance metrics and
analysis, and Section 5.6 discusses the results. Finally, Section 5.7 concludes the chapter.

Figure 5.1. Proposed digital twin healthcare system architecture with secure data trans-
mission in real time processing.
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5.2 Proposed DT Model Architecture

5.2.1 Problem Formulation

The integration of advanced technologies, i.e., DT, IoT devices, and cloud computing, promises
to enhance healthcare through improved patient monitoring and real-time interventions. How-
ever, significant challenges, such as scalability, security, and real-time data processing, must be
addressed to fully realize these systems. Key challenges include:

1. Scalability of Healthcare Monitoring Systems: Traditional healthcare systems face dif-
ficulties in scaling to manage large volumes of real-time data from multiple patients. A
scalable architecture is required to efficiently handle high data volumes while ensuring
continuous and reliable monitoring.

2. Data Integrity and Security: Given the sensitivity of healthcare data, the advent of
quantum computing poses threats to traditional encryption methods (e.g., RSA, AES). The
aim is to implement quantum-resistant cryptography, such as QKD, to secure healthcare
data transmission and storage.

3. Real-Time Data Processing and Predictive Analysis: Current systems experience latency
and limited predictive accuracy, which hinder timely medical decision-making. An AI-
driven architecture is proposed to enable real-time processing and predictive analytics,
ensuring proactive healthcare interventions.

4. Interoperability and Integration: A lack of seamless integration between existing health-
care systems and emerging technologies (e.g., DT, IoT) must be addressed. The archi-
tecture should be flexible and interoperable to integrate smoothly with current healthcare
infrastructure.

5. Resource Optimisation: Real-time data processing demands optimised resource manage-
ment to handle the computational load. Cloud computing will be leveraged to dynamically
allocate resources, ensuring cost-effective and reliable performance.

This research develops a healthcare monitoring architecture to address these challenges, en-
hancing system performance and improving healthcare outcomes.

5.2.2 System Overview

Figure (5.1) proposed Digital Twin healthcare system architecture, designed for scalability, real-
time processing, and enhanced security. Data are collected by far-edge devices and processed at
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the near-edge layer for validation before transmission to the cloud. Automated task management
and QKD ensure secure data flow. The cloud handles advanced analytics, storage, and updates
to the digital twin, while IoT devices, edge servers, and communication hubs support real-time
monitoring and decision-making.

Key components include IoT devices for data acquisition, secure data transmission using
quantum-resistant techniques, and cloud-based AI models for predictive analysis. Real-time
data flow between IoT devices, cloud services, and the digital twin model is expressed as

𝐷𝐶 (𝑡) = 𝑓 (𝑆𝑟 (𝑡)) → 𝐵IoT(𝑡), (5.1)

where 𝐷𝐶 (𝑡) represents the data collected at time 𝑡, 𝑆𝑟 (𝑡) denotes sensor readings, and 𝐵IoT(𝑡)
signifies the IoT data buffer.

5.2.3 IoT Devices and Data Acquisition

The system relies on a suite of IoT devices equipped with precise sensors:

• MAX30102: Measures heart rate (HR) and blood oxygen saturation (SpO2).

• MLX90614: Measures body temperature (BT) through infrared sensing.

• NodeMCU ESP8266 Microcontroller: Acts as the central processing unit, handling sensor
data and communication protocols.

Data collected by these devices is transmitted to the cloud using quantum-resistant encryption
protocols via the MQTT protocol. The secure transmission process is defined as:

𝐶data(𝑡) = 𝐸QKD(𝑃data(𝑡)), (5.2)

where 𝐶data(𝑡) represents encrypted data at time 𝑡, and (𝑃data(𝑡)) refers to the plain data being
transmitted.

5.2.4 Cloud Computing Infrastructure

The cloud infrastructure, built on Microsoft Azure, manages data storage, processing, and AI-
driven predictive analytics. The Azure IoT Hub facilitates real-time communication between
IoT devices and the cloud. The efficiency of data transmission is modeled as:

R𝐷𝑇 =
D𝑇

Θ𝑡𝑟𝑎𝑛𝑠
, (5.3)
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where R𝐷𝑇 represents the data transmission rate, D𝑇 denotes the total data volume being
transmitted, and Θ𝑡𝑟𝑎𝑛𝑠 corresponds to the transmission time.

All transmitted and stored data are secured using quantum-resistant encryption techniques,
ensuring that patient information remains protected against classical and quantum-based cyber
threats.

5.2.5 AI Prediction and Analysis Module

The AI-driven predictive analytics module processes real-time data from IoT devices, generating
health predictions based on machine learning algorithms trained on both historical and real-time
data. The predictive model function is expressed as:

P(𝑡) = 𝑓 (B𝐼𝑜𝑇 (𝑡),H(𝑡 − 1)), (5.4)

where P(𝑡) represents the predicted health parameters, B𝐼𝑜𝑇 (𝑡) denotes current sensor data at
𝑡,H(𝑡 − 1) refers to the historical health data up to (𝑡 − 1) refers to historical health data.

To further enhance security, QKD ensures that sensor data are encrypted before being
processed. The secure prediction model is expressed as:

P𝑄𝐾𝐷 (𝑡) = 𝑓 (𝐸𝑄𝐾𝐷 (B𝐼𝑜𝑇 (𝑡)),H(𝑡 − 1)), (5.5)

where 𝐸𝑄𝐾𝐷 (B𝐼𝑜𝑇 (𝑡)) represents the sensor data encrypted using QKD.

5.2.6 Security Mechanisms

The system applied QKD and quantum-resistant cryptography to secure communications and
data storage within DT healthcare architecture. Figure (5.2) depicted the overall architecture for
quantum encryption in the Digital Twin healthcare system, incorporating hybrid cryptography
with QKD and AES-256 in CFB mode. The system integrates both far edge and near edge
devices with lz4 and brotli compression, respectively, facilitating secure and efficient data
transmission across the healthcare framework.

The process for securing data transmission, processing, and storage using these methods is
demonstrated in Algorithm (5.1); Quantum Digital Twin Healthcare Security (QDTHS). The
randomness generated by quantum circuits is crucial for secure key generation. As shown
in Figure (5.6) (d), the quantum circuit results exhibit an equal distribution of measurement
outcomes (0 and 1), ensuring the unpredictability required for quantum encryption.
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Figure 5.2. Quantum security circuit for healthcare data transmission: Integration of
QKD with edge devices and AI analytics.

Algorithm 5.1. QDTHS Algoritm
1: Input: 𝜔conn (ssid, password), Device Key, 𝑄𝐾𝐷key
2: Output: MEncrypted Data,RAPI,SDashboard
3: procedure Iinit # Initialise the system and secure connection
4: 𝜔conn (ssid, password,Device Key) # Connect to WiFi and authenticate
5: QKDestablish (𝑄𝐾𝐷key) # Establish a quantum key for secure communication
6: end procedure
7: procedure 𝜆ML # Main Loop for data acquisition and processing
8: while 𝜏 do
9: if ΘST then # Time to send telemetry

10: 𝑑 ← 𝛼CSD # Collect sensor data
11: 𝛿AZH (𝑑, 𝑄𝐾𝐷key) # Encrypt and send data using QKD
12: end if
13: 𝜉MCL () # MQTT Client Loop for continuous communication
14: end while
15: end procedure
16: procedure 𝛿AZH (𝑑, 𝑄𝐾𝐷key)
17: 𝜆PDJ (𝑑) # Pack data to JSON format
18: MEncrypted Data ← 𝜆Encrypt (𝑄𝐾𝐷key, 𝜆PDJ (𝑑)) #Encrypt data with quantum key
19: RAPI ←MEncrypted Data # Send encrypted data to API Management
20: SDashboard ←MEncrypted Data # Update Dashboard
21: MDT ←MEncrypted Data # Update Digital Twin Model
22: end procedure
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5.2.7 Real-time Data Processing and Monitoring

The system’s real-time data processing engine provides healthcare professionals with dynamic
visualisations and alerts when critical thresholds are reached. The secure real-time data pro-
cessing ensures patient privacy, and all transmissions are encrypted using quantum-resistant
methods.

5.2.8 Data Storage and Management

The cloud-based storage system uses encrypted storage methods to protect patient data. The
data storage function is defined as:

S𝑡 = ℎ(D𝐵 (𝑡)), (5.6)

where S𝑡 is the secure storage of data at time 𝑡, D𝐵 (𝑡) data stored in other components of the
system at time 𝑡, and ℎ is the storage function that organizes and archives the data appropriately.
The secure storage model with QKD integration is expressed as:

S𝑄𝐾𝐷 (𝑡) = ℎ(𝐸𝑄𝐾𝐷 (D𝐵 (𝑡)), (5.7)

where𝐸𝑄𝐾𝐷 encrypts data before storage. The storage system updates AI models using historical
data, continuously improving prediction accuracy through an iterative learning process:

𝐹 (𝑡) : E(𝑡) → M𝐷𝑇 (𝑡 + 1), (5.8)

where 𝐹 (𝑡) represents the model update function, enhancing DT predictive capabilities based
on feedback from past predictions.

The proposed DT architecture incorporates IoT devices, cloud computing, and AI-driven
predictive analytics, all secured using quantum-resistant encryption techniques. The integra-
tion of QKD ensures that patient data remains protected against current and future quantum-
based threats. This architecture offers a scalable, secure, and real-time solution for healthcare
monitoring, significantly improving patient outcomes through proactive and informed medical
interventions.
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5.3 Quantum Security in Digital Twin Healthcare Systems

As DT frameworks become increasingly prevalent in healthcare for real-time patient monitoring,
the protection of sensitive patient data must be prioritised. Traditional encryption methods,
such as RSA and AES, are increasingly vulnerable to emerging quantum computing capabilities
(e.g., Shor’s algorithm). This has accelerated the need for quantum-resistant security measures,
particularly in environments requiring low latency and high reliability.

While blockchain has been widely explored in healthcare for data security, its reliance
on decentralised consensus mechanisms introduces latency and computational overhead mak-
ing it less suited to time-sensitive Digital Twin Healthcare (DTH) systems. In contrast, our
approach integrates QKD and post-quantum cryptography to ensure secure communication,
forward secrecy, and provable eavesdropping detection without the need for distributed ledger
management. This enables scalable, real-time, and secure data flow between IoT devices, edge
layers, and cloud infrastructure.

5.3.1 Implementing Quantum Security in DT Healthcare

The proposed framework safeguards healthcare data through a hybrid security mechanism that
integrates QKD and quantum-resistant algorithms. The key components include:

• Secure Communication Channels: QKD ensures that encryption keys are exchanged
with quantum-level security, and any interception attempt is detectable.

• Post-Quantum Encryption: Data within the DT system is encrypted using algorithms
resistant to both classical and quantum attacks, securing both storage and transmission.

• Authentication and Replay Protection: Nonce-based verification and symmetric key
exchange prevent impersonation and replay attacks within the DTH framework.

These components ensure a balance between high performance and strong security, en-
hancing the DT framework’s resilience to current and future cyber threats while maintaining
compliance with real-time operational demands. Table (5.1), important requirements for secure
data transfer and computation were identified, namely the strength of cryptographic protection,
communication delay, and resistance to quantum noise.
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5.4 Security Evaluation and Verification

The security of the DTHQ(A,B,Q) protocol has been assessed through both informal and formal
evaluations. Informal analysis has identified the core security features, while formal verification
has been performed using the Scyther Verification Tool to validate resilience against known
attack vectors.

5.4.1 Informal Security Evaluation

The DTHQ(A,B,Q) scheme allows an exchange of a quantum key Kq which proceeds confiden-
tiality and message authenticity by incorporating both traditional and post quantum cryptogra-
phy. Key security mechanisms include:

• Confidentiality: Attributes such as sensitive data, for instance, Kq is protected using
predefined SEC key of entities A and Q secKeyA so as to ward off unauthorised persons.

• Authentication: The steps of ensuring mutual authentication involve exchange of nonces
between A and B, and also swapping of public keys using PKA encryption in such a way
that only a recipient can decipher the messages and respond.

• QKD: Quantum are implemented, defending against quantum computing attacks. All the
above mentioned functions are symmetric and the quantum keys are transmitted through
an entity Q and help in preventing session issuing.

• Replay Protection: Nonce (nA, nB) protects against replay attack, as captured messages
cannot help the adversary to pretend they are partners in the conversation.

5.4.2 Formal Security Verification

Using the Scyther verification tool, the DTHQ(A,B,Q) protocol was put through a formal
verification. This automated tool affirmed the secret, authenticity, and message interop of the
protocol and affirmed its immunity to the mentioned types of attacks. While the basic objective
of the verification process was to discover possible weak links and to be better prepared for
threats, which were by then known. Scyther results are presented in the Figure (5.3).

• Secrecy Claims: Scyther confirmed that secret values, i.e., nonces (nA, nB) and Kq,
remained confidential and were not accessible to unauthorised entities.
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• Alive Claims: Both entities A and B confirmed each other’s engagement, thus guarantee-
ing the protocols’ compliance with the communication process.

• Message Integrity: Data integrity checks were performed and the results were positive
which indicated there was no interference on the communicated data.

As illustrated in Figure (5.3), all security claims were successfully validated, with no vulnera-
bilities such as man-in-the-middle, replay, or impersonation attacks identified.

Figure 5.3. Formal verification of DTHQ protocol using Scyther tool.
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5.5 Performance Metrics and Analysis

5.5.1 Simulation Setting

The simulation environment was designed to ensure robust performance and accurate eval-
uation of the proposed algorithms. The system operates on the ESP-IDF framework, built
on FreeRTOS, which enables real-time patient monitoring using digital twin technology on
a cloud platform. Simulations were performed on a custom-built machine with Intel Core
i7-9700K CPU (8 cores, 3.6 GHz) and NVIDIA GTX 1080 Ti GPU, providing the necessary
computational capacity for executing algorithms and managing simulation workloads.

Data were acquired via IoT devices, which transmitted information to cloud. Communication
utilised the MQTT protocol over a 2.4 GHz Wi-Fi network (i.e., IEEE 802.11n). Azure IoT Hub
served as the secure gateway for transmitting data, while cloud services (e.g., API Management
and IoT Hub) were used for processing and storage.

The system operates within the Windows OS environment, with simulation algorithms im-
plemented using Python 3.10.9. In the same way, the security of the protocol was checked using
Scyther on Ubuntu 22.04 running via WSL2 on Windows. The sets of hardware and software
guarantee to have an effective positive feedback fast, highly capable and secure simulation
environment for timely monitoring of various patient data and effective testing of the digital
twin security system.

Key parameters governing system operation, including data processing, resource scaling,
and fault tolerance, are outlined in Table (5.1).
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Table 5.1. Parameter Definitions for Digital Twin, AI, and Quantum Security in Healthcare

Parameter Name Symbol Type Value Description
Data Volume Δ𝑉 Integer 1 MB to 10 GB Size of data processed or transmitted by the sys-

tem, varies by application.
Data Block Size - Integer 1 KB, 4 KB, 16

KB
Size of data blocks for encryption, affects pro-
cessing and transmission speed.

System Demand Δ𝐷 Integer 0 to 100% Current load on the system as a percentage of total
capacity.

Processing Adjustment 𝜖 Float 0.1 to 1.0 Adjustment step for scaling resources based on
demand.

AI Model Complexity C𝐴𝐼 Integer Low, Medium,
High

Complexity level of the AI model, impacting com-
putation load and prediction accuracy.

Energy Consumption E𝐶 Float 10W to 500W Energy consumed during real-time processing
and data transmission, measured in watts.

Real-Time Processing La-
tency

L𝑅𝑇 Integer/Float 100ms to 500ms Latency in processing real-time data and deliver-
ing results, measured in milliseconds.

Threshold for Scaling
(High)

Υhigh Integer/Float 70% to 90% Upper system load threshold for scaling resources.

Threshold for Scaling
(Low)

Υlow Integer/Float 10% to 30% Lower system load threshold for reducing re-
sources.

Quantum Key Length - Integer 128, 256, 512 bits Length of the quantum encryption key for data
protection.

Quantum Noise Tolerance - Float 1% to 5% Tolerance level for noise in the quantum commu-
nication channel.

Encryption Efficiency Eenc Float 80% to 99% Efficiency of encryption methods, i.e., quantum-
resistant algorithms, in securing data.

Redundancy and Fault Tol-
erance

ΣRFT Integer/Float 1 to 5 Degree of system redundancy and fault tolerance.

Backup Service Status Ψ Boolean True/False Whether the backup service is active for fault tol-
erance.

5.5.2 Healthcare Infrastructure Integration

The DT framework has been meticulously crafted to harmoniously incorporate with prevailing
healthcare infrastructures, facilitating secure and effective data exchange among systems such
as electronic health records (EHR) and hospital information systems (HIS). The proposed
integration guarantees alignment with established standards such as FHIR and HL7 in the
administration of healthcare data. The security framework is fortified by employing Quantum
Key Distribution (QKD), which safeguards confidential patient data during transmission and
provides resilience against possible quantum computing threats. Patient information exchange
and management require secure handling and transfers and are enhanced by the QHIM Algorithm
(5.2).
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Algorithm 5.2. QHIM Algorithm
1: Input: P𝑑𝑎𝑡𝑎, P𝑝𝑜𝑙𝑖𝑐𝑦 , P𝑖𝑑

2: Output: R𝐸𝐻𝑅, R𝐻𝐼𝑆 , S𝑝𝑜𝑙𝑖𝑐𝑦

3: procedure Establish Shared Access Policy
4: S𝑝𝑜𝑙𝑖𝑐𝑦 = NewPolicy(P𝑝𝑜𝑙𝑖𝑐𝑦)
5: SetPermissions(S𝑝𝑜𝑙𝑖𝑐𝑦 , Permissions)
6: end procedure
7: procedure Secure Data Transmission to EHR
8: E𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 = GetEndpoint(P𝑖𝑑)
9: R𝐸𝐻𝑅 = SendData(E𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 , P𝑑𝑎𝑡𝑎, QKD)

10: end procedure
11: procedure Integrate Data with HIS
12: H𝑑𝑎𝑡𝑎 = FormatForHIS(P𝑑𝑎𝑡𝑎)
13: R𝐻𝐼𝑆 = TransferToHIS(H𝑑𝑎𝑡𝑎, QKD)
14: end procedure
15: procedure Synchronise Data Between Systems
16: SyncData(R𝐸𝐻𝑅, R𝐻𝐼𝑆)
17: end procedure

return R𝐸𝐻𝑅, R𝐻𝐼𝑆 , S𝑝𝑜𝑙𝑖𝑐𝑦

5.5.3 Scalability and Fault Tolerance

The system has been designed to autoscale cloud resources based on real-time requirements,
thereby maintaining maximum efficiency and stability even during periods of high load. Re-
source scaling is tendered by means of predefined algorithms that control the intensity of
resource usage to achieve objectives at the least expense. Business continuity or disaster recov-
ery measures make data availability and data consistency possible in times of system loss or
data damage. New policies of enhancing density of cloud computation, distribution of load in
nodes and prevention of safe operations have been implemented in QHIM Algorithm (5.2). As
such, active services to fail over are used only when necessary to ensure continuous operation,
while at the same time cloud density is achieved as expected. Disaster recovery backup policies
are used to get data back, and minimise lengthy time out of the system. The capacity of the
system is maintained, and its ability to augment its service delivery based on existing demand
is achieved.

5.5.4 AI-Driven Real-Time Health Monitoring and Analysis

To achieve reliable solution for constant patient care, predictive analytics based on AI is included
in the framework of DT, combined with health monitoring in real time. Current and continuous
IoT sensor data feed into an analysis engine and historical patient records to determine critical
health factors needed for real-time diagnostics.

Key Features:
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• Predictive Analytics: The data collected comes into the AI model which is hosted on
the cloud to provide out predictive analysis. The illnesses are predicted in advance, and
in case of occurrence, actual signals are given to doctors. As new data is assimilated
the model updates its predictions thus increasing its accuracy and relevancy to clinical
practice.

System Operation:

• Data Integration and Analysis: Information gathered from the IoT devices is sent to the
DT model hosted in the cloud, where the advanced AI capabilities mirror the state of the
patient with potential risks to health at an early stage.

• Immediate Alerts and Interventions: In the case where a pathology of abnormally chang-
ing conditions is recorded in the patient, signals are generated for healthcare workers, to
act appropriately.

• Multi-Dimensional Analysis: General and specific health indicators are monitored by the
DT system because the correlations between different aspects of health can be subtle,
complex health conditions can be identified during the early stages.

5.5.5 Security-Related Performance

Using the proposed metrics of latency, communication cost, computational cost and throughput,
DTHQ(A,B,Q) was assessed. Testing was performed in both far-edge and near-edge environ-
ments, with key lengths of 128, 256, and 512 bits. Compression algorithms, e.g., LZ4 and Brotli,
were applied to simulate varying data sizes, offering insights into the protocol’s efficiency within
IoT environments, as presented in Table (5.2).

Table 5.2. Performance Metrics of DTHQ Protocol Across Edge Environments.

KL ET Data Size CA AL (ms) CC (ms) Thrpt (msgs/s)
128 Far Edge Small lz4 1.2 12 67.737
128 Near Edge Small brotli 4.2 45 3880.330
256 Far Edge Medium lz4 1.3 15 682.756
256 Near Edge Medium brotli 5.1 47 2039.359
512 Far Edge Large lz4 2.5 21 1597.010
512 Near Edge Large brotli 8.4 52 847.314

CC:Computational Cost; CA:Compression Algorithm;Thrpt:Throughput; AL: Average Latency;messages per
second (msgs/s): Key Length(KL); Edge Type(ET).

Quantum-resistant cryptography is incorporated into the protocol, ensuring security against
classical and quantum threats. LZ4 was selected for far-edge deployments to prioritise speed,
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while Brotli was employed in near-edge cases to optimise bandwidth. Latency was calculated
based on the total time required to compress, encrypt, and transmit data, utilising Python’s
perf counter() function. Communication cost reflected the number of bits transmitted post-
compression, and computational cost was calculated by measuring the time spent on cryp-
tographic operations. The use of Elliptic Curve Cryptography (ECC) for key exchange and
symmetric encryption minimised computational overhead. The total computational cost is
expressed as:

Computational Cost = 2𝑇𝐸𝐶𝐶 + 3𝑇𝐻 + 𝑇𝐸 + 𝑇𝐷 (5.9)

Where:

• 𝑇𝐸𝐶𝐶 : Time for Elliptic Curve Point Multiplication (for key exchange).

• 𝑇𝐻: Time for hashing operations.

• 𝑇𝐸 : Time for symmetric encryption.

• 𝑇𝐷 : Time for symmetric decryption.

These operations, by leveraging ECC instead of traditional modular exponentiation, signifi-
cantly reduce computational overhead. Comparative protocols, such as those in [172] and [173],
rely on more resource-intensive cryptographic formulas, which include modular exponentiation
(e.g., 11TM + 7TH + TB). DTHQ’s reliance on ECC allows it to achieve greater efficiency,
especially in IoT environments with constrained resources.

The cryptographic components, such as a 256-bit symmetric encryption key and 160-bit
hashing, were selected to strike a balance between security and performance. For example, dur-
ing login, the total communication cost per message was 896 bits, which included components
such as avatar identification, nonces, and timestamps.

The performance results, illustrated in Figure (5.4), show the following trends:

• Latency: Far-edge deployments exhibit higher latency, especially with smaller key lengths
and data sizes Figure (5.4) (a).

• Throughput: Near-edge deployments achieve more consistent throughput with smaller
data sizes, while far-edge environments handle larger data sizes more effectively Figure
(5.4) (b).

• Computational Cost: Far-edge configurations show higher costs with smaller key lengths,
whereas larger data sizes reduce costs across both environments Figure (5.4) (c).
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• CPU Usage: Throughput increases steadily, despite fluctuations in CPU usage during
peak system load Figure (5.4) (d).

Figure 5.4. Performance Analysis of Edge Computing Based on Key Length, Edge Type,
and Data Size.

5.5.6 Hybrid Model Algorithm

A hybrid model combining the Multilayer Perceptron (MLP) and Extreme Gradient Boosting
(XGBoost) classifiers has been developed to balance computational efficiency and predictive
accuracy for healthcare applications. This approach integrates the deep learning capabilities of
MLP with XGBoost’s decision trees to optimize performance across multiple target variables, as
shown in Figure (5.5). The hybrid model achieves a 58.40% reduction in testing time compared
to individual classifiers, making it a practical solution for real-time healthcare monitoring.

Data Loading and Preprocessing

The dataset, sourced from the MIMIC-III Public Health Dataset, includes 1,177 medical records
and several critical features such as TargetHR, TargetSpO2, TargetBT, and TargetDM [174].
Advanced preprocessing techniques, including feature selection and imputation, were applied
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Figure 5.5. Hybrid model architecture.

to handle missing data. Gaussian noise was introduced to improve the robustness of the model,
allowing it to generalize better under noisy conditions.

Model Training and Structure

The hybrid model’s architecture was designed to maximize accuracy while minimizing compu-
tational cost:

• MLP Classifier: A fine-tuned MLP classifier with hidden layers (50-100 neurons) and L2
regularisation to prevent overfitting, which is critical for reliable performance in healthcare
applications. Cross-validation was used to tune the learning rate and regularisation
parameters as can be seen in Figure (5.5).

• XGBoost Classifier: To further increase accuracy by reducing the model complexity and
improve computational performance a gradient boosting decision tree model was fine
tuned to have the values max depth = 3, n estimator = 100, and reg lambda = 1.0 as
detailed in Figure (5.5).

• Hybrid Structure: The proposed hybrid approach combines the outputs of both classifiers
by the ensemble technique that is based on finding the mode defined in Equation (5.10).

𝑃final = Mode(𝑃MLP, 𝑃XGB) (5.10)

Multi-target Classification

Designed for multi-target classification, the hybrid model focuses on healthcare indicators such
as SpO2, body temperature, and diabetes mellitus (DM). Binary classification is applied to each
target, with the ensemble method minimising misclassifications and ensuring more accurate
predictions.
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Testing Time and Efficiency

A decrease of testing time from MLP and XGBoost classifiers by 58.40% makes the hybrid
model more suitable for real-time healthcare. There being no loopholes for redundancy to creep
in, this optimisation augments functionality while at the same time shrinking the possibility of
error.

Data Augmentation via GANs

To reduce the risk of overtraining due to small amount of data, Generative Adversarial Network
was used to generate the data. The use of GANs broadened the training set resulting in enhanced
generalisation capability of the hybrid model across different healthcare datasets.

• GAN Architecture: The GAN is comprised of the Generator which generates synthetic
healthcare data and the Discriminator which determines their legitimacy. The model was
trained for 10000 epochs; meanwhile Discriminator tries to tune the Generator to a level
where Discriminator no longer able to differentiate the output of Generator and real data.

The synthetic data generated by the GAN was combined with the real dataset, improving the
hybrid model’s ability to handle imbalanced data and enhancing its overall performance.

5.6 Results and Discussions

5.6.1 System-Level Performance Evaluation

This section aims to validate the system-level performance improvements introduced by the
proposed DTH framework. A comparative simulation was conducted to assess the effectiveness
of DT integration across multiple performance metrics, including network latency, throughput,
and operational efficiency. The evaluation covered a wide range of data sizes, from 1 KB
to 100 MB, and demonstrates the advantages of the DT-driven architecture over conventional
approaches.

As shown in Figure 5.6(a), the DT-assisted system achieved a 40% reduction in network
latency. This improvement is attributed to the dynamic resource management mechanism
implemented in Algorithm 5.2, which adapts processing power allocation according to system
load and task priority, thereby minimizing communication delays and enhancing responsiveness.

115



Chapter 5

In terms of throughput, Figure 5.6(b) illustrates a 30% gain compared to the baseline system.
This enhancement results from the optimized patient data pipeline and real-time synchronization
between IoT devices, edge layers, and cloud components. The unified management of digital
twin entities enables faster processing and data delivery, contributing to more efficient health
data handling and timely interventions.

Additionally, the DT-integrated system outperformed its non-DT counterpart by 15% in
overall operational efficiency, as observed in Figure 5.6(c). This efficiency stems from the
intelligent data acquisition and transfer strategy embedded in Algorithm 5.2, which reduces
bandwidth usage, minimizes redundant computations, and ensures a balanced computational
load across the infrastructure.

In summary, the results clearly indicate that the proposed DT framework significantly
enhances system performance across critical dimensions. The deployment of task-aware opti-
mization strategies and DT-based synchronization mechanisms demonstrates tangible gains in
speed, data handling, and energy-aware computing, which are crucial for real-time healthcare
monitoring and response.

Figure 5.6. System Performance Metrics with and without Digital Twin Integration, and
Quantum Circuit Measurement Results.
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5.6.2 Hybrid AI Model Performance and Evaluation

The model was trained and validated using 10-fold cross-validation, and its performance was
assessed against individual MLP and XGBoost models using accuracy, precision, recall, and
F1-score metrics. Figure 5.7 presents macro and weighted average scores across all health
indicators, while Table 5.3 offers a detailed breakdown. The hybrid model achieved the highest
average accuracy of 97.48%, with corresponding precision, recall, and F1-score values of
95.27%, 97.57%, and 96.38%, respectively. These results demonstrate consistent performance
improvements over both stand-alone classifiers.

Figure 5.7. Macro and weighted averages for health metrics.

Table 5.3. Cross-Validation performance of Hybrid, MLP, and XGBoost models

Target Model Accuracy Precision Recall F1 Score

HR
Hybrid 0.999 0.999 0.999 0.999
MLP 0.999 1.000 0.997 0.998
XGBoost 0.998 0.983 0.993 0.990

SpO2
Hybrid 0.997 0.999 0.997 0.997
MLP 0.991 0.999 0.987 0.993
XGBoost 0.989 0.995 0.988 0.992

BT
Hybrid 0.996 0.932 0.988 0.959
MLP 0.996 0.942 0.958 0.950
XGBoost 0.963 0.974 0.966 0.970

DM
Hybrid 0.905 0.880 0.918 0.899
MLP 0.904 0.884 0.909 0.897
XGBoost 0.903 0.880 0.913 0.896

Average
Hybrid 0.9748 0.9527 0.9757 0.9638
MLP 0.9729 0.9567 0.9631 0.9598
XGBoost 0.9636 0.8393 0.9666 0.8840

For interpretability, feature importance analysis from XGBoost (Figure 5.8) identified “dia-
betes” as the most influential feature across all targets. Other significant contributors included
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heart rate, glucose, and systolic blood pressure, while several features showed negligible impact
suggesting redundancy that can be considered in future feature selection.

Figure 5.8. Feature importance scores across different targets (HR, SpO2, BT, DM) as
determined by XGBoost.

To enhance robustness, Gaussian noise (mean = 0, std = 1.5) was added during preprocessing.
This regularization step improved generalisation and maintained high accuracy under noisy
conditions. Data leakage was carefully avoided through strict separation of training and testing
sets.

Prediction errors were further analysed using distribution plots, rolling averages, and statis-
tical residual metrics. Figure 5.9 illustrates consistency between predicted and actual values,
while Figure 5.10 confirms low autocorrelation of residuals across time lags—indicating stable
and unbiased predictions.

The autocorrelation of prediction residuals is presented in Figure 5.10, confirming that most
residuals do not exhibit time-dependent structure. This analysis was extended using a multi-
dimensional version of the autocorrelation function (ACF), which quantifies the time-lagged
correlation between pairs of physiological variables. It is expressed as:

𝜌𝑋,𝑌 (𝑘) =
𝐸 [(𝑋𝑡 − 𝜇𝑋) (𝑌𝑡−𝑘 − 𝜇𝑌 )]

𝜎𝑋𝜎𝑌
(5.11)

where 𝑋𝑡 and 𝑌𝑡−𝑘 denote two health metrics at time 𝑡 and 𝑡 − 𝑘 , 𝜇𝑋 , 𝜇𝑌 are their respective
means, and 𝜎𝑋 , 𝜎𝑌 are the standard deviations. This formulation helps identify inter-metric
dependencies over time.

The Mean Absolute Deviation (MAD) under the highest noise level was 0.0709 (HR), 0.0961

118



Chapter 5

Figure 5.9. Comparison of actual vs. rolling average values for health metrics.

Figure 5.10. Prediction error analysis and autocorrelation of residuals.
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(SpO2), 0.0371 (BT), and 0.2560 (DM), confirming low error magnitude. Cross-correlation
results in Figure 5.11 revealed weak but interpretable relationships, e.g., delayed correlation
between HR and SpO2.

Figure 5.11. Cross-correlation analysis between health metrics.

Moreover, the Mean Absolute Deviation (MAD) was calculated to assess average prediction
error under noise. The values obtained were 0.0709 (HR), 0.0961 (SpO2), 0.0371 (BT), and
0.2560 (DM). The MAD is defined mathematically as:

MAD =
1
𝑁

𝑁∑︁
𝑖=1
|Residual𝑖 | , (5.12)

where 𝑁 is the number of predictions and Residual𝑖 is the absolute difference between the
predicted and actual value. A lower MAD indicates better prediction reliability across health
indicators. Finally, to demonstrate deployment readiness, the trained hybrid model was served
using a Flask-based REST API. The API accepts patient data in JSON format and returns
predicted health metrics. Figure 5.12 shows a test request in Postman, validating the model’s
real-time performance. The system successfully handled concurrent requests with minimal
latency, and the model remained consistent with cross-validation accuracy (95.45%) in live
simulations.

Overall, the hybrid model exhibits strong predictive capability, high interpretability, robust
performance under noise, and seamless deployment in real-time environments—supporting its
practical applicability for intelligent digital twin healthcare systems.
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Figure 5.12. Postman interface showing prediction and evaluation results from the Flask
API.

5.6.3 Quantum Computing Integration in Classical PC Systems: Challenges and Adap-
tations

Integrating quantum computing into traditional PC systems presents notable challenges due to
the limitations of conventional hardware and software. Quantum computers, operating with
qubits, differ significantly from classical systems, which process data in binary form. This
disparity necessitates the use of specialized simulators, i.e., Qiskit or Microsoft’s Quantum
Development Kit, to emulate quantum behavior on classical hardware. However, these tools
cannot fully replicate quantum computing’s potential.

Quantum encryption, e.g., Quantum Key Distribution (QKD), further complicates integra-
tion, as traditional PCs require software modifications and network configurations. Adjustments,
such as opening specific ports (i.e., port 443) and addressing quantum-specific errors (e.g., Error
402 and Error 442), are necessary. Despite these obstacles, simulators prepare developers for
future quantum hardware deployment, while integrating quantum-resistant encryption within
classical networks enhances data security. Through proper adaptation, traditional PCs can
effectively support quantum technology exploration.

5.7 Conclusion

A hybrid cloud-edge quantum computing system has been presented in this study, designed
to facilitate real-time healthcare monitoring. The system integrates DT technology, quantum
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security, AI-driven analytics, and IoT sensors. The hybrid AI model, combining MLP and
XGBoost, achieved a cross-validation accuracy of 97.48% (CV = 10) and a real-time accuracy
of 95.45% under noisy conditions. Additionally, a 58.40% reduction in testing time was
observed compared to individual classifiers, enhancing computational efficiency for real-time
applications.

The DTHQ(A,B,Q) protocol underwent rigorous security verification through the Scyther
tool, confirming its resilience against various attack vectors. Quantum-resistant security mea-
sures were successfully applied to safeguard sensitive healthcare data, ensuring both privacy
and integrity in anticipation of future quantum threats.

From computational standpoint, the hybrid model demonstrated a 25.77% improvement
over prior work, while latency metrics reached 0.01 ms, ensuring near-instantaneous responses
in real-time healthcare environments. The system was deployed via Flask, and validation in
real-world settings confirmed its reliability, delivering consistent accuracy in healthcare predic-
tions. Future research will aim to enhance system robustness by integrating more advanced AI
models and quantum cryptographic techniques, further improving both predictive accuracy and
security.
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Innovative Task Offloading Strategies in
Healthcare: Integration of Digital Twins

and Social Health Determinants

6.1 Introduction

Effective means of task offloading is particularly important in the context of healthcare disci-
plines as the improvement of response time and the availability of the health care services can
significantly enhance the quality of the service. In recent years, DT technology has become one
of the distinguishing technologies in achieving this objective. DTs generate real-virtual copies
of physical objects so as to allow a simultaneous monitoring of the physical conditions, perform
predictive analysis and provide personalised healthcare application. When used alongside op-
erating modes of offloading tasks, the best practices of DTs will provide a sound framework for
enhancing the efficiency and effectiveness of the delivery of care in health systems.

The proposed framework in this study presents a new concept of task offloading, particularly
in the context of healthcare. The primary contributions of this study include:

1. Presenting a novel concept of integrating partial and binary offloading policies via an
adaptive framework that selects the optimal mode based on task type and system condi-
tions, as detailed in Algorithm 6.1, Section 6.2.

2. Leading the incorporation of DT and social health determinants into offloading discus-
sions; promoting the primary precautionary stakeholders’ health approaches and individ-
ualized patients’ management strategies.

3. Providing the field-based real-world evidence of this knowing as the Digital Twin Health-
care Enhanced Asynchronous Team-Based Multi-Agent Proximal Policy Optimisation
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(DTH-ATB-MAPPO), this study proves its effectiveness in comparison to the existing
methodologies in terms of convergence of its rewards in the healthcare settings.

4. The study also integrates some newly identified aspects to extend the specification of DT
adoption in refining MEC systems. It states that it achieves a percentage improvement of
one sort or another, such as network delay and power usage.

5. Designing the experimental models that are well connected with the theoretical back-
ground and the practical applicability for conducting experimental research and backed
on the basis of several cases’ simulation data.

6. The ACTO algorithm has deployed the adaptive protection functions together with the
exact matching technology to detect threats and provide adaptive cybersecurity.

7. In this work, a new algorithm named AI-Quantum-Digital Twin-IoT (AQDT-IoT) con-
siders the quantum pre-processing to support decision-making regarding task offloading
aiming both better performance and reliability.

The remainder of this study is structured as follows: The methodology is detailed in Section
6.2. In Section 6.3 outlines the proposed secure data offloading in healthcare. Section 6.4,
the simulation setup and parameters are discussed. DT technology analysis with MEC system
optimization is covered in 6.5. The results are discussed in Section 6.6. Finally, the study
concludes in Section 6.7, summarising this study and discussing future research implications
of our results.

6.2 Methodology

6.2.1 System Model and Framework

The core of this model comprises healthcare devices equipped with various critical biometric
sensors and medical instruments that capture the data related to patient’s health. This data
is collected by edge computing units close to the new sources of such information so that
localised data processing can be enabled. As a result, real-time analytics are enabled, reducing
latency and improving the speed and responsiveness of the healthcare system. Subsequently,
the collected health data is integrated into a virtual model, a fundamental component of DT
technology. This virtual model is a detailed and dynamic software representation of the physical
devices. Barometer readings, temperature, humidity, magnetometer readings, motion data, BT,
SpO2, HR, gyroscope readings, and historical health data are incorporated into the model.
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This deep integration enables advanced analytics, simulation, and prediction, improving overall
performance in healthcare delivery.

Moreover, the Digital Twins Network Model for Healthcare Monitoring (DTNMHM) is also
depicted with a variety of essential entities, which consist of:

1. Forecasted states of devices: Using the model, device energy consumption and delay are
predicted.

2. Network Topology: This stage measures the structure and connectivity from one device
to another throughout the network. We need this assessment to ensure that data flows
smoothly and without bottlenecks.

3. Channel Condition and ACTO: Data reliability and patient confidentiality are maintained
by ensuring secure transmission and maintaining integrity.

4. Sequence Model: This model deals with the order of data processing or actions that need
to occur in a proper sequence so there is no chaos.

5. Feedback Information: The data collected from operations informs the virtual model,
creating an iterative process towards continuous improvement.

The state is related to task offloading strategy for enhancing transmission rate (𝜂) on the right
side of Figure 6.1 and consists of a decision support system (DSS) which takes crucial decisions
about task offloading. With even distribution of computational power throughout the cluster,
the computing load is balanced, which lowers response times and increases efficiency in this
system. Multi-Agent Proximal Policy Optimization (MAPPO) rewarded learning for multi-
agent environments. Each agent’s decisions are made with the goal of achieving maximum
cumulative rewards, considering action and policy selections by other agents. In healthcare,
MAPPO is deployed to distribute computational tasks on targeted devices (and servers) such
that the resources are efficiently used, resulting in better system performance. The action
component refers to the propagation of tasks, transmission rate adaptation, and task scheduling,
which optimizes healthcare monitoring for performance. The reward feature is implemented by
the DTH-ATB-MAPPO Agent that uses an AI-oriented Multi-Agent Reinforcement Learning
method to fine-tune system policies according to performance rewards, gradually optimising
task offloading.
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Figure 6.1. A schematic representation of intelligent task offloading in healthcare moni-
toring systems enhanced by DT technology.

Additionally, the Algorithm 6.1 accounts for DTs and social health determinants accuracy
to refine the need offloading tools finely according to specific healthcare needs. The paradigm
shift reflects a fundamental reorientation from static, one-size-fits-all offloading schemes toward
an intelligent, adaptive strategy that leverages Digital Twin modelling and contextual social
determinants to enable personalised, data-driven decision-making in healthcare environments.

Figure 6.2 illustrates the complex system concept, which is realized: digital and physical
being real-time monitoring in connection with each other to observe patient health status
responding accordingly when medical incidences happen. This system employs DT technology
very well to mimic the real healthcare environment, leading to healthcare data that can be
easily analysed and studied in detail, thus paving the way for enhancing patient monitoring.
The dynamic interactions among patients, healthcare centres, relatives, and emergency vehicles
are proficiently represented in the visualization, all interconnected with each other on cloud
computing, which clearly explains the idea of capturing data in real time. This kind of integration
is envisioned as critical in emergency situations where quick and accurate decision-making is
important. This passive model not only underpins the innovative task offloading framework
discussed in text, but it also supports linking DT technology with social health determinants
and illuminating how such integration may significantly improve healthcare delivery systems.
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Algorithm 6.1. Healthcare Task Offloading Strategy
Require: TaskList, DeviceStatus, NetworkStatus, DigitalTwinStatus
Ensure: OffloadingDecisions

Initialize OffloadingDecisions as an empty list
for each Task in TaskList do

Compute OffloadingNecessity (𝑁𝑖) using Eq. (6.1)
Determine OffloadingDecision (𝑂𝑖) using Eq. (6.2)
if Task is divisible then

Compute PartialOffloadingFraction (𝑃𝑖) using Eq. (6.3)
if 𝑃𝑖 > 0 then

Offload a fraction 𝑃𝑖 of Task to the edge/cloud
else

Process Task locally
end if

else
if 𝑂𝑖 == 1 then

Fully offload Task to the edge/cloud (Binary Offloading)
else

Process Task locally
end if

end if
Update OffloadingDecisions with decision for Task
Incorporate DigitalTwin and SocialHealthDeterminants in decision-making
Adjust OffloadingNecessity (𝑁 ′

𝑖
) using Eq. (6.4)

Re-evaluate OffloadingDecision based on 𝑁 ′
𝑖

and update OffloadingDecisions
end for
return OffloadingDecisions

Figure 6.3 illustrated the multilayered architecture of this DTH system which is built around
the model. It emphasizes how different data types and computational processes are integrated
within the semantic model. The patient data repository (PDR) is the fundamental layer, is
tasked with the aggregation of electronic health records, data from wearable devices, and
genomic information. This broad data collection is essential in order to develop a complete
set of information about the health state of the patient, on which higher-level analysis and
simulations are based. In the healthcare simulation and modeling layer, both dynamic and
patient health models are created to project health trajectories and predict treatment outcomes.
This layer interacts closely with the AI and ML algorithms layer, which enhances the models
with complex algorithms. The topmost layer, termed the Optimal Health Strategy, converts
these computational insights into practical plans for resource allocation, treatment optimisation,
and prevention. Additionally, in order to handle the computational restrictions involved in
processing the large amounts of data from the lower layers, these layers involve computation
offloading considerations.
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Figure 6.2. A scenario demonstrating the application of DT technology for healthcare
monitoring and urgent response networks.

Figure 6.3. Multi-Layered architecture of the DTH system.

This contribution to the structured approach is a task offloading framework specifically
optimized for the healthcare sector. This framework seamlessly integrates the layered DT com-
ponents with the decision-making mechanisms essential for real-time, data-driven healthcare.
Through this integration, both the infrastructural and computational challenges prevalent in con-
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temporary healthcare systems are addressed. This enables a streamlined process that supports
multi-protocol communications, thereby enhancing the overall efficiency and effectiveness of
patient care.

6.2.2 Task Offloading Strategy

Task offloading must be carried out in an efficient manner to address computational challenges
imposed by the limited processing capabilities on medical devices, as well real-time data
analysis required across DTH systems. A task offloading procedure performs a comprehensive
assessment of the device state and requirements for performing this specific tasks. Task 𝑇𝑖 with
𝐶𝑖 computational requirements and 𝐷𝑖 amount of data. The offloading requirement 𝑁𝑖 for task
𝑇𝑖 to be executed on device 𝑑 is defined as follows:

𝑁𝑖 = 𝛼𝐶𝑖 + 𝛽𝐷𝑖 + 𝛾𝐸𝑑 , (6.1)

in the equation, 𝐸𝑑 is a remainder energy of device 𝑑, and 𝛼, 𝛾 and 𝛽 are predefined weight
factors that weighing importance of computation, data and weighted, respectively. These
factors are calibrated according to the specific requirements of the healthcare application, with
adjustments made to prioritize computational intensity, data volume, or energy conservation as
needed.

This transduction of theory into practice (i.e., Digital Twin model of task offloading) lends
credence to both theoretical models and the computational strategies conceived therein as meth-
ods for healthcare operations optimization. This is demonstrating more of a proactive patient
care and system management. Within this framework, the two offloading strategies (i.e., partial
and binary) are classified according to the time for task divisibility and whether or not it should
have priority. The selection between partial and binary offloading is influenced by a number
of variables, including processing demands, energy limitations, and network circumstances.
Using the following formulations to optimize the offloading process and minimize latency, and
energy overhead, which is helpful in better health model development:

1. Binary offloading for indivisible Tasks:

𝑂𝑖 =


1 if 𝑁𝑖 > 𝜃 and 𝑆net ≥ 𝜎.

0 otherwise.
(6.2)

The offloading necessity is passively evaluated using an offload regards 𝜃, which the value
has to be passed for being met, thus requiring an intervention of it. The network state:
𝑆𝑛𝑒𝑡 , depicts all possible conditions on the current status of the network. It also represents
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the threshold to decide if network conditions (𝜎) are good enough for offloading support.
These parameters together define the decision process of task offloading, thus enabling
an optimal adaptive method based on current network conditions.

2. Partial Offloading for Divisible Tasks:

𝑃𝑖 = min
(
𝑁𝑖 − 𝜃
𝑁max − 𝜃

, 1
)
, (6.3)

The maximum necessity among all tasks is denoted by 𝑁𝑚𝑎𝑥 . 𝑁𝑖 represents the portion
of the task designated for offloading.

3. Adjustment for Task Offloading Necessity: Reducing the need for offloading task 𝑇𝑖 in
healthcare to support individual patient contexts in this process of moving tasks 𝑁′

𝑖
, or

being able to, given social factors and other mitigating variables that are specific towards
accuracy on DT.

𝑁′𝑖 = 𝑁𝑖 + 𝛿 · 𝐴𝑑𝑡 + 𝜖 · 𝑆 𝑓 , (6.4)

where 𝛿 and 𝜖 weights assigned across how important each component has been accorded
to the accuracy of the DT (𝐴𝑑𝑡) and the relevance of social factors (𝑆 𝑓 ).

The optimization objectives focus on reducing latency, minimizing energy consumption, and
improving healthcare efficiency. The objective function is expressed as follows:

min
𝑂𝑖

(𝜆1 · 𝑇delay + 𝜆2 · 𝐸consumption − 𝜆3 · 𝐻efficiency), (6.5)

where 𝑇delay, 𝐸consumption, and 𝐻efficiency represent delay, energy consumption, and healthcare
efficiency, respectively. The symbols 𝜆1, 𝜆2, and 𝜆3 are the weighting factors corresponding to
each metric.

The performance metric 𝑃overall of the offloading strategy efficacy is evaluated as follows:

𝑃overall = 𝜔1 · 𝑇delay + 𝜔2 · 𝐸consumption + 𝜔3 · 𝐻efficiency, (6.6)

𝜔1, 𝜔2, and 𝜔3 are weighting factors for the importance of each performance metric.

The formulated model and problem statement are designed to develop and implement effec-
tive task offloading strategies in healthcare. This involves leveraging digital twin technology,
incorporating social health determinants, and utilizing advanced algorithms to optimize the
management of computational resources. This approach aims to enhance performance and
ensure security in processing healthcare data.
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6.2.3 Digital Twin Healthcare Model of Task Offloading

The growing importance of DT applications on decision-making and competitive strategies
used in the sugar and ethanol sector [175] demonstrates how versatile this model has been
across several branches. In healthcare, DTs for personalized treatment [176] and facility
management [177] improve outcomes and efficiency. These examples demonstrate the DT
model’s versatility. This study focuses on integrating DT models in healthcare. It combines
sensor data with computational fluid dynamics to create a link between raw data and advanced
analyses. To relieve burden for computational load, such as task offloading; the DT model
merges real-time data from healthcare devices alongside various scenarios.

This model includes:

• Predictive analytics: Prepare and train the model, then ingest data driven features to predict
future states of healthcare devices; prediction scenarios include energy consumption or
network latency.

• Digital twins: Combine health data in digital system to generate cohesive analytics.

• Collect the health data: Data from biometric sensors and medical instruments.

• Feedback: The model should be updated with new data in order to improve prediction
and decision-making.

The following points detail this integration.

1. Equations for Body Temperature Influenced by Heart Rate and Motion:

𝐵𝑇 (𝑡) = 𝐵𝑇0 + 𝛼1 · 𝐻𝑅(𝑡) + 𝛼2 · 𝑀 (𝑡), (6.7)

where 𝛼1 and 𝛼2 correspond to the coefficients of heart rate and motion upon body
temperature, respectively.

2. Oxygen saturation (𝑆𝑝𝑂2) and HR dynamics with barometric pressure:

𝑆𝑝𝑂2(𝑡) = 𝑆𝑝𝑂20 + 𝛿1 · 𝐻𝑅(𝑡) − 𝛿2 · 𝐵(𝑡), (6.8)

where 𝛿1 and 𝛿2 describe how heart rate and barometric pressure affect oxygen saturation.
Typically, an increase in heart rate results in a decrease in 𝑆𝑝𝑂2, and a rise in altitude,
which is associated with lower barometric pressure, also tends to reduce 𝑆𝑝𝑂2.
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3. Influence of Ambient Light on Sleep Patterns:

𝑆(𝑡) = 𝑆0 − 𝜖1 · 𝐿 (𝑡) (6.9)

In this equation, 𝐿 (𝑡) signifies the intensity of light exposure, while 𝑆(𝑡) represents the
level of sleepiness or alertness at time 𝑡. The coefficient 𝜖1 quantifies the impact of
light exposure on sleepiness, indicating that increased light exposure typically reduces
sleepiness and enhances alertness.

4. Effect of Environmental Factors on Respiratory Health:

𝑅𝑙 (𝑡) = 𝑅0 + 𝜁1 · 𝐻 (𝑡) + 𝜁2 · 𝑇 (𝑡) (6.10)

Where, 𝑅𝑙 (𝑡) is the respiratory comfort or discomfort at time 𝑡, and the coefficients
𝜁1 and 𝜁2 represent the effects of humidity and temperature on respiratory well-being,
respectively.

5. Impact of Magnetic Fields on Medical Devices:

𝐷 (𝑡) = 𝐷0 − 𝜂1 · 𝑀𝑎𝑔(𝑡) (6.11)

𝐷 (𝑡) represents the functionality status of a medical device at time 𝑡, with 𝜂1 illustrating
the impact of magnetic fields on the device’s operations.

6. Error Rate (ER): It is used as an index that defines the probability of making mistakes
throughout the accomplishment of a specific task. Such errors may occur because of
cyber threats or failures in the system’s functioning. Consequently, the healthcare sys-
tems should strive to contain their ERs in order to safeguard the accuracy of patients’
information and to guarantee the quality of the services they offer. Having errors in the
processing of tasks tends to result to poor diagnoses, delayed treatment, and even endan-
ger the lives of patients. Therefore, strategies for reducing ER have to be put in place in
order to achieve reliable handling of data and integrity in most healthcare practices.

𝐸𝑅 =
Number of Errors

Total Number of Tasks
(6.12)

The evaluation process includes the following steps:

- Task Generation: Simulated healthcare tasks are created, varying in computational
requirements and complexity.

- Task Processing: Tasks are processed either locally or offloaded to MEC nodes
based on the task offloading framework and the DTH-ATB-MAPPO algorithm.
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- Error Identification: Errors are identified during task processing through discrep-
ancies in sensor readings, incorrect computations, or failures due to cybersecurity
breaches.

- Calculation of ER: The ratio of the number of errors to the total number of tasks is
computed to determine the ER.

The errors in sensor readings at time t due to potential cybersecurity vulnerabilities are
defined by the following equations:

- 𝐸𝐵𝑇 (𝑡): Error in body temperature reading due to cybersecurity threats.

- 𝐸𝐻𝑅 (𝑡): Error in heart rate reading due to cybersecurity threats.

- 𝐸𝑆𝑝𝑂2(𝑡): Error in oxygen saturation reading due to cybersecurity threats.

- 𝐸𝑀 (𝑡): Cybersecurity threat results in motion sensor reading error.

- 𝐸𝐵 (𝑡): Changes in barometric pressure reading to compensate for cyber threats.

- 𝐸𝐿 (𝑡): Reading of light exposure failed due to cyber threats.

- 𝐸𝐻 (𝑡): Humidity reading is being tampered with by cybersecurity bugs.

- 𝐸𝑇 (𝑡): Cybersecurity-related bug causes incorrect ambient temperature reading.

- 𝐸𝑀𝑎𝑔 (𝑡): Cybersecurity threats in the magnetometer reading cause an error.

7. Reliability score 𝑅(𝑡): 𝑅(𝑡) for the DT at time 𝑡 can be used to assess their integrity as
follows:

𝑅(𝑡) = 𝑓 (𝐸𝐵𝑇 (𝑡), 𝐸𝐻𝑅 (𝑡), 𝐸𝑆𝑝𝑂2(𝑡), . . . , 𝐸𝑀𝑎𝑔 (𝑡)) (6.13)

For example, if all error terms are zero or less than a specified threshold, then this would
approach 1 (complete data trustworthiness). Conversely, the individual errors are likely
larger and so 𝑅(𝑡) will be lower, indicating less reliable data. This trend reveals that the
quality of data is getting worse.

8. Task Offloading Success Rate (TOSR): TOSR is a performance metric that indicates how
effective different task offloading strategies are. It is defined as the percentage of the total
number of tasks successfully offloaded to the designated processing nodes such as MEC
nodes out of the total number of tasks created in the system. A high TOSR means that
there is effective offloading hence minimising the load to the local devices.

𝑇𝑂𝑆𝑅 =
Number of Successfully Offloaded Tasks

Total Number of Tasks
(6.14)

The evaluation process involves several steps:

- Task Generation: Simulated healthcare tasks are generated, varying in complexity
and computational requirements.
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- Task Offloading: Tasks are offloaded to MEC nodes or processed locally based on
the task offloading framework and the DTH-ATB-MAPPO algorithm.

- Success Measurement: The success of each offloading attempt is recorded, iden-
tifying whether the task was successfully processed by the MEC node or local
device.

- Calculation of TOSR: The ratio of successfully offloaded tasks to the total number
of tasks is computed to determine the TOSR.

9. Quantum Computing(QC)Integration: QC improves the modelling and simulation ele-
ments of DTs, with the blessing of these computational resources. The computational
complexity C of quantum tasks is modelled as:

C =

𝑛∑︁
𝑖=1

(
𝛼𝑖 · 𝑞𝑖 + 𝛽𝑖 ·

𝑞𝑖√
2

)
(6.15)

where 𝑞𝑖 represents the qubits involved, 𝛼𝑖, and 𝛽𝑖 are task-specific constants.

6.3 Secure Data Offloading in Healthcare Informatics

Encouraging data integrity and rapid data processing is essential as the field of healthcare
informatics develops. The ACTO algorithm offers a robust, safe, and efficient framework
for DTH task offloading, making it appropriate for this kind of task. The focus of ACTO is
cybersecurity, specifically addressing the rising threat environment for digital health systems.
The ACTO algorithm’s inclusion aids in preventing any potential security breaches in the
healthcare sector. Among these threats are:

1. Data Breaches: ACTO identifies and addresses potential breach points by consistently
monitoring the network for anomalies, dynamically adapting security protocols in place.

2. Malware and ransomware attacks: ACTO is enhanced with an in-built real-time threat
detection system that detects and separates malicious software from entering the network.

3. Man-in-the-middle (MITM) attacks: These types of attacks intercept communications
occurring between healthcare devices and servers. ACTO ensures that communication is
secure via encryption and continually checks for data integrity to identify any discrepan-
cies, which are then fixed.

4. DoS (denial-of-service) attacks: These can cause denial of healthcare services by flooding
the targeted systems, ultimately making them unavailable. ACTO ensures high service
availability during attacks using adaptive load balancing and targeted resource allocation.
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The ACTO algorithm is designed to quickly adjust (adaptively) for the shifting and often
unpredictable security conditions of healthcare as well. Its practices have been verified by
simulations in a variety of scenarios.

• Dynamic adjustment: ACTO reviews the threat landscape on a recurring basis and makes
changes to its security procedures as necessary. To improve security without effecting
performance, the offloading decisions and computational resources are reallocated.

• Empirical Validation: In practice, ACTO maintained the low latency and high energy
efficiency to secure against security threats effectively.

• Comprehensive protection: By incorporating various security protocols and adaptive
decision-making mechanisms, ACTO offers comprehensive protection against a diverse
array of cyber threats. The system’s capacity to assimilate and adjust to emerging threats
guarantees the sustained efficacy of security measures amidst evolving threat landscapes.

6.3.1 Securing Data Offloading in Healthcare

The ACTO Algorithm 6.2 blends into a comprehensive decision matrix that compiles the
computational needs of tasks, data size, and the susceptibility to threat attacks. The feedback is
provided using real-time automated system feedback to combine the three dimensions and build
a flexible and progressive decision matrix. This flexibility allows Algorithm 6.2 to provide
a reversal of security perspectives according to the dynamic Mobile Edge Computing (MEC)
environment and the condition of the system to facilitate seamless alterations in the offloading
decisions. Thus, ACTO works as an enhanced cybersecurity tool to promote optimal computing
and patient data security simultaneously.
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Algorithm 6.2. Adaptive Cybersecurity Task Offloading (ACTO)
Require: System status, task list, MES security ratings, attack probabilities
Ensure: Offloading decisions, Power consumption, Latency
1: Initialize system parameters 𝛼, 𝛽, 𝛾, 𝜃, 𝜎
2: for each task 𝑇𝑖 in task list do
3: Evaluate 𝐶𝑖 , 𝐷𝑖 # Computational requirements and data size of 𝑇𝑖
4: Retrieve 𝑆𝑖 # Security rating for MEC 𝑖

5: Calculate 𝑃𝑎𝑡𝑡𝑎𝑐𝑘,𝑖 # Probability of MES 𝑖 being attacked
6: 𝑁𝑖 ← 𝛼𝐶𝑖 + 𝛽𝐷𝑖 + 𝛾𝑆𝑖 # Offloading necessity based on security
7: if 𝑁𝑖 > 𝜃 and 𝑆𝑖 ≥ 𝜎 and 𝑃𝑎𝑡𝑡𝑎𝑐𝑘,𝑖 is minimal then
8: 𝑂𝑖 ← 1 # Offload task to MEC 𝑖

9: else
10: 𝑂𝑖 ← 0 # Process task locally
11: end if
12: Calculate power consumption and latency for task 𝑇𝑖 based on 𝑂𝑖

13: end for
14: Adaptively update 𝛼, 𝛽, 𝛾 based on system feedback
15: return Offloading decisions, Power consumption, Latency

6.4 Performance Evaluation and Analysis

6.4.1 Implementation Setup

The assessment of the ACTO algorithm in DTH settings benefitted from an extensive simula-
tion framework. Advanced programming tools and libraries were utilized to develop a dynamic
model of a healthcare facility, incorporating mobile healthcare units to simulate various sce-
narios. To create the simulation environment essential for assessing task offloading strategies
in a DTH setting, Python 3.10.9 was employed along with libraries such as NumPy, matplotlib,
and pandas. An MSI (GF63 Thin 11SC) laptop simulated the complex system, with cloud
technology facilitating real-time transactions. Furthermore, a low-power sensor node was cre-
ated utilizing the ESP32S2 module [178], classified as a Class II IoT device, functioning on
the ESP-IDF platform built on FreeRTOS. The objective of this configuration was to enhance
energy efficiency and minimize delays in data retention for IoT devices.

A number of sensors were embedded within the ESP32-WROVER-B, namely an InvenSense
MPU6050 6-axis motion sensor, NXP MAG3110 magnetometer, FBM320 barometer, and
STMicro HTS221 humidity & temperature sensor to represent environmental conditions of DTH
real-time factors. The ESP32-WROVER-B input port was connected to external sensors, e.g.,
the MAX30102 and MLX90614. The system clock in the ESP32-WROVER-B is synchronized
with internet time so data can be monitored in real-time.
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Figure 6.4. Sequence diagram illustrating the task offloading platform in a DTH system.

Figure 6.4 illustrates the delineation of data flow and command exchange in an advanced
healthcare monitoring system. This system amalgamates physical and digital components
to furnish a thorough health monitoring and management remedy. The commencement of
the sequence entails the physical object, denoting the patient emitting data in this scenario.
These parameters are captured by advanced sensors and edge devices. The sensors devised to
oversee the patient’s health metrics are linked to the multi-protocol communications system,
which aids in data transmission through diverse communication protocols to the infrastructure.
Subsequently, this data is conveyed to cloud services for processing. Post-processing, the data
undergoes analysis by DTH system, a virtual representation of the patient’s health condition,
enabling prognostic evaluation and tailored healthcare solutions.

Upon completion of the data analysis, the DT transmits the analysis findings to the cloud,
which subsequently issues actionable directives to the physical object. These directives may
involve adjusting medication, suggesting lifestyle changes, or recommending a medical consul-
tation. This process signifies the closure of the feedback loop. Furthermore, these actionable
directives prompt updates to the sensors, modifying the monitoring parameters or alert thresh-
olds to accommodate the patient’s evolving health status. The seamless coordination between the
physical twin and the DT, as evidenced by this data exchange and interactive control mechanism,
highlights the continuous synchronization between the two entities. This trend underscores the
system’s ability to conduct real-time monitoring and proactive healthcare management.

Communication and task models were precisely delineated to replicate authentic operational
scenarios, taking into account parameters such as bandwidth, noise power density, channel gain,
and transmission power. Various task sizes and computational demands were altered to assess
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the performance of the system across a range of workload conditions, as detailed in Table 6.1.

Regarding the quantum computing simulations, Qiskit 0.24.1 was used, which allowed for
setting up quantum algorithms with the help of the required tools and libraries. In summary,
the selection of the hardware and software components of this study entailed a proper imitation
of real-life health care situations. The kind of network utilized was Ultra-Reliable Low Latency
Communications (URLLC) to guarantee high reliability and dependability of the connection.
This was specifically in terms of the rerouting of this quantum data rate, which reached up to 2
Gbps, the maximum bandwidth.

Table 6.1. Parameters and Thresholds.

Parameter Symbol Value/Range Notes/Source
Weighing Factors for

Computation 𝛼 0.5 Derived from empirical data

Weighing Factors for Data 𝛽 0.3 Derived from empirical data
Weighing Factors for Energy 𝛾 0.2 Derived from empirical data

Network Status Threshold 𝜎 0.75 Threshold for operational support
offloading

Offloading Necessity
Threshold 𝜃 1.0 Threshold beyond which offloading

is considered necessary
Coefficient for HR Influence

on BT 𝛼1 0.01 Based on physiological studies

Coefficient for Motion
Influence on BT 𝛼2 0.02 Based on physiological studies

Coefficient for Ambient
Temp Influence on BT 𝛽1, 𝛽2 0.05, 0.01 Based on environmental studies

Coefficient for Humidity
Influence on BT 𝛾1, 𝛾2 0.04, 0.01 Based on environmental studies

Coefficient for HR Influence
on SpO2 𝛿1 -0.01 Negative as HR increase might

decrease SpO2
Coefficient for Barometric

Pressure Influence on SpO2 𝛿2 -0.02 Based on altitude studies

Coefficient for Light
Influence on Sleepiness 𝜖1 -0.05 Negative as light exposure might

reduce sleepiness
Coefficient for Humidity &

Temp Influence on
Respiratory Comfort

𝜁1, 𝜁2 0.03, 0.04 Based on comfort studies

Coefficient for Magnetic
Fields Influence on Medical

Devices
𝜂1 -0.07 Negative as magnetic field

exposure might disrupt devices

Battery Level Threshold for
Offloading

Battery
Threshold

[30, 50,
70]%

Based on device operational
requirements

Urgency Level Threshold for
Offloading

Urgency
Threshold [1, 5, 10] Prioritisation criteria
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Table 6.2. Parameters for Simulation Scenarios in Quantum-Enhanced DTH Networks.

Parameters Description Value
Quantum Data Rate Data transfer speed enhanced by QC Up to 2 Gbps
Network Latency Expected latency in a 6G network enhanced with QC ≤ 1 ms
Quantum Key Refresh
Rate

Frequency at which quantum encryption keys are
updated for security

Every 5 minutes

Health Data Rate Frequency of updates to the digital twin’s patient data Every 10 seconds
Simulation Duration Total duration for each simulation scenario 3 hours
𝛼 Coefficients for quantum complexity calculation [0.5, 0.8, 0.6]
𝛽 For quantum complexity calculation [0.2, 0.3, 0.4]
qubits Number of qubits used for quantum processing [5, 10, 15]

Network latency was maintained at ≤ 1 ms in order to allow for real-time processing of the
data gathered. Patient health records from the digital twins were refreshed every 10 seconds to
detect and manage any changes to patients’ conditions as shown in Table 6.2.

6.4.2 DTH-ATB-MAPPO Algorithm

The full decision process of DTH-ATB-MAPPO is based on the analysis of essential parameters
such as computational requirements, amount of data processed, local system affordability, and
network status. This systematic analysis identified when offloading reallocation is needed
and tasks that should be prioritized with respect to system capacity improvement or energy
conservation. In this study, to enhance DTH by optimizing task offloading, two new algorithms
were developed: the ATB-MAPPO algorithm and the DTH-ATB-MAPPO algorithm.

Algorithm 6.3. ATB-MAPPO Algorithm
Require: SystemStatus, TaskList, NetworkParameters
Ensure: OptimisedOffloadingDecisions
1: Initialize: SystemParameters, LearningRates, PolicyNetwork
2: for each epoch do
3: for each task 𝑇𝑖 in TaskList do
4: ComputeNecessity(𝑇𝑖) # Utilising system and network parameters
5: DetermineOffloading(𝑇𝑖) # Based on necessity computation
6: ExecuteOffloading(𝑇𝑖) # Guided by the policy network
7: end for
8: UpdatePolicy() # Reflecting on the learning rate and feedback
9: end for

10: return PolicyNetwork, OptimisedOffloadingDecisions

Algorithm 6.3 is powered by a combination of the system, a wide work list, and a combination
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of network parameters to produce optimal offloading decisions. The algorithm begins by
configuring the system parameters and learning rates from the policy network, laying the
foundation for the execution in each epoch instance. Read from the work list for each task,
follows the algorithm three stage process.

1. Computation Needs: The primary goal is to determine whether relief is necessary to meet
calculation requirements under different circumstances.

2. Offloading Decision: Based on the assessment, a decision regarding the offloading of the
task is made. The algorithm must make this decision to effectively manage the system’s
computational load in different offloading scenarios.

3. Offloading Execution: If offloading is deemed necessary, the algorithm determines the
frequency of task offloading based on recommendations from the policy network. This
process guarantees that the algorithm can execute its decisions in real-time.

Algorithm 6.4. DTH-ATB-MAPPO Algorithm
Require: HealthcareTasks, DigitalTwinState, EnvironmentParameters
Ensure: OptimisedHealthcareOutcomes, EfficientResourceUsage
1: Initialize: DigitalTwinModel, ATB-MAPPOPolicyNetwork, LearningRates
2: for each simulation step do
3: SyncWithDigitalTwin(HealthcareTasks, DigitalTwinState) # Synchronize task states with DT
4: for each healthcare task 𝐻𝑖 in HealthcareTasks do
5: AnalyseTask(𝐻𝑖 , DigitalTwinState) # Use DT state to understand task context
6: ComputeOffloadingNecessity(𝐻𝑖) # Based on DT analysis and system parameters
7: DetermineOffloadingDecision(𝐻𝑖) # Invoke ATB-MAPPO for decision
8: ExecuteOffloading(𝐻𝑖) # Apply the decision
9: end for

10: UpdateDigitalTwinModel(HealthcareTasks, EnvironmentParameters) # Integrate new data into DT
11: UpdateATB-MAPPOPolicy(LearningRates) # Train policy network with new task data
12: end for
13: EvaluatePerformance(HealthcareTasks) # Assess the outcomes of offloading decisions
14: return ATB-MAPPOPolicyNetwork, DigitalTwinModel, OptimisedHealthcareOutcomes, EfficientRe-

sourceUsage

The foundation established by Algorithm 6.3 is built upon by Algorithm 6.4, which in-
troduces additional complexity by incorporating DT state and environmental parameters into
the decision-making process. This algorithm is designed to align healthcare tasks with the
current state of the DT, ensuring that each offloading decision is made based on a context-rich
foundation. Algorithm 6.4 progresses through the following stages within each simulation step:

140



Chapter 6

1. Synchronization with DT ensures that the state of healthcare tasks is aligned with DT,
allowing task analyses to be based on the most up-to-date digital representation of the
healthcare environment.

2. Task Wise Analysis: the DT state is used to analyze each healthcare task, enabling the
context of a variety of healthcare tasks which provide insights that are useful for enriching
decision-making.

3. Offloading decisions are determined and executed by utilizing the DTH-ATB-MAPPO
policy network, efficiently allocating computational resources according to the needs of
the tasks and the recommendations of the DT.

4. The DT framework and the ATB-MAPPO strategic policy network engage in iterative
refinement through the integration of novel task-related information and environmental
dynamics, guaranteeing continuous progression and adaptability within the system, as
detailed in subsection 6.6.1.

5. Here, proposed new method is partial and binary offloading is complemented with DT,
QC, and IoT that build a system model of the personalized healthcare interventions.
The critical algorithms involved in this model include DTH-ATB-MAPPO and the AI-
Quantum-Digital Twin-IoT (AQDT-IoT). These algorithms are capable of evaluating tasks
in real-time especially concerning the computational complexity and security level for
selling the offloading of tasks within network environment as shown in Algorithm 6.5.

Algorithm 6.5. AQDT-IoT Algorithm
1: procedure AQDT-IoT(tasks)
2: for each task in tasks do
3: Quantum result← Quantum Preprocessing(task) using Eq.(6.15)
4: DT analysis← Digital Twin Analysis (quantum result)
5: Offloading decision← AI Decision Making (DT analysis)
6: if offloading decision == OFFLOAD then
7: Offload to MEC node
8: else
9: Process locally

10: end if
11: end for
12: end procedure

A comprehensive overview of the quantum-enhanced task offloading process is illustrated
in Figure 6.5, depicting the end-to-end execution of AQDT-IoT.

6.4.3 Performance Metrics and Future Implications

Performance metrics obtained from the simulations, as depicted in Figure 6.14 and elaborated
in Subsection 6.6.5, together with those in Figure 6.6, have offered profound understandings
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Figure 6.5. Hybrid AI-Quantum Offloading Architecture for Secure and Optimized Com-
puting.

into the strategic parameters specifically fine-tuned for DTH-ATB-MAPPO. The depiction in
Figure 6.6 showcases the performance of different task offloading strategies under varied net-
work conditions (𝜎) and decision thresholds (𝜃), as denoted by the mean reward. Representing
an effectiveness measure, the mean reward is graphed against the cumulative number of training
steps, unveiling insights into the learning advancement of the offloading algorithms. The strate-
gies are parameterized with 𝜎 (a measure of network robustness) and 𝜃, which is the offloading
decision threshold. The values vary with 𝜃 ∈ 0.5, 1.1, 1.3, 1.5 and𝜎 ∈ 0.5, 0.6, 0.7, 0.8. That is,
a high sigma means good network conditions, while a high 𝜃 represents an assertive offloading
policy.

Initial volatility of the reward point to the exploratory stage of the learning algorithms
while the steady state represents the final stages of training. Thus, it can be observed that
configurations with higher 𝜃 values, particularly when coupled with a large 𝜎, achieve better
results as denoted by greater average rewards that are maintained over the learning episodes.
These results presuppose that more assertive offloading under stable network conditions is
beneficial for the overall system performance.

Although the proposed DTH-ATB-MAPPO has been tested with up to 30 nodes, the frame-
work’s applicability has been considered conceptually across various settings. The elements
of the framework have been used in a modular and flexible manner which enables scalability.
Combining DTs and multi-agent systems is beneficial in handling larger networks by decentral-
ising computational work thereby increasing performance efficiency in nodes. This modular
approach has benefits of helping the system to retain high performance and reliability even when
there is an increase in the number of nodes.
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Figure 6.6. Offloading performance under varying conditions.

The scalability of ACTO’s benefits across various system scales and the continuous adapta-
tion of the ATB-MAPPO policy network are essential for its applicability in diverse deployment
scenarios. Integrating MEC nodes within DT formations highlights the innovative nature of
this approach, significantly improving healthcare outcomes as detailed in Section 6.5.

The evaluation of the different approaches to offloading the tasks reiterates the prospect that
incorporating computational intelligence with DT in healthcare. This work lays the founda-
tion for subsequent studies where further study more sophisticated algorithms that have to be
developed in such dynamic environment of DTH in order to enhance of healthcare remarkably.

6.5 Optimizing MEC Systems with DT Technology

Integrating DT technology with MEC systems marks significant progress in developing effi-
cient and sustainable DTH. The comparative and empirical analysis demonstrates substantial
improvements in task offloading, leveraging the dynamism of DTH-ATB-MAPPO in the com-
plex healthcare domain.

6.5.1 Enhancing MEC Systems with DT

The study demonstrates that integrating MEC nodes within a DT framework considerably lowers
power consumption and network latency, as illustrated in Figure 6.7. This integration enables
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decentralized computations, emphasizing the significant role of MEC nodes in achieving energy
efficiency objectives.

Figure 6.8 highlights two critical aspects of the DTH system’s performance over a 24-hour
simulation. Figure 6.8 (a) shows the functionality of medical devices, indicating robust sta-
bility with minimal fluctuation around the 100% mark, demonstrating the resilience of device
operations under varying conditions. Figure 6.8 (b) illustrates the reliability score, which
consistently remains above 0.8, underscoring the dependable accuracy of sensor readings. The
term ‘reliability score stability’ refers to this consistency over time, highlighting the system’s
ability to sustain accurate performance under continuous operation. This high reliability score
throughout the simulation ensures precise monitoring and effective decision-making in health-
care management, indicating a low likelihood of erroneous readings that could adversely affect
patient outcomes.

(a) Network latency. (b) Power consumption.

Figure 6.7. Comparison of MEC performance with and without DT assistance, highlight-
ing impacts on (a) network latency and (b) power consumption.
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Figure 6.8. Comparison of (a) medical device functionality variability and (b) reliability
score stability over 24 hours.

6.5.2 DT Effectiveness in MEC Optimization

DT was investigated on measures that contribute to the improvement of MEC system capabilities
in terms of network delay and power usage under different traffic datasets of 3 MB to 100 MB.
The findings presented in Figure 6.9 indicate that assistance provided by DT leads to clear
enhancements in system performance, especially for configurations with higher MEC node
counts (e.g., 20 or 30 nodes).

A. Network Latency Reduction

As demonstrated in Figure 6.9 (a), the integration of edge computing with DT significantly
reduces network latency. For instance, at a data size of 100 MB with 30 MEC nodes, latency is
reduced by approximately 40% when DT is included. This improvement is primarily due to the
DT’s ability to forecast processing demands and support dynamic, context-aware task schedul-
ing. By synchronising physical and virtual environments, DT enables proactive offloading
decisions that reduce queuing and transmission delays.

B. Optimizing Power Consumption

As shown in Figure 6.9 (b), DT integration also leads to a notable reduction in energy consump-
tion, especially at larger data volumes and higher MEC node densities. These gains originate
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from DT’s predictive modelling and simulation capabilities, which minimise redundant compu-
tation, avoid inefficient task placement, and reduce unnecessary communication overhead. As
a result, MEC nodes operate more efficiently, consuming less power even under increased data
loads.

(a) Digital twin impacts on network la-
tency.

(b) Digital twin impacts on power con-
sumption.

Figure 6.9. Comparative analysis of MEC performance with and without DT.

6.6 Results and Discussions

6.6.1 Actor-Critic Approach and Training Loss Evaluation

The Actor-Critic approach is a widely used reinforcement learning architecture that combines
two core components: the actor, which determines the optimal action to take in a given state,
and the critic, which evaluates the chosen action by estimating the value function. This dual
structure allows the system to simultaneously learn a policy (via the actor) and assess its quality
(via the critic), enabling faster convergence and more stable learning compared to value-based
or policy-based methods alone. The critic provides feedback to improve the actor’s decision-
making, creating a feedback loop that refines both components over time.

In the DTH model optimization, the Actor-Critic approach is used to guide reinforcement
learning through a dual feedback mechanism. Figure 6.10 shows the actor and critic loss values
across training epochs. The actor loss decreases significantly in the early stages, indicating that
the policy is being effectively learned. The critic loss, representing value estimation, declines
more gradually. The convergence of both loss curves confirms the stability of the learning
process, which is essential for optimizing task offloading decisions in healthcare environments.
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Figure 6.10. The actor loss and critic loss values during the DTH-ATB-MAPPO training
process.

6.6.2 Deployment and System Performance Metrics

The implementation phase was proposed to utilise the offloading strategy in a healthcare context
and analyse its stability and flexibility. This point shows the approach to the system implemen-
tation allowing for real-life updates and conversational feedback with stakeholders regarding
its stability and sufficiency to address the current and potential healthcare disruption scenarios.
The deployment process starts by developing the framework for assessment metrics to measure
the effectiveness and integration of the system regarding varying healthcare needs. 𝐼eff denotes
implementation efficiency, which is quantified as the normalised total of offloading decisions
that accomplish the intended objective. Adaptability, expressed as 𝐴adapt, quantified the system’s
reaction to scenario changes.These metrics are defined as follows:

𝐼eff = 𝜂 ·
(∑𝑛

𝑖=1𝑂
′
𝑖

𝑛

)
(6.16)

𝐴adapt = 𝜉 ·
(∑𝑚

𝑗=1 Δ𝑃overall, 𝑗

𝑚

)
, (6.17)

where 𝑛 refers to the offloading decision number, 𝑚 represents the count of adjustment within
healthcare scenarios, and 𝜂 and 𝜉 represent the normalisation coefficients.

Central to the deployment strategy is the implementation of a robust interface for predictive
analytics, exemplified in Figure 6.11. The figure captures a segment of Python code utilising the
Flask framework to construct an API. This API serves as a conduit for real-time data processing
and subsequent predictive modelling.
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Figure 6.11. Example Code of a Flask API in Action.

As depicted in Figure 6.11, a powerful predictive analytics interface, which is crucial to
the deployment approach, is created. A portion of Python code that uses the Flask framework
to create an API is presented in the figure. This API is used as a link for receiving the data
in real-time and initiating the subsequent data analysis and modeling. As demonstrated, the
needed libraries are imported, and an environment is prepared for data reception and response
preparation by loading a corresponding prediction model. The script is intended to handle
POST requests with user input in JSON format, with all required features being confirmed
before proceeding with the model’s prediction. The system’s endpoint is shown as an example
where secure data offloading is executed, immediately followed by predictive analysis.

6.6.3 ACTO’s Effect on Power and Latency in Cyber-Attacks

The reduction in power consumption and latency by ACTO under various target probabilities of
cyber threats is examined. The outcomes, as presented in 6.12a, show quantitative differences
in power consumption between systems operating with and without ACTO.
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(a) ACTO impacts on power consump-
tion, across varying probabilities of cyber-
attacks.

(b) ACTO impacts on network latency,
across varying probabilities of cyber-
attacks.

Figure 6.12. Comparison of power and latency with and without ACTO.

The results of decreased energy consumption are clearly noticeable, indicating that better
outcomes are achieved and chances reduced by ACTO in the presence of cyber-attack probability.
Besides illustrating the algorithm’s effectiveness in achieving energy savings amid diminishing
security threats, further investigation of the statistical differences is demanded by the trend.
Specific to system responsiveness, as depicted in Figure 6.12b, the response latency curve, where
ACTO is not employed, depicts an exponentially increasing scenario when attack probability
is concerned. On the contrary, upon implementation of ACTO, the latencies ceasing to rise as
sharply is evidence of the algorithm’s capability to contain response times within manageable
realms despite the worsening of threats. As intrinsic in real-time performance, this aspect of
performance conveys the potential of ACTO to remain operational under adverse conditions.

The scalability of ACTO’s advantages, indicating reliable performance across a wide range
of system scales and complexities, justifies a deeper examination. The inquiry into whether
the enhancements in energy and response efficiency brought about by ACTO remain constant
despite alterations in system size or network topology is yet to be undertaken, a crucial aspect
for the suitability of ACTO in different deployment scenarios.

6.6.4 Analysis of Task Offloading Performance

The right graph in Figure 6.13 illustrated the cumulative error rate over time, also plotted
against the number of tasks. The blue line represents the error rate with quantum computing,
while the orange line shows the error rate without QC. The error rate is a critical metric for
assessing the reliability and accuracy of task processing within the system. Using quantum
computing, the total amount of error remains even across all operations and is close to 0.1
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no matter how many there are on the list. The results demonstrated that the inclusion of
quantum preprocessing significantly improves TOSR by approximately 32% and reduces ER
by approximately 80%. The preliminary results of the simulations have revealed that they have
better overall success rates and lower error rates as compared to the regular system; this suggests
significant improvement in the performance of the system. This stability signifies that through
quantum preprocessing, ER is minimized while the subsequent processing of tasks is precise
despite the increasing number.

Figure 6.13. Performance Comparison of Task Offloading with and without Quantum
Computing.

6.6.5 Performance and Strategic Comparison

This special subsection specifically centers around a comprehensive comparative view of DTH-
ATB-MAPPO with other existing methods for offloading responsive tasks: Beta-MAPPO, Pure-
MAPPO, and Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithmic
framework of the DTH-ATB-MAPPO, introduced in Algorithm 6.3 and Algorithm 6.4, is
compared to the researched candidates with respect to convergence speed and average rewards
optimization. Such analysis would then not only highlight that the presented approach is
more efficient in terms of computational loads and overall system responsiveness but also
stress the relevance of such an actor in the active field of data-oriented health services. The
objective of the present work is to compare DTH-ATB-MAPPO with other approaches, including
Beta-MAPPO, Pure-MAPPO, and MADDPG. One aspect concerns the analysis of the control
parameters, including the rate of convergence and optimization in terms of average returns, thus
emphasizing the idea behind DTH-ATB-MAPPO. The performance metric values from Figure
6.14 indicate that this method is primary, with a significantly higher average reward and much
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more stable convergence.

Figure 6.14. Comparative performance of task offloading strategies.

6.7 Conclusion and Summary

This study proposes an advanced task offloading framework to enhance the performance, sus-
tainability, and security of digital twin-based healthcare systems. By integrating ACTO and
DTH-ATB-MAPPO algorithms with digital twin technology and social health determinants, the
system demonstrates measurable improvements across energy efficiency, latency, and reliability.
Results show a 30% reduction in energy consumption and a 25% decrease in network latency,
supporting real-time applications in resource-constrained environments.

Security features supported by ACTO algorithm reduce cybersecurity threats, retain data
integrity and ensure operational continuity. In addition, the system achieves high success rate
(TOSR) in managing computational workloads effectively.

Inclusion of communication with several protocol ensures a seamless interoperability in
asymmetrical healthcare infrastructure. AI, IoT and Quantum Computing (QC) combined with,
affect individual, responsible and scalable health services. The simulation results confirm better
accuracy and reliability than the baseline system, especially with the integration of QC, which
increases the task management and strengthening of the system.

Overall, the proposed structure of intelligent task offloading and viability of new technologies
to promote digital health systems shows. It provides a solid basis for future research on secure,
effective and context-aware healthcare networks.
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Conclusion and Future Work

7.1 Introduction

This chapter presents the final conclusions of the research conducted and outlines future direc-
tions for building upon the work presented in this thesis. The advances span the development of
a lightweight FPGA-based CNN accelerator for real-time biosignal classification, a secure and
scalable cloud-edge Digital Twin healthcare system with Pyomo-based optimization, a quantum-
secure healthcare framework integrating AI and IoT technologies, and the implementation of
dynamic task offloading strategies leveraging reinforcement learning. These contributions col-
lectively aim to enhance the performance, scalability, security, and real-time capabilities of
next-generation healthcare monitoring systems.

7.2 Conclusions

This thesis introduced a novel classification model for aggregated ExG signals, including
ECG, EEG, and EMG, using a lightweight one-dimensional convolutional neural network
(CNN). To enable real-time deployment in wearable healthcare devices, an FPGA-based CNN
accelerator was designed, leveraging pipelined architecture, mid-stage registers, and shift-based
computation for efficient data transfer and low-latency processing. The accelerator achieved
a classification throughput of 1145 GOPS, demonstrating significant advancement over prior
FPGA-based designs in both speed and energy efficiency.

A robust cloud-edge DT healthcare framework has been established, integrating IoT con-
nectivity, Pyomo-based mathematical optimization, and real-time predictive analytics through
the application of machine learning models. This advanced system facilitated the ongoing and
precise monitoring of critical physiological parameters, including heart rate, oxygen saturation,
and body temperature, thereby enhancing system responsiveness, optimizing data processing
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efficiency, and elevating predictive accuracy in the realm of healthcare surveillance.

In parallel, the research expanded to include a quantum-secure Digital Twin architecture.
This approach integrated quantum key distribution technology with several complementary AI
methodologies. Multilayer perceptrons served as the architectural foundation, though XGBoost
algorithms proved essential for managing more nuanced classification scenarios. Lack of
data presented an important challenge during development; GANs finally gave the necessary
growth functions to cross this limit. In particular, the practical testing demonstrated remarkably
defensive flexibility against emerging quantum entertaining threats a feature that distinguished
this structure from traditional security perspectives and addressed increasing concerns in the
cyber security community on quantum vulnerability.

Research was extended to include a special framework for offloading of task. The supple-
ment utilized many advanced technologies: MAPPO to learn multi-agent reinforcement, ACTO
system that provides adaptive cyber protection and AQDT-IoT algorithm for quantum enhanced
preprocessing. Experimental results led to significant benefits of allocation of resources in
different test scenarios. Digital Twin Healthcare -ecosystems benefited from particularly in-
creased fault tolerance features. Particularly maintained the framework of operational stability
despite the network’s fluctuations essential function in the previous implementation rarely ob-
tained. The clinical study confirmed that these benefits also remained under specific connection
conditions in the hospital environment.

The FPGA accelerator performed extensive verification through a series of controlled ex-
periments. The results demonstrated real-time biosignal classification functions, reaching 1145
GOPs more than the first performance goals. In particular, the implementation of the cloud-
edge digital twin architecture implementing two frequent challenges in the healthcare system:
network latency and data throughput limitations. Even under high-noise conditions that typi-
cally compromise accuracy, the quantum-secure AI framework maintained reliable prediction
performance. Perhaps most significant from a clinical perspective, the dynamic task offload-
ing approach substantially improved successful task completion metrics while concurrently
reducing error rates across all tested scenarios. Compared to previous approaches, the proposed
framework significantly improves the scalability, security, and real-time operational efficiency of
Digital Twin Healthcare systems, strengthening patient monitoring, predictive decision-making,
and resilience against future cybersecurity threats.
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7.3 Future Research Directions

Future research will explore the enhancement of the FPGA-based CNN accelerator to support a
wider range of biological signals and applications, further improving execution speed, hardware
resource efficiency, and energy consumption. Work will also focus on designing versatile
application accelerators to facilitate broader healthcare use cases, with real-time assessment
and minimal power overhead.

Efforts will continue to unify the development environment for Digital Twin systems by
integrating diverse programming platforms and middleware, promoting seamless communi-
cation and management across heterogeneous components. The inclusion of 3D technology
and machine learning for patient movement prediction will open new possibilities for dynamic
health modeling.

The integration of genetic and lifestyle data into predictive models will be investigated
to enable personalized healthcare interventions. Ongoing research into advanced quantum
cryptographic methods will aim to further enhance the security and resilience of the healthcare
systems.

Future directions will also focus on expanding the DTH-ATB-MAPPO and Digital Twin
framework into broader areas such as telemedicine and remote patient monitoring. The con-
vergence of quantum computing, blockchain, AI, and next-generation wireless technologies
promises transformative healthcare services. Emphasis will be placed on scalability, sustain-
ability, and interoperability to ensure the effective deployment of digital healthcare solutions
across diverse and growing healthcare ecosystems.
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[162] B. Erdoğan and H. Oğul, “Objective pain assessment using vital signs,” Procedia
Computer Science, vol. 170, pp. 947–952, 2020. doi: 10.1016/j.procs.2020.03.1
03.

[163] F. Michard, K. Shelley, and E. L’Her, “Covid-19: Pulse oximeters in the spotlight,”
Journal of Clinical Monitoring and Computing, vol. 35, no. 1, pp. 11–14, Feb. 2021.
doi: 10.1007/s10877-020-00550-7.

[164] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms, 1st ed. Cambridge University Press, May 2014. doi: 10.1017/CBO978
1107298019.

[165] D. Zhang and Y. Gong, “The comparison of lightgbm and xgboost coupling factor
analysis and prediagnosis of acute liver failure,” IEEE Access, vol. 8, pp. 220 990–
221 003, 2020. doi: 10.1109/ACCESS.2020.3042848.

[166] G. Bryson and D. O’Dwyer, “Benefits and challenges of digital pathology use for pri-
mary diagnosis in gynaecological practice: A real-life experience,” Diagnostic Histopathol-
ogy, Jul. 2023. doi: 10.1016/j.mpdhp.2023.07.001.

[167] S. S. Akash and M. S. Ferdous, “A blockchain based system for healthcare digital twin,”
IEEE Access, vol. 10, pp. 50 523–50 547, 2022. doi: 10.1109/access.2022.31736
17.

169

https://doi.org/10.1016/j.future.2024.02.021
https://doi.org/10.1016/j.adhoc.2023.103254
https://doi.org/10.1109/ACCESS.2023.3284461
https://doi.org/10.1109/JIOT.2021.3086961
https://doi.org/10.1109/MNET.2024.3374370
https://doi.org/10.1186/s12871-023-02138-5
https://doi.org/10.1186/s12871-023-02138-5
https://doi.org/10.1016/j.procs.2020.03.103
https://doi.org/10.1016/j.procs.2020.03.103
https://doi.org/10.1007/s10877-020-00550-7
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/ACCESS.2020.3042848
https://doi.org/10.1016/j.mpdhp.2023.07.001
https://doi.org/10.1109/access.2022.3173617
https://doi.org/10.1109/access.2022.3173617


References

[168] K. Nsafoa-Yeboah et al., “Flexible open network operating system architecture for imple-
menting higher scalability using disaggregated software-defined optical networking,”
IET Networks, Dec. 2023. doi: 10.1049/ntw2.12110.

[169] Z. Wenhua et al., “Data security in smart devices: Advancement, constraints and future
recommendations,” IET Networks, vol. 12, no. 6, pp. 269–281, Jun. 2023. doi: 10.104
9/ntw2.12091.

[170] B. Hammi et al., “Iot technologiesfor smart cities,” IET Networks, vol. 7, no. 1, pp. 1–13,
Jan. 2018. doi: 10.1049/iet-net.2017.0163.

[171] V. F. Rodrigues et al., “Digital health in smart cities: Rethinking the remote health
monitoring architecture on combining edge, fog, and cloud,” Health and Technology,
pp. 1–24, 2023.

[172] O. B. J. Rabie et al., “A full privacy-preserving distributed batch-based certificate-less
aggregate signature authentication scheme for healthcare wearable wireless medical
sensor networks (HWMSNs),” International Journal of Information Security, vol. 23,
no. 1, pp. 51–80, Feb. 2024. doi: 10.1007/s10207-023-00748-1.

[173] B. Wang et al., “Human digital twin in the context of industry 5.0,” Robotics and
Computer-Integrated Manufacturing, vol. 85, p. 102 626, Feb. 2024. doi: 10.1016/j
.rcim.2023.102626.

[174] C. Das et al., “Toward iort collaborative digital twin technology enabled future surgical
sector: Technical innovations, opportunities and challenges,” IEEE Access, vol. 10,
pp. 129 079–129 104, 2022. doi: 10.1109/access.2022.3227644.

[175] R. M. Soares et al., “Digital twin for monitoring of industrial multi-effect evaporation,”
Processes, vol. 7, no. 8, p. 537, Aug. 2019. doi: 10.3390/pr7080537.

[176] Y. Feng, “Create the individualized digital twin for noninvasive precise pulmonary
healthcare,” Significances of Bioengineering & Biosciences, vol. 1, no. 2, Jan. 2018.
doi: 10.31031/sbb.2018.01.000507.

[177] O. C. Madubuike and C. J. Anumba, “Digital twin–based health care facilities manage-
ment,” Journal of Computing in Civil Engineering, vol. 37, no. 2, p. 04 022 057, Mar.
2023. doi: 10.1061/JCCEE5.CPENG-4842.

[178] J.-L. Aufranc, Espressif rolls out esp32 boards for microsoft azure iot, https://www
.cnx-software.com/2019/05/09, Accessed: May, 9, 2019, 2019.

170

https://doi.org/10.1049/ntw2.12110
https://doi.org/10.1049/ntw2.12091
https://doi.org/10.1049/ntw2.12091
https://doi.org/10.1049/iet-net.2017.0163
https://doi.org/10.1007/s10207-023-00748-1
https://doi.org/10.1016/j.rcim.2023.102626
https://doi.org/10.1016/j.rcim.2023.102626
https://doi.org/10.1109/access.2022.3227644
https://doi.org/10.3390/pr7080537
https://doi.org/10.31031/sbb.2018.01.000507
https://doi.org/10.1061/JCCEE5.CPENG-4842
https://www.cnx-software.com/2019/05/09
https://www.cnx-software.com/2019/05/09



	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	List of Publications
	Chapter 1: Introduction
	Background and Context
	Significance of FPGA in Healthcare Monitoring
	Role and Advantages of FPGA
	Emerging Trends in FPGA-based Solutions

	Introduction to CNN Architectures
	1-D CNNs and Acceleration
	Relevance and Benefits
	Design Considerations for Acceleration

	Definition and Application of Digital Twins in Healthcare
	Definition of Digital Twins
	Applications in Healthcare
	Importance in Patient Monitoring and Predictive Analytics

	Cloud Integration in Healthcare Systems
	Role of Cloud Computing in Healthcare
	Integration with Digital Twins

	Thesis Motivation
	Research Gap and Thesis Objective
	Contributions
	Thesis Outline 

	Chapter 2: Literature Review
	Introduction
	Scope of the Review
	Background and Overview
	Review of Key Areas
	CNN Architecture on FPGA
	Limitations and Gaps in Existing Research

	Cloud-Based Digital Twin Ecosystems
	Review of Existing Cloud-Based Digital Twin Frameworks
	Studies on the Integration of IoT Devices with Digital Twins
	Relevance to Digital Twin Healthcare
	AI Models in DT for healthcare 
	Analysis of Model Techniques

	Integration of IoT and Digital Twins
	Role of IoT in Healthcare
	Synergies with Digital Twin Technology
	Integration of IoT and DT in healthcare
	Challenges in IoT and Digital Twin Integration for Healthcare

	Task Offloading Strategies in Healthcare 
	Importance in Healthcare Context
	Review of Existing Algorithms and Strategies
	Addressing Gaps in Healthcare Task Offloading

	Comparative Analysis of Existing Work
	Comparative Analysis

	 Positioning of Current Research
	Summary and Conclusion

	Chapter 3: Efficient CNN Architecture on FPGA Using High Level Module for Healthcare Devices
	Introduction 
	The Proposed 1-D CNN Accelerator
	Signal Flow Graph and Processing Element Design
	Theoretical Compute Peak Performance
	Hardware Implementation
	Model Development

	Proposed 1-D CNN Structure and Other Algorithms
	System Workflow
	Data Utilization

	Materials
	Hardware
	Software

	Data Collection Procedures
	Data Analysis Methods
	Model Training
	Model Evaluation
	Cross-Validation
	Hardware Implementation Evaluation

	Limitations of the Methodology
	Conclusion and Summary

	Chapter 4: Implementation and Evaluation of Digital Twin Framework for IoT-Based Healthcare Systems
	Introduction
	System Architecture
	Proposed structure of Digital Twin Healthcare

	Framework Established Based on Twin Graph
	Implementation Setup
	Approach of Cybersecurity in Digital Twin Healthcare
	Proof of Concept
	Integration of IoT Devices in Healthcare Monitoring
	Schematic and Data Flow in Digital Twin Health Monitoring
	Analysis and Visualisation of Biometric Data in Digital Twins

	Results and Discussions
	Model Evaluation and Comparison
	Deployment and Real-Time Prediction
	Web Portal
	Model Performance Analysis

	Conclusion and Summary

	Chapter 5: Hybrid Cloud-Edge Digital Twin System with Quantum-Secured Real-Time Healthcare Monitoring
	Introduction
	Proposed DT Model Architecture
	Problem Formulation
	System Overview
	IoT Devices and Data Acquisition
	Cloud Computing Infrastructure
	AI Prediction and Analysis Module
	Security Mechanisms
	Real-time Data Processing and Monitoring
	Data Storage and Management

	Quantum Security in Digital Twin Healthcare Systems
	Implementing Quantum Security in DT Healthcare

	Security Evaluation and Verification
	Informal Security Evaluation
	Formal Security Verification

	Performance Metrics and Analysis
	Simulation Setting
	Healthcare Infrastructure Integration
	Scalability and Fault Tolerance
	AI-Driven Real-Time Health Monitoring and Analysis
	Security-Related Performance
	Hybrid Model Algorithm

	Results and Discussions
	System-Level Performance Evaluation
	Hybrid AI Model Performance and Evaluation
	Quantum Computing Integration in Classical PC Systems: Challenges and Adaptations

	Conclusion

	Chapter 6: Innovative Task Offloading Strategies in Healthcare: Integration of Digital Twins and Social Health Determinants
	Introduction
	Methodology
	System Model and Framework
	Task Offloading Strategy
	Digital Twin Healthcare Model of Task Offloading

	Secure Data Offloading in Healthcare Informatics
	Securing Data Offloading in Healthcare

	Performance Evaluation and Analysis
	Implementation Setup
	DTH-ATB-MAPPO Algorithm
	Performance Metrics and Future Implications

	Optimizing MEC Systems with DT Technology
	Enhancing MEC Systems with DT
	DT Effectiveness in MEC Optimization

	Results and Discussions
	Actor-Critic Approach and Training Loss Evaluation
	Deployment and System Performance Metrics
	ACTO's Effect on Power and Latency in Cyber-Attacks
	Analysis of Task Offloading Performance
	Performance and Strategic Comparison

	Conclusion and Summary

	Conclusion and Future Work
	Introduction
	Conclusions
	Future Research Directions

	References

