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Neural-Network-Based Recursive State Estimation
for Nonlinear Networked Systems With
Binary-Encoding Mechanisms

Yuhan Zhang, Zidong Wang, Lei Zou, Wei Qian, and Shuxin Du

Abstract—This work addresses the problem of recursive state NNW Neural network weight
estimation for the networked control systems with unknown non- = The Euclidean space of dimensien
linearities and binary-encoding mechanisms (BEMs). To enhance

transmission reliability and reduce network resource consump- K The set of real matrices of dimensien 2
tion, BEMs are used to convert measurement signals into binary G > H Matrix G — H is positive semi-definite
bit strings (BBSs) of limited length, which are then transmitted & < g Matrix G — H is positive definite
to the estimator through noisy communication channels. During T . .
transmission, random bit errors may occur in the BBSs due to M The transposition of a matrix/
channel noise. For the considered nonlinear networked control || M| The Frobenius norm of the matrik/
systems affected by random bit errors, a neural-network-based tr{ M} The trace of the a matrid/
recursive estimation strategy is proposed, where a neural network .
with a time-varying tuning scalar is employed to approximate the F{‘} The occurrence probability of the random
unknown nonlinearity of the networked control systems. By using event “”
the proposed strategy, the upper bounds of the estimation error V{c} The variance of random variabte
of the system state and the trace of the estimation error of the . .
neural network weight (NNW) are first derived. These bounds E{d} Th(_a mathematical expectation of random
are then minimized by recursively designing both the estimator variabled
gain matrix and the tuning scalar of the NNW. Finally, the ]E{C|d} The mathematical expectation of
effectiveness of the proposed estimation strategy is demonstrated conditional ond
through a numerical example. . . . . .
1 Identity matrix of appropriate dimension

Index Terms—Networked nonlinear systems, neural network-
s, unknown nonlinearities, recursive state estimation, binary-
encoding mechanism. |. INTRODUCTION

Networked control systems (NCSs) have been the subject
of extensive research over the past decades [28]. Different
from traditional point-to-point communication mechanisms,

Abbreviations and Notations

NCSs Networked control systems this network-based communication technology enables data
BBS Binary bit string exchange among system components via a shared communi-
BEM Binary-encoding mechanism cation network [3], [23], [33], [47]. The use of network-based
MBSCs Memoryless binary symmetric channels communication technology can reduce hardwiring, simplify

installation, and lower implementation costs. These advantages
have led to its widespread application in various fields such as
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performance degradation or even system instability, therepyoblems of NCSs with unknown nonlinearities and numerous
posing significant challenges to state estimation tasks for NO@search outcomes have been documented [7], [46].
[5], [12], [14], [29], [45], [49]. Therefore, the corresponding Despite the theoretical and practical significance of NN-
state estimation approaches must be capable of mitigating besed state estimation, there has been limited investigation into
negative impacts caused by these network-induced phenomtireause of NNs for addressing recursive state estimation issues
[20], [31], [37]. Many researchers have thus focused an NCSs, particularly with the simultaneous consideration of
addressing the estimation issues for NCSs affected by siBEMs and random bit errors. Therefore, the main objective of
phenomena, leading to the publication of numerous significghts paper is to bridge this gap. In light of the considerations
research results. Some of the notable works in this field carentioned earlier, this paper aims to solve the recursive state
be found in [2], [19], [36]. estimation problem for NCSs with unknown nonlinearities and
Among the various network-induced phenomena, binaBEMs. The following potential challenges are identified: 1)
encoding mechanisms (BEMs) have gained prominence hiow to quantify the effects of bit errors on estimation perfor-
engineering practice, primarily due to their advantages mance? 2) how to develop an appropriate law to update the
reducing network resource consumption and the efficienbiN weights (NNWSs) for unknown nonlinearities in NCSs? and
of binary bit strings (BBSs) in supporting encryption [10]3) how to propose an easy-to-implement NN-based recursive
[56]. The implementation of BEMs primarily relies on a seéstimation algorithm for NCSs with unknown nonlinearities
of encoder-decoder pairs [18]. With the help of encoderand BEM, ensuring the minimization of the upper bound of the
the original signals are first quantized and then transformestimation error covariance for both system states and NNWs?
into BBSs of finite length before being transmitted. These The primary contributions of this paper are as follows.
BBSs are sent through memoryless binary symmetric channels) The recursive state estimation problem is, for the first
(MBSCs), after which decoders are used to reconstruct the time, addressed in the context of NCSs with unknown
original signals based on the received BBSs. Finally, estima- nonlinearities and BEM.
tors generate state estimates using the reconstructed signalsjt An NN approximation approach and a covariance-based
should be noted that channel noise within MBSCs inevitably NNW updating strategy are employed to address the
leads to random bit errors (i.e., each binary bit may flip  unknown nonlinearities present in nonlinear NCSs.
from O to 1 or 1 to O with a small probability), meaning the 3) The effects of bit errors in BEM on estimation perfor-
reconstructed signals will differ from the original ones. These mance are quantitatively analyzed.
discrepancies can degrade the performance of the estimatar) An NN-based recursive estimation algorithm is developed
To ensure the performance of the estimator, the estimation for recursively calculating the estimator gains and NNW
approaches must be able to mitigate the negative effects of tuning scalars within a unified framework.

these bit errors [24], [25]. The remainder of this paper is structured as follows. Section
The nonlinear estimation issues for NCSs have attragfformulates the estimation problem, introducing the nonlinear
ed significant attention in the system science and contiglsiems model, the characterization of the communication net-
communities due to their widespread presence in pracliGihrk, and the developed NN-based recursive state estimator.
applications [11], [35], [50]. A variety of effective approachegection 111 presents four theorems that ensure the ultimate
have been developed to address the challenges posed by infiimdedness of the estimation errors for both the system
ent nonlinearities. These methods can generally be classifiggdie and the NNW. In Section IV, a numerical example
into three categories: sector-bounded-condition (SBC)-baggdprovided to illustrate the effectiveness of the proposed

approaches [26], Taylor-expansion (TE)-based techniques [3Q0iimation strategy. Finally, conclusions are drawn in Section
[48], and neural-network (NN)-based methods [32]. In SBG;

based methods, sector-bounded-like conditions are used to

a_nalyze theI eﬁ'T:CtT of r}onlingalriti;es,hwh(;lle ;I;]E-bazed tech- Il. PROBLEM FORMULATION
niques employ Taylor polynomials to handle them. Howevey, .

the implementation of these two types of approaches depe SNonImear NCS Model

on prior knowledge of the nonlinearities. In other words, these Consider a type of nonlinear plant modeled by the following
approaches implicitly assume that the nonlinear dynamics &€S:
already knowp_. In_practice, pl_)taining full information.ab(_)ut Thi1 = Ay + g(ay) + Buwy,
the nonlinearities is often difficult due to harsh application (1)
environments, low engineering budgets, or the complexity

of the system itself. NNs can approximate the unknowmherez; € R™ represents the system state ands R* is the
nonlinear dynamics with arbitrary precision when the unknowmeasurement signal before transmissigf) is an unknown
nonlinear functions are continuous [4]. Consequently, the NKut bounded smooth nonlinear function on a compacfset
based approximation method has become the most popar, which satisfied|g(-)|| < g whereg is a known constant.
nonlinear estimation approach, primarily because of its exhe matricesd, B, C, and D are known system parameters
cellent capability to approximate unknown nonlinearities angith appropriate dimensions. The disturbance noises R®
adaptively update neural network weights (NNWs) [1], [41and v, € RY have zero mean and covariana@s and Sy,
As a result, attention has now been drawn to utilize the NMespectively. In addition, it is assumed that and v, are
based approximation technique to solve the estimation/contnalitually uncorrelated, withlwy|| < @ and ||vg| < ©, where

Yp = Cxp + Duyg,
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w and v are constants that are uncorrelated with the initigd > 0 is an application-dependent scalar. In the encoding
state. The meany, M, and covariancé, of the initial state, process, the measurement signal; would be quantized first,
as well as=, of the initial NNW, are given. and subsequently, a group of encoders are utilized to transform
Remark 1. As an extensively existed non-Gaussian noiséje quantized signal into a BBS with lengtti. Given the
norm-bounded disturbance has attracted a great deal of irgerval [—u, 1], we define the set o2/ encoding levels as
search attention. Compared with the widely studied Gaussi@mtows:
noises, most disturbances in practical applications are non-
Gaussian. To capture the boundedness nature of disturbance
signals, in this paper, we assume that both the process nQ{§ures(i) 2
and measurement noise are norm-bounded.

RE (D @ ... )

—u+(i—1)e represents theh encoding level in

R, ande = 2u/(2 — 1) is the encoding interval. Obviously,
we can see = ¢t — (),

B. Communication Network During the encoding process, a quantization function is

As shown in Fig. 1, communication between the sensoi&stly utilized to pretreaty,, ». Define Q,.(-) as themth
and the recursive estimator takes place via a network ungéfantization function with the following form
the BEM, which is widely used in practical applications due to P{Qn (Ymi) = E(i)} — 11—
the significant advantages that BBSs offer, including enhanced { ’ (41) '
transmission robustness and ease of implementation. Under P{Qm (Ym.x) =€ b=tk
orgingl messuremonts o BBSs, which are then ransmiufee 1S deined by £ (i )/ with 0 <
through memoryless Binary Symmetric Channels (MBSCSZYT“]“ < 1. Then, the quantized signal fr, . is described by
Based on the received BBSs, the original measurements are Yk = Don (Y k)-
reconstructed via a decoding scheme. Subsequently, a recovery ) )
scheme is implemented to compensate for the effects pté'}’e” the quantized measurement ., an encoding func-
channel noise present in the memoryless MBSCs. Finalfigh is subs_equently utilized to generate the BBS. Letting the
the recursive estimator receives the recovered measuremé&md encoding function bé&,,(-) and B, . be the generated
for further processing. The detailed workflow of BEM iscodeword set ofj, ., we have

introduced as follows. Bk Z€m (Ime) Z AV Lmies YVomps > Yima}t  (3)

)

| [somort H where W, ,, , € {0,1}(s € {1,2,---, H}) is the sth element
1 | of the codeword seB,, ;. According to the encoding mech-
| . . . . .
- : [Semar ] : 2n|im, the following condition holds for any quantized signal
| I m,k-
: |
1 ! H
|
o ] R
v s=1

L e, 1 Step 2. Transmission executed via the MBSC
it R ' After the encoding process, the BBSs, . is transmitted
to the decoder via the MBSC [25]. Owing to the existence of
the channel noise, every bit might flip with a small crossover
probability. Denote the received BBS a%sn’k and \I,/s,m,k as

the sth element ome,k, i.e.,

’Bm,k = {\I,/l.,m,kv \I,JQ,m.,kv U 7\I}H,m,k} (4)

where

Fig. 1: Nonlinear NCS with BEM.

\I}s,m,k é'}/s,m,k(l - \Ijs,m,k)
Sep 1. Encoding + (1 = Yeymk) Vs m k- (5)
During the encoding process, a group of probabilistic quange .
fere, Yo m kIS

tizer are first adopted to pre-treat the original measureme a binary variable defined as

and then encoding functions are employed to transform the 1, if the sth bit is flipped
guantized measurements into certain BBSs [25]. Vo,mok = { T . . . (6)
The original measuremenyj, can be represented by 0, if the sth bit is not flipped
S k]T In this paper, we assume th&} ., (s € {1,2,---,H})
' ' o are mutually independent and identically distributed, where
wherey,, x(m € {1,2,---, z}) is themth scalar element of P{~, ., =1} = p andp is a known scalar [17].

yi- In this paper, we assume thaty < y,,, < p, where Sep 3. Decoding and recovery
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Based on the received BBgémk}m:l,g,,,,Z, a group of According to (6), one has
decoding functions (which are defined €B,,, ()} m=1,2,..- =) "
are employed to reconstruct the measurement signals (which E O R 9s5—1,)2
are defined agym & }m=1.2.... »): {(;( s~ E{Wsm i )27 )7}
H H
Gk = Do (Brg) 2 —p+ > bomn2 e () =D (B{0,} — B0, }%)2% %
s=1 s=1
H
Due to the existence of bit flips, it is easy to observe :Z( (1= Uymi)? + (1 —p)02
that ,, x # ¥m.x. The statistical properties af,, ;. can be — S oitmk
described in the following Lemma. (L= Uyi)? — (1 — p)2 02
Lemma 1: [25] The mean and variance of the received o sk 2
signal,, . are given by 31)(1 P)(L = Wom k) Vs,m,1e)2
4P p—pP)T - 1)
E{gm,k} = (1 = 2p)Ym 8 RS
and and the proof is now complete. |
) 42 (p — p?)(4 — 1) According to the results in Lemma 1, we adopt the following
V{gm,k} = (9 function to generate the recovered measurements (denoted as

3(2H —1)2

Proof: Taking the mathematical expectationf, , over
the random variables; ,, ,, we have

E{ym,k}
H

TR ok T
s=1

H
==+ > (p(1 = Ve i)
s=1

+(1 —p)\IIS_,myk)T_le
H

:gm,k —|—pz(1 — 2\:[157771,]6)25716
s=1

Consideringy,, x = —p + S., U, 42" e, we obtain

pZ
=p Z 25 1e
s=1

smk 25 1

H
Y Wmi2 e
s=1

H

:2]9(# - Z \Ijs,m,k2571)6
s=1

= — 2pYm.k

Moreover, the variance af,, , is calculated by:

V{ym,k}
H
:E{(—,Uz + Z \I}s,m,k2s_1€)2} - E{y,m,k}2
s=1 Y ,
:E{(E{ym,k} + Z(\I}s,m
- E{\I}sm&,k}ﬂs*le)z} - E{y,m,k}Q
H
—E{(Z( s,m E{\IJS m, k})QS ! ) }
s=1

{gm,k}m:I,Z,w ,z):

ym,k = Z’(l]mk) = Filym,k

whereI’ £ 1 — 2p. In this way, the mean of the recov-
ered measurement is equal to the original measurement, i.e.,
E{gmk} = Ym,k-

DefineX,, ,, as the quantization error of the measurement
signalyy, 1 (1.6, R & = Y.k — Ym.k) @nd denote,, ;. as the
difference between the recovered measurenjgni and the

quantized measuremeiy, i (i.€., tm & £ Um, ke —Ym,k)- Then,
we have
gm,k = Nm,k + lm,k + Ym, k- (10)
Moreover, by denoting
T
Ny £ [Nripk NzT,k Nzk} ;
T
Lké[f,k [;k sz} ,
N N N N T
U = [%Tk sz,k szJJ )
- -~ . . T
Yk £ [y{k sz,k ka} )
one has
U = Ng + Lk + Y- (11)

Based on the above discussion, it is obvious that under the
BEM, the recovered measurementinevitably experiences a
certain degree of distortion compared to the original measure-
menty;. In the following Lemmas, the characteristics of these
distortions will be quantitatively analyzed in detail.

Lemma 2: [25] The quantization erroXy is of zero mean
and bounded variance, i.e.,

E{X.} =0
and
E{RTN,} <R

whereR £ z¢2 /4,
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Proof: Considering the quantization function (2), the Remark 2: In this paper, the communication from the
encoding function (3) and the encoding function (7), we caensors to the recursive estimator is affected by the influence
readily infer that of the BEM. Specifically, the stochastic quantization errors,
resulting from probabilistic quantization, have zero expectation
PRk = €i€ = Yk} and bounded variance. Stochastic bit errors, which occur due
=P{—tmure} =1—tmu to the presence of channel noise, also exhibit zero expectation

and bounded variance. Both the quantization erigrsand

and
the bit errors:; contribute to discrepancies between the
P{X, x = €it1€ = Ym} reconstructed measurements and the original measurements,
=P{(1 = tmr)€} = tn.i- leading to reduced transmission reliability and, consequently,

degrading the overall estimation performance.
Therefore, we have

E{Xn i} = — tmre(l = tm.) C. NN-Based Recursive State Estimator
+ (1 = % k)€l k Before carrying out the design process of the NN-based
recursive state estimator, the following lemma is introduced
and to address the unknown nonlinearities in NCSs.
E{RZ, 1} =(=tmx6) (1 — tms) Lemma 4: [16] NNs are employed to approximate the
unknown nonlinearities using the form

+(1- zmyk)2e2zm_’k
:Ezlm,k(l — Zm,k)a Mﬁ(‘rk) + Mk

whered(-) € R", M € R™*™ andn; € R"™ denote the activa-
tion function, the ideal weight matrix and the approximation
error of the NN, respectively.

which indicate that the quantization ermdy, ,, has zero mean
and bounded variance, i.e.,

E{Rp 1} =0, E{R2 ,} <€/4. Consequently, system (1) can be rewritten as:
Therefore, we conclude that { Tpt1 = Az + MY (xy) + Bwy + g (14)
E{X;} =0, E{XTR,} <R yr = Oy + Dok

- Assumption 1: The connecting NNW matrix\/, the NN
@ctivation function?(-), and the NN approximate errofy

Lemma 3: [25] The equivalent noise coming from the bit*~" _ -
satisfy the following condition

errors in the MBSC satisfies
E{1,} =0 (12) (M| <M, [[9C) <9, |InC)I <7
where M, 1, and7; are known positive constants.

and . " ) . .
Remark 3: The unknown nonlinearities considered in this
Vi) <7? (13) paper are bounded. As proved in [4], NNs can approxi-
where mate unknown nonlinearities with arbitrary precision when
a o o A AuZp(1—p)(4H — 1) the unknown nonlinear functions are continuous. Therefore,
U7 =Rl by = 302 —1)2(1—2p)2 it is reasonable to assume that the activation function, the
_ connecting matrix, and the approximation error of the NN are
Proof: Noting bounded.
E{Gm s} = Smies Let 2, be the estimate ofr, and M, be the estimates
’ ’ of M at time instantk. Define L; as the estimator gain
we have to be designed. We adopt the following NN-based recursive
E{tm s} = E{Gmi — Y} = 0. estimator to generate Fhe §tate estimates for the NCSs with
unknown nonlinearities: (1):
According to (8), it is readily obtained that R . - R B R
9 ( ) V{}f } Tht1 =Azy + Mk’ﬂ(xk) + Lk(yk — ka) (15)
V{tmr} = (1377;;)2 =72, My =M1 + 0.CT (g — Cap )0 (1)
Denoting whAere 0 is tu:pirjg paAramete; to be designed aﬁ@k) =
o 9(@) /(1L + 07 @)@ || CTC).
Uk =Yk — Yk, It can be found from (15) thad/ needs to be estimated
w2 [LT I ... T ]T during the training process, and the tuning law &f, is
Lh Tk S obtained with the help of the gradient descent method.
we obtain Remark 4: Unlike existing state estimation methods, the

developed NN-based recursive estimation strategy offers sig-
nificant advantages in improving adaptability from the per-
B spective of engineering practice. This is mainly due to two

E{u} =0, E{i]u} <
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reasons: 1) the proposed approach combines the NN methodt 0,1 (tr{a; ' (4 — LyC)Y (AT — CTL])}
with the recursn_ve State (_astlmatlon approach_ which allows T 21tr{ 1+ a7+ (1+a; )(192Mk]\}[g’)})
for both the estimator gain and the NNW tuning parameter 5 T o

to be adjusted recursively within a unified framework; and + 0 tr{(1 + a3)(A — LyO) Ty (A" = C Lk)i o
2) the NN-based recursive state estimation strategy provides+ (1 + az ')(1 + a4)g® + (1 + a3 ')(1 + a; )92 M M
greater design flexibility. Specifically, the NN tuning parameter  9;2 . 982 4 pg, ., D7 _

6, which recursively updated directly affect the updating of + 1CTC] — +28°Ly.Li + BQrB"
NNWs, which have significant influence on the approximation T T a9r +T

performance of the NNs. Notably, this strategy is not only + LiDSD Ly, + 200 L L } (19)

applicable to systems with unknown nonlinearities, but also §then, =, is an upper bound on the NNW estimation error

systems with known nonhnearmes and linear systems. covariancesy,.

Next, defining/7;, £ M — M, as the estimation error of Proof: Defining the trace of the estimation error covari-
the NNW, we have ance of NNW as
Mk+1 :Mk + 9k+1OTO(LkLk — (A — LkC)fk — Mk’ﬂ(ik) Ep = tr{IE{]\Z/k]\Z/,Z}},

— Q) — Bwg + LRy + LkD’Uk)ﬁ (:Ek)
_ 9k+1c (ka+1 + tk41 + Nk+1)19T(.CCk) (16)

where M(ﬁ(ﬂ%) 9(&x)) + .
Denotegc;C £ gz, — &5, as the state estimation error whose =tr{B{ M1 My}

Er+1 can be calculated as

Bkt

dynamics is governed by =tr{E{ M} M} + 0}, CT CBw9" (i1)0 (i )wi BT CTC
Zrt1 =(A — LyC)iy, + Myd(y) + Bwg + 291%+10TC(M“9(£’€) + Q)97 ()0 (20) 75 (A
_ Lk(D'Uk + Nk + Lk) + Sy (17) — LkC)TCTO — 29k+1CTC(A LkC):f?kﬁT(:f?k)

T T T (1) +S
Now, we are in a position to highlight the aims of this work: 8 ]\f’“ M’“T p41C Ci(]\flﬁﬁkaz ok )T T
1) investigate the influences of the quantization errors and +0;1 0T C(A - chzxw (&)0(25)Z) (A = LiC)
bit errors in a quantitatively manner; and x CTC + 07, CTO(M9(2k) + k)
2 devclop an cfeciue lgorim o desi te csimator i) () O + 7 60) 1 )C7C
k k T 9T 9 T A~T
unified framework such that the upper bounds for the + 01 T OLiurcd” (21)0(&1)ef, LECTCO
covariance of the state estimation error (i.&; = — 207, CTC L7 (34)0 () eh C
E{Z,21}) and the trace of the NNW estimation error +9k+10 o107 (21)0 (Z, )%+1O

(e, Ex £ tr{E{MM;}}) are locally minimized at 02, CTC LT (8) (N LECTC

each time instant. KV Tk
+ 07 O 107 ()0 (2 N, ©
[1l. M AIN RESULTS — 207 1Oy (24,0 (2)RE LT CT O

To generate the estimates of the system state and NNW, an + 67, C” Duy. 197 (&4)9 (25 v, DT C
NN-I_Jasgd recursive estlmator is proposed. In thls section, we 9k+1c CLyDupdT (&)0 (:vk)vk DTLTCTC}} (20)
will first introduce the design process for the tuning parameter
of the NNW. Then, the calculation method for the NN-based With the help of Lemma 5, we can obtain from (20) that
recursive estimator gain will be presented. _

Skt1

A. Design of the NNW Tuning Scalar S+ k101 + Or102)Ex + O (t1{ar (A = LeO) Y

T T7T -1 ) —1
Before further proceeding, the following lemma are intro- X (/} . C Lk)} T tr{(l +tag)g + (1 +ag)
duced and will be utilized in the following design process.  x (P?MM,[)}) + 07 tr{(1 + a3)(A — Lp,C) Yy,
Lemma 5: [21] For any real-valued matriceE; and I x (AT —CTLTY 4+ (14 a3 (1 + a4)§®
with any scalard > 0, the following inequality holds: + 1+ agt) (1 + ar YRNGNIT + 220, LT

FaHG +HH] <dIOHT +d7'H6HT. (18) 1 on2[, LT + BQuBT + LiDS,DTLY

Theorem 1: Let the positive scalares, as, as and oy be 272 + 282 + DSk-‘,—lDT} (21)
given. Assume that there exists a set of real-valued matéiges [lcTO
(with the initial condition=, = =) satisfying the following

. . Finally, it follows from (19) that
recursive equation:

= g1 < E

:k+1 k+1 > k+1,
=14 Orp100 + Opp100)=g which ends the proof. ]
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Now, we proceed with designing the NNW tuning parameter Theorem 3: Let the positive scalars be given. Assume that
in a recursive manner, ensuring that the upper bound derivtbére exists a set of real-valued matricés (with the initial
in Theorem 1 is minimized. conditionP, = P) satisfying the following recursive equation

Theorem 2: The upper bound of the NNW estimation error 7
covariance can be minimized with the following NNW tuning k+1

parameter: =(1+¢)(A = LyO)T(AT = CTLY) + 2+ + )7
) + (1 + ¢ Y202 { M MY + 20,2 LY + 20, R2 LT
k+1 T T+T
+ BQipB" + Ly DS,D" L;.. 23
= — (o1 + 2)Zx + tr{a; (A — LyC) Y (AT — CTLY) i Qu FEORE (23)
— _ — —1\ /3277 N Then, Y, is an upper bound of the estimation error covariance
+ay (L4 an)g® +ay (1+ ag (0 M) AP

x tr{(1+ az)(A — LyC)Y (AT = CTLD) + (1 + a3 h)
X (1+as)g? + (1 +az (1 +as)g*(1 + a; YO MM as
+ 2Ly L + 20, R°L + Ly DS, DT LY + BQ,B”
202 4+ 282 4 DS DT .|
erer )

Proof: The estimation error covariand®g,, ; is calculated

Thir
22) =E{Fnii)
ZE{((A — Li,C)Zy, + (Mkﬁ(ik) + Q%) — Lip(Dug + Ny
Proof: Taking the partial derivative oy, with respect + u) + Bwg) (2F (AT — CTLE) + (07 (@) ME +ST)

t0 Ok11, we have — (WIDT + X + LT +wf BT} (24)
0=k11 With the help of Lemma 5, we obtain from (24) that
00141 r

=(a1 + a2)Zk +tr{a; (A — LyO) T (AT — CTL]) kol - :

oA A < _ _ -
+oy ' (1+aa)g? + o5 (L4 ag (PP MM} <@+ Cl(A L’“C)I’“Q(i C Lg) 2 <2 ’
 Gatr{ (1 + a)(A — LuC)Th(AT — CTLE) + G+ (L ) Pt MM H + 2Ly Ly
S 27T T TrT
+(1+ a5 ")(1+a)g? + (1+ a5 ") (1 + ag )P2N N + 2L Ly + BQyB' + LiDSe D" Ly, (25)
27T 27T T;T T whereg is a given positive scalar. Finally, it follows from (25
+2L,t° Ly, + 2LpN*“L;, + Ly DSk D" L;, + BQrB
922 + 282 + DSj41 DT } that
[fekne]l ' Thi1 < Thi
Then, letting which ends the proof. |
0= k41 Now, we are ready to design the gain matrix of the NN-
051 =5 based recursive estimator which ensure that the upper bound

- obtained in Theorem 3 is minimized.

it is easy to see thaE, 1 is minimized if the NNW tuning ~ Theorem 4: The upper bound of the estimation error co-
scalarfy, is selected as (22). B variance can be minimized with the following estimator gain

Remark 5: We have now completed the design of the NNVyparameter:
tuning parameter for the unknown nonlinearities. The NNW = TN (v T
tuning parameter is computed recursively by minimizing the Ly =((1+<)AT,CT) (CT,C
trace of the estimation error covariance of the NNW (i.e., + DS, DT + 22 + 2&2)_1 (26)
Er = tr{E{MM;'}}). Unlike a time-invariant NNW tuning _ _ _ L _ _
parameter, the recursively calculated NNW tuning parameter Proof: Taking the partial derivative of {1} with
can achieve better approximation performance, as it adaH?§peCt toL, one has

to the transient properties of the unknown nonlinearities. O ki1

Notably, the accurate estimation error covariance is difficult to OLx

obtain in this paper because the biases caused by quan_‘uzatlon = 201+ ¢)(A — L,O)T,CT
errors and bit errors only have upper bounds on variance, T 5 5
without accurate variance values. Therefore, minimizing the + 2L DS D 4+ 4Lkt" + 4LR

estimation error covariance of the NNW is both theoreticaltyhen, by letting the derivative be zero, it is easy to see that

and practically justified. Y41 is minimized if the estimator gaifi;, is selected as (26).
[ |
Based on the above discussion, the parameters [j,eand
0x) of the recursive state estimator for the nonlinear NCSs
In this subsection, an effective algorithm will be developedith the BEM have been computed by solving a minimization
to parameterize the recursive estimator gains to minimize ttssue. The following algorithm provides the steps to compute
upper bound of(, = E{#3} }. L, andé,.

B. Design of the Filter Gain Matrix
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NN-based Recursive Estimation Algorithm:
Sep 1. Initialization: Given the initial valueyg, Mo = Moy, &0 = Zo, 0o,

flexibility and adaptability.
3) A key novelty of this paper lies in the recursive adjust-

=0, Yo. X -
Sep 2. Calculate the NNW tuning parametéy,. ment of both the NNW and the estimator gain. Such
gep i- ga:cu:ate tﬂe estimaLe Ofé\leng- o _ . a dynamic updating mechanism, embedded in a unified
. Calculate the upper bound of the estimation error covariance o . [r . - .
® NNW =, PP framework, §|gn|f_|cantly improves approximation accu-
Sep 5. Calculate the recursive estimator gdip. racy and estimation performance as compared to time-
Sep 6. Calculate the upper bound of the estimation error covariance of invariant or static approaches used in other works.
system statel'y. 1. 4) The paper provides a detailed quantitative analysis of the

Step 7. Calculate the state estim . . . L . .
St$ 8 k=Fk+1. Mo distortions caused by both quantization and bit errors in

BEM, which could degrade the estimation performance.
Unlike prior research that often assumes ideal communi-
cation, this work thoroughly examines how these errors
affect the estimator and proposes a strategy to mitigate
their negative impact.

In the NN-based recursive estimation algorithm, the first
step is to set the initial value. The second step is to calculate
the NNW tuning parametef, based on (22). Then, the
estimates of the NNWA/, can be obtained. Up to now,
the estimates of the unknown nonlinearities (ijé[kﬁ(fck))
can be calculated, and the upper bound of the trace of thdn this section, a simulation example is presented to verify
estimation error covariance of NNVE, can be obtained. the effectiveness and correctness of the developed NN-based
Next, according to (26), we can derive the gain mafrixof ~state estimation algorithm.
the NN-based recursive estimator, based on which the uppefonsider a nonlinear NCSs (1) with the following parame-
bound of the estimation error covariance of system Sfate;  ters:

IV. I LLUSTRATIVE EXAMPLE

can be obtained. Finally, based af,9(2) and L;, we can 0.7 04 0 0.2
generate the state estimaig,;. It is worth mentioning that A=103 1025 01|, B=|-0.1],
Eg+1 = Zk41 and Y1 = Y41 in specific case. 0 0.3 0.2 -1
Remark 6: In this paper, we have developed an NN-based 045 -02 0 0.1
recursive estimation strategy to address the state estimation C= —098 0 _0_2] , D= {0_1} ’

problem for nonlinear NCSs with unknown nonlinearities and ) o
BEMSs. We have first analyzed the effects of quantization errof§€ nonlinear function is selected as

N, and bit errors;, introduced by BEM, and analyzed their sin(x1 k)
impact on the system’s state estimation performance. Then, glag) =4 cos(xa, )
a novel recursive estimator has been proposed that integrates sin(zs ) cos(z3 k)

neural networks to approximate unknown nonlinearities. This .
. . . Denotez, ;. as therth row of z;. The covariances of the
approach adapts to the transient behavior of nonlinear systems > .
. ) . : rocess noisey;, and the measurement noisg are chosen as
by recursively updating the NNWs and estimator gains. Sub- .
. . x = 0.09 and Q; = 0.04, respectively. Under the BEM, we
sequently, we have designed the NNW tuning param@ter )
) . . setH = 8 andp = 0.1 and the interval length = 0.6. Then,
and the estimator gaiti;, to minimize the upper bounds of
) . ) Wg leta; = 0.9, as = 0.8, a3 = 0.8, ay = 0.7, and select
the estimation error covariance for both the system state ap S .
. activation function of the NN as
the NNWs. These parameters have been computed recurswer
to ensure optimal estimation performance of both the system (i) = [O.Itanr(fclyk) 0.1tanH2,1) 0.1tanr(§:3_,k)}T
states and the unknown nonlinearities over time. Overall, the he initial val h
proposed estimation strategy has enhanced adaptability andn€ initial values are chosen as
performance, offering a flexible solution for systems with zo=[3.5 3.85 3_15}T,
unknown nonlinearities. . T
Remark 7: The distinctive contributions of this paper, as To = [0'7 2.1 0'7] ’

compared to existing results, are highlighted as follows: 1 1 0.95

1) Unlike most existing works, which focus on state es- Mo =022 —0.41 0.1
timation without considering the impact of communi- 0.1 0.9 0.1
cation mechanisms, this paper addresses the recursiv&he goal of this paper is to develop an NN-based recursive
state estimation problem for nonlinear NCSs under BENtate estimator to minimize the upper bound Bfz,i1}
and random bit errors. This integration leads to a moend t{E{M; M }}. By applying Algorithm 1, the parameters
realistic model for modern networked systems, whefer the NNW tuning scalars and the estimator gain matrices
such phenomena frequently occur. are obtained, with their values listed in Tables | and II. The
2) This work leverages NNs to approximate unknown nomorresponding simulation results are presented in Figs. 2-6,
linearities in NCSs. Unlike traditional methods that relglemonstrating the effectiveness of the proposed estimator.
on known nonlinear dynamics or linearization techniques, Figs. 2-4 display the trajectories of the system states and
the proposed method uses NNs to handle unknown ndheir corresponding estimates. The dynamics of the state
linearities without requiring prior knowledge, enhancingstimation error is shown in Fig. 5, clearly demonstrating

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNNLS.2025.3542492, IEEE Transactions on Neural Networks and Learning Systems
FINAL 9

TABLE I: The time-varying NNW tuning scalars

1 2 3 4 5 6 7 8 9 10
0, | -0.7369 -0.7564 -0.8963 -0.8849 -0.8963 -0.8849 -0.8193 8968 -0.8849 -0.8849
k 11 12 13 14 15 16 17 18 19 20
0, | -0.8963 -0.8849 -0.7564 -0.8963 -0.8849 -0.8963 -0.8849 8198 -0.8963 -0.8167
k 21 22 23 24 25 26 27 28 29 30
0, | -0.6753 -0.6489 -0.8963 -0.8849 -0.7564 -0.8963 -0.8849 896B -0.8849 -0.7164
k 31 32 33 34 35 36 37 38 39 40
0, | -0.6073 -0.7648 -0.6158 -0.6482 -0.7347 -0.8321 -0.7995 873% -0.7156 -0.6539
k 41 42 43 44 45 46 47 48 49 50
0, | -0.8492 -0.6592 -0.6975 -0.7539 -0.8528 -0.8904 -0.8532 786B -0.6056 -0.8167

TABLE II: The time-varying recursive estimator gain matsce

k 1 2 3 4 5
—3.0668 —3.0656 0.4630 —2.0193 5.1628  —0.9048 5.3038  —0.8711 5.0492  —0.9090
Ly, —5.7618 —3.8880 0.4561 —2.0693 3.8194  —1.2699 3.1489  —1.4280 2.1370  —1.6597
—0.9776 —1.2741 0.2235 —0.9109 —1.4578  —1.3082 —2.1259 —1.4661 —2.7030 —1.6173
k 11 12 13 14 15
2.2277 —1.6528 0.4854 —2.1914 —0.6531 —2.5440 0.9289 —2.0483 1.4144 —1.8949
Ly, —2.6865 —2.9621 —4.8375 —3.6266 —6.1397 —4.0294 —4.1994 —3.4211 —3.6842 —3.2579
—3.9504 —1.9711 —4.0498 —2.0015 —4.0306 —1.9951 —3.9507 —1.9699 —3.9916 —1.9824
k 21 22 23 24 25
0.0566  —2.3165 0.2087  —2.2688 0.2120  —2.2677 —0.1216  —2.3721 —0.1023 —2.3660
Ly —5.4124 —3.7943 —5.2201 —3.7340 —5.2119 —3.7313 —5.5948 —3.8511 —5.5269 —3.8298
—4.1113 —2.0194 —4.0989 —2.0156 —4.0953 —2.0144 —4.0908 —2.0130 —4.0539 —2.0014
k 31 32 33 34 35
0.7109  —2.1114 0.6893  —2.1182 0.6222  —2.1392 0.7253  —2.1069 0.6581 —2.1280
Ly —4.4930 —3.5061 —4.5279 —3.5170 —4.6139 —3.5440 —4.5019 —3.5089 —4.5979  —3.5390
—3.9830 —1.9792 —3.9909 —1.9817 —3.9973 —1.9837 —4.0040 —1.9858 —4.0184 —1.9903
k 41 42 43 44 45
0.4329  —2.1984 0.6581 —2.1280 0.5502  —2.1617 0.5123  —2.1736 0.4856  —2.1819
Ly, —4.9007 —3.6337 —4.5979  —3.5390 —4.7417  —3.5840 —4.7937 —3.6002 —4.8306 —3.6118
—4.0515 —2.0007 —4.0184 —1.9903 —4.0332 —1.9949 —4.0396 —1.9969 —4.0444  —1.9985
60 1 50
45
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40
40 4 s
g g 30
'7;30 1 %25
=] =1
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Fig. 2: Stater; , and its estimate.

Time (k)
Fig. 3: Staters , and its estimate.

that the upper bound of the state estimation error covariance V. CONCLUSIONS

is minimized. Fig. 6 illustrates the estimation error for the In this study, we have addressed the recursive state estima-
unknown nonlinearities (i.e.g(zx) £ g(zx) — M9(21)), tion problem for a class of NCSs with unknown nonlinearities
confirming that the developed NN is capable of effectivelgnd BEM, where the BEM is utilized to convert measurement
approximatingg(-). Overall, the simulation results indicatesignals into BBSs of limited length, which are then transmitted
that the proposed NN-based recursive state estimator deliviershe recursive state estimator through noisy communication
satisfactory performance. TABLE | and Il give the recursivehannels. NNs have been employed to approximate the un-
updating process of the parameters (iky, and 6;) of the known nonlinearities of the NCSs. A recursive state estimator
recursive state estimator. with a suitable structure has been proposed, where both the
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50
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and the NNWs. Numerical examples have been provided to
demonstrate the effectiveness of the proposed state estimation
strategy. Future research directions could include extending the
proposed estimation algorithm to systems with BEM and other
phenomena, such as wireless sensor networks [38], [40], multi-
agent systems [15], and additional applications [13], [27], [42],
[51]-[55].
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estimator gain parameters and the NNW tuning scalars have
been computed recursively within a unified framework. Suffi18]

cient conditions have been derived to ensure the mean-square
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