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Abstract—Accurate prediction of material removal depth and
averaged surface roughness is crucial for evaluating the per-
formance of robotic belt grinding (RBG). Nevertheless, the
machining parameters of RBG across different spaces exhibit
various data distributions, which often results in prediction
shifts on unseen machining parameters when using conventional
approaches. In this article, we introduce a pairwise domain
adaptation-assisted dual-task learning (PW-DA-DTL) method
for co-predicting material removal depth and averaged surface
roughness with regard to new RBG machining parameter spaces.
The multi-gate mixture-of-experts method is employed as the
foundational framework for dual-task learning, effectively cap-
turing and modeling the relationships between material removal
depth and average surface roughness by leveraging their inherent
task interdependencies. The pairwise domain adaptation strategy
is put forward to simultaneously enhance sample diversity and
mitigate cross-domain data distribution discrepancy between the
existing and new RBG machining parameter spaces. Comparative
experiments are presented to demonstrate the effectiveness and
superiority of the proposed PW-DA-DTL method.

Index Terms—Material removal depth, averaged surface
roughness, domain adaptation, dual-task learning, robotic belt
grinding.
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I. INTRODUCTION

Robotic Belt Grinding (RBG) has been recognized as an
effective technique for finishing machining and difficult-to-
machine materials, owing to its high flexibility, extensive
operating space and cost-effectiveness [1], [2]. Efficient and
precise manufacturing is an enduring objective of RBG, which
could be achieved by enhancing material removal ability and
workpiece surface quality simultaneously [3], [4]. Material re-
moval depth (MRD) and averaged surface roughness (denoted
as Ra), representing material removal capability and surface
quality respectively, are widely recognized as key indicators
for understanding and evaluating the performance of RBG. As
a critical element in the closed-loop manufacturing process,
accurate prediction of MRD and Ra is vital for machining pa-
rameter optimization and quality control, ultimately enabling
an efficient and precise RBG manufacturing process [5]–[9].

Over the last few decades, numerous machine learning
methods have been developed to individually predict MRD and
Ra [1], [4], [10]. Nevertheless, these methods commonly re-
quire training separate models, neglecting the potential correla-
tion between MRD and Ra. Serving as a promising technique,
multi-task supervised learning (such as the shared-bottom
method, the tensor factorization method and the multi-gate
mixture-of-experts (MMoE) method) is designed to enhance
the learning ability on multiple learning tasks by exploiting
knowledge across tasks. Among these multi-task supervised
learning methods, MMoE stands out for its capability to
balance the correlation and discrepancy across tasks with a few
training parameters [11], [12], making it feasible for dual-task
prediction of MRD and Ra.

On the other hand, conventional multi-task supervised learn-
ing methods usually adhere to the typical assumption that the
training and testing data follow an independent and identically
distributed (i.i.d.) pattern [5], [13]. In fact, the machining
parameters across different spaces often exhibit diverse data
distributions, leading to prediction shifts on unseen machining
parameters when applying conventional multi-task supervised
learning methods to new machining parameter spaces [14].
In this situation, there is a clear need to develop advanced
multi-task supervised learning methods capable of addressing
the challenges posed by inconsistent data distributions across
different RBG machining parameter spaces.

Serving as a cutting-edge technique, transfer learning al-
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lows for the relaxation of constraint that the training and
testing data must be i.i.d. when applying conventional multi-
task supervised learning methods [15]–[18]. Among numerous
transfer learning methods, deep transfer learning has received
much attention from both academia and industry owing to its
exceptional feature extraction ability and remarkable effective-
ness [19]. Notably, two dominant paradigms in deep trans-
fer learning are fine-tuning-based methods and deep domain
adaptation-based (DDA) methods, with the latter being widely
recognized for its proficiency in quantifying cross-domain
distribution discrepancies [20]–[22]. A seemingly reasonable
idea is to exploit DDA methods to alleviate data distribution
discrepancy between existing and new RBG machining pa-
rameter spaces, thereby facilitating accurate co-prediction of
MRD and Ra for new machining parameters.

In general, the predictive performance of DDA methods
depends heavily on the availability of sufficient samples in
both the source and target domains [23], [24]. Nevertheless,
collecting and annotating RBG data in the new machining
parameter space is prohibitively expensive [25], resulting in
only a limited number of labeled samples available for DDA
model training. The lack of target domain samples may lead to
ineffective training and insufficient alignment of data distribu-
tions between the training and testing data when using DDA
methods [26]–[28]. Therefore, it becomes essential to develop
a novel domain adaptation strategy capable of eliminating
distribution discrepancy between training and testing data,
even when only few testing samples are available.

Based on the above discussions, the aim of this article is
to accurately predict MRD and Ra in the new machining
parameter space of RBG. Due to the lack of labeled target
domain samples, conventional DDA methods face significant
challenges in handling the data imbalance problem, which
leads to insufficient alignment of data distributions between
the source and target domains. To tackle this issue, a pairwise
domain adaptation-assisted dual-task learning (PW-DA-DTL)
method is put forward in this article, where a novel pairwise
DA strategy is developed for co-predicting material removal
depth and averaged surface roughness with regard to new ma-
chining parameters of RBG. Specifically, the MMoE method,
a representative DTL technique, is employed to improve the
prediction performance by balancing the intrinsic correlation
and discrepancy between MRD and Ra. Additionally, a pair-
wise DA strategy is designed to simultaneously augment target
domain samples and align data distributions across the two
domains. The proposed PW-DA-DTL method offers a feasible
solution for accurately evaluating various RBG machining
parameters, enabling reliable selection and optimization of
machining parameters in the RBG manufacturing process.

The main contributions of this article can be summarized in
the following four aspects.

1) A novel PW-DA-DTL method is proposed for accurately
co-predicting MRD and Ra in new RBG machining
parameter spaces.

2) A pairwise DA strategy is put forward to enhance the
data distribution alignment within the source and target
domains under data imbalance.

3) The MMoE method is employed to effectively balance
the intrinsic correlation and discrepancy between the

MRD and Ra prediction tasks.
4) The proposed PW-DA-DTL method is successfully val-

idated on an RBG platform for co-predicting MRD and
Ra. Comparative experiments demonstrate the effec-
tiveness and advantages of the proposed PW-DA-DTL
method over five benchmark methods.”

The remaining sections of this article are organized as
follows. The background of multi-task learning, domain adap-
tation and problem description are presented in Section II. In
Section III, the proposed PW-DA-DTL method and its overall
loss function is introduced. Additionally, the proposed method
for co-predicting MRD and Ra of RBG, as well as three
evaluation metrics are provided. The self-developed experi-
mental platform and the experimental settings are described
in Section IV. Experimental results and analysis of the MRD
and Ra co-prediction are provided and discussed in Section V.
Finally, the conclusions are drawn, and the possible future
topics are addressed in Section VI.

II. PRELIMINARY

A. Background of Multi-Task Learning

Multi-task learning (MTL) aims to improve the overall
learning ability by leveraging the shared knowledge and re-
lationships among tasks. Given l learning tasks

{
T i
}l
i=1

, in
which all the learning tasks or a subset of them are related
but not identical, MTL is dedicated to enhancing the learning
of a model for T i by leveraging the knowledge across the l
tasks.

A common form of MTL is multi-task supervised learning
(MTSL), where each task involving learning the mapping func-
tion from the feature space to the label space [29]. In MTSL,
each task T i contains ni labeled samples

{
(xij , y

i
j)
}ni

j=1
,

where xij lies in a d-dimensional feature space X and yij is
the corresponding label in a label space Y . To goal of MSTL
is to simultaneously train l functions

{
f i(X)

}l
i=1

for the l
learning tasks leveraging the labeled samples across tasks.

In certain scenarios, multi-task supervised learning (MTSL)
employs feature transformation techniques to enhance learning
performance, collectively known as feature transformation-
based multi-task supervised learning (FT-MTSL). In FT-
MTSL, different tasks share identical or similar feature repre-
sentations, which are derived from linear or nonlinear trans-
formations of the original features [29]. Given a shared trans-
formation function h(·), the original feature representations
for each learning task are transformed as

{
h(xij)

}ni

j=1
. Then,

the transformed feature representations are fed into MTSL for
the simultaneous training of l functions

{
f i(h(X))

}l
i=1

with
respect to the l learning tasks.

B. Background of Domain Adaptation

Domain adaptation (DA) is a transfer learning technique that
enhances model performance in a target domain (with limited
or no labeled samples) by leveraging knowledge from a related
but different source domain (with abundant labeled samples)
[19], [30]. In the context of transfer learning, a domain D is
composed of a d-dimensional feature space X and a marginal
probability distribution P (X), denoted as D = {X , P (X)},
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with X ∈ X . For a given source domain Ds = {X s, P (Xs)}
and a target domain Dt = {X t, P (Xt)}, the two domains
are different if they have different feature spaces or marginal
distributions (i.e., X s 6= X t ∨ P (Xs) 6= P (Xt)).

In the context of the domain D, the task T is defined by
a label space Y and a prediction function f(X), represented
as T = {Y, f(X)}. Specifically, the prediction function is
denoted as f(X) : X → Y , where Y ∈ Y . Inspired by [19],
[30], f(X) can be chosen as the conditional probability distri-
bution P (Y |X). For a given source task T s = {Ys, f(Xs)}
and a target task T t = {Yt, f(Xt)}, two tasks are different
if they have different label spaces or conditional distributions
(i.e., Ys 6= Yt ∨ P (Y s|Xs) 6= P (Y t|Xt)).

Given n labeled samples {(xsi , ysi )}
n
i=1 from the source

domain Ds, m labeled samples
{
(xtj , y

t
j)
}m
j=1

and p unlabeled

samples
{
xtj
}m+p

j=m+1
from the target domain Dt, the objective

of DA is to learn a target prediction function f(xtj) : x
t
j → ytj ,

(j = m + 1, · · · ,m + p), aimed at handling the unlabeled
target domain samples with low predicted error, under the
assumptions that the feature spaces and label spaces are
identical (i.e., X s = X t ∧ Ys = Yt), while the marginal
and conditional distributions are different (i.e., P (Xs) 6=
P (Xt) ∧ P (Y s|Xs) 6= P (Y t|Xt)).

C. Problem Description

1) FT-MTSL for MRD and Ra Co-Prediction in RBG: In
the RBG manufacturing process, MRD and Ra are closely
related to the machining parameters (such as normal force,
robotic feed speed, belt linear speed and equivalent radius of
abrasive grains). During the training process of FT-MTSL, x
represents the machining parameters and y consists of MRD
and Ra. h(·) is a nonlinear function that maps the raw data
x into a shared feature space. The objective of FT-MTSL for
MRD and Ra co-prediction is to learn a prediction on the
unlabeled samples leveraging the knowledge across two tasks.

2) DA-Assisted FT-MTSL for MRD and Ra Co-Prediction
in RBG: Due to the discrepancy among various machining
parameter spaces, the data distributions are different between
the source dataset (i.e., samples with existing machining
parameters) and the target dataset (i.e., samples with new ma-
chining parameters). Given the source dataset (which contains
n labeled samples) and the target dataset (which has m labeled
samples and p unlabeled samples), the objective of the DA-
assisted FT-MTSL method for MRD and Ra co-prediction is
to learn a target prediction on the unlabeled target domain
samples with low expected error.

III. METHODS

In this section, the MMoE method, the developed DA
strategy and the proposed DA-based dual-task learning method
are introduced in detail. Furthermore, three evaluation metrics
on MRD and Ra prediction of RBG are presented.

A. MMoE

The MMoE is designed to explicitly model relationship and
difference among tasks. The output of the kth (k = 1, · · · , l)

task in the MMoE method is calculated as follows:

yk = hkt

(
s∑

i=1

gki (x)fi(x)

)
, (1)

where x represents the input data or its transformed fea-
tures, s is the number of expert networks, and fi (·) denotes
the mapping function of the ith expert network. gk(x) =
softmax(W k

g x) is the output of the kth gating network, where
W k

g ∈ Rs×d is the weight matrix and d represents the
dimension of x. hkt (·) denotes the mapping function of the
kth tower network, and yk corresponds to the output of the
tower network. The schematic structure of MMoE method is
illustrated in Fig. 1.

Remark 1: Compared to the conventional shared-bottom
method [31], MMoE is able to model the relationships of
tasks in a weighted manner by determining how the sepa-
rations resulting from different gating networks overlap. If the
provided tasks are less related, sharing expert networks would
be penalized, and the gating networks for these tasks would
learn to select different expert networks instead [11].
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Fig. 1. The schematic structure of MMoE method. Dual-task learning is taken
as a representative case.

B. The Developed DA Strategy
1) Maximum Mean Discrepancy: This article utilizes the

empirical maximum mean discrepancy (MMD) to characterize
the distribution differences between the source and target
domains [32], [33]. Leveraging the MMD, the distribution
discrepancies between the source and target domains are
computed by mapping the original data into a reproducing
kernel Hilbert space (RKHS). In comparison to other distance
functions, such as the Kullback–Leibler divergence, MMD
serves as a non-parametric distance measurement among data
distributions, circumventing the calculations of intermediate
density [34]. The empirical MMD of marginal distribution
between the source and target domains is defined as the
following form:

D
(
Xs, Xt

)
=

∥∥∥∥∥∥ 1n
n∑

i=1

φ (xsi )−
1

m

m∑
j=1

φ
(
xtj
)∥∥∥∥∥∥

2

H

, (2)

where φ(·) represents a mapping from the original space into
the RKHS, and ‖·‖2H denotes the squared norm of “·” in the
RKHS.
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According to the reproducing property of the RKHS, the
kernel trick (i.e., k (xi, xj) = 〈φ (xi) , φ (xj)〉H, where xi and
xj represent two random samples; 〈·, ·〉H is the inner dot in
the RKHS) is employed to unfold (2) as the following form:

D
(
Xs, Xt

)
=

1

n2

n∑
i=1

n∑
i′=1

k (xsi , x
s
i′) +

1

m2

m∑
j=1

m∑
j′=1

k
(
xtj , x

t
j′
)

− 2

mn

n∑
i=1

m∑
j=1

k
(
xsi , x

t
j

)
(3)

In this article, the Gaussian kernel is adopted as the kernel
function [32], which is defined as follows:

k (xi, xj) = exp
(
−‖xi − xj‖2 /(2σ2)

)
, (4)

where σ is a hyperparameter that represents the width of
Gaussian kernel.

2) The Pairwise DA Strategy: In this article, considering
that only a limited number of labeled target domain samples
(even as few as one sample) are available, a pairwise DA
strategy is developed to alleviate the insufficient alignment
of data distributions between the source and target domains
based on the MMD method. The pairwise DA strategy is
designed to augment labeled target domain samples by pairing
them with the source domain samples in a recurrent manner.
Notably, given n labeled samples in the source domain and m
labeled samples in the target domain (m� n), m× n target-
source pairs are created through the recurrent pairing of target
and source domain samples. Simultaneously, n × n source-
source pairs are generated by recurrently pairing among source
domain samples, with a random selection of m × n source-
source pairs to align with the number of target-source pairs.
In Fig. 2, two kinds of sample pairs (denoted as target-source
pairs and source-source pairs) are simultaneously input into a
feature transformation network (which is a designed artificial
neural network), and the transformed features are merged for
DA using the target-source data and the source-source data.

After the DA, the transformed features are fed into the
MMoE (Section III-A) for the supervised dual-task learning.
The supervised training manner can alleviate model bias
caused by the imbalanced labels between the source and target
domains, thereby enhancing the reliability of the proposed
method. The structure of the proposed PW-DA-DTL method
is shown in Fig. 2.

Remark 2: The pairwise strategy can be considered as a
form of data augmentation method, where a limited number of
target domain samples are expanded by recurrent grouping of
target and source domain samples. In contrast to conventional
data augmentation methods, such as generative adversarial net-
work (GAN) [35], synthetic minority oversampling technique
(SMOTE) [36] and adaptive synthetic (ADASYN) algorithm
[37], the proposed pairwise strategy can increase the sample
size using few samples, even as few as one sample. Com-
pared to the sample replication method, the proposed pairwise
strategy can significantly improve the diversity of augmented
target domain samples by integrating the limited number of
target domain samples with sufficient source domain samples.
The pairwise strategy, combined with supervised learning [38],

[39], simultaneously alleviates model bias and improves the
generalization capability of the proposed method.
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Fig. 2. The pairwise DA strategy and the structure of PW-DA-DTL method.
m× n target-source pairs and source-source pairs are generated for training
the PW-DA-DTL method.

3) Domain Loss: The domain loss is the MMD between
the merged features of target-source pairs and source-source
pairs. The calculation of domain loss (which corresponds to
(2)) is transformed as follows:

Ld = D
(
[h (Xs) , h (Xs)], [h

(
Xt
)
, h (Xs)]

)
=

∥∥∥∥∥ 1

n2

n∑
i=1

n∑
i′=1

φ
(
[h (xsi ) , h (x

s
i′)]
)

+
1

m2

m∑
j=1

m∑
j′=1

φ
(
[h
(
xtj
)
, h
(
xtj′
)
]
)

− 2

mn

n∑
i=1

m∑
j=1

φ
(
[h (xsi ) , h

(
xtj
)
]
)∥∥∥∥∥∥

2

H

, (5)

where [·, ·] represents the concatenation of two vectors, and
h(·) is a feature transformation network that maps the input
data to a shared feature space.

4) Loss Function: The overall loss function of the proposed
PW-DA-DTL method is depicted as follows:

L = Lr + λLd, (6)

where Lr is the regression loss (which is computed by the
mean square error (MSE)) of both labeled source and target
domain samples. Ld denotes the domain loss (5) between
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the merged features of target-source pairs and source-source
pairs. The parameter λ serves as a penalty term that balances
between the regression loss and the domain loss. The PW-
DA-DTL method is trained by simultaneously minimizing the
regression loss and the domain loss.

The training process of the proposed PW-DA-DTL method
is presented in Algorithm 1.

Algorithm 1: The training process of the proposed
PW-DA-DTL method
Input: Labeled source domain samples {(xsi , ysi )}

n
i=1;

labeled target domain samples
{
(xtj , y

t
j)
}m
j=1

.
Output: Model weights θ.
Initialize θ and the number of training epoch N ;
Construct the target-source pairs [Xt, Xs] and the
source-source pairs [Xs, Xs];

for 1 : N do
1) Obtain [h (Xs) , h (Xs)] and [h (Xt) , h (Xs)];
2) Calculate the MMD using (5);
3) Predict yk for dual tasks using (1);
4) Run the Adam optimization algorithm to
minimize (6) and update the weights θ.

end

C. PW-DA-DTL for Co-Predicting MRD and Ra in RBG
In this article, the PW-DA-DTL method is applied for

co-predicting MRD and Ra in RBG. The training process
of PW-DA-DTL method unfolds in two main stages. First,
existing and new machining parameters in RBG are recurrently
paired to form target-source pairs and source-source pairs.
Subsequently, these pairs are input into the feature transfor-
mation network for both DA and supervised dual-task model
training. To be specific, the pairwise outputs of the feature
transformation network are utilized for MMD calculation, and
the pairwise outputs are simultaneously fed into MMoE for
the supervised training.

D. Evaluation Metrics
Three evaluation metrics (i.e., the root mean square error

(RMSE), the mean absolute percentage error (MAPE) and
the coefficient of determination (R2)) are employed to assess
the performance of MRD and Ra co-prediction. It should be
mentioned that the RMSE is applied to calculate the deviation
between the predicted and observed values, the MAPE is
utilized to measure the ratio of the absolute error to the
observed values, and the R2 coefficient is used to assess the
correlation between the predicted and observed values. The
aforementioned three evaluation metrics are formulated by

RMSE =

√√√√1

p

p∑
i=1

(yi − ŷi)2, (7)

MAPE =
1

p

p∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100%, (8)

R2 = 1−
p∑

i=1

(ŷi − yi)2
/ p∑

i=1

(
yi −

1

p

p∑
i=1

yi

)2

, (9)

where yi and ŷi represent the observed MRD/Ra and the
predicted MRD/Ra, respectively; and p is the number of
testing samples.

IV. EXPERIMENTAL DATA AND MODEL TRAINING

A. Experimental Platform
As shown in Fig. 3(a)-(b), the developed RBG system com-

prises an industrial robot (ABB IRB4400-60/1.96) equipped
with a six-dimensional force sensor (ATI Omega 160) and
an abrasive belt grinder. In the abrasive belt grinder, ceramic
alumina abrasive belts (3MTMCubitronTM II 726 A) with
four equivalent radius of grains are chosen as the machining
tools due to their substantial material removal capacity and ex-
ceptional resistance to clogging. The experimental workpiece
is a unidirectional carbon fiber-reinforced composite (CFRP)
T300 with dimensions of 200×100×10 mm3, which has been
widely utilized in aerospace and automotive industries. In this
work, four key controlled parameters (namely, normal force
Fn, robotic feed speed Vw, belt linear speed Vs and equivalent
radius of abrasive grains R̃) are adjusted to investigate the
MRD and Ra of RBG.

Followed by the offline system calibration and robot path
planning, an orthogonal grinding experiment with different
parallel grinding paths (see Fig. 3(c)) are carried out using
four key machining parameters. The measurement of MRD
is performed using a self-developed measuring system with
an accuracy of 1 µm and a sampling frequency of 4.33 kHz.
The measurement of Ra is deployed by using a digital surface
roughness tester (see Fig. 3(d)). To ensure the reliability of
measurement data, the final measurement results are derived
by calculating the average value of cross-sectional removal
profile centers in the stable grinding area (see Fig. 3(c)) .

Fig. 3. (a) The developed experimental platform of RBG. (b) The RBG system
with an enlarged view of grinding process. (c) The schematic grinding paths as
well as the central measurement positions of MRD and Ra. (d) The developed
measuring system for obtaining MRD and Ra.

B. Dataset
In this article, the controlled machining parameters are

normal force Fn, robotic feed speed Vw, belt linear speed
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Vs and equivalent radius of abrasive grains R̃. Five different
values are chosen for Fn (10 N, 20 N, 30 N, 40 N and 50 N),
Vs (10 mm/s, 20 mm/s, 30 mm/s, 40 mm/s and 50 mm/s) and
Vw (5.24 m/s, 9.42 m/s, 13.61 m/s, 17.8 m/s and 21.99 m/s),
while four different values are chosen for R̃ (30.5 µm, 40 µm,
60 µm and 90 µm). The controlled machining parameters as
well as their chosen values are recorded in Table I.

TABLE I
THE CONTROLLED PARAMETERS AND THEIR CHOSEN VALUES

Controlled Parameters Values
Normal force Fn 10, 15, 20, 25, 30 N
Robotic feed speed Vw 10, 15, 20, 25, 30 mm/s
Belt linear speed Vs 5.24, 9.42, 13.61, 17.8, 21.99 m/s
Equivalent radius of abrasive grains R̃ 30.5, 40, 60, 90 µm

After a random combination of four controlled machining
parameters, an orthogonal grinding experiment with 80 sets
of parameters is carried out for evaluating the performance
of RBG, and the corresponding MRD and Ra are measured
as the labels. Two different validation experiments are carried
out according to the values of Fn and Vw, respectively. To
validate the capability of the proposed PW-DA-DTL method
for unseen machining parameters, the training dataset and the
testing dataset are split in a cross-validation manner based on
the values of Fn and Vw. Taking the validation experiment on
Fn as an example, samples with a specific value of Fn are
chosen as the testing dataset and the remaining samples are
taken as the training dataset in each cross-validation iteration.
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Fig. 4. The training process of (a) the proposed PW-DA-DTL method and
(b) the MMoE method.

C. Training and Testing Process

Fig. 4(a) visualizes the training process of the proposed PW-
DA-DTL method for MRD and Ra co-prediction of RBG.
In this article, only one labeled target domain sample, which
is randomly selected from the target dataset, is applied for
training the PW-DA-DTL method in the hope of alleviating
the dependence on target domain samples. The weights of the

PW-DA-DTL method are copied from the pre-trained MMoE
method (Fig. 4(b)), and the DA is deployed to further reduce
the domain discrepancy between the target-source pairs and the
source-source pairs. The regression loss Lr is the MSE for the
labeled source domain samples and the labeled target domain
sample, and the domain loss Ld is obtained by computing
the MMD of merged features between the target-source pairs
and the source-source pairs. The total loss L (which is the
weighted summation of the regression loss and the domain
loss) is minimized by the Adam optimizer in the training
process.

The testing process is carried out by feeding the target
data of four machining parameters to the trained PW-DA-
DTL model, and the corresponding output is the co-predicted
MRD and Ra. Five benchmark DTL methods (i.e., the MMoE
method (Fig. 4(b)), the shared-bottom method, the one-gate
mixture-of-experts (OMoE) method [11], the customized shar-
ing experts (CSE) method [40] and the customized gate control
(CGC) method [40]) are trained from scratch using the Adam
optimizer. It is noteworthy that the shared-bottom method
shares a similar architecture with the MMoE method, differing
only in the replacement of the MMoE layer with a single
task-shared expert network. The OMoE method focuses on
using a single shared gating network to select the appropriate
experts instead of the multiple gating networks employed in
the MMoE method. The CSE method introduces the task-
specific expert networks into the shared-bottom method. The
CGC method integrates task-shared and task-specific experts
through multiple gating networks. The testing processes of the
aforementioned benchmark DTL methods are carried out by
feeding the target data to the trained models.

D. Network Architecture and Parameter Setting

In the experiment, the network input is the target-source
pair or source-source pair of controlled machining parameters
with a size of 2×4. To learn the shared knowledge between
the MRD and Ra, two fully connected layers (i.e., FC1
and FC2), whose neurons are both set to be 8, are utilized
for transforming features. The merge layer is designed to
merge the transformed features of paired data for the sake of
reducing the domain discrepancy between target-source pairs
and source-source pairs. Motivated by [11], the number of
experts is set to be 4 for balancing the computational burden
and learning ability. The number of gates and towers is both 2,
which is consistent with the number of tasks. The number of
neurons in the expert layer, gate layer and tower layer are set
to be 4. The parameters of PW-DA-DTL are listed in Table II.
It should be noted that all five benchmark methods share
the same parameter settings as the PW-DA-DTL method in
terms of input layer, FC1, FC2 and output layer. Additionally,
the standard MMoE method, the OMoE method, the CGC
method and the PW-DA-DTL method utilize the same number
of expert networks and identical parameter configurations for
the tower networks.

In the proposed PW-DA-DTL method, σ in (4) and λ in
(6) are empirically set to be 0.1 and 0.01, respectively. The
learning rate is set to be 0.001. Owing to the weights transfer
from the standard MMoE method, the training epoch is set to
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TABLE II
THE PARAMETERS OF THE PROPOSED PW-DA-DTL NETWORK

ARCHITECTURE

Layer Number Neurons Output size
Input - - 2×4
FC1 1 8 2×8
FC2 1 8 2×8
Merge 1 - 1×16
Gate in MMoE 2 4 2×1×4
Expert in MMoE 4 4 4×1×4
Tower in MMoE 2 4 2×1×1
Output A - - 2×1
Output B - - 2×1

be 100. In the five benchmark methods, the training epoch is
set to be 2000.

V. RESULTS AND DISCUSSION

In this section, the co-prediction results of the MRD and Ra

for RBG are presented. Specifically, two scenarios considering
new normal force Fn and robotic feed speed Vw are evaluated,
respectively. Furthermore, the PW-DA-DTL method is com-
pared with five benchmark methods in terms of the prediction
accuracy.

A. Case 1: Co-Prediction of MRD and Ra with New Normal
Force

In this experiment, the MRD and Ra co-prediction results of
the proposed PW-DA-DTL method with different testing Fn

(10 N, 15 N, 20 N, 25 N and 30 N) are displayed in Fig. 5.
The left figure shows the correlation between the predicted
MRD and the observed MRD, and the right figure shows the
correlation between the predicted Ra and the observed Ra.
The two figures both showcase the consistency between the
predicted values and the the observed values. To showcase
the effectiveness of the PW-DA-DTL method, the predicted
MRD and Ra under new Fn using different methods are shown
in Fig. 6. The curves indicate that the prediction results of
PW-DA-DTL (denoted as PW-DA-MMoE in figures) method
are more closely to the actual labels, which demonstrates the
effectiveness of the proposed method.
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Fig. 5. The MRD and Ra co-prediction results of the proposed PW-DA-DTL
method considering various new normal forces.

Table III presents the evaluation metrics for MRD and Ra

co-prediction using the proposed PW-DA-DTL method and

five benchmark methods. The results for various Fn values
indicate that the PW-DA-DTL method outperforms five bench-
mark methods in most cases. To provide a comprehensive
comparison of the co-prediction methods, the average results
across different Fn values (denoted as “All”) are presented.
On the one hand, the MMoE method exhibits superior co-
prediction performance for new Fn values compared to the
shared-bottom method (which uses a single task-shared expert
network), the CSE method (which combines task-shared and
task-specific expert networks), the OMoE method (which
employs a single task-shared gating network with multiple
task-shared expert networks), and the CGC method (which
utilizes multiple task-specific gating networks, task-shared ex-
pert networks, and task-specific expert networks). The results
showcase that the introduced MMoE method (which integrates
multiple task-specific gating networks with task-shared expert
networks) is effective in balancing the correlation and discrep-
ancy between the MRD and Ra prediction tasks.

On the other hand, ablation experiments for new Fn values
reveal that the proposed PW-DA-DTL method significantly
improves co-prediction accuracy compared to the standard
MMoE method. The results for both MRD and Ra predictions
demonstrate the effectiveness of the pairwise DA strategy
in aligning data distributions between the source and target
domains, even with just one labeled target domain sample.
The proposed PW-DA-DTL method enables manufacturers
to accurately co-predict MRD and Ra in new Fn spaces
without extensive data collection, which facilitates machining
parameter optimization and quality control in RBG.
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Fig. 6. The predicted MRD and Ra under new Fn using the shared-bottom
method, the MMoE method and the proposed PW-DA-DTL method. For
the convenience of the result presentation, prediction results are sorted in
ascending order according to actual labels and displayed every 3 samples.
Methods with significantly poor performance, including CSE, OMoE, and
CGC, are excluded from the figure.

B. Case 2: Co-Prediction of MRD and Ra with New Robotic
Feed Speed

In this section, the MRD and Ra co-prediction results of the
proposed PW-DA-DTL method with different Vw (10 mm/s, 15
mm/s, 20 mm/s, 25 mm/s and 30 mm/s) are displayed in Fig. 7.
The left figure illustrates the correlation between the predicted
MRD and the observed MRD, and the right figure shows the
correlation between the predicted Ra and the observed Ra.
Both figures demonstrate a significant consistency between
the predicted and observed values. The predicted MRD and
Ra under new Vw using different methods are displayed in
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TABLE III
THE MRD AND Ra CO-PREDICTION PERFORMANCE FOR VARIOUS NEW

NORMAL FORCES USING DIFFERENT METHODS

Fn (N) Method RMSE R2 MAPE (%)
MRD Ra MRD Ra MRD Ra

10

Shared-Bottom 0.195 0.792 0.327 0.367 42.492 13.441
CSE 0.211 0.699 0.208 0.507 61.402 15.067

OMoE 0.348 0.924 / 0.137 116.930 24.510
CGC 0.178 0.487 0.437 0.761 49.189 11.316

MMoE 0.147 0.450 0.618 0.795 45.227 9.918
PW-DA-MMoE 0.104 0.260 0.807 0.932 24.220 5.694

15

Shared-Bottom 0.133 0.479 0.919 0.783 15.328 8.548
CSE 0.216 0.788 0.787 0.413 21.136 21.496

OMoE 0.251 0.975 0.712 0.101 44.165 28.235
CGC 0.141 0.511 0.910 0.753 15.841 11.209

MMoE 0.114 0.342 0.941 0.889 15.384 8.372
PW-DA-MMoE 0.110 0.339 0.945 0.892 15.518 8.094

20

Shared-Bottom 0.157 0.365 0.921 0.897 16.538 6.386
CSE 0.182 0.854 0.896 0.437 18.469 21.842

OMoE 0.473 1.163 0.298 / 109.205 28.880
CGC 0.169 0.414 0.911 0.868 15.613 8.492

MMoE 0.146 0.378 0.934 0.890 14.601 7.670
PW-DA-MMoE 0.144 0.377 0.935 0.891 14.557 7.545

25

Shared-Bottom 0.171 0.565 0.933 0.824 9.898 5.671
CSE 0.231 0.923 0.880 0.531 13.946 16.347

OMoE 0.417 1.391 0.612 / 57.472 26.760
CGC 0.181 0.584 0.926 0.812 11.989 5.543

MMoE 0.207 0.517 0.904 0.853 12.950 5.281
PW-DA-MMoE 0.185 0.511 0.924 0.856 12.464 5.079

30

Shared-Bottom 0.326 0.479 0.820 0.790 26.506 10.878
CSE 0.286 1.030 0.863 0.032 21.120 24.695

OMoE 0.627 1.164 0.342 / 64.313 25.299
CGC 0.290 0.647 0.859 0.618 24.786 14.798

MMoE 0.238 0.425 0.905 0.835 18.444 9.486
PW-DA-MMoE 0.230 0.429 0.911 0.832 17.908 9.431

All

Shared-Bottom 0.196 0.536 0.784 0.732 21.952 8.985
CSE 0.225 0.859 0.727 0.384 21.215 19.889

OMoE 0.423 1.123 0.491 0.119 78.417 26.737
CGC 0.192 0.529 0.809 0.762 23.484 10.272

MMoE 0.170 0.422 0.860 0.852 21.321 8.145
PW-DA-MMoE 0.155 0.383 0.904 0.881 16.933 7.169

“/ ” represents a negative R2

Fig. 8. The prediction results of both the MMoE method
and the PW-DA-DTL method are closer to the actual labels
compared to the shared-bottom method. Moreover, the PW-
DA-DTL method exhibits smaller errors when compared with
the MMoE method for most machining parameters, indicating
the effectiveness of the pairwise DA strategy.
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Fig. 7. The MRD and Ra co-prediction results of the proposed PW-DA-DTL
method considering various new robotic feed speeds.

In the experiment, the evaluation metrics of MRD and Ra

co-prediction using the proposed PW-DA-DTL method and

five benchmark methods are recorded in Table IV. The average
results listed in Table IV (as shown in “All”) highlight the
advantages of the proposed PW-DA-DTL method for new
Vw, which can be explained in two key aspects. Firstly,
the MMoE method outperforms other benchmark methods
(including Shared-Bottom, CSE, OMoE, and CGC) in co-
predicting MRD and Ra under new Vw values. The superiority
of the PW-DA-DTL method mainly lies in the employment of
the MMoE method, which makes full use of multiple task-
specific gating networks and task-shared expert networks to
effectively balance task correlation and discrepancy between
MRD and Ra predictions. Experimental results demonstrate
that the utilization of the MMoE method enables robust
modeling of intertwined grinding parameters, even when the
space of Vw varies significantly.

Secondly, ablation experiments reveal that the proposed
PW-DA-DTL method significantly enhances the prediction
performance of the standard MMoE method for MRD predic-
tion, even when trained with just one labeled target domain
sample. In addition, the PW-DA-DTL method achieves com-
petitive performance for Ra prediction (with MAPE = 7.094%)
compared to the MMoE method (with MAPE = 7.168%).
By integrating the pairwise DA strategy, the PW-DA-DTL
method effectively aligns data distributions between source
(existing Vw spaces) and target (new Vw spaces) domains
without heavily relying on labeled target domain samples. The
capability of the proposed pairwise DA strategy is particularly
critical for industrial applications where acquiring labeled data
for every new parameter space is prohibitively expensive and
time-consuming.
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Fig. 8. The predicted MRD and Ra under new Vw using the shared-bottom
method, the MMoE method and the proposed PW-DA-DTL method.
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Fig. 9. Comparison among different methods as well as various working
conditions using the average MAPE metric.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TII.2025.3552652, IEEE Transactions on Industrial Informatics

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



REVISED 9

TABLE IV
THE MRD AND Ra CO-PREDICTION PERFORMANCE FOR VARIOUS NEW

ROBOTIC FEED SPEEDS USING DIFFERENT METHODS

Vw

(mm/s) Method RMSE R2 MAPE (%)
MRD Ra MRD Ra MRD Ra

10

Shared-Bottom 0.427 0.319 0.670 0.921 20.977 6.300
CSE 0.435 0.695 0.658 0.626 16.870 15.003

OMoE 0.504 0.998 0.540 0.229 19.930 19.561
CGC 0.312 0.375 0.824 0.891 18.060 9.066

MMoE 0.310 0.315 0.827 0.923 12.376 7.980
PW-DA-MMoE 0.139 0.319 0.965 0.921 9.403 8.198

15

Shared-Bottom 0.183 0.446 0.948 0.809 22.790 10.855
CSE 0.239 0.409 0.912 0.839 22.528 11.221

OMoE 0.328 0.621 0.834 0.630 40.301 13.128
CGC 0.175 0.279 0.952 0.925 19.353 5.662

MMoE 0.176 0.235 0.952 0.947 16.033 5.664
PW-DA-MMoE 0.141 0.228 0.969 0.950 13.565 5.485

20

Shared-Bottom 0.142 0.428 0.937 0.809 17.515 9.157
CSE 0.146 0.405 0.933 0.829 21.147 8.993

OMoE 0.170 1.023 0.909 / 29.522 19.646
CGC 0.128 0.458 0.948 0.781 18.813 10.409

MMoE 0.115 0.326 0.959 0.889 13.327 7.069
PW-DA-MMoE 0.111 0.321 0.961 0.892 13.640 6.641

25

Shared-Bottom 0.085 0.394 0.943 0.886 15.432 9.031
CSE 0.117 0.489 0.894 0.824 20.405 10.950

OMoE 0.245 1.140 0.534 0.043 56.806 28.304
CGC 0.127 0.722 0.875 0.616 17.285 18.190

MMoE 0.078 0.331 0.953 0.919 13.111 6.585
PW-DA-MMoE 0.075 0.344 0.957 0.913 12.985 6.638

30

Shared-Bottom 0.162 0.775 0.615 0.652 19.396 12.498
CSE 0.177 0.833 0.539 0.598 24.458 12.863

OMoE 0.234 2.190 0.193 / 53.534 44.450
CGC 0.187 0.807 0.483 0.623 27.116 12.406

MMoE 0.114 0.648 0.809 0.757 14.443 8.542
PW-DA-MMoE 0.112 0.655 0.814 0.752 14.293 8.507

All

Shared-Bottom 0.200 0.472 0.823 0.815 19.222 9.568
CSE 0.223 0.566 0.787 0.743 21.082 11.806

OMoE 0.296 1.194 0.602 0.301 40.019 25.018
CGC 0.186 0.528 0.816 0.767 20.125 11.147

MMoE 0.159 0.371 0.900 0.887 13.858 7.168
PW-DA-MMoE 0.116 0.373 0.933 0.886 12.777 7.094

“/ ” represents a negative R2

Fig. 9 shows the comparison results among six methods
(Shared-Bottom, CSE, OMoE, CGC, MMoE, and PW-DA-
DTL) performed on two case studies, where the average
MAPE is adopted as the evaluation metric for MRD and
Ra prediction. Across both case studies, experimental results
highlight the superiority of the proposed PW-DA-DTL method
over selected benchmark methods (including Shared-Bottom,
CSE, OMoE, and CGC) in co-predicting MRD and Ra for new
RBG machining parameter spaces. Notably, the integration of
the pairwise DA strategy enables improving the performance
of the standard MMoE method under data scarcity in new
machining parameter spaces. The findings underscore the prac-
tical value of the proposed method for industrial applications,
where rapid adaptation to new machining parameter spaces
is critical for maintaining precision and reducing operational
costs.

VI. CONCLUSION

In this article, a novel PW-DA-DTL method has been
introduced for MRD and Ra co-prediction with regard to
unseen spaces of RBG machining parameters. The MMoE,
a dual-task learning technique, has been employed to si-
multaneously predict MRD and Ra by balancing their cor-

relation and discrepancy. A pairwise DA strategy has been
developed to significantly strengthen the labeled samples in
target domain, thereby effectively reducing the cross-domain
distribution discrepancy. The proposed PW-DA-DTL method
has been tested on a self-developed RBG system with various
grinding parameters. Experimental results have demonstrated
that the proposed PW-DA-DTL method exhibits significant
superiority in MRD and Ra co-prediction of RBG compared
to five benchmark methods.

In the future, we aim to: 1) develop novel evolutionary
computation methods to optimize the machining parameters
in RBG on the basis of the PW-DA-DTL model [41], [42];
2) compare different distance functions of domain adaptation
for MRD and Ra co-prediction in RBG [43]–[45]; 3) adopt
various filtering and signal processing methods to pre-process
the RBG dataset [46]–[48]; and 4) apply our PW-DA-DTL
method to other multi-task learning applications such as med-
ical engineering, path planning and object detection [49], [50].
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