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Abstract—The leader-follower consensus control problem in
multi-agent systems (MASs) is critical and has received significant
attention. However, the simultaneous achievement of fixed-time
stability and robustness is often challenging in MASs due to
their inherent complexity and uncertainty. This paper proposes
a noise-tolerant fixed-time fuzzy-neural-network controller (NF-
FNNC) to realize the leader-follower consensus of MASs by
utilizing the adaptability of the Takagi-Sugeno fuzzy logic system
(TSFLS). Specifically, the introduction of an integral error term
makes the NF-FNNC have powerful noise tolerance, and a fuzzy
gain parameter generated by TSFLS makes the NF-FNNC have
fuzzy adaptiveness. In addition, a new partition-sign-by-power
activation function is developed to ensure fixed-time stability of
the NF-FNNC. Theoretical analysis and comparative simulations
confirm the superb swift stability and excellent noise tolerance
of the NF-FNNC for achieving the leader-follower consensus of
MASs, as compared with existing controllers.

Index Terms—Fuzzy neural networks, Takagi-Sugeno fuzzy
logic system, multi-agent systems, leader-follower consensus,
noise tolerance.

I. I NTRODUCTION

Cooperative control of multi-agent systems (MASs) has
been recognized as increasingly important for accomplishing
complex tasks [1]–[3]. As the cornerstone of cooperative
control, consensus has been applied successfully in various
domains such as multi-robot systems [4], mobile sensor net-
works [5], and unmanned aerial vehicles [6]. In general, con-
sensus in MASs is categorized into leader-follower consensus
and leaderless consensus, which are characterized by agents
sharing information only with their neighbors, while no global
information or centralized processing system are available
[7]. Therefore, an effective consensus controller should be
designed to allow a collective of agents to reach a harmonious
state based on limited information.

So far, consensus control problems for MASs have attracted
considerable research interest, and numerous control methods
have been proposed. For instance, a distributed dynamic event-
triggered strategy has been introduced in [8] to address both
leaderless consensus and leader-follower consensus in general
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linear MASs. In [9], an adaptive asynchronous strategy has
been put forward for the consensus problem of uncertain
triangular nonlinear MASs. In [10], a novel distributed gra-
dient neural network has been suggested to tackle prevalent
consensus challenges in MASs. On the other hand, in modern
consensus research, the pursuit of robustness can sometimes
lead to the adoption of more cautious control strategies,
which might inadvertently affect fixed-time stability [11]. As
a result, the simultaneous achievement of fixed-time stability
and robustness often becomes challenging.

The recurrent neural network (RNN) has firmly established
itself in the realm of control, with several modified neural
networks stemming from RNN being extensively studied [12],
[13]. Among others, the Zeroing Neural Network (ZNN) [14]
stands out for its efficacy in tackling real-time challenges.
Compared to traditional RNNs, the ZNN effectively curtails
the lag error that accumulates over time. By now, various
modified ZNN models have been leveraged for control tasks
including acoustic source localization [15], synchronization of
chaotic systems [16], and robot trajectory tracking [17].

Given the remarkable capabilities demonstrated by ZNN
in real-time control scenarios, it is imperative to craft a new
leader-follower consensus control protocol that harnesses the
ZNN methodology, where the convergence rate remains a
crucial metric for neural network techniques. In the existing
literature, certain advanced ZNN methods have exhibited both
exponential convergence [14] and finite-time convergence [18],
[19]. Nonetheless, exponential convergence does not allow for
predicting the convergence duration, while the convergence
time in finite-time convergence can be affected by the initial
state. Hence, fixed-time convergence presents a more practical
advantage [16].

Traditional ZNN models are notably sensitive to noise, a
challenge considering noise is inescapable in practical control
applications. As a result, much research effort has been devot-
ed to the performance enhancement of ZNN in the presence of
noise perturbations, and the most common strategy for instill-
ing noise-tolerance in neural network models is the integration
of terms that accumulate historical errors. For example, an
advanced ZNN model, termed the NZNN model, has been
presented in [18] that boasts significant noise resilience and
attains finite-time convergence when addressing certain nonlin-
ear optimization problems. Impressively, the NZNN model can
pinpoint the optimal solution despite the presence of various
external noises. Furthermore, in [20], a ZNN model with both
finite-time convergence and robustness has been devised to
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tackle the Moore-Penrose inversion of dynamic matrices, and
such a ZNN model has been applied to the real-time path-
following problem of redundant manipulators.

Very recently, a closed-loop model has been unveiled in
[21] for continuous motion estimation by integrating the
noise-resilient ZNN method with the long short-term memory
network. This model displays a marked superiority in predic-
tion accuracy and noise attenuation as compared to existing
solutions. Moreover, it is of practical significance to design a
noise-resistant controller with formidable disturbance rejection
capabilities so as to amplify a controller’s adaptability and
flexibility. As shown in [16], the noise-resistant controller de-
sign can also bolster the system’s safety and stability, andthese
attributes underscore the profound importance and relevance
of noise-resistant controllers in real-world applications.

As evidenced in [19], [22], appropriate variable gain pa-
rameters can substantially elevate the efficacy of the ZN-
N approach, thereby outperforming fixed gain parameters.
Yet, variable gain parameters might encounter the parameter
explosion issue over time. Conversely, selecting fixed gain
parameters often proves challenging particularly in real-time
problem computations [23]. On the other hand, the fuzzy logic
system (FLS) is renowned for its prowess in addressing com-
plex nonlinear challenges and has consistently demonstrated
valuable insights into dynamic systems [24]. The FLS can
operate even with incomplete system data and is recognized for
its exceptional fault tolerance and robustness [25]. Employing
the FLS to generate fuzzy gain parameters for neural networks
offers an alternative to both fixed and variable gain parameters,
effectively sidestepping their inherent drawbacks.

Up to now, several FLS-based modified neural network
models have been explored. For example, the interplay be-
tween FLSs and the ZNN method has been examined in
[26]. In [27], two intricate fuzzy neural network models have
been introduced by utilizing adaptive design parameters over
their fixed or time-varying counterparts. Moreover, in [28],
an intelligent fuzzy robust neural network model has been
proposed that combines the ZNN methodology with FLS
according to the time-varying Stein matrix equations. Nonethe-
less, most existing studies have predominantly employed the
Madani FLS. In contrast, the Takagi-Sugeno FLS (TSFLS)
offers a streamlined approach for minimizing computational
complexity [29], and such computational efficiency positions
the TSFLS as a preferable option for real-time scenarios

Pertaining to the above discussions, in this paper, we
investigate a noise-tolerant fixed-time fuzzy-neural-network
controller (NF-FNNC) integrated with the TSFLS to address
the leader-follower consensus problem in MASs. Specifically,
the incorporation of an error integral term in the NF-FNNC’s
design endows it with robust noise tolerance. Simultaneous-
ly, by leveraging a fuzzy gain parameter produced by the
TSFLS, the NF-FNNC attains adaptive control performance.
Furthermore, we introduce and implement a novel partition-
sign-by-power activation function (PSBPAF) within the NF-
FNNC so as to ensure that the MAS achieves consensus
within a predetermined time frame. Theoretical analysis un-
derscores the fixed-time stability and resilience of the NF-
FNNC, and also stipulates a less conservative upper bound

for the stabilization time of the NF-FNNC. Numerical simu-
lations conducted across diverse settings further showcase the
NF-FNNC’s superior convergence rate and satisfactory noise
resistance when contrasted with other control methodologies.

The key contributions of this study can be distilled into the
following four aspects.

1) A noise-tolerant fixed-time fuzzy-neural-network con-
troller is developed that is tailored for the leader-follower
consensus in MASs, which marks the inaugural appli-
cation of the ZNN method to address leader-follower
consensus challenges.

2) Leveraging the proposed PSBPAF, the NF-FNNC
achieves quicker stabilization within a fixed-time frame
than those by alternative methods.

3) In response to the monitored system state, we employ the
TSFLS to dynamically adjust the gain parameter of the
NF-FNNC, thereby bolstering its adaptive robustness.

4) A comprehensive theoretical analysis confirms the fixed-
time stability and noise resilience of systems deploying
our proposed NF-FNNC, where numerical simulations
further corroborate the superior efficacy of our method
in handling the leader-follower consensus within MASs.

The structure of this paper unfolds as follows. Section II
furnishes essential background information. In Section III, we
define the research objectives and elucidate the design process
behind NF-FNNC. Section IV presents several theorems that
evaluate the efficacy of NF-FNNC in both noise-free and
noisy conditions. Numerical simulation outcomes are shared
in Section V. Finally, the paper’s conclusions are drawn in
Section VI.

II. PRELIMINARIES

In this section, we aim to provide basic concepts of graph
theory and detail the design methodology of the TSFLS for
improved comprehension. Furthermore, we will present several
lemmas to reinforce the subsequent proof framework.

A. Graph Theory

The directed graphG = {V , E ,A} is utilized to represent
the topology structure of the MAS consisting ofn agents.
Here, V = {v1, v2, ..., vn} denotes the set of nodes,E ⊆
{(vi, vj)|vi, vj ∈ V and i 6= j} represents the set of edges
connecting the nodes, andA = [aij ] ∈ R

n×n is the adjacency
matrix defined as

aij =

{

1, if j ∈ Ni,

0, else,

whereNi represents the set of neighbor nodes to nodei. The
in-degree matrix is defined asD = diag{d1, d2, ..., dn} with
di =

∑

j 6=i aij . The Laplace matrixL is defined asL = D−A.
For an MAS with one leader andn followers, information

is exchanged among then + 1 agents, and the topology is
denoted aŝG = {V , E ,A,A′}, which has an additional leader
agent compared toG. In particular,A′ = diag{â1, â2, ..., ân}
indicates the leader adjacency matrix, in whichâi = 1 if there
exists communication from the leader to agenti, and âi = 0
otherwise.
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B. Takagi-Sugeno Fuzzy Logic System

The proposed NF-FNNC utilizes the output of TSFLS as the
fuzzy gain parameter to achieve adaptive control. In particular,
system error norm̟ 1 = ‖e(t)‖ and error derivative norm
̟2 = −‖ė(t)‖ are employed as the input of TSFLS to reflect
the system state, and the outputη is generated by the preset
fuzzy logic scheme. Typically, the design process of TSFLS
usually consists of three steps: fuzzification, fuzzy reasoning,
and defuzzification [29].

Fuzzification: In this step, the input̟ 1 and ̟2 should
be mapped to the corresponding fuzzy value based on mem-
bership functions. In this paper, the Gaussian membership
functionMg(·) is employed to fuzzify̟ 1, while the triangular
membership functionMt(·) is utilized to fuzzify ̟2. The
expressions of two membership functions are given as follows
[29]:

• Gaussian membership function:

Mg(τ) = exp

(

−
(τ − c)2

2σ2

)

, (1)

wherec andσ are positive constants.
• Triangular membership function:

Mt(τ) =















0, τ 6 a1,
τ−a1

a2−a1
, a1 < τ 6 a2,

a3−τ
a3−a2

, a2 < τ 6 a3,

0, τ > a3,

(2)

wherea1, a2, anda3 are constants satisfyinga1 < a2 <
a3.

Fuzzy reasoning: Fuzzy rules are known to play a crucial
role in fuzzy reasoning. In this paper, the following if-then
rules are provided as the fuzzy rule setR of the TSFLS.
R1: if ̟1 = PL and̟2 = NL, then o1 = 4̟1 − 3.5̟2 + 8;
R2: if ̟1 = PL and̟2 = NM, theno2 = 4̟1 − 2.5̟2 +6;
R3: if ̟1 = PL and̟2 = NS, theno3 = 4̟1 − 1.5̟2 + 4;
R4: if ̟1 = PL and̟2 = AZ, then o4 = 4̟1 − 0.5̟2 + 2;
R5: if ̟1 = PM and̟2 = NL, then o5 = 2̟1 − 4̟2 + 2;
R6: if ̟1 = PM and̟2 = NM, then o6 = 2̟1 − 3̟2 + 4;
R7: if ̟1 = PM and̟2 = NS, theno7 = 2̟1 − 2̟2 + 6;
R8: if ̟1 = PM and̟2 = AZ, then o8 = 2̟1 −̟2 + 8;
R9: if ̟1 = PS and̟ 2 = NL, then o9 = −4̟2 + 5;
R10: if ̟1 = PS and̟ 2 6= NL, then o10 = 10
where the fuzzy subset PL, PM, and PS denote positive large,
positive medium and positive small, respectively; the fuzzy
subset NL, NM, NS, and AZ represent negative large, negative
medium, negative small, and almost zero, respectively.

In Fig. 1(a), based on the expression of Gaussian mem-
bership function (1), the fuzzy subset PS is acquired when
σ = 2 and c = 0 in (1); the PM is obtained whenσ = 2
and c = 4; and whenσ = 2 and c = 8, the PL is
acquired. Similarly, in Fig. 1(b), based on the expression of
the Triangular membership function (2), the fuzzy subset NM
is obtained whena1 = −12, a2 = −8, anda3 = −4.

The product method in [29] is employed to calculate the
weight of each rule, and the weight ofRi can be described as

wi =Mg(̟1)Mt(̟2), i = 1, 2, ..., 10,
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Fig. 1. Membership functions of the TSFLS.
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Fig. 2. Surface of the TSFLS.

whereMg(̟1) andMt(̟2) indicate the membership degree
of ̟1 and̟2 in the corresponding rule, respectively.

Defuzzification: The defuzzification method, called Weight-
ed Average (Wtaver) [30], is exploited to obtain a precise
outputη of the TSFLS, whereη can be expressed as

η =

∑10
i=1 wioi

∑n

i=1 wi

. (3)

Remark 1: In Fig. 2, the inputs for the TSFLS are repre-
sented as̟ 1 = ‖e(t)‖ and̟2 = −‖ė(t)‖, while the output,
denoted asη, signifies the fuzzy gain parameter used in the
proposed NF-FNNC. This visualization indicates that when
both ̟1 and ̟2 are small, the resultingη is also small;
conversely, as̟ 1 and̟2 increase, so does the fuzzy gain
parameterη. Notably, the control methodology of the TSFLS
is aptly tailored to produce gain parameters for ZNN models,
thereby ensuring adaptability. This circumvents issues like
parameter explosion or challenges associated with determining
the optimal values of existing gain parameters [28].

C. Lemmas about Stability

Lemma 1 ( [31]): The following nonlinear system

δ̇(t) = f(t, δ(t)), δ(0) = δ0, (4)

whereδ̇(t) denotes the time derivative ofδ(t) andf : D → R
n

represents a nonlinear function, has an equilibrium point at the
origin. Furthermore, if there exist a positive definite function
V (δ(t)) : D → R and real numbersl, s > 0, p > 1 satisfying

V̇ (δ(t)) 6 −lV p(δ(t)) − sV (δ(t)), ∀δ(t) ∈ U
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where V̇ (δ(t)) denotes the time derivative ofV (δ(t)), then
there exists a timeT1 such thatV (δ(T1)) = 1 and

T1 6

ln
(

1 + s(1−V 1−p(δ0))
sV 1−p(δ0)+l

)

s(p− 1)

whenV (δ0) > 1.
Lemma 2 ( [32]): For a systemδ̇(t) = f(t, δ(t)) identical

to the one inLemma1, if there exist a positive definite function
V (δ(t)) : D → R and real numbersr, s > 0, 0 < q < 1 such
that

V̇ (δ(t)) 6 −rV q(δ(t)) − sV (δ(t)), ∀δ(t) ∈ U

where V̇ (δ(t)) denotes the time derivative ofV (δ(t)), then
the stabilization timeT (δ0) satisfies

T (δ0) 6
ln(1 + s

r
V 1−q(δ0))

s(1− q)
, δ0 ∈ U.

III. PROBLEM FORMULATION AND CONTROLLER DESIGN

In this section, we will formulate the specific problem
addressed in this paper and detail the design methodology
behind the NF-FNNC. Furthermore, we will introduce a few
controllers as benchmarks for comparison.

A. Problem Formulation

Consider an MAS consisting of one leader andN followers
where the dynamics of agents are described as
{

ż0(t) = hz0(t),

żi(t) = hzi(t) + kui(t) +∆ρi(t), i = 1, 2, 3, ..., N.
(5)

Here,z0(t) is the state of the leader;zi(t) andui(t) denote
the state and the control input of agenti, respectively;∆ρi(t)
is the external noise; andh 6= 0 and k 6= 0 denote system
parameters. The communication topology is denoted asĜ.

The assumptions provided below represent the standard
conditions for MASs to achieve leader-follower consensus
[33], [34].

Assumption 1:The pair(h, k) is controllable.
Assumption 2:The communication topology grapĥG of

MAS (5) consists of a directed spanning tree that has the leader
node as its root.

Definition 1: MAS (5) is said to achieve leader-follower
consensus if the following conditions are met:

lim
t→+∞

‖zi(t)− z0(t)‖ = 0, i = 1, 2, ..., N, and

lim
t→+∞

‖zi(t)− zj(t)‖ = 0, i, j = 1, 2, ..., N,

wherez0(t) is the state of the leader, andzi(t) andzj(t) are
the states of the followers in MAS (5).

According toDefinition 1, to achieve the consensus, the state
difference between each agent should gradually approach zero
over time. In this case, theith error function that measures the
difference in states between theith agent and other agents is
defined as

ei(t) =

N
∑

j=1

(aij(zi(t)− zj(t)) + âi(zi(t)− z0(t))) (6)

whereN is the number of followers in MAS (5),aij denotes
the ij-th element ofA, and âi denotes theii-th element of
A′.

Naturally, based on the communication topologyĜ, the error
function of the whole system is

e(t) = (L+A′)z(t) −A′(1N ⊗ z0(t)), (7)

where z(t) denotes the state of the followers in MAS (5),
1N = [1; ...; 1] ∈ R

N , N is the number of followers, and the
symbol⊗ represents the Kronecker product.

Remark 2:Under aforementioned assumptions, all the
eigenvalues of the matrix(L + A′) have positive real parts
[35].

B. Design of NF-FNNC

In light of the neural network model in [18], a consensus
state observerΘ(t) with an integral unit is devised as

Θ(t) = e(t) + ς

∫ t

0

Ψ(e(ι))dι, (8)

whereς > 0 denotes a fixed gain parameter,Ψ(·) is the pro-
posed partition-sign-by-power activation function (PSBPAF),
and the element ofΨ(·) is formed as

ψ(τ) =



















(α1|τ |
κ1sign(τ) + α2τ) exp (|τ |

ω)

+ α3sign(τ), if |τ | 6 1,

(α1|τ |
κ2sign(τ) + α2τ) exp (|τ |

ω)

+ α3sign(τ), else,

(9)

whereα1, α2, andα3 are positive constants,0 < κ1 < 1,
κ2 > 1, 0 < ω < 1, andsign(·) is defined by

sign(τ) =











1, if τ > 0,

0, if τ = 0,

−1, if τ < 0.

(10)

Furthermore, the noise suppressorΘ̇(t) [36] which incorpo-
rates the fuzzy gain parameter generated by the TSFLS is
formulated as

Θ̇(t) = −ηΨ(Θ(t)) + ̺(t), (11)

where

η =

∑n

i=1 wioi
∑n

i=1 wi

is the fuzzy gain parameter as defined in (3),Ψ(·) is PSBPAF
as in (9), and̺(t) = (L + A′)∆ρ(t) denotes the external
noise.

Remark 3:The role of the noise suppressor is to gauge
the fluctuating noise by leveraging dynamic information from
the synchronization process. Essentially, the noise suppressor
strives to ensure thatηΨ(Θ(t)) converges to̺ (t).

Considering (5), (7), (8), and (11), the noise-tolerant fixed-
time fuzzy neural network (NF-FNN) model is derived as

(L+A′) (hz(t) + ku(t) +∆ρ(t))−A′(1N ⊗ hz0(t))

= −ςΨ(e(t))− ηΨ

(

e(t) + ς

∫ t

0

Ψ(e(ι))dι

)

+ ̺(t).

(12)
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Consequently, based on NF-FNN (12), the NF-FNNC for
leader-follower consensus of MAS (5) is

u(t) = (−hz(t) + C (f1(t) + f2(t))) /k, (13)

where

C = (L+A′)−1,

f1(t) = −ςΨ(e(t))− ηΨ

(

e(t) + ς

∫ t

0

Ψ(e(ι))dι

)

,

f2(t) = A′(1N ⊗ hz0(t)).

C. Controllers for Comparison

1) Traditional controller (TraC) [8]: The TraC of theith
agent for leader-follower consensus can be written as

ui(t) = −ςei(t)

= −ς
N
∑

j=1

(aij(zi(t)− zj(t)) + âi(zi(t)− z0(t))) ,

(14)
where ς > 0 denotes the fixed gain parameter. Hence, we
obtain the following TraC:

u(t) = −ςe(t). (15)

2) Exponential-bi-power distributed gradient neural net-
work controller (EDGNNC) [10]: The dynamics of the
exponential-bi-power distributed gradient neural network
(EDGNN) model [10] is

żi(t) = −ς exp(ceri (t))e
p
i (t), (16)

wherezi(t) and ei(t) denote the state and the error function
of the ith follower, respectively;c > 0, r > 0, and0 < p < 1
are constants. Based on (7) and (16), the EDGNN model for
leader-follower consensus of MAS (5) is acquired as follows:

hz(t) + ku(t) +∆ρ(t) = −ς exp(cer(t))ep(t). (17)

Then, the EDGNNC based on the EDGNN model can be
written as

u(t) = (−hz(t)− ς exp(cer(t))ep(t)) /k. (18)

3) Novel ZNN controller (NZNNC) [18]:Based on [18] and
the modeling process of NF-FNN (12), the NZNN model for
leader-follower consensus is

(L+A′) (hz(t) + ku(t) +∆ρ(t))−A′(1N ⊗ hz0(t))

= −ςe(t)− ς

(

e(t) + ς

∫ t

0

e(ι)dι

)

+ ̺(t).

(19)
Then, the NZNNC can be formulated as

u(t) =
z(t) + C(f1n(t) + f2n(t))

k
, (20)

where

C = (L+A′)−1,

f1n(t) = −ςe(t)− ς

(

e(t) + ς

∫ t

0

e(ι)dι

)

,

f2n(t) = A′(1N ⊗ hz0(t)).

4) Novel Fuzzy-Neural-Network controller (NFNNC):
Analogously, introducing a fuzzy gain parameter to NZNN
model (19), the novel fuzzy neural network (NFNN) model
for leader-follower consensus can be expressed as

(L+A′) (hz(t) + ku(t) +∆ρ(t))−A′(N⊗hz0(t))

= −ςe(t)− η

(

e(t) + ς

∫ t

0

e(ι)dι

)

+ ̺(t),
(21)

where

η =

∑n

i=1 wioi)
∑n

i=1 wi

denotes the fuzzy gain parameter as defined in (3). Then, the
NFNNC obtained by the NFNN model can be represented as

u(t) =
−hz(t) + C (f1f (t) + f2f (t))

k
(22)

where

C = (L+A′)−1,

f1f (t) = −ςe(t)− η

(

e(t) + ς

∫ t

0

e(ι)dι

)

,

f2f (t) = A′(1N ⊗ hz0(t)).

IV. T HEORETICAL ANALYSIS

In this section, we present two theorems about the NF-
FNNC. Through rigorous mathematical analysis, these theo-
rems highlight the fixed-time stability and enhanced noise-
tolerance of the designed NF-FNNC.

Theorem 1:Under noise-free conditions, NF-FNNC (13)
can make MAS (5) achieve leader-follower consensus in fixed
time T̂ whose upper bound satisfies

T̂ 6
η + ς

ης





ln
(

1 + α2

α1

)

α2(1− κ1)
+

ln
(

1 + α2

α1

)

α2 exp(1)(κ2 − 1)



 , (23)

whereη, ς , α1, α2, κ1, andκ2 are defined previously.
Proof: Clearly, the MAS achieves leader-follower consen-

sus when NF-FNN model (12) is stable. First, the NF-FNN
model can be written as

ė(t) = Θ̇(t)− ςΨ(e(t)) (24)

whereΘ̇(t) is the noise suppressor satisfying (11). Evidently,
it is challenging to analyze the stabilization time of system
(24) directly. In this case, it makes sense to consider the
stabilization time forΘ̇(t) to reach0.

We start by dealing with the noise-free case and the noise
suppressorΘ̇(t) = −ηΨ(Θ(t)) + ̺(t) in element wise is
characterized as follows:

θ̇i(t) = −ηψ(θi(t)) (25)

where θ̇i(t) and θi(t) represent theith element ofΘ̇(t) and
Θ(t), respectively.

Next, define a Lyapunov function candidate:

ℓi(t) = |θi(t)|. (26)
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Taking the time derivative ofℓi(t), we obtain

ℓ̇i(t) = sign(θi(t))θ̇i(t)

= sign(θi(t)) (−ηψ(θi(t))) .
(27)

According to the segmented nature of PSBPAF (9), it
is necessary to divide the subsequent proof into two cases
according to the abstract value ofθi(0): one is the case when
|θi(0)| > 1; and the other is the case when|θi(0)| ≤ 1.

Case 1: |θi(0)| > 1. In this case, the stabilization time
consists of two parts: one is the time that|θi(t)| takes to drop
from |θi(0)| to 1; and the other is the time that it takes from
1 to 0. Denote these two parts byt1 and t2, respectively.

1) Let us calculatet1 firstly. Considering PSBPAF (9), (27)
can be reformulated as

ℓ̇i(t) = sign(θi(t))
(

− ηα3sign(θi(t))

− η
(

α1|θi(t)|
κ2sign(θi(t)) + α2θi(t)

)

exp
(

|θi(t)|
ω
))

=− η
(

α3 +
(

α1|θi(t)|
κ2 + α2|θi(t)|

)

exp
(

|θi(t)|
ω
))

<− η exp
(

|θi(t)|
ω
)(

α1|θi(t)|
κ2 + α2|θi(t)|

)

6− ηα1ℓ
κ2

i (t) exp(1)− ηα2ℓi(t) exp(1).
(28)

Consequently, we haveℓi(t) > 0 and ℓ̇i(t) < 0, leading to
the conclusion that (25) is Lyapunov stable. Furthermore, the
maximum stabilization timet1 can be calculated as follows
by utilizing Lemma 1:

t1 6

ln

(

1 +
ηα2 exp(1)(1−ℓ

1−κ2
i

(0))
ηα2 exp(1)ℓ

1−κ2
i

(0)+ηα1 exp(1)

)

ηα2 exp(1)(κ2 − 1)

=

ln

(

1 +
α2(1−ℓ

1−κ2
i

(0))
α2ℓ

1−κ2
i

(0)+α1

)

ηα2 exp(1)(κ2 − 1)

<
ln
(

1 + α2

α1

)

ηα2 exp(1)(κ2 − 1)
.

(29)

2) Next, we calculate the stabilization timet2. Based on
PSBPAF (9), (27) can be represented as

ℓ̇i(t) = sign(θi(t)) (−ηα3sign(θi(t))

−η (α1|θi(t)|
κ1sign(θi(t)) + α2θi(t)) exp (|θi(t)|

ω))

=− η (α3 + (α1|θi(t)|
κ1 + α2|θi(t)|) exp (|θi(t)|

ω))

<− ηα1ℓ
κ1

i (t)− ηα2ℓi(t).
(30)

Similarly, the Lyapunov stability can also be deduced in this
case according to the facts ofℓi(t) > 0 in (26) andℓ̇i(t) < 0
in (30). Furthermore, an upper bound for stabilization timet2
can be calculated as follows based onLemma 2:

t2 6

ln
(

1 + ηα2

ηα1
ℓ1−κ1

i (0)
)

ηα2(1 − κ1)
6

ln
(

1 + α2

α1

)

ηα2(1− κ1)
. (31)

Concluding the above discussion, when|θi(0)| > 1, the
stabilization time satisfies

T1i = t1 + t2

<
ln
(

1 + α2

α2+α1

)

ηα2 exp(1)(κ2 − 1)
+

ln
(

1 + α2

α1

)

ηα2(1− κ1)
.

(32)

Case 2: |θi(0)| 6 1. In this case, the stabilization time is
certainly equal to or less thant2, and the stabilization time
of θi(t) converges from1 to 0, which still adheres to the
stabilization time upper boundT1i.

From the aforementioned discussion, we know thatθi(t) =
0 when t > T1i. Thus, (24) can be reformulated as

ėi(t) = −ςψ(ei(t)) (33)

wheret > T1i.
The expressions oḟei(t) in (33) andθ̇i(t) in (25) only differ

in the gain parameters, and (8) indicates thatei(0) = θi(0).
Consequently, the stabilization timeT2i of (33) can be calcu-
lated by a similar method as inCase 1, which gives

T2i <
ln
(

1 + α2

α1

)

ςα2(1− κ1)
+

ln
(

1 + α2

α1

)

ςα2 exp(1)(κ2 − 1)
. (34)

Summarizing the analysis conducted so far, we obtain the
stabilization timeTi of ith subsystem as

Ti = T1i + T2i (35)

which confirms that the NF-FNNC achieves the leader-
follower consensus for the MAS (5) within a fixed time of
T̂ calculated by:

T̂ = max{Ti}

<
η + ς

ης





ln
(

1 + α2

α1

)

α2(1− κ1)
+

ln
(

1 + α2

α1

)

α2 exp(1)(κ2 − 1)



 .
(36)

Note that the upper bound of stabilization timêT is not
influenced by the initial state of MAS (5) but, instead, is
dependent solely on the parameters of the NF-FNNC. The
proof is now complete.

Theorem 2:Consider the external noise̺(t) satisfying
|̺i(t)| < ηα3. Then, under NF-FNNC (13), MAS (5) achieves
the leader-follower consensus in a fixed time ofT̂ whose upper
bound satisfies

T̂ 6
η + ς

ης





ln
(

1 + α2

α1

)

α2(1− κ1)
+

ln
(

1 + α2

α1

)

α2 exp(1)(κ2 − 1)



 . (37)

Proof: Similar to Theorem 1, we can calculate the sta-
bilization time for Θ̇(t) to approach0 by considering (24)
firstly. In this case, theith subsystem corresponding to (11) is

θ̇i(t) = −ηψ(θi(t)) + ̺i(t) (38)

0

6

5

4

3

2

1

Fig. 3. Communication topology of MAS (5).
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Fig. 4. States and errors of the MAS defined inExample 1with different control methods whenz0(t) = 3.

where ̺i(t) represents the external noise. Then, define a
Lyapunov function for System (38) as

ℓi(t) = |θi(t)|
2. (39)

Combining with (38), the time derivative of (39) is comput-
ed as follows:

ℓ̇i(t) = 2θi(t)θ̇i(t)

= 2θi(t) (−ηψ(θi(t)) + ̺i(t)) .
(40)

Similar to the proof ofTheorem 1, we consider two cases
for (40) because of the segmented nature of PSBPAF (9).

We first discuss the case|θi(0)| > 1, in which the stabi-
lization time consists of two parts: one is the time that|θi(0)|
takes to drop from|θi(0)| to 1, denoted byt1; and the other
is the time that|θi(0)| needs to drop from1 to 0, denoted by
t2.

1) We calculatet1 first. Taking PSBPAF (9) into consider-
ation, (40) can be expressed as

ℓ̇i(t) = 2θi(t)
(

̺i(t)− η
(

α3sign(θi(t))

+ (α1|θi(t)|
κ2sign(θi(t)) + α2θi(t)) exp (|θi(t)|

ω)
)

)

= 2θi(t)̺i(t)− 2ηα1|θi(t)|
1+κ2 exp (|θi(t)|

ω)

− 2ηα2|θi(t)|
2 exp (|θi(t)|

ω)− 2ηα3|θi(t)|

6 2 (|θi(t)||̺i(t)| − ηα3|θi(t)|)

− 2η exp (|θi(t)|
ω)

(

α1|θi(t)|
1+κ2 + α2|θi(t)|

2
)

.
(41)

Additionally, under the condition|̺i(t)| 6 ηα3, (41) can
be expressed more explicitly as

ℓ̇(t) 6 2η exp
(

|θi(t)|
ω
2

)

(

α1ℓ
1+κ2

2

i (t) + α2ℓi(t)

)

<− 2ηα1 exp(1)ℓ
1+κ2

2

i (t)− 2ηα2 exp(1)ℓi(t).

(42)

Consequently, according toLemma 1, the upper bound of
time for |θi(t)| converging to1 is

t1 6

ln

(

1 +
ηα2 exp(1)(1−ℓ

1−κ2
i

(0))
ηα2 exp(1)ℓ

1−κ2
i

(0)+ηα1 exp(1)

)

ηα2 exp(1)(κ2 − 1)

=

ln

(

1 +
α2(1−ℓ

1−κ2
i

(0))
α2ℓ

1−κ2
i

(0)+α1

)

ηα2 exp(1)(κ2 − 1)

<
ln
(

1 + α2

α1

)

ηα2 exp(1)(κ2 − 1)
.

(43)

2) Next, we calculatet2. In this case, (40) can be reformu-
lated as

ℓ̇(t) < 2η exp
(

|θi(t)|
ω
2

)

(

α1ℓ
1+κ1

2

i (t) + α2ℓi(t)

)

<− 2ηα1ℓ
1+κ1

2

i (t)− 2ηα2ℓi(t).

(44)

Analogously, the upper bound oft2 for |θi(t)| to drop from1
to 0 can be calculated as follows on the basis ofLemma 2:

t2 <
ln
(

1 + ηα2

ηα1
ℓ1−κ1

i (0)
)

ηα2(1− κ1)
<

ln
(

1 + α2

α1

)

ηα2(1− κ1)
. (45)
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Fig. 5. States and errors of the MAS defined inExample 1with different control methods whenz0(t) = sin(t).
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Fig. 6. States and errors of the MAS defined inExample 2with NF-FNNC (13) whenz0(t) = (3 sin(t), 2 cos(2t)).

Therefore, whenθi(0) > 1, the stabilization timeT1i is

T1i = t1 + t2

<
ln
(

1 + α2

α1

)

ηα2 exp(1)(κ2 − 1)
+

ln
(

1 + α2

α1

)

ηα2(1− κ1)
.

(46)

Now, we are in a position to discuss the case of|θi(0)| 6 1.
In this case, the stabilization time is certainly less than or equal
to t2, which is the stabilization time ofθi(t) (converging from
1 to 0) having an upper bound ofT1i. Based on the previous
analysis, we know thatθi(t) = 0 is stable whent > T1i. In
addition, we can deduce from (24) that, whent > T1i, system
ėi(t) = −ςψ(ei(t)) is stable if and only if MAS (5) reaches
leader-follower consensus. Accordingly, the stabilization time
of ėi(t) = −ςψ(ei(t)) can be calculated along a similar line to
the proof ofTheorem 1, and is thus omitted here. In particular,

T2i satisfies

T2i <
ln
(

1 + α2

α1

)

ςα2(1− κ1)
+

ln
(

1 + α2

α1

)

ςα2 exp(1)(κ2 − 1)
. (47)

To this end, we conclude that theith subsystem is
stable within the time periodTi with Ti = T1i +
T2i. Overall, MAS (5) can reach the leader-follower
consensus under the control of NF-FNNC in the pres-
ence of the external noise within a fixed time of̂T :
T̂ = max{Ti} = max{T1i + T2i}

=
η + ς

ης





ln
(

1 + α2

α1

)

α2(1 − κ1)
+

ln
(

1 + α2

α1

)

α2 exp(1)(κ2 − 1)



 ,
and this

ends the proof.
Remark 4: In Theorems 1 and 2, we have delved into an

NF-FNNC enhanced with the TSFLS to tackle the leader-
follower consensus problem in MASs. The integration of an
error integral term during the NF-FNNC’s formulation boosts
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Fig. 7. States and errors of the MAS defined inExample 2with different control methods whenz0(t) = (3 sin(t), 2 cos(2t)).
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Fig. 8. Comparison of errors in the MAS defined inExample 3with different external noises whenz0(t) = 3.

its resistance to noise. Concurrently, the application of afuzzy
gain parameter, derived from the TSFLS, equips the NF-FNNC
with adaptive control capabilities. We have also incorporated
a newly devised PSBPAF in the NF-FNNC, ensuring that the
MAS reaches consensus within a set time span with its upper
bound calculated in Theorems 1 and 2. Theoretical evaluations
have highlighted the time-bound stability and robustness of the
NF-FNNC, offering a more relaxed upper limit for its stabi-
lization duration. In next section, we will use comprehensive
numerical tests to further amplify the advantages of the NF-
FNNC, particularly its swift convergence and notable noise
resilience, outperforming alternative control strategies.

Remark 5:The leader-follower consensus control problem
for MASs has recently drawn a great deal of research attention
with a rich body literature available. In comparison to the
existing results, the consensus algorithm proposed in thispaper
exhibits the following distinct novelties: 1) the NF-FNNCA
is specifically designed to accommodate the requirements of

noise-tolerance within a fixed time, and this represents the
first time the ZNN method has been applied to address leader-
follower consensus challenges; 2) by the proposed PSBPAF,
quicker stabilization within a fixed-time frame is achieved
by the NF-FNNC compared to other methods; 3) the gain
parameter of the NF-FNNC is dynamically adjusted using
the TSFLS, resulting in enhanced adaptive robustness; and 4)
the fixed-time stability and noise resilience of systems using
the proposed NF-FNNC are confirmed through comprehensive
theoretical analysis, and the superior efficacy of the method
in managing the leader-follower consensus within MASs is
validated by numerical simulations.

V. NUMERICAL SIMULATION

In this section, we present a series of numerical simula-
tions to validate the effectiveness, rapid fixed-time stability,
and robustness of the proposed NF-FNNC. Additionally, the
performance of the NF-FNNC is compared with several con-
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trollers mentioned in Section III. In this part,α1 = 1, α2 = 1,
α3 = 1, κ1 = 0.2, κ2 = 2, and ω = 0.5 in PSBPAF (9).
The fixed gain parameter is set asς = 1, and the fuzzy gain
parameter is set asη ∈ [10, 80]. Additionally, c = 2, r = 0.5,
andp = 0.5 in EDGNNC (18). The considered MAS has one
leader and6 followers, of which the communication structure
Ĝ is exhibited in Fig. 3.

A. Example 1

Consider two situations: 1) the leader has a fixed state of
z0(t) = 3; and 2) the leader has a time-varying state ofz0(t) =
sin(t). As for followers in the MAS, the initial stateszi(0), i ∈
{1, 2, · · · , 6} are randomly generated in[−10, 10].

States and system errors of the MAS controlled by the
aforementioned controllers are illustrated in Figs. 4 and 5.
Thereinto, the results depicted in Fig. 4 display that with the
NF-FNNC, the MAS can reach leader-follower consensus in
the shortest time, while with other controllers, it takes a rela-
tively long time for the MAS to reach consensus. In Fig. 5, the
NF-FNNC still makes the MAS with a dynamic leader achieve
consensus fastest, while TraC (15) and EDGNNC (18) cannot
make the MAS reach a consensus in this case. In conclusion,
the superior control performance to other controllers of NF-
FNNC with a fuzzy gain parameter and the state-of-the-art
PSBPAF is demonstrated.

B. Example 2

In this example, a more complex consensus problem of the
MAS on a plane is considered. Consequently, stateszxi (t) and
zyi (t) are employed to describe the position information of the
ith agent in x-direction and y-direction. The state of the leader
is z0(t) = (zx0 (t), z

x
0 (t)) = (3 sin(t), 2 cos(2t)), and the initial

position stateszi(0) of the followers are randomly generated
in [−10, 10].

Figure 6 reveals that under the control of NF-FNNC, the
position of followers in the MAS can be synchronized to the
position of the leader in a short time, that is, the MAS quickly
reaches a consensus state. From Figs. 7(a)-7(e), trajectories of
each agent in the MAS under different control methods can be
observed, wherein the NF-FNNC can make each agent achieve
a consensus with the leader in the fastest time. In contrast,
other control methods fail to achieve leader-follower consensus
of the MAS or require a significant amount of time to reach
consensus. Furthermore, Fig. 7(f) exhibits the error variation
of each controller. As shown, the error of NF-FNNC converges
to zero fastest, which reflects the superior performance of NF-
FNNC in this case.

C. Example 3

The attainment of consensus for MAS can be easily disrupt-
ed by external noises. Hence, noise resilience is of paramount
importance for a consensus protocol. Significantly, the NF-
FNNC introduced in this study boasts potent noise resistance,
enabling the MAS to achieve leader-follower consensus swift-
ly, even in the face of substantial external noise. Subsequent
numerical simulations will attest to the noise tolerance capabil-
ities of the NF-FNNC. In these simulations, the leader retains

a constant state, while the initial stateszi(0) of the6 followers
are randomly generated in[−10, 10].

As shown in Fig. 8, variation of system error with different
controllers is displayed under four kinds of external noises:
̺i(t) = 20; ̺i(t) = 5 sin(t); ̺i(t) = exp(−0.1t); and
̺i(t) = 50 that only appears whent > 4. Notably, results in
Fig. 8 evidence that only NF-FNNC (13) can make the MAS
achieve consensus ideally, which demonstrates the superior
noise-tolerance of NF-FNNC. In contrast, other controllers for
comparison cannot make the system reach stable effectively,
and it is evident that they do not have a satisfactory abilityto
suppress noises.

VI. CONCLUSION

In this paper, a noise-tolerant fixed-time fuzzy-neural-
network controller has been proposed for the leader-follower
consensus of a class of MASs, which incorporates the ad-
vantages of the zeroing neural network method in real-time
control problems and the adaptive control performance of
Takagi-Sugeno fuzzy logic systems. Several theorems have
validated the fixed-time stability and excellent noise tolerance
of the NF-FNNC. In particular, simulations have demonstrat-
ed that the proposed NF-FNNC has a shorter stabilization
time and spectacular noise tolerance performance than other
consensus controllers. Moreover, the NF-FNNC has consis-
tently outperformed other methods under various external
noise disturbances. In conclusion, the NF-FNNC is novel and
effective, which provides a new method for the leader-follower
consensus control of the MAS.
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varying-parameter finite-time zeroing neural networks forsolving time-
varying Sylvester equation and its application,”J. Comput. Appl. Math.,
vol. 403, p. 113826, 2022.

[20] Z. Tan, L. Xiao, S. Chen, and X. Lv, “Noise-tolerant and finite-time
convergent ZNN models for dynamic matrix Moore-Penrose inversion,”
IEEE Trans. Ind. Inf., vol. 16, no. 3, pp. 1591–1601, 2019.

[21] B. Zhang, X. Lan, Y. Liu, G. Wang, and Z. Sun, “sEMG-based
continuous motion estimation of upper limb using a novel noise-tolerant
zeroing neurodynamic model combined with LSTM network,”Digital
Signal Process., vol. 133, p. 103828, 2023.

[22] Z. Zhang, Z. Li, and S. Yang, “A barrier varying-parameter dynamic
learning network for solving time-varying quadratic programming prob-
lems with multiple constraints,”IEEE Trans. Cybern., vol. 52, no. 9, pp.
8781–8792, 2022.

[23] X. Wang, Y. Sun, and D. Ding, “Adaptive dynamic programming for
networked control systems under communication constraints: A survey
of trends and techniques,”Int. J. Netw. Dyn. Intell., pp. 85–98, 2022.

[24] J. Cheng, Y. Wang, J. H. Park, J. Cao, and K. Shi, “Static output feedback
quantized control for fuzzy Markovian switching singularly perturbed
systems with deception attacks,”IEEE Trans. Fuzzy Syst., vol. 30, no. 4,
pp. 1036–1047, 2021.

[25] Z. Ruan, Q. Yang, S. S. Ge, and Y. Sun, “Adaptive fuzzy fault tolerant
control of uncertain MIMO nonlinear systems with output constraints
and unknown control directions,”IEEE Trans. Fuzzy Syst., vol. 30, no. 5,
pp. 1224–1238, 2022.

[26] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Kara-
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