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Abstract—The leader-follower consensus control problem in linear MASs. In [9], an adaptive asynchronous strategy has
multi-agent systems (MASS) is critical and has received significant peen put forward for the consensus problem of uncertain
attention. However, the simultaneous achievement of fixed-time triangular nonlinear MASs. In [10], a novel distributed gra-
stability and robustness is often challenging in MASs due to . '
their inherent complexity and uncertainty. This paper proposes dient neural network h_as been suggested to tackle_ prevalent
a noise-tolerant fixed-time fuzzy-neural-network controller (NF-  consensus challenges in MASs. On the other hand, in modern
FNNC) to realize the leader-follower consensus of MASs by consensus research, the pursuit of robustness can sometimes
utilizing the adaptability of the Takagi-Sugeno fuzzy logic system |ead to the adoption of more cautious control strategies,
(TSFLS). Specifically, the introduction of an integral error term which might inadvertently affect fixed-time stability [11]. As

makes the NF-FNNC have powerful noise tolerance, and a fuzzy It the simult hi t of fixed-ti tabilit
gain parameter generated by TSFLS makes the NF-FNNC have a result, the simuftaneous achievement ot ixed-ime stability

fuzzy adaptiveness. In addition, a new partition-sign-by-power and robustness often becomes challenging.
activation function is developed to ensure fixed-time stability of ~ The recurrent neural network (RNN) has firmly established

the fNF-Fﬂ':lNC- Th%OFGti_fthm flnbé}lbt/SiS a(;nd Corr|1|pa|:[ativ¢_9 sirtmIJIations itself in the realm of control, with several modified neural
confirm tne superp swirt stadbllity ana excellent noise tolerance H H R H
of the NF-FNN% for achieving t)klle leader-follower consensus of networks stemming from RNN being extensively studied [12],
MASs, as compared with existing controllers. [13]. Among oth_ers, the Zerpmg Ne.ural Network (ZNN) [14]
stands out for its efficacy in tackling real-time challenges.
Compared to traditional RNNs, the ZNN effectively curtails
the lag error that accumulates over time. By now, various
modified ZNN models have been leveraged for control tasks
including acoustic source localization [15], synchronization of
|. INTRODUCTION chaotic systems [16], and robot trajectory tracking [17].

Cooperative control of multi-agent systems (MASs) has Given the remarkable capabilities demonstrated by ZNN
been recognized as increasingly important for accomplishiffyréal-time control scenarios, it is imperative to craft a new
complex tasks [1]-[3]. As the cornerstone of cooperatigader-follower consensus control protocol that harnessgs the
control, consensus has been applied successfully in variéd$N methodology, where the convergence rate remains a
domains such as multi-robot systems [4], mobile sensor ng_fuual metric fpr neural network techniques. In thg existing
works [5], and unmanned aerial vehicles [6]. In general, COHterature,_certam advanced ZNN m_e_thoc_is have exhibited both
sensus in MASs is categorized into leader-follower consendgigonential convergence [14] and finite-time convergence [18],
and leaderless consensus, which are characterized by agith Nonetheless, exponential convergence does not allow for
sharing information only with their neighbors, while no globaPredicting the convergence duration, while the convergence
information or centralized processing system are availadig in finite-time convergence can be affected by the initial
[7]. Therefore, an effective consensus controller should §tte. Hence, fixed-time convergence presents a more practical

designed to allow a collective of agents to reach a harmonicidvantage [16]. - _
state based on limited information. Traditional ZNN models are notably sensitive to noise, a

So far, consensus control problems for MASs have attract%@al!enge considering noise is inescapable in practical control
considerable research interest, and numerous control meth@gglications. As a result, much research effort has been devot-
have been proposed. For instance, a distributed dynamic ev&t10 the performance enhancement of ZNN in the presence of
triggered strategy has been introduced in [8] to address b&piSe perturbations, and the most common strategy for instill-

leaderless consensus and leader-follower consensus in gerlBganoise-tolerance in neural network models is the integration
of terms that accumulate historical errors. For example, an
This work was supported in part by the National Natural Science Foundatia@glvanced ZNN model, termed the NZNN model, has been
of China under Grant 61866013. . . presented in [18] that boasts significant noise resilience and
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tackle the Moore-Penrose inversion of dynamic matriced, afor the stabilization time of the NF-FNNC. Numerical simu-
such a ZNN model has been applied to the real-time pathtions conducted across diverse settings further shanites
following problem of redundant manipulators. NF-FNNC's superior convergence rate and satisfactoryenois
Very recently, a closed-loop model has been unveiled iasistance when contrasted with other control methodetogi
[21] for continuous motion estimation by integrating the The key contributions of this study can be distilled into the
noise-resilient ZNN method with the long short-term memorfpllowing four aspects.
network. This model displays a marked superiority in predic 1) A noise-tolerant fixed-time fuzzy-neural-network con-
tion accuracy and noise attenuation as compared to existing troller is developed that is tailored for the leader-follaw

solutions. Moreover, it is of practical significance to dgsa consensus in MASs, which marks the inaugural appli-
noise-resistant controller with formidable disturbanejection cation of the ZNN method to address leader-follower
capabilities so as to amplify a controller's adaptabilityda consensus challenges.

flexibility. As shown in [16], the noise-resistant conteslide- 2) Leveraging the proposed PSBPAF, the NF-FNNC
sign can also bolster the system’s safety and stability}laese achieves quicker stabilization within a fixed-time frame
attributes underscore the profound importance and retevan than those by alternative methods.

of noise-resistant controllers in real-world applicaton 3) Inresponse to the monitored system state, we employ the

As evidenced in [19], [22], appropriate variable gain pa-  TSFLS to dynamically adjust the gain parameter of the
rameters can substantially elevate the efficacy of the ZN-  NF-FNNC, thereby bolstering its adaptive robustness.
N approach, thereby outperforming fixed gain parameters.4) A comprehensive theoretical analysis confirms the fixed-
Yet, variable gain parameters might encounter the paramete time stability and noise resilience of systems deploying
explosion issue over time. Conversely, selecting fixed gain  our proposed NF-FNNC, where numerical simulations
parameters often proves challenging particularly in teaé further corroborate the superior efficacy of our method
problem computations [23]. On the other hand, the fuzzydogi in handling the leader-follower consensus within MASs.
system (FLS) is renowned for its prowess in addressing com-the structure of this paper unfolds as follows. Section I
plex nonlinear challenges and has consistently demoasitraf nishes essential background information. In Sectibnate
valuable insights into dynamic systems [24]. The FLS cajkfine the research objectives and elucidate the desigesgsoc
operate even with incomplete system data and is recogmizedfjenind NF-FNNC. Section IV presents several theorems that
its exceptional fault tolerance and robustness [25]. EFip® ayaluate the efficacy of NF-FNNC in both noise-free and
the FLS to generate fuzzy gain parameters for neural ne8vogisy conditions. Numerical simulation outcomes are share

offers an alternative to both fixed and variable gain paramset jn Section V. Finally, the paper’s conclusions are drawn in
effectively sidestepping their inherent drawbacks. Section VI.

Up to now, several FLS-based modified neural network
models have been explored. For example, the interplay be- Il. PRELIMINARIES
tween FLSs and the ZNN method has been examined in . . . . .
o In this section, we aim to provide basic concepts of graph
[26]. In [27], two intricate fuzzy neural network models leav ; .
. o . : theory and detail the design methodology of the TSFLS for
been introduced by utilizing adaptive design parametees ov . .
o . . . Improved comprehension. Furthermore, we will presentrsgve
their fixed or time-varying counterparts. Moreover, in [28] .
. . lemmas to reinforce the subsequent proof framework.
an intelligent fuzzy robust neural network model has been
proposed that combines the ZNN methodology with FLS
according to the time-varying Stein matrix equations. Nbae A. Graph Theory
less, most existing studies have predominantly employed th The directed graply = {V, &, A} is utilized to represent
Madani FLS. In contrast, the Takagi-Sugeno FLS (TSFL$)e topology structure of the MAS consisting of agents.
offers a streamlined approach for minimizing computationslere, V. = {vi,vs,...,v,} denotes the set of nodes, C
complexity [29], and such computational efficiency posisio {(vi,v;)|vi,v; € V andi # j} represents the set of edges
the TSFLS as a preferable option for real-time scenarios connecting the nodes, andl= [a;;] € R"*" is the adjacency
Pertaining to the above discussions, in this paper, vatrix defined as
investigate a noise-tolerant fixed-time fuzzy-neuralawek 1,if j € N,
controller (NF-FNNC) integrated with the TSFLS to address Qij =
the leader-follower consensus problem in MASs. Specificall
the incorporation of an error integral term in the NF-FNNC'svhere N; represents the set of neighbor nodes to nodehe
design endows it with robust noise tolerance. Simultaneous-degree matrix is defined &8 = diag{ds, ds, ..., d, } with
ly, by leveraging a fuzzy gain parameter produced by thk =}, a;;. The Laplace matrix is defined as = D—A.
TSFLS, the NF-FNNC attains adaptive control performance.For an MAS with one leader and followers, information
Furthermore, we introduce and implement a novel partitiors exchanged among the + 1 agents, and the topology is
sign-by-power activation function (PSBPAF) within the NFdenoted ay/ = {V, £, A, A'}, which has an additional leader
FNNC so as to ensure that the MAS achieves consensgent compared tg. In particular, A’ = diag{a, as, ..., Gn }
within a predetermined time frame. Theoretical analysis uindicates the leader adjacency matrix, in which= 1 if there
derscores the fixed-time stability and resilience of the NExists communication from the leader to agénanda; = 0
FNNC, and also stipulates a less conservative upper bowtterwise.

0, else,
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B. Takagi-Sugeno Fuzzy Logic System 1

The proposed NF-FNNC utilizes the output of TSFLS as th®®
fuzzy gain parameter to achieve adaptive control. In paldic ¢
system error normww; = |le(t)|| and error derivative norm 04
wo = —||&(t)|| are employed as the input of TSFLS to refleci.
the system state, and the outputs generated by the preset o - -
fuzzy logic scheme. Typically, the design process of TSFL! ¢ 2 4 6 8 12 10 8 -6 -4 2 0
usually consists of three steps: fuzzification, fuzzy reasy,
and defuzzification [29].

Fuzzification In this step, the inputs; and @, should Fig- 1. Membership functions of the TSFLS.
be mapped to the corresponding fuzzy value based on mem-
bership functions. In this paper, the Gaussian membership
function M, (-) is employed to fuzzifyto,, while the triangular

Déqtf of members/ip

(a) Gaussian (b) Triangular

membership function\/;(-) is utilized to fuzzify w,. The 80+
expressions of two membership functions are given as fallow
[29]2 60+
o Gaussian membership function:
40+
B (r—c)?
) =esp (-T50 ) ©

wherec and o are positive constants.

« Triangular membership function: 8 @i 4 )
o O
07 T < a1,
—4 . g <T<a Fig. 2. Surface of the TSFLS.
Mt(T) _ 051231(?7 1 x W2, (2) g
az—az’ ax < T g as,
07 T 2 as,

o where M, (w1) and M, (w-) indicate the membership degree
whereay, az, andas are constants satisfyings < a2 < of w; andw, in the corresponding rule, respectively.

as. DefuzzificationThe defuzzification method, called Weight-

Fuzzy reasoningFuzzy rules are known to play a crucialed Average (Wtaver) [30], is exploited to obtain a precise

role in fuzzy reasoning. In this paper, the following if-the outputyn of the TSFLS, where) can be expressed as

rules are provided as the fuzzy rule §etof the TSFLS. 10

Ryt if @, = PL anda, = NL, theno; = 4wy — 3.5w5 + §; = izt Vi% 3)
Ry if @y = PL andwy = NM, theno, = 4 — 2.5, + 6; 2im1 Wi

Rstif @y = PL andw, = NS, thenos = 4w — 1.5w; + 4; Remark 1:In Fig. 2, the inputs for the TSFLS are repre-
Ryt if @wy =PL andw; = AZ, thenoy = 4wy — 0.5w2 + 2] sented aso; = ||e(t)| andwy = —||é(t)||, while the output,

Rs: if wi =PM andw; = NL, theno; = 2w, —4w2 + 2, denoted ag, signifies the fuzzy gain parameter used in the

Re: if w1 =PM andw; = NM, thenos = 201 — 3wz +4;  proposed NF-FNNC. This visualization indicates that when

Rrtif w; = PM andw; = NS, thenor = 21 — 2w2 +6;  both w; and w, are small, the resulting is also small;

Rs:if @y = PM andw; = AZ, thenos = 2w — w2 + 8, conversely, ago; and w, increase, so does the fuzzy gain

Ro:

If w1

= PS andwsy = NL, thenog = —4wy + 5;

Rio: if w1 = PS ande 75 NL, then 010 = 10
where the fuzzy subset PL, PM, and PS denote positive larggereby ensuring adaptability. This circumvents issuée i
positive medium and positive small, respectively; the §uzzyarameter explosion or challenges associated with detergni

subset NL, NM, NS, and AZ represent negative large, negatiffs optimal values of existing gain parameters [28].
medium, negative small, and almost zero, respectively.

In Fig. 1(a), based on the expression of Gaussian mem-

bership function (1), the fuzzy subset PS is acquired wh

o =2 andc = 0 in (1); the PM is obtained whea = 2

and ¢ = 4; and wheno = 2 andc¢ = 8, the PL is
acquired. Similarly, in Fig. 1(b), based on the expressibn o

parameter). Notably, the control methodology of the TSFLS
is aptly tailored to produce gain parameters for ZNN models,

Lemmas about Stability
Lemma 1 ( [31]): The following nonlinear system

3(t) = f(t,8(t), &(0) =, (4)

the Triangular membership function (2), the fuzzy subset NMhereS(t) denotes the time derivative 6{¢) andf : D — R"
is obtained whem; = —12, ay = —8, andaz = —4.

The product method in [29] is employed to calculate therigin. Furthermore, if there exist a positive definite ftion
weight of each rule, and the weight &f; can be described asV/(§(¢)) : D — R and real numberg s > 0, p > 1 satisfying

w; = Mq(wl)Mt(WQ), 1= 1, 2, ceey 10,

represents a nonlinear function, has an equilibrium pditiie

V(8(t)) < —IVP(8(t)) — sV(d(t), V&(t) € U
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where V(4(t)) denotes the time derivative 6f (5(t)), then whereN is the number of followers in MAS (5);,; denotes

there exists a tim& such thatV’(6(71)) =1 and the ij-th element ofA, anda; denotes thei-th element of
_ A
s(1-V1=P(§, ~
T < In (1 + 4&{/1—1)(50():_1))) Naturally, based on the communication topol@gyhe error
LS s(p—1) function of the whole system is
whenV (dg) > 1. e(t)=(L+A)z(t) — A'(1y ® 20(t)), @)

Lemma 2 ( [32]): For a systemd(t) = f(t,d(t)) identical
to the one inLemmal, if there exist a positive definite function
V(4(t)) : D — R and real numbers, s > 0, 0 < ¢ < 1 such

where z(t) denotes the state of the followers in MAS (5),
1y = [1;...;1] € RN, N is the number of followers, and the

symbol® represents the Kronecker product.
that . .
. Remark 2:Under aforementioned assumptions, all the
V(8(t)) < —rVI(8(t)) — sV (6(t)), Vo(t) eU eigenvalues of the matrixC + .A’) have positive real parts
[35].

where V(d(t)) denotes the time derivative 6f (8(t)), then
the stabilization timeT'(d,) satisfies

B. Design of NF-FNNC
In(1+ 2V19(8)) d

1 , 6p € U. In light of the neural network model in [18], a consensus
s(1—q) state observe®(¢) with an integral unit is devised as

T(do) <

[1l. PROBLEM FORMULATION AND CONTROLLERDESIGN ot , t!p d 8
In this section, we will formulate the specific problem () = el )+</0 (e(t))de, ®)

addressed in this paper and detail the design methodoltwp(ereg > 0 denotes a fixed gain paramet@r(.) is the pro-

behind the NF-FNNC. Furthermore, we will introduce a fe\%osed partition-sign-by-power activation function (PSBR
controllers as benchmarks for comparison. and the element of(-) is formed as

A. Problem Formulation (cn|r["*sign(r) + ao7) exp (|7]¥)

Consider an MAS consisting of one leader axidollowers W(r) = + O‘3Sigr.1(7)’ if 7] <1, )
where the dynamics of agents are described as (on|7|"sign(r) + aoT) exp (|7]*)
2o(t) = hao(t), + agsign(7), else,
4i(t) = hzi(t) + kug(t) + Api(t), i =1,2,3,...,N. ) whereas, as, andas are positive constants) < x; < 1,

ke > 1,0 < w < 1, andsign(-) is defined by
Here, zo(t) is the state of the leade;(¢) and u;(¢) denote

the state and the control input of agéntespectively;Ap; () 1,if 7 >0,
is the external noise; antl # 0 and k # 0 denote system sign(r) =49 0,if 7 =0, (10)
parameters. The communication topology is denoted.as —1,if 7 <0.

The assumptions provided below represent the standard ) ) L
conditions for MASs to achieve leader-follower consensii&irthermore, the noise suppres€aft) [36] which incorpo-

[33], [34]. rates the fuzzy gain parameter generated by the TSFLS is
Assumption 1:The pair(h, k) is controllable. formulated as
Assumptior! 2:The c_ommunicatioq topology grap@ of O(t) = —w(O(t)) + ol1), (11)
MAS (5) consists of a directed spanning tree that has thestead
node as its root. where N
Definition 1: MAS (5) is said to achieve leader-follower n= Ziil Wi0i
consensus if the following conditions are met: >ic1 Wi
lim |z(t) — 2(t)|| =0, i=1,2,..,N, and is the fuzzy gain parameter as defined in B};) is PSBPAF
t=+o00 as in (9), ando(t) = (£ + A’)Ap(t) denotes the external
i lzi(t) =z (O =0, 4,5 =1,2,..., N, noise.

) Remark 3:The role of the noise suppressor is to gauge
wherez(t) is the state of the leader, and(t) andz;(t) are  the fluctuating noise by leveraging dynamic informatiorniro
the states of the followers in MAS (5). the synchronization process. Essentially, the noise ssspr

According toDefinition 1, to achieve the consensus, the statgives to ensure that(©(t)) converges ta(t).
difference between each agent should gradually approach ze Considering (5), (7), (8), and (11), the noise-tolerantdixe

over time. In this case, th&h error function that measures thqime fuzzy neural network (NF-FNN) model is derived as
difference in states between thth agent and other agents is

defined as (L+A') (hz(t) + ku(t) + Ap(t) — A (In ® hzo(t))
N t
eit) = 3 (ag(5(t) — 5(0) + ai(a(t) — o)) ©) - v = (e(” * g/o W“’(”)‘h) * 9“)(' )
j=1 1
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Consequently, based on NF-FNN (12), the NF-FNNC for 4) Novel Fuzzy-Neural-Network controller (NFNNC):

leader-follower consensus of MAS (5) is Analogously, introducing a fuzzy gain parameter to NZNN
B model (19), the novel fuzzy neural network (NFNN) model
u(t) =(=hz(t) + C (H1t) + f2() /&, (13) for leader-follower consensus can be expressed as
where (L + A (hz(t) + ku(t) + Ap(t)) — A'(y@hzo(t))
C=(L+A)", ! (21)
t ——ce(t) = (et) +< [ 1) + ol
f1(6) = ~wte(o) ~ v (efo) +< [ wletar) :
0 where
f2t) = A'(1y @ hao(t)). _ 2 Wioi)

C. Controllers for Comparison denotes the fuzzy gain parameter as defined in (3). Then, the

1) Traditional controller (TraC) [8]: The TraC of theith  NFNNC obtained by the NFNN model can be represented as
agent for leader-follower consensus can be written as ha(t) + C (Far(t) + Far(®)
_ —hz®) +C Ny (E) + Tor

ui(t) = —se;(t) u(t) i )
- i (0 (za(8) — 25(8) + as(z(t) — 20())),  WNere
- (14) C=(L+A)
\cl)vgt:ﬁ gthe>> f(())llgvev?nog;e'?ratr(]:? fixed gain parameter. Hence, We  £,,(1) = —ce(t) =1 (e(t) +< /0 te(b)db> :
u(t) = —ce(t). (15) far(t) = A'(1y @ hzo(t)).

2) Exponential-bi-power distributed gradient neural net-
work controller (EDGNNC) [10]: The dynamics of the . .
exponential-bi-power distributed gradient neural networ In this section, we present two theorems about the NF-

IV. THEORETICAL ANALYSIS

(EDGNN) model [10] is FNNC. Through rigorous mathematical analysis, these theo-
) . » rems highlight the fixed-time stability and enhanced noise-
Zi(t) = —sexp(ee; (1))e; (1), (16)  tolerance of the designed NF-FNNC.

wherez;(t) ande;(t) denote the state and the error function Theorem 1:Under noise-free conditions, NF-FNNC (13)
of the ith follower, respectivelyy > 0, » > 0, and0 < p < 1 €an make MAS (5) achieve leader-follower consensus in fixed

are constants. Based on (7) and (16), the EDGNN model féne 7" whose upper bound satisfies
leader-follower consensus of MAS (5) is acquired as foltows
m(1+2)  n(1+2)
~ - . (23)

ha(t) + ku(t) + Ap(t) = — explee”(t)e?(t). (A7) T <1 °

US
Then, the EDGNNC based on the EDGNN model can be
written as wheren, ¢, a1, asz, K1, andk, are defined previously.
- Proof: Clearly, the MAS achieves leader-follower consen-
u(t) = (—ha(t) — cexp(ce’ (t))e"(t)) /k- (18)  sus when NF-ENN model (12) is stable. First, the NF-FNN
3) Novel ZNN controller (NZNNC) [18]Based on [18] and model can be written as
the modeling process of NF-FNN (12), the NZNN model for ] .
leader-follower consensus is é(t) = O(t) — ¥(e()) (24)

(L4 A") (hz(t) + ku(t) + Ap(t)) — A'(1n @ hzo(t)) where®(t) is the noise suppressor satisfying (11). Evidently,

as(1— k1)  agexp(l)(k2 — 1)

t it is challenging to analyze the stabilization time of syste
= —ce(t) —¢ (e(f) +</ e(b)db) + o(1). (24) directly. In this case, it makes sense to consider the
0 (19) stabilization time for®(t) to reacho.
Then, the NZNNC can be formulated as We start by dealing with the noise-free case and the noise
suppresso®(t) = —n¥(O(t)) + o(t) in element wise is
u(t) = 2(t) + C(f“;f(t) * fz"(t)), (20) characterized as follows:
where 0;(t) = —n(6;(t)) (25)
C=(L+A), whered;(t) and ;(t) represent theth element of@(t) and
t O(t), respectively.
fin(t) = —ce(t) =< (e(t) + g/o e(L)dL> ’ Next, define a Lyapunov function candidate:

Fon(t) = A'(1y @ hao(t)). Gi(t) = 10:(1). (26)
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Taking the time derivative of;(t), we obtain Case 2 10;(0)| < 1. In this case, the stabilization time is
. ) . certainly equal to or less than, and the stabilization time
li(t) = sign(0:(1))0i(t) (27) of 6:(t) converges froml to 0, which still adheres to the
= sign(0;(t)) (—nv(6:(1))) - stabilization time upper bound;.

According to the segmented nature of PSBPAF (9), it From the aforementioned discussion, we know that) =
is necessary to divide the subsequent proof into two caé)e hent > Ti;. Thus, (24) can be reformulated as
according to the abstract yalue @®f0): one is the case when éi(t) = —cp(ei(t)) (33)
|6;(0)| > 1; and the other is the case whgh(0)| < 1.

Case 1 10;(0)] > 1. In this case, the stabilization timewheret > Ty;. .
consists of two parts: one is the time thét(¢)| takes to drop ~ The expressions af;(¢) in (33) andd; (t) in (25) only differ
from |6;(0)| to 1; and the other is the time that it takes fronin the gain parameters, and (8) indicates th@0) = 6;(0).

1 to 0. Denote these two parts by andt,, respectively. Consequently, the stabilization tin¥e; of (33) can be calcu-
1) Let us calculate; firstly. Considering PSBPAF (9), (27) lated by a similar method as i@ase 1 which gives
can be reformulated as
. , , In (1+22) n (1+22)
0;(t) = sign(0;(t)) ( — nassign(6;(t)) To; < PR ey 3 G (34)
—n(az]6;(t)|"2sign(6;(t)) + c26;(t)) exp (16;(¢)[*)) < . ; |1 _ 2d P . 2 f -
= — (s + (0n]0:(1)]* + anl6i(t)]) exp (10:(1)])) ummarizing the analysis conducted so far, we obtain the

< e (|9i(t)|“) (Oz1|9i(t)|“2 N a2|0i(t)|) stabilization timeT; of ith subsystem as
—nal;?(t) exp(1) — naal;(t) exp(1). Ty =T+ (35)

(28)

Consequently, we havg(t) > 0 and/;(t) < 0, leading to
the conclusion that (25) is Lyapunov stable. Furthermdre, t, -
maximum stabilization timé&; can be calculated as follows
by utilizing Lemma 1 T = max{T}}

11—k « «
. (1+ naes exp(D)(1-€1 7" () ) s (m (1+2)  w(i+e) ) (36)

which confirms that the NF-FNNC achieves the leader-
follower consensus for the MAS (5) within a fixed time of
T calculated by:

s ex 1@1 "2 (0)+na1 exp(1
nors exp(1) (0)+nas exp(1) as(1 — k1) +0¢26XP(1)(“2_1)

b1 < S
' nag exp(1) (ke — 1) !
In (1 + w) (29) Note that the upper bound of stabilization tirieis not
ti Ot influenced by the initial state of MAS (5) but, instead, is
naz exp(1)(k2 — 1) dependent solely on the parameters of the NF-FNNC. The
In (1 4 %) proof is now complete. [
- . Theorem 2:Consider the external noise(t) satisfying
naz exp(1)(kz — 1) l0s(#)| < nas. Then, under NF-FNNC (13), MAS (5) achieves
2) Next, we calculate the stabilization timte. Based on the leader-follower consensus in a fixed tim&ofvhose upper
PSBPAF (9), (27) can be represented as bound satisfies
0i(t) = sign(6i(1)) (—naasign(6:(1)) e (I (1 + g—) In (1 + g—) -
=1 (|03 (t)|" sign(6i(t)) + c2bs(t)) exp (16:(2)[*)) SV ae(l=k1) T agexp(1)(ke — 1) (37)
= —n(as + (oa]bi(t)[" + a2(0:(t)]) exp (|6:(£)[*))

nast; () Proof: Similar to Theorem 1we can calculate the sta-
? (30 bilization time for ©(¢) to approach0 by considering (24)

Similarly, the Lyapunov stability can also be deduced irs thfirstly. In this case, théth subsystem corresponding to (11) is

case according to the facts 6f(t) > 0 in (26) and/;(t) < 0 0:(8) = —mb(6: (¢ (4 38

in (30). Furthermore, an upper bound for stabilization tithe i) np(0i(t) + ei(t) (38)

can be calculated as follows basedlegmma 2

ty < - (1 N %ﬁim(o)) < " (1 + g_f) (31) %/\%

naz(l — k1) T naz(l— k1)’
Concluding the above discussion, whgh(0)| > 1, the
stabilization time satisfies
2 %»(
\ J \

< — ol (t) —

Thi =t + 12
In (1 + a2+a]) In (1 + g—f) (32)
nagexp(1)(kg —1) * naa(l — k1)

Fig. 3. Communication topology of MAS (5).
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where p;(t) represents the external noise. Then, define aAdditionally, under the condition;(t)| < nas, (41) can

Lyapunov function for System (38) as be expressed more explicitly as
. w 1tk
0:(t) = 10; ()% (39) 0(t) < 2nexp (|0:(1)]7) <a1€i () + og&(t)) “2)
1+ko
Combining with (38), the time derivative of (39) is comput- < —2nagexp(1)l; * () — 2nag exp(1)4;(t).
ed as follows: Consequently, according toemma 1 the upper bound of
0.(t) = 26;(1)6; (t time for |0;(¢)| converging tol is
(t) = 26:(£)di(1 “0) .
= 291@) (—771/)(91(15)) + Qi(t)) . 1 ( no cxp(l)(l ;"2 (0)) )
n 1 + 1—ro
e nag exp(1)4; (0)+nay exp(1)
Similar to the proof ofTheorem 1we consider two cases < nag exp(1) (kg — 1)
for (40) because of the segmented nature of PSBPAF (9). s (101772 (0))
We first discuss the cagé;(0)| > 1, in which the stabi- In (1 + W) (43)
lization time consists of two parts: one is the time tf{gat0)| = s exp(1)(ra — 1)
takes to drop from#,(0)| to 1, denoted byt;; and the other a2 exp ?
is the time that6,(0)| needs to drop from to 0, denoted by In (1 + %)
< .
o naz exp(1)(kz — 1)

1) We calculate; first. Taking PSBPAF (9) into consider- )
ation, (40) can be expressed as 2) Next, we calculate. In this case, (40) can be reformu-

lated as
ti(t) = 291-(15)(91-@) — n(assign(0;(t)) i(t) < 2nexp (|6:(1)|%) (alg:?l (t) + az&(t))
. " (44)
+ (a1]0;(t)]"2sign(0;(t)) + a2 (t)) exp (|0:(t)] ))) <~ 2 KH%(t) 2masti(t)
- 14 - 2£4(1).
= 20;(t)i(t) — 2nan|0; (£)|"2 exp (|6:(1)[)
ool (£)]2 0. (D) — 9m0ealds (¢ Analogously, the upper bound of for |9;(¢)| to drop from1
— 2naz|0:(8)]" exp (|6:(6)[") — 2nas|0:(t)] to 0 can be calculated as follows on the basid.efnma 2
2 (16;)l0i ()] — nes|0:(t)]) ) (1 N "0‘261_“1(0)) | (1 N az)
= 2nexp (0 (D)) (ar|0:(6)"* + aa|6: (1)) P ST T (45)

(42) nas(l — K1) nas(1 —Hl)'
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Therefore, wherd;(0) > 1, the stabilization timely; is Ty, satisfies

In (1+22) In (1+22)
caz(l — k1)  cagexp(l)(ky — 1)

To this end, we conclude that théh subsystem is
stable within the time periodT; with T; Ty +
Ty;. Overall, MAS (5) can reach the leader-follower
consensus under the control of NF-FNNC in the pres-

ence of the external noise within a fixed time @f:
T = maX{T%} = Inax{Tli + TQZ}

TM =1t +to T2i < (47)

In (1+22)
nag exp(l)(k2 — 1)

In (1 n g—) (46)

+ .
nag(l — K1)

Now, we are in a position to discuss the cas¢dpf0)| < 1.
In this case, the stabilization time is certainly less thaaqual
to t2, which is the stabilization time of;(t) (converging from In (1 4 g) n (1 + %)

1 to 0) having an upper bound df,;. Based on the previous — 71+° “ o
analysis, we know thad;(¢) = 0 is stable whent > Tj;. In ns az(l— k1) agexp(l)(k2 — 1)
addition, we can deduce from (24) that, whenr T};, system ends the proof.

é;(t) = —cb(ei(t)) is stable if and only if MAS (5) reaches Remark 4:In Theorems 1 and 2, we have delved into an
leader-follower consensus. Accordingly, the stabilmatime NF-FNNC enhanced with the TSFLS to tackle the leader-
of ¢;(t) = —¢w(e;(t)) can be calculated along a similar line tdfollower consensus problem in MASs. The integration of an
the proof ofTheorem land is thus omitted here. In particulargrror integral term during the NF-FNNC'’s formulation baost

and this

)
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its resistance to noise. Concurrently, the applicationfofzay noise-tolerance within a fixed time, and this represents the
gain parameter, derived from the TSFLS, equips the NF-FNNTst time the ZNN method has been applied to address leader-
with adaptive control capabilities. We have also incorpeda follower consensus challenges; 2) by the proposed PSBPAF,
a newly devised PSBPAF in the NF-FNNC, ensuring that tliguicker stabilization within a fixed-time frame is achieved
MAS reaches consensus within a set time span with its upflr the NF-FNNC compared to other methods; 3) the gain
bound calculated in Theorems 1 and 2. Theoretical evalstiparameter of the NF-FNNC is dynamically adjusted using
have highlighted the time-bound stability and robustnéske the TSFLS, resulting in enhanced adaptive robustness; and 4
NF-FNNC, offering a more relaxed upper limit for its stabithe fixed-time stability and noise resilience of systemsgisi
lization duration. In next section, we will use compreheasi the proposed NF-FNNC are confirmed through comprehensive
numerical tests to further amplify the advantages of the NEieoretical analysis, and the superior efficacy of the nwktho
FNNC, particularly its swift convergence and notable noisea managing the leader-follower consensus within MASs is
resilience, outperforming alternative control stratsgie validated by numerical simulations.

Remark 5:The leader-follower consensus control problem
for MASs has recently drawn a great deal of research attentio
with a rich body literature available. In comparison to the In this section, we present a series of numerical simula-
existing results, the consensus algorithm proposed irpdpgr tions to validate the effectiveness, rapid fixed-time ditgbi
exhibits the following distinct novelties: 1) the NF-FNNCAand robustness of the proposed NF-FNNC. Additionally, the
is specifically designed to accommodate the requirementspafrformance of the NF-FNNC is compared with several con-

V. NUMERICAL SIMULATION
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trollers mentioned in Section Ill. In this part; = 1, as = 1, a constant state, while the initial statg$0) of the 6 followers
ag =1, k1 = 0.2, ko = 2, andw = 0.5 in PSBPAF (9). are randomly generated [r-10, 10].

The fixed gain parameter is set @s= 1, and the fuzzy gain  As shown in Fig. 8, variation of system error with different
parameter is set as < [10, 80]. Additionally,c = 2, » = 0.5, controllers is displayed under four kinds of external nsise
andp = 0.5 in EDGNNC (18). The considered MAS has one;(t) = 20; g;(t) = 5sin(t); 0;(t) = exp(—0.1¢); and
leader and followers, of which the communication structurep;(t) = 50 that only appears wheh> 4. Notably, results in

G is exhibited in Fig. 3. Fig. 8 evidence that only NF-FNNC (13) can make the MAS
achieve consensus ideally, which demonstrates the superio
A. Example 1 noise-tolerance of NF-FNNC. In contrast, other contrslfer
Consider two situations: 1) the leader has a fixed state @¥mparison cannot make the system reach stable effectively
20(t) = 3; and 2) the leader has a time-varying stategf) = and it is evident that they do not have a satisfactory abitity

sin(t). As for followers in the MAS, the initial states(0),i ¢ ~ SUPPress noises.
{1,2,---,6} are randomly generated [r-10, 10].
States and system errors of the MAS controlled by the VI. CONCLUSION
aforementioned controllers are illustrated in Figs. 4 and 5 |4 this paper, a noise-tolerant fixed-time fuzzy-neural-

Thereinto, the results depicted in Fig. 4 display that Wit t hetwork controller has been proposed for the leader-fatow
NF-FNNC, the MAS can reach leader-follower consensus #ynsensus of a class of MASs, which incorporates the ad-
the shortest time, while with other controllers, it take®®+ yantages of the zeroing neural network method in real-time
tively long time for the MAS to reach consensus. In Fig. 5, theyntrol problems and the adaptive control performance of
NF-FNNC still makes t_he MAS with a dynamic leader aCh'eV‘Fakagi-Sugeno fuzzy logic systems. Several theorems have
consensus fastest, while TraC (15) and EDGNNC (18) canRgfiigated the fixed-time stability and excellent noise tafee
make the MAS reach a consensus in this case. In conclusigiithe NF-FNNC. In particular, simulations have demonstrat
the superior control performance to other controllers of Niq that the proposed NF-FNNC has a shorter stabilization
FNNC with a fuzzy gain parameter and the state-of-the-gfhe and spectacular noise tolerance performance tham othe
PSBPAF is demonstrated. consensus controllers. Moreover, the NF-FNNC has consis-
tently outperformed other methods under various external
B. Example 2 noise disturbances. In conclusion, the NF-FNNC is novel and
In this example, a more complex consensus problem of ta#iective, which provides a new method for the leader-feéo
MAS on a plane is considered. Consequently, statés) and consensus control of the MAS.
z!(t) are employed to describe the position information of the
ith agent in x-direction and y-direction. The state of thelkra REFERENCES
s Zo.(.t) = (25(t), 25 (t)) = (3sin(t), 2 cos(2t)), and the initial [1] F. Yao, Y. Ding, S. Hong, and S.-H. Yang, “A survey on ewlv
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