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Abstract—In high-speed train systems deployed across diverse
geographical regions, robust fault diagnosis techniques are es-
sential for ensuring operational safety. This paper proposes
the Byzantine resilience enhanced multi-task federated learning
framework (BR-MTFL), a novel framework tailored for the com-
plexities of fault diagnosis in traction asynchronous motors under
varying operational conditions. This framework innovatively in-
troduces multi-task federated learning to accommodate regional
law restrictions and varying fault diagnosis requirements. In
addition, the Byzantine resilience of our proposed framework is
specially enhanced to address the challenges posed by inconsistent
and potentially misleading feature distributions across different
train networks. BR-MTFL is practically validated through ex-
periments conducted across 9 clients, each representing a distinct
set of fault types and operational conditions typical of high-speed
trains. The experiments demonstrate the ability of BR-MTFL
to outperform conventional federated learning frameworks in
terms of accuracy and resilience to Byzantine threats. BR-MTFL
establishes a new standard for federated learning applications in
high-speed train fault diagnosis, particularly where data diversity
and privacy dominate.

Index Terms—High-speed train, fault diagnosis, federated
learning, multi-task learning, Byzantine resilience.

I. INTRODUCTION

H IGH-SPEED train systems are vital to modern trans-
portation, providing fast and reliable service across di-

verse geographical regions [1] [2]. The traction asynchronous
motor, a key element of the drive system, is especially critical
to the performance of high-speed train systems. Faults such as
broken rotor bars, stator inter-turn short-circuits, and air-gap
eccentricity can severely impact the operation of motors [3].

This work is partially supported by National Natural Science Foundation
of China (62233012), Jiangsu Provincial Qinglan Project (2021), and Suzhou
Science and Technology Programme (SYG202106).

J. You and Y. Zhan are with School of Advanced Technology, Xi’an
Jiaotong-Liverpool University, Suzhou, 215123, China, and also with School
of Electrical Engineering, Electronics and Computer Science, Univer-
sity of Liverpool, Liverpool, L69 3BX, United Kingdom (e-mail: Junx-
ian.You23@student.xjtlu.edu.cn, Yifan.Zhan22@student.xjtlu.edu.cn);

R. Yang is with School of Advanced Technology, Xi’an Jiaotong-Liverpool
University, Suzhou, 215123, China (e-mail: R.Yang@xjtlu.edu.cn);

B. Song is with the College of Electrical Engineering and Automation,
Shandong University of Science and Technology, Qingdao 266590, China
(email: Songbaoye@sdust.edu.cn);

Y. Zhang is with the Department of Information Science and Engineering,
Wuhan University of Science and Technology, Wuhan 430081, China (email:
zhangyong77@wust.edu.cn).

Z. Wang is with the Department of Computer Science, Brunel Univer-
sity of London, Uxbridge, Middlesex UB8 3PH, United Kingdom (email:
Zidong.Wang@brunel.ac.uk).

Corresponding author: R. Yang.

Consequently, developing robust fault diagnostic techniques is
essential for ensuring the safe operation of high-speed trains
across diverse regions [4]. Deep learning-based methods have
revolutionized the field of fault diagnosis [5], by providing
powerful tools to analyze complex data streams [6]. However,
the implementation of these methods faces challenges in data
sharing and data heterogeneity among clients.

On one hand, legal and regulatory constraints, such as the
General Data Protection Regulation [7], [8], limit data sharing
among clients across regions. To cope with this challenge,
federated learning has been introduced into fault diagnosis
[9]. This decentralized approach enables multiple clients to
collaboratively train a shared global model without transferring
raw data to a central server, ensuring data privacy and compli-
ance with legal regulations [10]–[12]. However, the strategy
of creating a single global model for all clients is not suitable
for high-speed train systems. Therefore, customized diagnostic
strategies need to be designed for clients in different regions.

On the other hand, models trained on datasets from one
region often fail to perform well in other regions, as high-speed
train systems face varying faults in different regions [13],
[14]. The fault type obtained by clients varies significantly
due to regional differences, resulting in data heterogeneity and
the need for client-specific diagnosis tasks. For example, in
mountainous regions, the frequent need for trains to ascend
and descend slopes imposes mechanical stress on traction
asynchronous motors, causing broken rotor bars [15], reducing
motor efficiency and increasing vibrations. In areas with high
humidity, moisture can degrade the insulation of motor stators,
leading to inter-turn short-circuits, causing overheating and
potentially burning out the motor [7]. In the plains, where
trains operate mainly at high speeds, continuous operation
can accelerate mechanical wear, leading to air-gap eccentricity
[15]. The specific challenges faced by each client in the
corresponding region underscore the need for customized
diagnostic strategies to effectively maintain the stability of
high-speed train systems [16].

Fortunately, multi-task learning is well-suited for designing
customized diagnostic strategies for high-speed train systems,
as it allows clients to collaboratively learn region-specific
models without sharing raw data, addressing both data het-
erogeneity and privacy concerns. It leverages shared feature
representations across tasks, enabling the model to learn gener-
alizable knowledge from different tasks [17]. Integrating multi-
task learning into federated learning seems to be a promising
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solution to fault diagnosis complicated by regional variations.
Recent studies on multi-task federated learning (MTFL)

have demonstrated wide applications in various fields, such
as Internet of Vehicles [18], [19] and smart healthcare [20]–
[22]. However, MTFL faces the challenge of Byzantine threats
[23]–[25]. Byzantine threats in federated learning refer to
the introduction of faulty or misleading updates by certain
clients during the model aggregation process, which can
significantly disrupt the learning process [26]. These threats
arise from inconsistencies across clients, where some updates
deviate from the correct direction of model aggregation due
to local data heterogeneity, software malfunctions, or even
intentional malicious behavior. Such discrepancies can cause
imbalanced contributions from clients, leading to a global
model that is skewed towards irrelevant or non-generalizable
features, ultimately degrading its performance. The potential
harms of Byzantine threats are considerable, including the
degradation of model accuracy, reduced generalization ability,
and increased vulnerability to adversarial attacks. These issues
can destabilize the learning process, causing the model to
converge to incorrect solutions or become ineffective in real-
world applications [27].

For further illustration of Byzantine threats in a high-
speed train fault diagnosis, suppose the diagnostic data of
most participating clients in the aggregation process mainly
involves faults of broken rotor bars. In such cases, their
current signals typically exhibit frequency anomalies, causing
the models to focus on frequency features. Conversely, a few
participating clients may concentrate on stator inter-turn short-
circuits, characterized by current spike variations, leading
their models to emphasize spike features. During aggregation,
the models that focus on spike features might interfere with
the aggregation of models emphasizing frequency features,
ultimately affecting the model’s ability to capture critical yet
subtle frequency features accurately [7]. Although these clients
are not malicious, the feature learning bias towards their local
data characteristics due to data heterogeneity can lead to
a decline in aggregated model performance [28], triggering
potential Byzantine threats.

To handle the challenge of Byzantine threats, significant ad-
vancements have been made in enhancing Byzantine resilience
across various fields, such as blockchain [29] and cloud com-
puting [30]. Integrating Byzantine resilience enhancement into
MTFL allows the aggregated model to remain reliable against
internal inconsistencies among client tasks. Current strategies
for boosting Byzantine resilience often rely on filtering client
updates, typically by removing outliers [31] or selecting me-
dian values [32] to achieve a balanced parameterization of the
model. While these methods effectively mitigate the impact
of Byzantine threats, they inevitably lead to information loss.
Specifically, even if all updates in a given iteration are valid
and free from Byzantine threats, conventional methods would
still discard certain updates due to their strict filtering criteria.
This is particularly problematic in the context of high-speed
train fault diagnosis, where the datasets are both scarce and
valuable. Simply removing outliers may fail to distinguish use-
ful data from noise and result in the loss of key fault patterns,
affecting the model’s reliability and diagnostic performance.

Therefore, it is necessary to develop a filtering mechanism
for high-speed train systems that maximizes the retention
of valuable data while effectively mitigating the impact of
unreliable updates.

To overcome the challenges posed by data sharing and
data heterogeneity, and to enhance the system’s Byzantine
resilience, this paper proposes BR-MTFL, a novel Byzantine
resilience enhanced MTFL framework applied in high-speed
train fault diagnosis. Specifically, this paper proposes the
formation of spontaneous clusters among clients as a method
to address Byzantine threats. The clustering facilitates the
gathering of updates from a reliable group of clients, focusing
on preserving the most universally applicable and widely ac-
cepted model updates. Incorporation of all client contributions
should be allowed when no Byzantine threats are present in the
aggregation iteration. This allowance distinguishes our method
from conventional approaches by balancing robustness against
Byzantine threats and the preservation of contributions from
clients with critical data.

The main contributions of this paper are summarized as
follows:

1) By introducing Byzantine resilience into MTFL, this
study reduces the influence of misleading local client
updates and enhances reliability in high-speed trains;

2) This research explores the integration of MTFL in
high-speed trains, aiming to overcome the challenges
posed by data sharing and data heterogeneity across
geographically distributed train systems, in order to meet
the requirements for lawful and reliable fault diagnosis;

3) The client selection and aggregation process of federated
learning is innovatively optimized, allowing substantial
advances in the Byzantine resilience of the framework.

The rest of this paper is organized as follows: Section II
provides a detailed architecture of the BR-MTFL framework;
Section III presents a comprehensive analysis of experimental
results, discussing the implications for the deployment of
high-speed train fault diagnosis; Section IV concludes the
paper with a discussion of the broader impact of this paper,
highlighting the potential future research directions.

II. PROPOSED BYZANTINE RESILIENCE ENHANCED
MULTI-TASK FEDERATED LEARNING FRAMEWORK

This section details the methodology adopted in the BR-
MTFL framework, with related symbols presented in Table
I. BR-MTFL is structured into three pivotal components,
including adapted multi-task learning, Byzantine resilience
enhancement, and weighted aggregation optimization.

A. Adapted Multi-Task Learning

Multi-task learning is adapted to optimize shared federated
learning across multiple fault diagnosis tasks. Each client
maintains a specific classifier while sharing a common feature
extractor across the network. The integration of multi-task
learning within federated learning is strategically designed
to boost tailored solutions to diverse diagnosis tasks and
accommodate the variability of operational conditions across
different clients. This section outlines the architecture and
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TABLE I
DEFINITIONS OF SYMBOLS.

Symbol Description
θ′

(t)

i Locally trained model for client i at iteration t

θ
(t)
i Updated model for client i at iteration t

ϕ
(t)
i Feature extractor for client i at iteration t

ϕ(t) Aggregated feature extractor at iteration t

l
(t)
i Classifier for client i at iteration t

Φ(t) Feature extractor vector for client i at iteration t

ϕ
(t)
il The l-th element of feature extractor vector

∇Li Gradient of the loss function for client i
D(t) Euclidean distance matrix between clients

D
(t)
i,j Distance between client i and j feature extractors

C
(t)
k Set of feature extractors in cluster k at iteration t

S
(t)
k Number of clients in cluster k at iteration t

B(t) Set of clusters of Byzantine clients at iteration t

R(t) Set of non-Byzantine clients at iteration t

µ1, µ2, . . . , µm Initial cluster centers
µ̃k Updated cluster center for cluster k

w
(t)
i Adjusted weight for client i at iteration t+ 1

η Learning rate of local training
m, τ, κ, α Hyperparameters
Acc

θ′
(t)

i

Local accuracy tested for client i at iteration t

Acc
θ
(t)
i

Updated accuracy tested for client i at iteration t

operational mechanics of the MTFL adopted in our framework,
as illustrated in Fig. 1.

1) Architecture Description: The multi-task learning ap-
proach in our framework is based on the premise that, while
common fault features may exist across clients, each client also
faces unique diagnostic challenges stemming from differences
in deployed regions, such as mountainous areas, high-humidity
regions, and plains. To address this, our model architecture
includes:

• Shared Feature Extractor: The shared feature extractor
is composed of several convolutional layers, each coupled
with batch normalization and activation functions. It
is designed to capture universal features presented by
various clients and ensure the generalization of feature
representations.

• Client-specific Classifiers: Each client employs a classi-
fier specifically configured to address its unique diagnos-
tic needs. The configuration of classifiers, including layer
numbers and activation functions, is optimized based
on the specific type and number of faults each client
regularly encounters.

2) Operational Mechanics: Each client updates its model
parameters by training on local datasets, focusing on unique
tasks. The diversity in fault types and numbers differentiates
the updated model parameters, especially in feature extractors
dealing with rare fault identification. The update process
involves gradient descent optimization, performed iteratively
as follows:

θ′
(t)

i = θ
(t−1)
i − η∇Li(θ

(t−1)
i ) (1)

...
Condition 1

① ⑦⑦⑦ ① ①

②

④

⑤

⑥ ⑥ ⑥④ ④

③

② ②

Condition 2 Condition N

Client/Task 1

Local model 1

Database 1 Database 2 Database N

Local model 2 Local model N

Client/Task  2 Client/Task N

Server

Shared feature 
extractor

Client-specific 
extractors 

Client-specific 
classifiers 

Fig. 1. Basic process of proposed MTFL framework applied in practical
high-speed train fault diagnosis. In the setting of N clients, different working
conditions influence data collection in 1⃝. Each client receives its database
and trains a local model consisting of the client-specific extractor and classifier
in 2⃝. In 3⃝, client-specific extractors are uploaded to the cloud server and
aggregated into a shared feature exactor. In 4⃝, client-specific classifiers are
reserved in each client for further process. In 5⃝, the shared feature extractor
is delivered to local clients and combined with corresponding client-specific
classifiers as updated local models which are downloaded back to each client
in 6⃝. Finally, the client applies the client-specific local model to each working
condition in 7⃝.

where θ′
(t)

i represents the parameters of the locally trained
model for client i at iteration t, η denotes the learning rate, and
∇Li represents the gradient of the loss function with respect
to the parameters of previous iterations θ

(t−1)
i .

In the subsequent subsections, the feature extractors and
the classifiers of the locally trained models will be discussed
separately, as illustrated below:

θ′
(t)

i =
(
ϕ
(t)
i , l

(t)
i

)
(2)

where θ′
(t)

i represents the sequential combination of both the
feature extractor ϕ

(t)
i and the classifier l

(t)
i for client i at

iteration t.

Remark 1. Both the feature extractor and the classifier are
jointly trained locally using the above process. However,
during the following Byzantine resilience enhancement and
weighted aggregation optimization phases, the parameters of
the classifier will remain fixed, and only the parameters of
the feature extractor will be transferred to the server side
for updating. The classifier avoids undergoing aggregations
unsuitable for client-specific diagnosis tasks and maintains a
stable classification performance while the feature extractor’s
generalization is enhanced.
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Fig. 2. Detailed process of proposed BR-MTFL framework.

B. Byzantine Resilience Enhancement

The detailed BR-MTFL framework, illustrated in Fig. 2,
demonstrates an adaptive and secure approach to federated
learning, capable of handling complex feature spaces and
ensuring high levels of model reliability and accuracy. The
challenge of enhancing Byzantine resilience in federated learn-
ing involves identifying conflicting or misleading clients that
could potentially degrade the performance of the aggregated
model. This framework adopts a reliable approach to address
this challenge during the aggregation phase of the model.
Specifically, clustering techniques based on feature extraction
outputs are adopted to isolate outliers, ensuring that only
reliable data can influence the model aggregation process.
Upon receiving the feature extractors from the clients, the
central server constructs a distance matrix and applies the
K-means clustering algorithm to perform Byzantine client
clustering and settlement.

1) Byzantine Client Clustering: The detection of poten-
tial Byzantine clients is achieved by analyzing the feature
extraction layers submitted to the central server. The K-
means clustering algorithm is employed for the distance matrix
constructed from these feature extractor layers to further detect
potential Byzantine clients. The algorithm helps in grouping
clients into clusters based on the similarity of their updated
layers. By inspecting these clusters, groups with significantly
few clients can be identified as potential Byzantine clients,
based on the assumption that their feature distributions or
model updates are unrepresentative among the aggregation or
diverge from the majority.

In the federated learning setting with N clients, the model
parameters of feature extractor ϕ(t)

i for each client i at iteration
t is represented as a vector Φ(t)

i :

Φ
(t)
i = [ϕ

(t)
i1 , ϕ

(t)
i2 , . . . , ϕ

(t)
iL ], (3)

where L is the length of the feature extractor vector, corre-
sponding to the dimensionality of the feature extractor. ϕ(t)

il

is the lth element of the feature extractor vector, representing
the ith client’s feature value at the tth iteration.

The distance matrix D(t) is constructed using the Euclidean
distance between the vectors of the feature extractors from
different clients, with matrix elements D

(t)
i,j computed as:

D
(t)
i,j =

√√√√ L∑
l=1

(ϕ
(t)
il − ϕ

(t)
jl )

2 (4)

where ϕ
(t)
il and ϕ

(t)
jl are the lth elements of the feature extractor

vectors of length L from clients i and j respectively. The
whole distance matrix is defined as:

D(t) =


D

(t)
1,1 D

(t)
1,2 · · · D

(t)
1,N

D
(t)
2,1 D

(t)
2,2 · · · D

(t)
2,N

...
...

. . .
...

D
(t)
N,1 D

(t)
N,2 · · · D

(t)
N,N

 (5)

The matrix D(t) is an N × N symmetric matrix with
zeros along its diagonal, representing the distance between
the feature extractors of each client and every other feature
extractor. D(t) is used to select m initial cluster centers that are
maximally distant from each other, denoted as µ1, µ2, . . . , µm.
The selection of hyperparameter m can be guided by esti-
mating the proportion of Byzantine clients in the network
and evaluating clustering performance metrics across different
values. The constructed matrix improves the convergence of
the subsequent clustering process, which is iterated until the
cluster centers do not change:

• Assignment: Each feature extractor vector ϕ
(t)
i , i ∈

{1, 2, . . . , N}, is assigned to the nearest cluster center
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based on the Euclidean distance:

C
(t)
k = {ϕ(t)

i | k = arg min
j∈{1,2,...,m}

∥∥∥ϕ(t)
i − µj

∥∥∥} (6)

where C
(t)
k represents the set of feature extractor vectors

assigned to cluster k from N clients.
• Update: Recompute each cluster center, denoted as µ̃k

for the updated cluster center for kth cluster, with the
mean of the feature extractor vectors assigned to it:

µ̃k =
1

S
(t)
k

∑
ϕ
(t)
i ∈C

(t)
k

ϕ
(t)
i (7)

where S
(t)
k is the number size of clients in cluster k.

2) Byzantine Client Settlement: The potential Byzantine
clients are identified and excluded in this phase. Clusters of
unusually small sizes, suspected as the cluster of Byzantine
clients, are included in B(t), while R(t) denotes the set of
remaining non-Byzantine clients after excluding any identified
as Byzantine clients or outliers. The process is formulated as:

B(t) =
{
C

(t)
k | k ∈ {1, 2, . . . ,m}, S(t)

k < τ
}

(8)

R(t) =

m⋃
k=1

C
(t)
k /∈B(t)

C
(t)
k (9)

where hyperparameter τ plays a critical role in balancing
sensitivity and accuracy in identifying Byzantine clients.

The value of τ is chosen based on a combination of
initial experimental analysis under a baseline scenario without
Byzantine clients and insights from related literature [33],
serving as a threshold below which the cluster size is con-
sidered insufficient to represent a group of common clients.
Specifically, a preliminary experimental analysis of cluster
sizes in a controlled baseline federated learning setting can be
employed to determine an effective value for τ . By analyzing
the distribution of cluster sizes in a baseline federated learning
scenario without Byzantine clients, the minimum typical clus-
ter size among common clients can be identified and adjusted.
This empirical reference point is then slightly adjusted to
set the threshold τ . An appropriately determined τ ensures
that misleading clients are effectively identified and excluded
without adversely affecting the contributions of other clients.
Once τ is fixed, it directly influences the sets B(t) and R(t),
thereby affecting the subsequent aggregation steps and the
overall performance.

The clusters assigned to B(t) are excluded from the final
model aggregation to prevent potential misleading updates
from suboptimizing the model generalization. The aggregation
of remaining non-Byzantine clusters of R(t) ensures that the
federated learning process continues without discrete updates.
The final aggregation process on the server side can be
formulated as:

ϕ(t) =

∑
ϕ
(t)
i ∈R(t) w

(t)
i ϕ

(t)
i∑

ϕ
(t)
i ∈R(t) w

(t)
i

(10)

where w
(t)
i represents the adjusted weight of the client ob-

tained in the (t − 1)th iteration, and ϕ(t) is the aggregated
feature extractor. This procedure is vital for gradually enhanc-
ing collective knowledge over successive learning iterations.

C. Weighted Aggregation Optimization

The optimization serves as the final stage of the framework,
including model validation and feedback adjustment of the
federated learning process.

1) Model Validation: Upon receiving the aggregated feature
extractor layer from the server, each client integrates this layer
with their local classifier to form the updated model:

θ
(t)
i =

(
ϕ(t), l

(t)
i

)
(11)

where θ
(t)
i represents the updated model parameters of client

i after feature extractor aggregation.
Clients then perform validation on their local datasets to

assess the performance of the updated model. The accuracies
of models with locally trained and shared feature extractor
are represented by Acc

θ′(t)
i

and Acc
θ
(t)
i

respectively. More
precisely, Acc

θ′(t)
i

represents the accuracy of the model com-

bining the local client-specific feature extractor ϕ
(t)
i with the

client-specific classifier l(t)i . On the other hand, Acc
θ
(t)
i

refers
to the accuracy of the model combining the shared feature
extractor ϕ(t) with the local client-specific classifier l(t)i .

2) Feedback Adjustment: A weight adjustment mechanism
is introduced to account for the unique contributions of indi-
vidual clients. Specifically, if the locally trained model shows
superiority in accuracy over the model sharing feature extrac-
tor, it indicates that the client’s local data contains unique
information not fully captured by the aggregated model. The
client’s weight is adjusted to emphasize and integrate these
unique contributions. The client weight w

(t+1)
i adjusted for

the next iteration can be represented as:

w
(t+1)
i = w

(t)
i + κ(Acc

θ′(t)
i

− Acc
θ
(t)
i
) (12)

where the hyperparameter κ controls the rate of weight adjust-
ment. The value of κ is set after analyzing the expected range
of accuracy differences, ensuring weight adjustments within
reasonable bounds. Proper choice of κ effectively balances
the integration of unique client contributions without causing
excessive weight fluctuations.

The initial aggregation weight for each client i in the first
iteration is defined as w

(1)
i = 1

N , where N is the total
number of participating clients. Weights are normalized to
maintain a balanced contribution throughout the network. This
mechanism ensures that models with a rather unique feature
extraction perspective have a greater influence and contribution
when selected into aggregation in the following iteration. The
pseudocode of the algorithm for BR-MTFL is described in
Algorithm 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS OF
BR-MTFL

This paper illustrates the dataset from the HIL-HST simu-
lation platform [34], [35]. The following subsections present
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Algorithm 1: BR-MTFL Framework
Input: Set of clients N , cluster number m, accuracy

threshold α
Output: Client-specific model θi

1 repeat
2 for each client i do
3 Train local model into θ′

(t)

i in (1)
4 Process trained model as feature extractor ϕ(t)

i

and classifier l(t)i in (2)
5 end
6 Process feature extractors into vectors Φ

(t)
i in (3)

7 Compute distances between client feature extractor
vectors D

(t)
i,j in (4)

8 Initial cluster centers with generated distance
matrix D(t) in (5)

9 repeat
10 for each cluster k do
11 Assign feature extractor vectors to nearest

cluster C(t)
k in (6)

12 Update new cluster centers µ̃k in (7)
13 end
14 until cluster centers do not change;
15 Detect potential Byzantine clients B(t) in (8)
16 Gather remaining normal clients R(t) in (9)
17 Aggregate into shared extractor ϕ(t) in (10)
18 for each client i do
19 Combine classifier with shared feature extractor

to form local model θ(t)i in (11)
20 Test local and shared model accuracy
21 Adjust client weight w(t+1)

i in (12)
22 end
23 until all clients achieve accuracy ≥ α;
24 return Specific model for each client i with shared

feature extractor θi

the dataset allocation and discuss the advantages of the pro-
posed BR-MTFL framework through comparison and ablation
studies.

A. Experimental Configuration

The HIL-HST simulation platform, illustrated in Fig. 3, was
jointly established by Central South University and Zhuzhou
Electric Locomotive Research Institute. The platform mainly
consists of a digital real-time simulator (DRTS), a physical
traction control unit (TCU), and a signal conditioner. The
DRTS is responsible for the real-time simulation of the motor,
power electronics system, and fault injection signals. The
physical TCU generates PWM signals essential for control-
ling the motor and simulating realistic operating conditions.
Meanwhile, the signal conditioner facilitates signal conver-
sion, ensuring interaction between components. The platform
investigates three primary types of faults: broken rotor bars,
stator inter-turn short-circuits, and air gap eccentricity. These
faults are generated through simulation on the DRTS and

Signal conditioner

Traction control unit

Computer

Power

Digitial real-time

simulator

Fig. 3. HIL-HST traction control system simulation platform.

introduced into the motor model. The platform emulates how
faults interact with other system components, replicating the
electromagnetic and mechanical responses expected in real-
world scenarios. The platform provides high-precision fault
data under various fault severities and operating speeds. This
ensures the ability to simulate diverse fault scenarios effi-
ciently and safely, without relying on physical components.

The fault severity is represented on a scale from 0 (indi-
cating no failure) to 1 (indicating complete failure). In this
experiment, each fault can be categorized into three different
levels: minor (0.005), medium (0.08), and serious (1.00). The
medium level is set at 0.08 to reflect a fault intensity that,
while significant, does not cause immediate system instability,
aligning with real-world conditions where moderate faults may
persist undetected over time. Fault data are collected at three
speeds: 20, 169, and 280 km/h. The dataset includes sensor
channels, with a sampling interval of 400µs, as follows: 1) Sta-
tor three-phase current measurement data; 2) Rectifier AC side
current measurement data; 3) DC voltage measurement data;
4) Rotation speed measurement data. Under normal operating
conditions, the data collection period is approximately 40 sec-
onds, starting after the system transitions to the corresponding
operating state in the semi-physical simulation. This period
captures data points reflecting steady-state performance. For
faulty operating conditions, the data collection period includes
30 seconds before fault injection and 30 seconds after fault
injection. These data points represent both the pre-fault and
post-fault behaviors of the system.

Table II illustrates the type and severity of faults involved
in this experiment, along with their specific labels, covering
a total of 10 scenarios. The data used in the experiment
are gathered from the A-phase current of high-speed trains
operating at 280 km/h. Table III lays out the assignment of the
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TABLE II
FAULT LABEL DESCRIPTION.

Fault label Fault location Fault level Fault type Working condition Sensor data
N Motor Normal Normal 280km/h A-phase current
B1 Motor Minor Broken rotor bar 280km/h A-phase current
B2 Motor Medium Broken rotor bar 280km/h A-phase current
B3 Motor Serious Broken rotor bar 280km/h A-phase current
S1 Motor Minor Stator inter-turn short-circuit 280km/h A-phase current
S2 Motor Medium Stator inter-turn short-circuit 280km/h A-phase current
S3 Motor Serious Stator inter-turn short-circuit 280km/h A-phase current
A1 Motor Minor Air-gap eccentricity 280km/h A-phase current
A2 Motor Medium Air-gap eccentricity 280km/h A-phase current
A3 Motor Serious Air-gap eccentricity 280km/h A-phase current

TABLE III
CLIENT-SPECIFIC TASK ASSIGNMENT.

Client Classification task Output numberN B1 B2 B3 S1 S2 S3 A1 A2 A3
Client 1 ! ! ! ! ! ! ! ! ! 9
Client 2 ! ! ! ! ! ! ! ! 8
Client 3 ! ! ! ! ! ! ! ! ! 9
Client 4 ! ! ! ! ! ! ! ! 8
Client 5 ! ! ! ! ! ! ! ! ! 9
Client 6 ! ! ! ! ! ! ! ! 8
Client 7 ! ! ! ! ! ! ! ! 8
Client 8 ! ! ! ! ! ! ! ! 8
Client 9 ! ! ! ! ! ! ! ! 8

classification tasks for 9 clients in the experiment. Considering
the operation of high-speed trains across varied geographical
regions, certain clients exhibit relatively low level of fault
extent to simulate different real-world scenarios. The dataset of
each client is segmented into training, validation, and testing
subsets. Specifically, the training datasets range from 4,401
to 4,951 samples, each structured as [1, 1024], where “1”
represents a single row (or a single time series) and “1024”
denotes the length of the time series or the number of features
it contains. Each sample can thus be regarded as a time series
of length 1024, typically representing signals collected by
sensors over a specific time period. The validation datasets
contain about 943 to 1,061 samples, and the testing datasets
include approximately 944 to 1,062 samples, both maintaining
the same structural format as the training data.

ResNet1D is selected as the backbone of the federated learn-
ing model, specifically tailored for handling one-dimensional
signal data. The weights of the model are initialized using
Kaiming Normal initialization for convolutional layers and
constant initialization for batch normalization layers, and all
parameters will be optimized during the training process.
The local training process involved adjusting the weights of
the convolutional layers, batch normalization parameters, and
fully connected layers used for classification. Synchronization
points are established after a predetermined number of local
training epochs to effectively align the aggregation cycles.
The training process for each client is standardized, including
specific epochs, batch sizes, and learning rates, all optimized
based on preliminary trials to maximize the performance of
the local model.

The experimental framework simulates a federated learning

environment using a single GPU of RTX 2080 Ti(11GB), 12
vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz,
40-GB main memory to ensure a fair comparison between
clients. Concerning the hyperparameter choices in Section
II, cluster number m is set at 2 considering the full size
of 9 clients in the experiment, where the relatively small
cluster is suspected to be a Byzantine cluster. Cluster size
threshold τ is set at 3 to identify misleading clients and ensure
aggregation efficiency. Weight adjustment rate κ is set at 0.01
to guarantee smooth adjustment. The accuracy threshold α
is set at 98.5%, 98% and 95% in the ablation, comparison
studies and robustness evaluation, respectively. The following
ablation, comparison studies and robustness evaluation are
carried out under the configuration mentioned above.

B. Ablation Study

1) Ablation Study Settings: As demonstrated in Section II,
the BR-MTFL framework consists of three pivotal compo-
nents, including adapted multi-task learning (A), Byzantine
resilience enhancement (B), and weighted aggregation opti-
mization (C). In the ablation study, the three components
of BR-MTFL are incrementally incorporated to validate their
effectiveness. The number of cycles for the ablation study is set
to 11, as BR-MTFL achieves exceptionally high accuracy after
11 cycles. Thus, the results of each component after 11 cycles
are taken as the outcomes of the ablation study. This ablation
study aims to explore the contributions of these components
within the proposed BR-MTFL framework, demonstrating the
potential advantages of each component.

2) Ablation Study Results & Analysis: As a baseline, each
client trains its model independently without any collaboration,
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TABLE IV
ABLATION STUDY OF FINAL ITERATION ACCURACIES ACROSS DIFFERENT FRAMEWORKS.

Algorithm Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Average
Local training 34.75% 59.75% 100.00% 80.72% 100.00% 89.09% 78.81% 87.61% 100.00% 81.19%
BR-MTFL(A) 88.61% 87.92% 81.73% 78.28% 89.64% 89.83% 87.50% 88.67% 88.14% 86.70%
BR-MTFL(A+B) 98.02% 97.78% 100.00% 99.68% 100.00% 99.89% 100.00% 100.00% 100.00% 99.49%
BR-MTFL(A+B+C) 98.78% 99.05% 100.00% 99.79% 100.00% 100.00% 100.00% 100.00% 100.00% 99.74%

resulting in an average accuracy of 81.19%. While some
clients, such as Clients 3, 5, and 9, attain perfect accuracies of
100.00%, others show lower performance. In particular, Client
1 and Client 2 achieve accuracies of only 34.75% and 59.75%,
respectively. This disparity highlights the limitations of inde-
pendent local training, especially for clients with limited data.
Table IV presents the final experimental results of the ablation
study conducted in this paper.

Integrating adapted multi-task learning (A) into the frame-
work increases the average accuracy to 86.70%, with Client 1
and Client 2 achieving final accuracies of 88.61% and 87.92%,
respectively. However, some clients, such as Client 3 and
Client 4, experience a decrease in accuracy compared to their
local training results. This indicates that while multi-task learn-
ing facilitates knowledge sharing across related tasks, it may
not fully address the challenges posed by data heterogeneity
and task customization inherent in the fault diagnosis tasks.

The incorporation of Byzantine resilience enhancement (B)
alongside multi-task learning (A) leads to a significant im-
provement in performance, with the average accuracy rising to
99.49%. Clients 1 and 2, which struggle in other experiments,
achieve accuracies of 98.02% and 97.78%, respectively. This
accuracy boost is attributed to the framework’s ability to
effectively relieve the misleading influence of non-malicious
Byzantine threats, validating the importance of addressing
Byzantine threats in federated learning environments with
heterogeneous data.

With the full integration of all three components, the average
accuracy further improves to 99.74%, with Client 1 and Client
2 enhancing their accuracies to 98.78% and 99.05%, and
most clients achieving 100.00%. This performance is attributed
to Component C, which allows the aggregated model to be
refined and optimized through continuous local feedback and
adaptive weight adjustments. The final model demonstrates
exceptional generalization across different operational envi-
ronments, achieving the highest average accuracy and the
most consistent client performances. The complete BR-MTFL
framework effectively addresses the challenges posed by data
heterogeneity and task customization.

The ablation study underscores the critical contributions of
each component in the BR-MTFL framework. While adapted
multi-task learning lays the foundation for improved collab-
oration among clients, the addition of Byzantine resilience
enhancement significantly augments the framework’s ability
to handle data heterogeneity and task customization. The
final weighted aggregation optimization fine-tunes the model,
maximizing its diagnostic precision. Through the gradual
integration of each component, we have demonstrated how
the framework overcomes the limitations of local training and

standard multi-task learning approaches.

C. Comparison Study

In this study, the BR-MTFL framework is compared with 8
related methods to demonstrate its advantages in dealing with
Byzantine threats in MTFL of high-speed trains.

1) Comparison Study Settings: Current federated learning
approaches and the handling of Byzantine threats primarily
consider scenarios with identical output quantities. However,
in the context of high-speed train fault diagnosis, the final
model of each client needs to adapt to the specific output
requirements of its model. Therefore, all comparative experi-
ments discussed here have adapted the MTFL framework for
high-speed train fault diagnosis, enabling adaptive outputs of
the relevant fault diagnosis categories according to practical
scenarios. The comparison experiment is conducted over 9
cycles, as the BR-MTFL framework achieves convergence
within these cycles, attaining an accuracy of over 98% across
all client models. Therefore, the results after 9 cycles are se-
lected as the final outcomes for the comparative analysis of the
eight experiments. The methods selected for the comparative
experiments include:

• MTFL(BN) [36]: This method incorporates model per-
sonalization for clients in MTFL by utilizing private batch
normalization (BN) layers to improve model convergence
speed and accuracy of user-specific models.

• MTFL(MCA) [37]: This method introduces the maxi-
mum correntropy aggregation (MCA) to derive a central
value from parameter distributions, enhancing robustness
against Byzantine threats.

• MTFL(Trimmed Mean) [38]: This method utilizes a
coordinate-wise trimmed mean to aggregate gradients,
ensuring robustness against data corruption.

• MTFL(FedSuper) [17]: This method introduces
Byzantine-robust federated learning under supervision
(FedSuper), which injects a shadow dataset into local
training to supervise and filter out poisoned methods,
ensuring robust aggregation under adversarial conditions.

• MTFL(MOCHA) [39]: This method proposes a systems-
aware optimization of stragglers and fault tolerance. The
optimization manages system heterogeneities and main-
tains efficient computation and communication.

• MTFL(Multi-Krum) [40]: This method introduces the
Krum to select the most reliable updates by minimizing
the sum of squared distances to the closest vectors, and
filtering out updates from Byzantine clients.

• MTFL(FedRadar) [41]: This method introduces Fe-
dRadar, a federated multi-task transfer learning frame-
work for radar-based heartbeat rate and activity monitor-
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TABLE V
COMPARISON OF FINAL ITERATION ACCURACIES ACROSS DIFFERENT FRAMEWORKS.

Algorithm Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Average
MTFL(BN) 74.95% 24.26% 38.04% 36.65% 31.92% 22.78% 41.95% 73.52% 52.22% 44.03%
MTFL(MCA) 49.53% 52.01% 63.37% 61.55% 59.32% 58.58% 53.50% 53.28% 52.33% 55.94%
MTFL(Trimmed Mean) 89.08% 87.71% 78.72% 75.53% 89.55% 87.82% 85.91% 85.91% 85.91% 85.13%
MTFL(FedSuper) 87.38% 89.09% 96.33% 98.31% 94.44% 96.72% 96.61% 95.23% 92.58% 94.08%
MTFL(MOCHA) 88.14% 85.91% 98.59% 97.67% 99.44% 98.41% 96.29% 95.13% 92.90% 94.72%
MTFL(Multi-Krum) 89.64% 87.29% 100.00% 96.72% 100.00% 99.89% 100.00% 99.47% 99.05% 96.90%
MTFL(FedRadar) 88.78% 88.65% 100.00% 99.79% 100.00% 99.89% 100.00% 99.89% 99.89% 97.43%
MTFL(Median-Krum) 90.87% 89.19% 100.00% 99.89% 100.00% 100.00% 100.00% 100.00% 100.00% 97.77%
BR-MTFL 99.06% 98.83% 99.81% 99.15% 99.34% 98.41% 99.89% 99.79% 99.26% 99.28%

Client 1 classified data Client 2 classified data Client 3 classified data

Client 4 classified data Client 5 classified data Client 6 classified data

Client 7 classified data Client 8 classified data Client 9 classified data

Classes
N
B1
B2
B3
S1
S2
S3
A1
A2
A3

Fig. 4. Visualization of classified data in different clients.

ing (FedRadar) to handle heterogeneous and non-IID data
across different devices.

• MTFL(Median-Krum) [32]: This method introduces
the Median-Krum algorithm, enhancing Byzantine-
robustness by combining distance-based statistical strate-
gies to score and select model updates accurately.

2) Comparison Study Results & Analysis: The performance
comparison of 8 federated learning frameworks provides crit-
ical insights into the challenges posed by data heterogeneity
and task specialization in MTFL for high-speed train fault
diagnosis. These methods can be broadly categorized into three
groups: baseline MTFL without Byzantine resilience enhance-
ment, MTFL with general Byzantine resilience enhancement
aggregation methods, and MTFL with specialized optimization
algorithms. The T-SNE algorithm is adopted to visualize the
classified data in each client after utilizing the BR-MTFL
framework in Fig. 4. The comparative experimental results are
shown in Table V, and the corresponding metrics of precision,
recall, and F1-scores are recorded in Table VI. The split-
side violin diagrams shown in Fig. 5 visualize the accuracy
distribution of each client.

As the baseline MTFL without Byzantine resilience en-
hancement, the results indicate that the MTFL(BN) algorithm
struggles to cope with the high degree of data heterogeneity
and task specialization inherent in fault diagnosis tasks. The
average accuracy achieved is 44.03%, with some clients, such
as Client 6 and Client 2, recording notably low accuracies of
22.78% and 24.26%, respectively. The poor performance of
certain clients highlights the detrimental impact of simplistic
backbone models and unfiltered aggregation. Retaining batch
normalization layers for each client amplifies information
loss during aggregation, further worsening these issues and
leaving the model vulnerable to Byzantine threats posed by
the misleading updates.

In contrast, the MTFL with general Byzantine resilience
enhancement aggregation methods, such as MTFL(Trimmed
Mean), MTFL(Multi-Krum), and MTFL(Median-Krum),
show improvements in average accuracy. Implementing the
MTFL(Trimmed Mean) method slightly raises the average
accuracy to 85.13%, yet disparities persist, indicating
residual effects of data heterogeneity in this aggregation.
The MTFL(Multi-Krum) method attains a higher average
accuracy of 96.90%, with Clients 3, 5, and 7 reaching a
perfect accuracy of 100%. Despite this, Clients 1 and 2
continue to lag behind, with accuracies of 89.64% and
87.29%. MTFL(Median-Krum) aggregation increases the
average accuracy to 97.77%, still with some inconsistencies
observed in Clients 1 and 2 achieving lower accuracies
of 90.87% and 89.19%. Although these methods enhance
robustness by reducing the impact of outlier updates, they
primarily focus on reducing malicious attacks rather than
addressing the inherent misleading effects introduced by data
heterogeneity and task customization, leading to suboptimal
global models vulnerable to non-malicious Byzantine threats.

By employing specialized optimization algorithms,
namely MTFL(MCA), MTFL(FedSuper), MTFL(MOCHA),
and MTFL(FedRadar), the average accuracies also see
further enhancements compared with the basic MTFL(BN)
framework. The MTFL(MCA) method yields an average
accuracy of 55.94%, while MTFL(FedSuper) increases the
average accuracy to 94.08%, with most clients above 90%.
However, Clients 1 and 2 still record lower accuracies
of 87.38% and 89.09%. The MTFL(MOCHA) method
increases the average accuracy to 94.72%, with higher
accuracies overall, yet Client 2 remains suboptimal at

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/TIM.2025.3550635, IEEE Transactions on Instrumentation and Measurement



10

TABLE VI
COMPARISON OF FINAL ITERATION PRECISIONS/RECALLS/F1-SCORES ACROSS DIFFERENT FRAMEWORKS.

Algorithm Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Average
MTFL(BN) 0.82/0.75/0.71 0.23/0.24/0.14 0.46/0.38/0.33 0.28/0.37/0.29 0.23/0.32/0.24 0.15/0.23/0.17 0.32/0.42/0.32 0.73/0.74/0.67 0.48/0.52/0.42 0.41/0.44/0.37
MTFL(MCA) 0.48/0.50/0.42 0.51/0.52/0.43 0.78/0.63/0.60 0.67/0.62/0.56 0.65/0.59/0.56 0.63/0.59/0.53 0.61/0.53/0.48 0.61/0.53/0.48 0.60/0.52/0.46 0.62/0.56/0.50
MTFL(Trimmed Mean) 0.94/0.89/0.86 0.81/0.88/0.84 0.77/0.79/0.73 0.75/0.76/0.69 0.95/0.90/0.87 0.81/0.88/0.84 0.80/0.86/0.82 0.80/0.86/0.82 0.79/0.86/0.81 0.82/0.85/0.81
MTFL(FedSuper) 0.92/0.87/0.85 0.93/0.89/0.87 0.97/0.96/0.96 0.98/0.98/0.98 0.95/0.94/0.94 0.97/0.97/0.97 0.97/0.97/0.97 0.96/0.95/0.95 0.94/0.93/0.92 0.95/0.94/0.93
MTFL(MOCHA) 0.93/0.88/0.85 0.92/0.86/0.82 0.99/0.99/0.99 0.98/0.98/0.98 0.99/0.99/0.99 0.99/0.98/0.98 0.97/0.96/0.96 0.96/0.95/0.95 0.95/0.93/0.93 0.96/0.95/0.94
MTFL(Multi-Krum) 0.94/0.90/0.87 0.93/0.87/0.84 1.00/1.00/1.00 0.97/0.97/0.97 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 0.99/0.99/0.99 0.99/0.99/0.99 0.98/0.97/0.96
MTFL(FedRadar) 0.95/0.89/0.85 0.94/0.89/0.85 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 0.99/0.98/0.97
MTFL(Median-Krum) 0.95/0.91/0.88 0.94/0.89/0.86 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 0.99/0.98/0.97
BR-MTFL 0.99/0.99/0.99 0.99/0.99/0.99 1.00/1.00/1.00 0.99/0.99/0.99 0.99/0.99/0.99 0.99/0.98/0.98 1.00/1.00/1.00 1.00/1.00/1.00 0.99/0.99/0.99 0.99/0.99/0.99
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Fig. 5. Split-side violin diagrams of the comprehensive comparison study. The split-side violin diagrams visualize the distribution and statistical characteristics
of categorical data using density diagrams. The middle dashed lines represent the median, while the upper and lower dashed lines indicate the third quartile
and first quartile, respectively. These features highlight the data’s central tendency and variability. The left side corresponds to the accuracy distributions of
compared methods, and the right side corresponds to the proposed BR-MTFL framework.

85.91%. The utilization of specialized optimization algorithm
MTFL(FedRadar) elevates the average accuracy to 97.43%,
with most clients achieving above 99%. Despite this, Clients
1 and 2 attain accuracies of 88.78% and 88.65% respectively,
which are still suboptimal. These observations underline
the challenge of fully mitigating the misleading effects of
task-specific local updates and data heterogeneity, even with
advanced optimization methods.

A recurring issue across all compared methods is the incon-
sistent performance among clients, particularly noticeable in
Clients 1 and 2. This inconsistency can be attributed to factors
such as data heterogeneity and task specialization biases.
Clients possess non-identically distributed data with varying
fault types and numbers, leading to highly specialized local
models that may not align well during global aggregation. The
comparative analysis validates our conjecture that in MTFL
applied to high-speed train fault diagnosis, data heterogeneity
and task specialization can lead to non-malicious Byzantine
threats. Existing methods, while improving robustness to some
extent, require further enhancement to fully address these
intrinsic challenges.

The BR-MTFL framework demonstrates a remarkable im-
provement, achieving an average accuracy of 99.28%, with
most clients reaching 99% accuracy. The previously underper-
forming clients, such as Clients 1 and 2, achieve 99.06% and
98.83%, respectively. The superior performance is attributed

to the incorporation of a Byzantine resilience enhancement
specifically designed to handle the biases arising from client
task specialization. This effectively reduces the misleading
effects of specialized local updates. By accounting for the
non-identical data distributions across clients, the framework
ensures that the aggregated global model retains the essential
features applicable to all fault types and demonstrates its
potential as a robust solution for fault diagnosis systems,
offering practical implications for general fault detection tasks
in heterogeneous environments.

D. Robustness Evaluation

TABLE VII
SUMMARY OF FOUR SIGNAL AUGMENTATION TECHNIQUES.

Augmentation Description

Gaussian SNR noise
Add Gaussian noise to the signal by randomly
choosing an SNR value.

Mask
Mask a segment of the signal with a length
selected randomly to obscure part of the data.

Shift
Shift signal forward or backward by random
steps to vary temporal position.

Vertical flip
Vertically flip the signal to reverse amplitude
values.
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Fig. 6. Visualization of four augmentation techniques.
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Fig. 7. Visualization of signal augmentation experiments results.

To assess the robustness of BR-MTFL, this experiment ap-
plies four signal augmentation techniques to perturb the input
data [42]. The model’s robustness is evaluated by analyzing
its performance under these perturbations, including accuracy,
precision, recall, and F1-score. Details of the augmentation
methods used are presented in Table VII and Fig. 6.

The results from the signal augmentation experiments, vi-
sualized in Fig. 7, demonstrate that while adding noise to
the raw signals causes a decrease in overall performance,
the proposed BR-MTFL method still achieves strong results
across all clients. Specifically, the final test accuracy ranges
from 95.10% to 96.23%, with precision, recall, and F1 scores
consistently above 95% for each client. While the performance
drops compared to the noise-free situation (with accuracy
values nearing 99%), it is clear that the method remains robust
and performs reliably in noisy conditions.

The method’s ability to maintain balanced performance
across clients highlights its resilience to perturbations and its
effectiveness in mitigating the impact of misleading Byzantine
updates. These results confirm that BR-MTFL is capable
of providing reliable fault diagnosis models for each client,
even under challenging, noisy scenarios. This demonstrates
the robustness of the method and its practical applicability in

real-world settings, where data noise and imperfections are
common.

IV. CONCLUSION

In this paper, the BR-MTFL framework is introduced to
tackle the challenges posed by data heterogeneity and task
customization in high-speed train fault diagnosis. The research
highlights that non-malicious but misleading updates, stem-
ming from clients’ specialized models due to diverse opera-
tional environments, can act as Byzantine threats in MTFL.
Through comprehensive experiments, we demonstrate that
the BR-MTFL framework significantly outperforms existing
methods. The ablation study confirms the critical contributions
of each component. While the BR-MTFL framework demon-
strates significant improvements in safety and reliability, it has
limitations in real-time performance due to communication
delays. Several avenues for future research remain in high-
speed trains and other transportation systems. Incorporating
privacy-preserving techniques like differential privacy can
enhance the framework’s ability to protect sensitive data.
Developing real-time implementation strategies in high-speed
train systems, including optimizing communication efficiency
and reducing computational overhead, would be a significant
step forward. The BR-MTFL framework sets a new precedent
for developing robust and effective high-speed train systems
capable of handling the complexities inherent in real-world
applications.
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