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Proportional-Integral-Observer-Based Fusion
Estimation for Artificial Neural Networks:

Implementing A One-Bit Encoding Scheme
Kaiqun Zhu, Zidong Wang, Derui Ding, Jun Hu, and Hongli Dong

Abstract—The paper is concerned with the proportional-
integral-observer-based (PIO-based) fusion estimation problem
for a class of artificial neural networks equipped with multiple
sensors, which are constrained by bandwidth and subjected
to unknown-but-bounded noises. For the purpose of efficient
information communication, an approach known as the one-
bit encoding mechanism (OBEM) is proposed that enables the
encoding of scalar data using merely a single bit. Then, a local
PIO-based set-membership estimator is devised for each sensor
node, with the aim of achieving the desired estimation task
while considering the possible data distortion due to OBEM
and the existence of unknown-but-bounded noises. Subsequently,
sufficient conditions are established to ensure the existence
and effectiveness of the PIO-based set-membership estimator.
Moreover, to enhance the global estimation performance, an
ellipsoid-based fusion rule is introduced for all local PIO-based
set-membership estimators. The performance of fusion estimation
is then analyzed using set theory and the optimization method,
leading to the determination of relevant parameters. Finally,
the effectiveness and advantages of the proposed estimation
algorithm are demonstrated through a simulation example.

Index Terms—Artificial neural networks, set-membership s-
tate estimation, fusion estimation, proportional-integral-observer,
one-bit encoding mechanism.

Abbreviations and Notations

ANN Artificial neural network
OBEM One-bit encoding mechanism
PIO Proportional-integral observer
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UBBN Unknown-but-bounded noise
P > 0 P is a positive-definite matrix
Tr[P ] The trace of a matrix P
col{·} A column vector operator
diag{·} A block-diagonal matrix operator
0n

[
0, 0, . . . , 0︸ ︷︷ ︸

n

]
with appropriate dimensions

On diag{0, 0, . . . , 0︸ ︷︷ ︸
n

} with appropriate dimensions

I. INTRODUCTION

Emulating the biological neural systems, the Artificial Neu-
ral Network (ANN) has recently gained widespread attention
in the fields of control theory and state estimation [5], [6],
[8], [11], [44], [49]. Known for its proficiency in extract-
ing valuable information from vast amounts of sample data
(through adaptive learning and training techniques), the ANN
is instrumental in modeling and analyzing industrial systems
[20], [27]. Typically comprising an input layer, several hidden
layers and an output layer, the ANN is adept at learning the
nonlinear mappings between system inputs and outputs. This
capability distinguishes it from traditional linear models, al-
lowing for a more precise description of the dynamic attributes
and nonlinear behaviors of complex systems, which is essential
for system analysis and synthesis [9], [31], [38], [39].

State estimation techniques are fundamental in control
theory and its applications as they facilitate the analysis of
system behavior through precise state estimation, which is
crucial for achieving precise control [1], [4], [10], [16], [28].
Common methods for addressing the state estimation problems
include H∞ estimation [17], [29], Kalman-type filtering [30],
[33], and particle filtering algorithms [23]. Accordingly, the
state estimation problem for ANNs has attracted considerable
research attention in the past few decides [26], [40], [42], [46].
For instance, a particle filter has been specifically designed
in [32] for ANNs with saturation constraints and redundant
channels. Despite these advancements, existing state estima-
tion algorithms often face challenges in achieving optimal es-
timation performance particularly when the system is affected
by unknown-but-bounded noises (UBBNs).

Set-membership state estimation emerges as a preferred
solution for systems influenced by UBBNs due primarily to
two significant benefits: i) it circumvents the necessity for
detailed knowledge of statistical characteristics of the noises,
and ii) it ensures the identification of an ellipsoidal set that
confidently encompasses the true state of the system with
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100% certainty [21], [22], [24], [43], [47], [51], [52]. In
another aspect, to address issues related to imperfect infor-
mation, the proportional-integral observer (PIO) approach has
been applied in various contexts [7], [14], [48]. Motivated
by these observations, the integration of PIO techniques, set-
membership estimation methods, and multi-sensor systems
shows promising potential for enhancing both robustness and
accuracy of state estimation. However, such an integrated
approach remains largely unexplored in the existing literature,
thereby providing a key motivation for the current study.

In practical systems, the wide application of network com-
munication technology is pivotal for achieving remote state
estimation. A notable concern in this context is the transmis-
sion of system data over communication networks with limited
capacity, which can lead to congestion issues [12], [34],
[35], [45]. Such problems have the potential to impair data
integrity, thereby negatively impacting the system’s estimation
performance [15], [19], [41]. To mitigate these challenges,
encoding mechanisms are implemented in networked systems
to enhance data transmission efficiency and integrity [13], [18],
[36], [37], where most existing mechanisms limit the encoding
of system data to a finite bit count. This paper introduces
a one-bit encoding mechanism (OBEM) to further refine
the data encoding process. Nevertheless, it is important to
recognize that data distortion could occur during encoding and
decoding which, if not properly addressed, might compromise
the accuracy of state estimation. Therefore, examining the
effects of OBEM on state estimation performance becomes
a critical element of our research.

Summarizing the preceding discussions, this paper concen-
trates on examining the PIO-based fusion estimation problem
by taking into account the influence of the OBEM. This
investigation is challenging due to several key factors: 1)
how to design an encoding mechanism that can effectively
compress scalar data into a single bit; 2) how to construct an
appropriate state estimator by considering the data distortion
induced by the encoding mechanism as well as the presence
of UBBNs; and 3) how to develop a fusion estimation rule
to ensure that the performance of the fused state estimation
surpasses that of individual local state estimation.

In response to the outlined challenges, this paper makes the
following notable contributions.

1) A new OBEM, specifically designed for systems con-
strained by limited bandwidth, is introduced to efficient-
ly encode scalar data using just a single bit. Compared
with the existing encoding technique, e.g., [13], [18],
[37], [51], this method significantly improves the effi-
ciency of information transmission.

2) A novel PIO-based state estimator is formulated within
the set-membership estimation framework, which marks
the first exploration of the PIO-based set-membership
estimation problem in the context of systems affected by
both UBBNs and OBEM. Unlike the method presented
in [9], [21], [48], our approach offers significant advan-
tages in addressing bandwidth limitations and UBBNs.

3) An original fusion estimation rule is established for local
PIO-based set-membership estimators drawing upon set
theory, and the performance of this fusion estimation

is thoroughly analyzed in order to ensure that the fused
estimation results are superior to those of any individual
local sensor.

These contributions collectively enhance the efficiency and
accuracy of fusion estimation in the presence of UBBNs
and OBEM. Utilizing PIO, set-membership estimation and set
theory, this work addresses the challenges posed by bandwidth
constraints and achieves reliable estimation results.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

For the convenience of the later discussion, we first give the
following definition.

Definition 1: [2] An ellipsoidal set is defined as

E (c, P ) � {x|(x − c)TP−1(x− c) ≤ 1} (1)

where c is the center of the ellipsoidal set and P > 0 is called
the shape-matrix of the ellipsoidal set.

A. The Description of Artificial Neural Networks

Consider a kind of ANNs of the following form:

xt+1 = Ψtxt +Wtφ(Vtxt) + wt (2)

where xt ∈ Rn is the state vector of the ANN; φ(·) is the
neuron activation function which is twice continuously differ-
entiable; Ψt, Wt and Vt are known matrices with appropriate
dimensions; and wt ∈ Rn is the process noise satisfying

wt ∈ E (0, Qt) � {wt|wT
t Q

−1
t wt ≤ 1}. (3)

Here, Qt > 0 is a shape-matrix and E (0, Qt) characterizes
the ellipsoidal set constraining the process noise.

To overcome the inherent limitations of single-sensor sys-
tems in measurement and state estimation capabilities, this
paper introduces a multi-sensor system architecture aimed at
enhancing the overall performance of state estimation. The
measurement information of the mth sensor node is

ym,t = Cm,txt + vm,t, m = 1, 2, . . . ,M (4)

where ym,t ∈ Rl is the measurement output of the mth sensor
node, Cm,t is the known matrix with appropriate dimension,
and vm,t ∈ Rl is the measurement noise satisfying

vm,t ∈ E (0, Rm,t) � {vm,t|vTm,tR
−1
m,tvm,t ≤ 1}. (5)

Here, Rm,t > 0 is a shape-matrix and E (0, Rm,t) character-
izes the ellipsoidal set constraining the measurement noise.

B. The One-Bit Encoding Mechanism

Considering the bandwidth limitations of communication
networks and the power restrictions prevalent in multi-sensor
systems, it becomes essential to encode the measurement data
from each sensor node into a limited number of bits prior to
its transmission to a remote estimator. To tackle this challenge,
this paper introduces a novel 1-bit data encoding mechanis-
m. This mechanism is aimed at significantly enhancing the
efficiency of the data encoding process, thereby optimizing
data transmission within the constraints of network bandwidth
and power availability in multi-sensor systems. The detailed
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implementation of the encoding and decoding processes is
presented as follows.

The encoding mechanism for the ith element of measure-
ment output ym,t is described as

ξ
[i]
m,t � Enc(y

[i]
m,t) =

{
1, y

[i]
m,t ≥ d

[i]
m

−1, y
[i]
m,t < d

[i]
m

(6)

for i = 1, 2, . . . , l and m = 1, 2, . . . ,M , where ξ
[i]
m,t is the

encoded data to be transmitted through the communication
network, y[i]m,t is the ith element of the vector ym,t, and d

[i]
m

is the ith element of the threshold vector dm,t with

dm �
[
d
[1]
m d

[2]
m · · · d

[l]
m

]T
.

It is easy to see from (6) that, under the encoding mechanism,
the continuous-amplitude signal y [i]

m,t is encoded into a 1-bit

discrete-amplitude data ξ
[i]
m,t.

According to (6), the encoded data for the measurement
output vector ym,t is represented as

ξm,t � Enc(ym,t) =
[
ξ
[1]
m,t ξ

[2]
m,t · · · ξ

[l]
m,t

]T
. (7)

Then, the encoded data Enc(ym,t) of the mth sensor node is
transmitted to the remote decoder via the bandwidth-limited
communication network.

In the decoder side, the decoding mechanism is given as

Dec(ξm,t) = ξm,t (8)

where ξm,t is the output of the decoder.
Remark 1: Over recent years, the one-bit encoding method

has been increasingly adopted in the field of compressive
sensing, particularly for the encoding of static signals [3],
[25]. This method, which encodes signals using a single bit,
significantly reduces the amount of data required for storage
and transmission while preserving the essential characteristics
of the original signal. However, a notable limitation of existing
one-bit encoding techniques is their focus predominantly on
static signals. This highlights the need for a new mechanism
that is well-suited for dynamic systems. Developing such a
mechanism would enable a comprehensive analysis of how
encoding methods interact with system dynamics and affect
state estimation performance.

Remark 2: This paper presents a novel encoding mechanis-
m, termed OBEM, specifically designed for systems operating
under limited bandwidth constraints and applicable to dynamic
signals. The OBEM stands out for its capability to significantly
boost the efficiency of the data encoding process, thereby
effectively reducing the communication burden. Furthermore,
this initiative marks the first effort to integrate encoding
mechanisms into the realm of state estimation for dynamic
systems, representing a substantial step forward along this
direction.

C. OBEM-Based Proportional-Integral Observer

In this paper, a novel OBEM-based PIO technique is applied
to estimate the system state where, for m = 1, 2, . . . ,M , the

state estimator structure for the mth sensor node is designed
as follows:

x̂m,t+1 = Ψtx̂m,t +Wtφ(Vtx̂m,t)

+KP
m,t(dm − Cmx̂m,t) +KI

m,tμm,t (9)

μm,t+1 = μm,t + Fm,t(dm − Cm,tx̂m,t). (10)

Here, x̂m,t ∈ Rn is the estimate of xt on sensor m; μm,t ∈ Rl

means the integral of the output estimation error; and K P
m,t,

KI
m,t, Fm,t are estimator gain matrices to be determined.
In the following, in order to take full advantage of the

system information, the variable dm in estimator (9)–(10) will
be transformed into a form represented by the measurement
output ym,t and the decoder output ξm,t. The detailed principle
is described according to the following two cases.

Case I: ξ[i]m,tξ
[i]
m,t−1 < 0.

In accordance with the encoding rule (6), it is clear that
the variable d

[i]
m falls between y

[i]
m,t and y

[i]
m,t−1 in this case.

Accordingly, there exists δ
[i]
m,t ∈ (−0.5, 0.5) such that

d[i]m = (0.5 + δ
[i]
m,t)y

[i]
m,t + (0.5− δ

[i]
m,t)y

[i]
m,t−1. (11)

Case II: ξ[i]m,tξ
[i]
m,t−1 ≥ 0.

Following the same method, we konw that the variable d
[i]
m

falls between y
[i]
m,t and −y

[i]
m,t−1. In this case, d

[i]
m can be

described as

d[i]m = (0.5 + δ
[i]
m,t)y

[i]
m,t − (0.5− δ

[i]
m,t)y

[i]
m,t−1 (12)

where δ
[i]
m,t is a certain variable satisfying δ

[i]
m,t ∈ (−0.5, 0.5).

By consolidating the aforementioned two cases, we can
establish a unified formulation to characterize variable d

[i]
m :

d[i]m = (0.5 + δ
[i]
m,t)y

[i]
m,t

+ sign(−ξ
[i]
m,tξ

[i]
m,t−1)(0.5 − δ

[i]
m,t)y

[i]
m,t−1 (13)

where sign(·) means a signum function and

sign(−ξ
[i]
m,tξ

[i]
m,t−1) =

{
1, −ξ

[i]
m,tξ

[i]
m,t−1 > 0

−1, −ξ
[i]
m,tξ

[i]
m,t−1 ≤ 0.

Subsequently, by substituting (13) into (9)–(10), we derive a
state estimator structure that incorporates both system mea-
surement information and decoder output information, which
can be formulated as:

x̂m,t+1 = Ψtx̂m,t +Wtφ(Vtx̂m,t) +KP
m,t

(
(0.5I +Δm,t)

× ym,t +Am,t(0.5I −Δm,t)ym,t−1 − Cmx̂m,t

)
+KI

m,tμm,t (14)

μm,t+1 = μm,t + Fm,t

(
(0.5I +Δm,t)ym,t

+Am,t(0.5I −Δm,t)ym,t−1 − Cmx̂m,t

)
(15)

where

α
[i]
m,t � sign(−ξ

[i]
m,tξ

[i]
m,t−1)

Am,t � diag{α[1]
m,t, α

[2]
m,t, . . . , α

[l]
m,t}

Δm,t � diag{δ[1]m,t, δ
[2]
m,t, . . . , δ

[l]
m,t}.

In ANNs, the presence of nonlinear activation functions
poses significant theoretical challenges to the state estimation
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problem. To overcome this technical difficulty, we employ the
Taylor series expansion method. Specifically, the nonlinear
activation function of neurons φ(Vtxt) is linearized through
Taylor expansion into the following form:

φ(Vtxt) = φ(Vtx̂m,t) + Ξm,tVt(xt − x̂m,t) + ρm,t (16)

where Ξm,t is the Jacobian matrix and ρm,t is the high-order
Lagrange remainder. Here,

Ξm,t �
∂φ(Vtxt)

∂(Vtx)

∣∣∣∣
x=x̂m,t

ρm,t �
1

2
diagn

{
(xt − x̂m,t)

T
}∂2φ(Vtxt)

∂(Vtx)2

∣∣∣∣
x=εm,t

× (xt − x̂m,t)

εm,t � Λm,txt + (I − Λm,t)x̂m,t

Λm,t � diag{λ[1]
m,t, λ

[2]
m,t, . . . , λ

[n]
m,t}

λ
[o]
m,t ∈ [0, 1], o = 1, 2, . . . , n.

Then, letting the estimation error be em,t � xt − x̂m,t, one
obtains

em,t+1 = (Ψt + Ξm,tVt)em,t + wt + ρm,t −KP
m,t

× ((0.5I +Δm,t)ym,t +Am,t(0.5I −Δm,t)

× ym,t−1 − Cmx̂m,t

)−KI
m,tμm,t. (17)

Remark 3: Acknowledging the OBEM-induced data dis-
tortion problem, achieving the desired state estimation task
becomes challenging when only utilizing the variable dm.
In this context, an innovative approach is employed that
utilizes both the system measurement information ym,t and
the encoding information ξm,t to reconstruct the variable dm

within the OBEM framework (as shown in (13)). This method
aims to enhance the estimation performance of the system as
much as possible. It is also important to note that including
the OBEM poses significant challenges in parameter solving
and performance analysis for the designed PIO-based fusion
estimation scheme.

The main objectives of this paper are highlighted as follows.

1) Determine estimator parameters KP
m,t, KI

m,t and Fm,t

such that, under the influence of the OBEM, for each
sensor node m, the estimation error is confined to the
local ellipsoidal set:

ζm,t ∈ E (0, Pm,t), m = 1, 2, . . . ,M (18)

where Pm,t > 0 is the shape-matrix of the ellipsoidal
set constraining the variable ζm,t, and P̂m,t > 0 and
P̌m,t > 0 represent, respectively, the shape-matrices of
the ellipsoidal sets that bound the estimation error em,t

and the integral of the output estimation error μm,t with

ζm,t �
[
eTm,t μT

m,t

]T
, Pm,t � diag{P̂m,t, P̌m,t}.

2) Develop a fusion rule for all sensor nodes, such that the
fused shape-matrix Pf,t is smaller than all local shape-
matrices P̂m,t in the sense of matrix trace:

Tr[Pf,t] < Tr[P̂m,t], m = 1, 2, . . . ,M (19)

where Pf,t > 0 represents the shape-matrix of the
ellipsoidal set that bounds the fused estimation error
defined in (42).

III. PIO-BASED SET-MEMBERSHIP FUSION ESTIMATOR

UNDER OBEM

In this section, we first design a PIO-based set-membership
state estimation scheme under the OBEM framework, and then
determine a desired fusion rule for sensor nodes by solving
an optimization problem. This approach aims to effectively
integrate the OBEM with the PIO-based fusion estimation
methodology, thereby enhancing the overall state estimation
accuracy and efficiency.

In order to facilitate the derivation of our main results, it is
essential to first present a set of lemmas.

Lemma 1: [50] For any matrices M, N , and Δt with
‖Δt‖2 ≤ 1, there exist a positive scalar κ such that

MΔtN + (MΔtN )T ≤ κMMT + κ−1NTN .

We introduce the following notation simplifications for
improved readability. All variables involved herein have been
previously defined in the preceding sections.

N [1]
m,t �

[
Cmx̂m,t 0 1

2CmΩ̂m,t 05

]
, N [4]

m,t �
[
07

1
2I
]

N [2]
m,t �

[
1
2
Cm,tx̂m,t−1 02

1
2
Cm,tΩ̂m,t−1 04

]
N [3]

m,t �
[
06

1
2I 0

]
, N [5]

m,t = N [1]
m,t, N [6]

m,t = N [2]
m,t

N [7]
m,t = N [3]

m,t, N [8]
m,t = N [4]

m,t, M[3]
m,t = M[1]

m,t

M[1]
m,t � col{−KP

m,t,0
T
7 }, M[2]

m,t � col{KP
m,tAm,t,0

T
7 }

M[5]
m,t � col{Fm,t,0

T
7 }, M[6]

m,t � col{−Fm,tAm,t,0
T
7 }

M[4]
m,t = M[2]

m,t, M[7]
m,t = M[5]

m,t, M[8]
m,t = M[6]

m,t.

A. Design of the PIO-based Set-Membership Estimator

In this subsection, we aim to design a local set-membership
state estimator based on PIO structure for each sensor node,
and derive the sufficient condition that guarantees estimation
error satisfies the performance index (18).

Theorem 1: Let the positive scalar dm be given and ζm,0 ∈
E (0, Pm,0). Consider the ANN (2), the OBEM (7), and the
PIO-based state estimator (9)–(10). If

ζm,t ∈ E (0, Pm,t), (20)

then the variable ζm,t+1 belongs to the local ellipsoidal set
E (0, Pm,t+1) and the estimator gains are obtained by solving⎡

⎣−�Υm,t ∗ ∗
�Θm,t −Pm,t+1 ∗
MT

m,t 0 −κm,tI

⎤
⎦ ≤ 0 (21)

where

�Υm,t � diag

{
1−

7∑
u=1

π
[u]
m,t, π

[1]
m,tI, π

[2]
m,tI, π

[3]
m,tI,

π
[4]
m,tS

−1
m,t, π

[5]
m,tQ

−1
t , π

[6]
m,tR

−1
m,t, π

[7]
m,tR

−1
m,t−1

}
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−
8∑

s=1

κ
[s]
m,t(N [s]

m,t)
TN [s]

m,t, Υ[0] � diag{1,O7}

π
[u]
m,t > 0, u = 1, 2, . . . , 7, κ

[s]
m,t > 0, s = 1, 2, . . . , 8

�Θm,t �
[
�Θ

[1,1]
m,t

�Θ
[1,2]
m,t

�Θ
[1,3]
m,t

�Θ
[1,4]
m,t I I �Θ

[1,7]
m,t

�Θ
[2,1]
m,t

�Θ
[2,2]
m,t

�Θ
[2,3]
m,t

�Θ
[2,4]
m,t 0 0 �Θ

[2,7]
m,t

]
�Θ

[1,1]
m,t � −KP

m,tCm,tx̂m,t − 0.5KP
m,tAm,tCm,tx̂m,t−1

�Θ
[1,2]
m,t � −KI

m,tΩ̌m,t, �Θ
[1,4]
m,t � −0.5KP

m,tAm,tCm,tΩ̂m,t−1

�Θ
[1,3]
m,t � (Ψt + Ξm,tVt)Ω̂m,t − 0.5KP

m,tCm,tΩ̂m,t

�Θ
[1,7]
m,t �

[−0.5KP
m,t −0.5KP

m,tAm,t

]
�Θ

[2,1]
m,t � −0.5Fm,tCm,tx̂m,t + 0.5Fm,tAm,tCm,tx̂m,t−1

�Θ
[2,2]
m,t � Ω̌m,t, �Θ

[2,3]
m,t � 0.5Fm,tCm,tΩ̂m,t

�Θ
[2,4]
m,t � 0.5Fm,tAm,tCm,tΩ̂m,t−1

�Θ
[2,7]
m,t �

[
0.5Fm,t 0.5Fm,tAm,t

]
Mm,t �

[
M[1]

m,t M[2]
m,t · · · M[8]

m,t

]
κm,t � diag

{
κ
[1]
m,t, κ

[2]
m,t, . . . , κ

[8]
m,t

}
.

Proof: First, we shall construct the ellipsoidal constraint
set that bounds the Lagrange remainder term. Combining
Definition 1, it is readily deduced from (20) that

(xt − x̂m,t)
TP̂−1

m,t(xt − x̂m,t) ≤ 1 (22)

where P̂m,t > 0 denotes the shape-matrix that characterizes
the ellipsoidal set of estimation errors. Then, it is obvious that,
for εm,t = Λm,txt + (I − Λm,t)x̂m,t, we have

(εm,t − x̂m,t)
TP̂−1

m,t(εm,t − x̂m,t) ≤ 1 (23)

which further indicates that

ε
[o]
m,t ∈ χ

[o]
m,t �

[
x̂
[o]
m,t −

√
P̂

[o,o]
m,t , x̂

[o]
m,t +

√
P̂

[o,o]
m,t

]
(24)

for o = 1, 2, . . . , n, with ε
[o]
m,t and x̂

[o]
m,t being, respectively,

the oth element of vectors εm,t and x̂m,t, and P̂
[o,o]
m,t being the

(o, o)-element of the matrix P̂m,t. Obviously, for the multi-
variable case, we obtain the following interval vector:

Xm,t =
1

2
diagn

{
(χm,t − x̂m,t)

T
}
⎡
⎢⎢⎢⎣
H1(χm,t)
H2(χm,t)

...
Hn(χm,t)

⎤
⎥⎥⎥⎦

× (χm,t − x̂m,t) (25)

where, for o = 1, 2, . . . , n, Ho(·) is the Hessian matrix of the
activation function φo(·) with φo(·) being the oth element of
the function φ(·).

With the assistance of the interval analysis technique and
combining with (25), it is known that the Lagrange remainder
ρm,t in (17) can be bounded by an ellipsoidal set. The
ellipsoidal set with the minimized volume is given as follows:

ρm,t ∈ E (0, Sm,t) (26)

where

S
[o,p]
m,t =

{
2(X [o,+]

m,t −X [o,−]
m,t )2, o = p

0, o �= p

with X [o,−]
m,t and X [o,+]

m,t being the minimum and maximum

values of the oth interval vector X [o]
m,t, and S

[o,p]
m,t being the

(o, p)-element of Sm,t.
Next, we analyze the set-membership estimation perfor-

mance index associated with the variable ζm,t. By utilizing
(20) again, it is obvious that there exist vectors ẑm,t and žm,t

(with ‖ẑm,t‖ ≤ 1 and ‖žm,t‖ ≤ 1) such that the following
equations

xt − x̂m,t = Ω̂m,tẑm,t (27)

and
μm,t = Ω̌m,tžm,t (28)

are satisfied, where Ω̂m,t and Ω̌m,t are, respectively, the factor-
izations of the matrices P̂m,t and P̌m,t with P̂m,t = Ω̂m,tΩ̂

T
m,t

and P̌m,t = Ω̌m,tΩ̌
T
m,t. Then, by substituting (28) into (15),

we obtain

μm,t+1 = Ω̌m,tžm,t + Fm,t

(
(0.5I +Δm,t)(Cm,t(x̂m,t

+ Ω̂m,tẑm,t) + vm,t) +Am,t(0.5I −Δm,t)

× ((Cm,t(x̂m,t−1 + Ω̂m,t−1ẑm,t−1)

+ vm,t−1))− Cm,tx̂m,t

)
. (29)

Similarly, by substituting (27)–(28) into (17), we have

em,t+1 = (Ψt + Ξm,tVt)Ω̂m,tẑm,t + wt + ρm,t −KP
m,t

× ((0.5I +Δm,t)(Cm,t(x̂m,t + Ω̂m,tẑm,t)

+ vm,t) +Am,t(0.5I −Δm,t)(Cm,t(x̂m,t−1

+ Ω̂m,t−1ẑm,t−1) + vm,t−1)− Cm,tx̂m,t

)
−KI

m,tΩ̌m,tžm,t. (30)

Combining (29) and (30) together, one has the following
compact form:

ζm,t+1 = Θm,tηm,t (31)

where

ηm,t � col{1, žm,t, ẑm,t, ẑm,t−1, ρm,t, wt, vm,t, vm,t−1}

Θm,t �
[
Θ

[1,1]
m,t Θ

[1,2]
m,t Θ

[1,3]
m,t Θ

[1,4]
m,t I I Θ

[1,7]
m,t

Θ
[2,1]
m,t Θ

[2,2]
m,t Θ

[2,3]
m,t Θ

[2,4]
m,t 0 0 Θ

[2,7]
m,t

]

Θ
[1,1]
m,t � −KP

m,t((Bm,tCm,t + Cm,t)x̂m,t

+Am,tDm,tCm,tx̂m,t−1), Θ
[1,2]
m,t � −KI

m,tΩ̌m,t

Θ
[1,3]
m,t � (Ψt + Ξm,tVt)Ω̂m,t −KP

m,tBm,tCm,tΩ̂m,t

Θ
[1,4]
m,t � −KP

m,tAm,tDm,tCm,tΩ̂m,t−1

Θ
[1,7]
m,t �

[−KP
m,tBm,t −KP

m,tAm,tDm,t

]
Θ

[2,1]
m,t � Fm,t((Bm,tCm,t − Cm,t)x̂m,t

+Am,tDm,tCm,tx̂m,t−1)

Θ
[2,2]
m,t � Ω̌m,t, Θ

[2,3]
m,t � Fm,tBm,tCm,tΩ̂m,t

Θ
[2,4]
m,t � Fm,tAm,tDm,tCm,tΩ̂m,t−1

Θ
[2,7]
m,t �

[
Fm,tBm,t Fm,tAm,tDm,t

]
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Bm,t � 0.5I +Δm,t, Dm,t � 0.5I −Δm,t.

Then, according to (3), (5) and (26)–(27), it is apparent that
the following conditions are satisfied:

ηTm,tΥ
[u]
m,tηm,t ≤ 0, u = 1, 2, . . . , 7 (32)

where

Υ
[1]
m,t � diag{−1, I,O6}

Υ
[2]
m,t � diag{−1, 0, I,O5}

Υ
[3]
m,t � diag{−1,O2, I,O4}

Υ
[4]
m,t � diag{−1,O3, S

−1
m,t,O3}

Υ
[5]
m,t � diag{−1,O4, Q

−1
t ,O2}

Υ
[6]
m,t � diag{−1,O5, R

−1
m,t, 0}

Υ
[7]
m,t � diag{−1,O6, R

−1
m,t−1}.

By utilizing the Schur complement lemma, it is derived from
(21) that the following equation holds:

−�Υm,t + �ΘT
m,tP

−1
m,t+1

�Θm,t + κ−1
m,tMm,tMT

m,t ≤ 0, (33)

which further indicates that

�ΘT
m,tP

−1
m,t+1

�Θm,t + κ−1
m,tMm,tMT

m,t

≤ Ῡm,t −
8∑

s=1

κ
[s]
m,t(N [s]

m,t)
TN [s]

m,t. (34)

Here,

Ῡm,t � diag
{
1−

7∑
u=1

π
[u]
m,t, π

[1]
m,tI, π

[2]
m,tI, π

[3]
m,tI,

π
[4]
m,tS

−1
m,t, π

[5]
m,tQ

−1
t , π

[6]
m,tR

−1
m,t, π

[7]
m,tR

−1
m,t−1

}
.

With the aid of Lemma 1, it is inferred from (34) that

�ΘT
m,tP

−1
m,t+1

�Θm,t +Mm,tΔm,tNm,t

+ (Mm,tΔm,tNm,t)
T

≤ �ΘT
m,tP

−1
m,t+1

�Θm,t + κ−1
m,tMm,tMT

m,t

+

8∑
s=1

κ
[s]
m,t(N [s]

m,t)
TN [s]

m,t ≤ Ῡm,t. (35)

Based on the definitions of �Θm,t and Θm,t in (21) and (31),
we can directly derive the following result:

�ΘT
m,tP

−1
m,t+1

�Θm,t +Mm,tΔm,tNm,t

+ (Mm,tΔm,tNm,t)
T

= ΘT
m,tP

−1
m,t+1Θm,t ≤ Ῡm,t (36)

with Nm,t � col
{N [1]

m,t,N [2]
m,t, . . . ,N [8]

m,t

}
. Then, it follows

from (36) that

ηTm,tΘ
T
m,tP

−1
m,t+1Θm,tηm,t ≤ ηTm,tῩm,tηm,t, (37)

which, together with (31) and (32), implies

ζTm,t+1P
−1
m,t+1ζm,t+1 ≤ 1. (38)

According to (38), we know that the variable ζm,t+1 is con-
fined in the local ellipsoidal set E (0, Pm,t+1). By leveraging

the method of mathematical induction, it becomes evident that
the recursive feasibility of the estimation algorithm is ensured.
Therefore, the proof is now complete.

B. Optimization of the PIO-based Set-Membership Estimator

From Theorem 1, it is known that

ζTm,tζm,t ≤ Tr [Pm,t] (39)

which means that the estimation performance of the mth
sensor node is related to Tr[Pm,t]. Specifically, a smaller value
of Tr[Pm,t] implies a reduction in the Euclidean norm of the
estimation error, thereby achieving superior state estimation
performance. Accordingly, to obtain the desired estimator gain
matrices, the following theorem is presented, which solves the
corresponding parameters by optimizing Tr[Pm,t].

Theorem 2: Let the positive scalar dm be given and ζm,0 ∈
E (0, Pm,0). Consider the ANN (2), the OBEM (7), and the
PIO-based set-membership state estimator (9) and (10). The
local ellipsoidal set E (0, Pm,t) is minimized in the sense
of matrix trace if the estimator gains are solved from the
following optimization problem:

OP 1 : min
KP

m,t,K
I
m,t,Fm,t

Tr [Pm,t]

s.t. (9), (10), and (21). (40)

Proof: The proof is straightforward and is, therefore,
omitted for the conciseness.

C. Design of the Fusion Rule

In order to fully leverage the local estimates x̂m,t (m =
1, 2, . . . ,M) for enhancing the global estimation performance,
this subsection proposes a state estimation fusion rule for all
local PIO-based set-membership state estimators.

First, the fusion rule is designed of the following form:

x̂f,t =

M∑
m=1

Hm,tx̂m,t (41)

where x̂f,t ∈ Rn is the fused estimate and Hm,t represents
the fusion weight to be determined.

By defining ef,t � xt − x̂f,t as the global fused estimation
error, it is easy to obtain that

ef,t = xt −
M∑

m=1

Hm,tx̂m,t. (42)

In addition, combining Definition 1 and Theorem 1, we known
that the global estimation error ef,t resides in the intersection
of all local ellipsoidal sets:

ef,t ∈
M⋂

m=1

E (0, P̂m,t). (43)

It is obvious that the intersection set has a smaller volume
than all local ellipsoidal sets, thereby guaranteeing a better
estimation performance. The following theorem presents a
sufficient condition to ensure the existence of parameters Hm,t

and Pf,t such that the intersection of all local ellipsoidal sets
is contained within the fused ellipsoidal set E (0, Pf,t).
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Theorem 3: For m = 1, 2, . . . ,M , let local shape-matrices
Pm,t > 0, local state estimates x̂m,t, and scalars �m,t ≥ 0

with
∑M

m=1 �m,t = 1 be given. Then, the intersection of all
local ellipsoidal sets is confined to the fused ellipsoidal set if
the fusion weights are selected as

Hm,t =

(
M∑

m=1

�m,tP̂
−1
m,t

)−1

�m,tP̂
−1
m,t. (44)

Furthermore, the fused shape-matrix is

Pf,t = (1− ℘t)

(
M∑

m=1

�m,tP̂
−1
m,t

)−1

(45)

where

℘t �
M∑

m=1

�m,tx̂
T
m,tP̂

−1
m,tx̂m,t − x̂T

f,t

M∑
m=1

�m,tP̂
−1
m,tx̂f,t.

Proof: From Definition 1 and Theorem 1, we know that

xt ∈ E (x̂m,t, P̂m,t), m = 1, 2, . . . ,M (46)

are satisfied for all sensor nodes, which implies that the system
state resides within the intersection of all ellipsoidal sets:

xt ∈
M⋂

m=1

E (x̂m,t, P̂m,t). (47)

Then, according to set theory principles, the intersection of
ellipsoidal sets in (47) is contained within the following convex
set:

M⋂
m=1

E (x̂m,t, P̂m,t) ⊂
{
xt

∣∣∣ M∑
m=1

�m,te
T
m,tP̂

−1
m,tem,t ≤ 1

}
.

(48)

Next, by rather straightforward calculations and transforma-
tions, one has

M∑
m=1

�m(xt − x̂m,t)
TP̂−1

m,t(xt − x̂m,t)

= xT
t P̂

−1
t xt + x̂T

t P̂tx̂t − x̂T
t P̂tx̂t − 2xT

t x̂t

+

M∑
m=1

�m,tx̂
T
m,tP̂

−1
m,tx̂m,t

=
(
xt − P̂tx̂t

)T
P̂−1

t

(
xt − P̂tx̂t

)− (P̂tx̂t

)T
P̂−1

t

× (P̂tx̂t

)
+

M∑
m=1

�m,tx̂
T
m,tP̂

−1
m,tx̂m,t. (49)

where

x̂t �
M∑

m=1

�m,tP̂
−1
m,tx̂m,t, P̂−1

t �
M∑

m=1

�m,tP̂
−1
m,t.

Then, by substituting (44) and (45) into (49), we have(
xt −

M∑
m=1

Hm,tx̂m,t

)T

P−1
f,t

(
xt −

M∑
m=1

Hm,tx̂m,t

)
≤ 1,

(50)

which, together with (42) and (48), yields

{xt|eTf,tP−1
f,t ef,t ≤ 1}

=
{
xt

∣∣∣ M∑
m=1

�m,te
T
m,tP̂

−1
m,tem,t ≤ 1

}
. (51)

Thus, it follows from (48) and (51) that( M⋂
m=1

E (0, P̂m,t)

)
⊂ {xt|eTf,tP−1

f,t ef,t ≤ 1}, (52)

which completes the proof.
Theorems 1–3 establish the theoretical framework of the

PIO-based set-membership fusion estimation algorithm, and its
detailed implementation procedure is systematically presented
in Algorithm 1.

Algorithm 1 PIO-based fusion estimation algorithm

1: Input. ym,t, dm, Qt, Rm,t

2: Output. x̂m,t, x̂f,t, �m,t, KP
m,t, K

I
m,t, Fm,t, Hm,t

3: Step 1. Utilize OBEM (6)–(8) to process measurement
outputs before they are transmitted to the remote estimator.

4: Step 2. Calculate the estimator gains by solving the
optimization problem (40) in Theorem 2.

5: Step 3. Calculate the fusion weights according to Theo-
rems 3–4.

6: Step 4. Compute the fused estimate according to (41).
7: Return the fused estimate x̂f,t.

IV. FUSION ESTIMATION PERFORMANCE ANALYSIS

The following theorem is given to show that, based on the
fusion estimation scheme proposed in Theorem 3, the fused
shape-matrix Pf,t is smaller than all the local shape-matrices
Pm,t in the sense of matrix trace (i.e., (19)), indicating that
the fusion estimation performance outperforms that of any
local estimation node. Before proceeding further, the following
lemma is needed.

Lemma 2: For m = 1, 2, . . . ,M , let local shape-matrices
P̂m,t > 0, local state estimates x̂m,t, and scalars �m,t ≥ 0

with
∑M

m=1 �m,t = 1 be given. Then, we have

Pf,t <

(
M∑

m=1

�m,tP̂
−1
m,t

)−1

. (53)

Proof: For m = 1, 2, . . . ,M , by applying P̂−1
m,t > 0, one

obtains
M∑

m=1

(
�m,t

[
x̂T
m,t

1

]
P̂−1
m,t

[
x̂m,t 1

])
> 0, (54)

that is,[∑M
m=1�m,tx̂

T
m,tP̂

−1
m,tx̂m,t ∗∑M

m=1 �m,tP̂
−1
m,tx̂m,t

∑M
m=1�m,tP̂

−1
m,t

]
> 0. (55)

By utilizing Schur complement lemma, we derive from (45)
and (55) that

℘t > 0 (56)
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which, together with (45) again, yields

Pf,t <

(
M∑

m=1

�m,tP̂
−1
m,t

)−1

. (57)

Therefore, the proof is now complete.
Theorem 4: For m = 1, 2, . . . ,M , let local shape-matrices

P̂m,t > 0 and local state estimates x̂m,t be given. The fused
shape-matrix Pf,t is smaller than all local shape-matrices P̂m,t

in the presence of matrix trace, i.e.,

Tr[Pf,t] < Tr[P̂m,t]. (58)

In addition, the scalars �m,t can be optimized by solving the
following optimization problem:

OP 2 : min
�m,t

Tr

[
(1− ℘t)

( M∑
m=1

�m,tP̂
−1
m,t

)−1
]

s.t.
M∑

m=1

�m,t = 1. (59)

Proof: It is obvious that there exists a set of feasible
solutions �m,t ≥ 0 with

∑M
m=1 �m,t = 1 to optimization

problem (59) such that the inequality

M∑
m=1

�m,tP̂
−1
m,t ≥ P̂−1

m,t (60)

holds for all m ∈ {1, 2, . . . ,M}. Then, based on Lemma 2,
we can derive that

Pf,t <

(
M∑

m=1

�m,tP̂
−1
m,t

)−1

≤ P̂m,t, (61)

which indicates

Tr[Pf,t] < Tr[P̂m,t], m = 1, 2, . . . ,M. (62)

Thus, the proof is now complete.
Remark 4: In Theorems 1–4 of this paper, the primary

focus has been on the PIO-based set-membership fusion
estimation for ANNs in the context of the OBEM. Compared
with the literature on state estimation and encoding-encoding
problems, e.g., [9], [13], [21], [26], [48], [51], this paper
involves several key developments outlined as follows.

1) Novel Encoding Method: A new encoding technique has
been proposed, which efficiently utilizes just a single
bit to encode the signal. This method is particularly
significant in the context of bandwidth-limited scenarios
and is introduced for the first time in this paper.

2) Innovative OBEM-based PIO: An advanced PIO has
been developed within the set-membership estimation
framework, specifically tailored to address the chal-
lenges arising from limited bandwidth, data distortion
and UBBN, and this PIO is designed to be robust in the
face of these constraints.

3) Original Fusion Estimation Scheme: A fusion estimation
strategy for ANNs has been established by employing
principles from set theory and optimization methods, and
such scheme is strategically designed to ensure that the

overall fusion estimation performance is superior to that
of any individual local sensor node.

Theorems 1–4 collectively contribute to the advancement of
set-membership fusion estimation techniques, particularly in
environments challenged by encoding constraints and system
uncertainties.

Remark 5: Thus far, the PIO-based fusion estimation issue
has been addressed for ANNs with OBEM. Notably, our
research exhibits several distinctive features: 1) the proposed
OBEM is novel, effectively addressing problems stemming
from bandwidth constraints; 2) the explored PIO-based fusion
estimation challenge is pioneering through taking into account
the OBEM, the PIO, and the ellipsoid-based fusion estimation
problem; and 3) the performance analysis of the fusion es-
timation is rigorous in ensuring the efficacy of the proposed
fusion algorithm.

V. ILLUSTRATIVE EXAMPLE

In this section, an example is presented to demonstrate
the usefulness of the proposed PIO-based fusion estimation
algorithm. Let the parameters of the ANN (2) be given by

Ψt =

⎡
⎣0.45 + 0.1 sin(0.15t) 0 0

0 0.5 0
0 0 0.4 + 0.1e−t

⎤
⎦

Wt =

⎡
⎣0.4 0.3 0.4
0.5 0.3 0.3
0.4 0.3 0.25 + 0.15 cos(0.2t)

⎤
⎦

Vt =

⎡
⎣1 0 0
0 0.75 + 0.2 cos(0.1t) 0
0 0 1.25

⎤
⎦ .

For the sensor nodes, the parameters are

C1,t =
[
1 0.15 1

]
, C2,t =

[
0.9 0.1 sin(0.12t) 1

]
C3,t =

[
1.2 0.08 sin(0.15t) 1

]
, C4,t =

[
1.1 0.05 1

]
.

The process noise wt and the measurement noises vm,t

(m = 1, 2, 3, 4) are set as follows:

wt =

⎡
⎣0.8u(0.5) sin(0.1t)−u(0.3) sin(0.15t)
u(0.15) cos(0.15t)

⎤
⎦

v1,t = u(0.15) sin(0.1t), v2,t = −u(0.1) sin(0.15t)

v3,t = −u(0.15) cos(0.15t), v4,t = u(0.2) sin(0.1t)

where u(·) obeys the uniform distribution. The other pa-
rameters are selected as Qt = diag{0.35, 0.35, 0.35} and
Rm,t = diag{0.2, 0.2, 0.2}, (m = 1, 2, 3, 4).

The simulation results are given in Figs. 1–9. Figs. 1–4
plot the dynamics of system state xt and its estimates x̂m,t

(m = 1, 2, 3, 4) from each sensor node under the influence of
UBBNs and OBEM, which shows that the proposed PIO-based
set-membership estimation algorithm attains a desirable level
of performance. The estimation errors of each sensor node
are given in Figs. 5–8. It is shown that the estimation errors
are bounded, which further means that, for each sensor node,
the estimation error is confined to a bounded ellipsoidal set.
To verify the effectiveness of the designed fusion estimation
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method, corresponding result is given in Fig. 9. It is obvious
that the trace of the fused shape matrix Pf,t is smaller than
that of all other local shape matrices Pm,t. In conclusion,
Figs. 1–9 show the usefulness of the proposed PIO-based
fusion estimation algorithm.
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Fig. 1: System state x and its estimate x̂ on sensor node 1.
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Fig. 2: System state x and its estimate x̂ on sensor node 2.
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Fig. 3: System state x and its estimate x̂ on sensor node 3.
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Fig. 4: System state x and its estimate x̂ on sensor node 4.
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Fig. 5: Estimation error on sensor node 1.
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Fig. 6: Estimation error on sensor node 2.
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Fig. 7: Estimation error on sensor node 3.
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Fig. 8: Estimation error on sensor node 4.
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Fig. 9: Fusion estimation performance.
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VI. CONCLUSION

This paper has presented an investigation into the PIO-based
set-membership fusion estimation for multi-sensor ANNs in
the presence of OBEM. To address the effect caused by the
capacity-limited communication network, a new OBEM has
been proposed, which can encode the scalar data with only
one bit, thereby improving the coding efficiency. Then, based
on the OBEM, a PIO-based estimator has been designed for
the state estimation task, and sufficient conditions have been
derived to ensure the existence of desired estimators. For
improving the global estimation performance, an ellipsoid-
based fusion rule has been developed leveraging set theory and
optimization technique, and the fusion estimation performance
has been analyzed. Lastly, through a simulation example,
the usefulness of the proposed estimation scheme has been
demonstrated.
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