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A B S T R A C T

This study explores the integrationof artificial intelligence (AI) and modern data analytics for accurately pre-
dicting and classifying three distinct periods of volcanic activity. By leveraging previously dated volcanic sam-
ples, we assess whether existing age and geochemical data can reliably group and predict volcanic episodes. Our 
study focuses on the Kula Volcanic Province (Turkey). We compare the effectiveness of two analytical techni-
ques—Electron Microprobe Analysis (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry 
(LA-ICP-MS)—in producing high-quality datasets for training deep learning models. While EPMA provides major 
and minor elemental compositions, LA-ICP-MS offers a broader range of trace elements, which may improve 
classification accuracy. Two experiments were conducted to evaluate the feasibility of AI-based volcanic rock age 
estimation. In the first experiment, an autoencoder and unsupervised clustering were applied to reduce 
dimensionality and group samples based on their elemental composition. The results revealed that EPMA data 
lacked sufficient detail to form well-defined clusters, whereas LA-ICP-MS data produced clusters that closely 
aligned with true age classes due to their higher sensitivity to trace elements. In the second experiment, a deep 
neural network (DNN) was trained to classify rock ages. The LA-ICP-MS-based model achieved a classification 
accuracy of 95 %, significantly outperforming the EPMA-based model (72 %). These findings underscore the 
importance of data quality and analytical technique selection in AI-powered geochronology, demonstrating that 
high-quality trace element data enhances AI model performance for volcanic rock age estimation.

1. Introduction

Volcanic rocks, a type of igneous rock, form from the cooling and 
solidification of magma or lava at or near Earth’s surface. These rocks 
are intrinsically linked to volcanic activity and manifest in various 
forms, including lava flows, volcanic cones, and ash deposits. Their 
study is pivotal for unravelling Earth’s geological history, as they pro-
vide critical evidence for understanding volcanic and tectonic processes.

Serving as a direct link to Earth’s interior, volcanic rocks offer a 
unique window into the mechanisms of magma generation, differenti-
ation, and eruption. They are fundamental to decoding Earth’s dynamic 
geological processes, revealing key insights into volcanic activity, tec-
tonic movements, and the evolutionary history of the planet. The diverse 
composition of volcanic rocks, ranging from basaltic to rhyolitic, reflects 
variations in source material, chemical composition, and tectonic set-
tings (Irvine and Baragar, 1971; Le Bas et al., 1986).

Radiometric age dating is a cornerstone technique in Earth sciences, 
enabling determination of the absolute ages of rocks and geological 
events through the measurement of isotopic decay. Geochronology, the 
scientific discipline dedicated to determining the age of rocks, minerals, 
and geological events, provides both absolute and relative temporal 
frameworks essential for reconstructing Earth’s history, particularly 
critical in the study of volcanic systems for several reasons: 

● To determine the timing of eruptions
● Constrain the recurrence interval of eruptions for hazard assessment
● Understanding magmatic history
● Reconstructing past climates

Traditionally, radiometric dating has been regarded as the bench-
mark technique for age determination due to its unparalleled reliability 
and precision in providing absolute age measurements. Methods such as 
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uranium-lead (U-Pb) and rubidium-strontium (Rb-Sr) isotopic dating 
have long been the gold standard in geochronology, offering highly 
accurate insights into the geological history of rocks. However, these 
techniques are inherently resource-intensive, necessitating significant 
sample preparation, specialized laboratory facilities, and sophisticated 
instrumentation. The complexity of these methods not only drives up 
costs but also limits their accessibility, particularly for smaller or 
underfunded research institutions. As a result, researchers often seek 
alternative approaches, such as utilizing geochemical proxies in 
conjunction with machine learning models, to infer rock ages (Petrelli 
et al., 2017). These methods, while not replacing radiometric dating, can 
provide efficient and cost-effective solutions for exploratory studies and 
complement traditional geochronological techniques. The implementa-
tion of artificial intelligence (AI) represents a significant step toward 
optimizing the use of modern characterisation techniques in the study of 
volcanic materials. For example, recent studies have explored advanced 
computer vision models for rock analysis and classification (Sim et al., 
2022), while others have combined approaches such as rough set 
mathematical theory with machine learning (ML) models for classifi-
cation (Shaaban and Tawfik, 2020). One of the primary advantages of 
ML in geochronology is its ability to quickly and accurately process large 
datasets. While traditional radiometric methods can take weeks to 
months to yield results, ML models, once trained, can provide 
near-instantaneous age predictions for volcanic rocks, significantly 
accelerating research timelines (Pignatelli and Piochi, 2021). This rapid 
prediction capability is especially valuable in areas with active volcanic 
activity, where it can support faster decision-making for hazard miti-
gation and emergency response (Ouzounis and Papakostas, 2021). 
Recent studies have increasingly applied AL and ML in Earth science to 
enhance the accuracy of geochronological analysis, for example Petrelli 
et al. (2017) combined ML algorithms with microanalysis data and large 
geochemical datasets to constrain Pleistocene magmatism. Similarly, 
Uslular et al. (2022) applied ML models to classify and correlate tephra 
from Plio-Quaternary volcanic fields, showcasing the potential for 
data-driven approaches.

ML refers to a system’s ability to predict a pattern in data and make 
assumptions without explicit programming (Das et al., 2020). ML relies 
on identifying common characteristics within a dataset to classify or 
predict outcomes. Proper feature selection is critical, as failure to select 
relevant features can lead to errors and reduce learning effectively. ML is 
revolutionising access to advanced geochemical techniques by mini-
mizing the reliance on expensive radiometric equipment. This democ-
ratization of technology allows smaller research institutions to engage in 
cutting-edge geochronology using ML models on relatively simple 
computing systems, providing sufficient training data is available. Such 
increased accessibility promotes broader collaboration across in-
stitutions and regions, enhancing the scope and depth of geological 
studies. In addition to improving efficiency, ML excels in identifying 
patterns and trends in volcanic data that traditional methods may 
overlook. Through advanced algorithms, subtle relationships between 
elemental compositions and rock ages can be revealed, offering new 
insights into volcanic processes. ML has also enhanced the accuracy of 
mineral provenance and deposit classification, with techniques such as 
random forests and neural networks refining exploration efforts in 
complex geological contexts (Zhang et al., 2023).

Electron Microprobe Analysis (EPMA) and Laser Ablation Induc-
tively Coupled Plasma Mass Spectrometry (LA-ICP-MS) are advanced 
compositional data acquisition techniques that yield detailed datasets 
on the elemental and isotopic compositions of volcanic rocks (Jenner 
and O’Neill, 2012; Gennaro et al., 2023). EPMA uses a focused electron 
beam to analyse a sample’s chemical composition best for major and 
minor elements (>0.1 wt percent (wt%)), while LA-ICP-MS employs 
lasers to ablate material, measuring trace elements (<100 parts per 
million (ppm)) as well as isotopic compositions, although the focus on 
this study is on trace elements only. These techniques generate 
high-resolution geochemical data, essential for age inference. However, 

the manual interpretation of such large and complex datasets is 
labour-intensive and susceptible to error, which makes ML an ideal tool 
for automating this process by identifying patterns in high-dimensional 
data. By training ML models on compositional data derived from EPMA 
and LA-ICP-MS analysis of samples with known ages, it becomes feasible 
to predict the ages of new volcanic rock samples more efficiently once 
their compositions are measured. These models are particularly suited 
for age classification due to their robustness in handling complex, 
non-linear relationships (Ouzounis and Papakostas, 2021; Pignatelli and 
Piochi, 2021).

Geochronology encompasses a sub-discipline called petrochronol-
ogy, which is rapidly gaining prominence in Earth sciences. This field 
focuses on linking time with specific rock-forming processes and their 
associated physical conditions (Engi et al., 2017). Petrochronology in-
vestigates the temporal evolution of rocks by analysing mineralogical 
and chemical signatures, integrating petrographic, geochemical, and 
geochronological methods to understand the timing and processes 
involved in the formation and alteration of volcanic rocks.

As petrochronology generates a vast amount of geochemical data, is 
it natural to leverage the advancements in AI to extract deeper insights 
from this geological data (Schmidhuber, 2022). AI is increasingly 
applied in mineral exploration, using techniques such as computer 
vision, remote sensing, and geochemical analysis to enhance data 
interpretation and decision-making (Yang et al., 2024). The fusion of AI 
with petrochronology holds immense potential for advancing our un-
derstanding of Earth’s geological processes (Kohn and 
Penniston-Dorland, 2017; Walters et al., 2022).

While ML has transformative potential in geoscience, several critical 
research gaps hinder its broader implementation. A key challenge is the 
limited diversity and global representativeness of existing datasets, 
reducing ML model robustness and applicability across a range of 
geological settings. Reliance on existing data introduces regional biases, 
missing values, and inconsistencies that can skew results. Addressing 
these issues requires the development of standardised, high-quality, 
globally representative geochemical databases to ensure consistency 
and reliability. Another limitation is the lack of integration across 
multidisciplinary data, such as geochemical, isotopic, petrographic, and 
geochemical variables. Current models fail to fully capture the 
complexity of geological processes. For example, understanding 
magmatic and mineralogical systems demands multi-phase, multi-proxy 
datasets for holistic modelling. But does combining diverse data sources 
enhance the accuracy and interpretability of ML-based predictions?

Methodological challenges further impede progress. These include 
handling imbalanced datasets, improving algorithm transparency, and 
expanding model applicability to diverse geological contexts. Future 
research should explore advanced ML techniques, such as neural net-
works, to enhance the reliability and resilience of predictive models.

This study aims to investigate whether it would be suitable to use 
data generated from various laboratories, each employing different 
brands of equipment and calibration policies, for training AI models, 
assuming a universal bank is to be created. Ultimately, an AI model’s 
performance is as good as the quality of the data it is trained with.

1.1. AI context and relevance of selected algorithms

Artificial Intelligence (AI) is a multidisciplinary domain aimed at 
building systems capable of performing tasks that would typically 
require human intelligence, such as learning, reasoning, pattern recog-
nition, and decision-making. Within AI, machine learning (ML) has 
become a dominant approach, enabling computers to identify patterns 
in data and improve performance over time without being explicitly 
programmed. A powerful subfield of ML is deep learning, which uses 
layered neural network architectures to model highly complex, 
nonlinear relationships. These methods have revolutionised fields such 
as medical imaging, natural language processing, and remote sensing, 
and are increasingly being adopted in geosciences for analysing high- 
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dimensional datasets and supporting decision-making.
The algorithms used in this study — including autoencoders, clus-

tering models, and supervised deep neural networks (DNNs) — are core 
components of the modern AI landscape. Autoencoders, as part of deep 
learning, are ideal for unsupervised representation learning and 
dimensionality reduction, enabling the extraction of latent features from 
complex geochemical datasets. Clustering algorithms were applied to 
this latent space to explore unsupervised groupings of rock samples. 
DNNs, on the other hand, exemplify how AI models can learn predictive 
relationships from labelled data — in this case, predicting rock age 
categories from geochemical signatures. These techniques demonstrate 
how the principles of AI can be applied to geological and petrochrono-
logical challenges, offering novel and scalable alternatives to traditional 
analytic workflows.

2. Methodology

In this study, we obtained volcanic rock samples from different lo-
calities across a volcanic site in Turkey. We analysed the age of the rocks 
and then carried out a quantitative analysis of the elemental composi-
tions of the rocks using two separate characterisation techniques.

2.1. Introduction to study site

Turkey is a tectonically and volcanically active region situated on the 
boundary between the Eurasian Plate, the African Plate, and the Arabian 
Plate (Tokçaer et al., 2005) (Fig. 1). The positioning of this makes the 
area vulnerable to intense seismic and volcanic activity, which has 
shaped its diverse geomorphological landscape with many processes 

occurring such as subduction, collision, and strike-slip faulting as a 
result of the interactions between these tectonic plates over tens of 
millions of years. Anatolia, also known as Asia Minor, is a large penin-
sula in Western Asia comprising most of modern-day Turkey. This area is 
in the collision zone between the African, Arabian, and Eurasian plates, 
and is bounded by the Mediterranean Sea to the south, the Aegean Sea to 
the west, the Turkish Straits to the northwest, and the Black Sea to the 
north.

In Western Anatolia, the Kula Volcanic Province (KVP) is a promi-
nent volcanic terrane and represents the westernmost and youngest 
volcanism in Turkey. This area is a 15 km north-south, and 40 km east- 
west monogenetic volcanic field (MVF), hosting a range of diverse 
geomorphological features and landforms including lava flows, cinder 
cones, lava caves, maars, and columnar basalts. The volcanic rocks of 
this area have been divided into 3 groups based on their petrological, 
geochemical, and geochronological characteristics, referred to as first 
stage, second stage, and third stage in decreasing ages, and represent 
three different active volcanic phases in the Quaternary Period.

2.2. Importance of Monogenetic Volcanic Fields (MVFs)

Monogenetic Volcanic Fields (MVFs) are found in diverse tectonic 
settings worldwide, where small batches of magma can erupt effusively 
and/or explosively for weeks to decades, with monogenetic volcanism 
producing small-volume volcanoes, typically <1km3. Volcanic vents 
represent the pathway for magma to the upper mantle, with an eruption 
forming a vent in an unknown location. This type of volcanism usually 
consists of clusters of volcanoes dispersed over a large area. As the term 
suggests, monogenetic volcanoes consist of singular eruptions, which 

Fig. 1. (a) Tectonic model showing plate tectonics and direction of movement. This movement is the driving force behind the geodynamic factors shaping western 
Anatolia. The figure shows the African plate (Cyprus-Aegean subduction zone) subducting beneath the Greek and Anatolian microplates, resulting in an extensional 
margin between the Aegean Sea and western Anatolia (thick double arrow). Thin arrows represent the plate motion at present; (b) cross-section of the tectonic model 
shown in a, representing the split of the Greek and Anatolian plates and the window into the underlying stretched slab that would allow melting and ascent of 
volcanic material (Doglioni et al., 2002; Tokçaer et al., 2005).

A. Salimian et al.                                                                                                                                                                                                                               Applied Computing and Geosciences 27 (2025) 100263 

3 



means if an eruption stops, volcanism will not occur at the same eruptive 
centre again. Volcanism in the area may still be active however and may 
occur as newly developed eruptive centres within its monogenetic field. 
Due to their unpredictable eruptive nature, the origin, longevity, and 
temporal-spatial distribution of eruptive centres are poorly understood 
(Jaimes-Viera et al., 2018). Due to the abundance of MVFs in every 
tectonic environment, this form of volcanism represents a localised and 

unpredictable hazard in heavily populated areas within proximity. 
There is a lack of understanding of MVFs particularly linked to the 
duration between eruptions which often results in the lack of detailed 
geochronologies making the evolution of these features often difficult to 
study. Understanding how and when such volcanism occurs, as well as 
insights into the physical-chemical parameters of magma is essential to 
understand these events.

Fig. 2. Field photographs of the KVP. a) Looking west toward the first stage plateau with lava flow forming erosion-resistant caps; b) first stage columnar basalts 
formed as a result of rapid lava cooling, demonstrating well-defined vertical jointing; cd) extensive lava flows of the third stage; e) view northeast displaying 
numerous volcanic cones from the second and third stage; f) view east showing third stage lava in the foreground, with volcanic cones from the second stage in 
the background.
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2.3. Sampling

The data utilised in this study constitutes a subset of a broader PhD 
research project. Sampling was carried out during a field visit in 2023, 
during which 39 samples were systematically collected from varying 
volcanic material, including cinder cones, lava flows, and other pyro-
clastic material such as ash deposits (Fig. 2). Sampling locations (Fig. 3) 
were strategically selected based on criteria including accessibility, 
visible stratigraphy, and spatial distribution of lava flows and volcanic 
deposits, as identified through remote sensing data, and previous 
geological maps.

2.4. Characterization techniques

Once samples were collected, data was gathered via EPMA and LA- 
ICP-MS techniques, followed by evaluating the age of the samples 
using Ar/Ar dating.

EPMA and LA-ICP-MS are powerful tools for investigating and un-
derstanding the composition of rocks found in volcanic complexes. 
These techniques enable detailed geochemical analyses of volcanic 
materials, uncovering critical information about subsurface processes 
that may not be apparent from surface observations. This is particularly 
significant for MVFs, where surface variability often reflects complex 
and diverse underlying processes. Volcanic deposits serve as natural 
records of magmatic processes, reflecting both physical and chemical 
changes that occur throughout the magma’s journey-from its residence 
in the crustal plumbing system to its final cooling at the Earth’s surface 
(Oggier et al., 2023). Magma composition plays a crucial role in deter-
mining physical properties such as viscosity, density, and eruption style, 
which can later be used for long-term evaluations of hazard and risk.

Major elements are those that define a rock’s mineralogical makeup, 
for example, Si, Al, Ca, Mg, Na, K, Ti, Fe, Cr, Mn, and P (Refer to Sup-
plementary Data). These elements, together with O compose approxi-
mately 95 % of the earth’s crust and are crucial for rock classification. 
Trace elements, in contrast, are those present in much smaller concen-
trations, usually less than 0.1 %. Examples include Ni, Cu, Y, Co, Sr, Cr, 

Rb, Zr, Zn, Nb, Sc, Ga, Th, Ba, Li, Ce, V, Nd, Pb, Pr, La, U, Eu, Er, Ho, Yb, 
Gd, Hf, Dy, Lu, Tm, and Tb (Refer to Supplementary Data Table 2).

Trace element data provides important clues regarding volcanic 
origin and evolution. While all elements provide valuable information, 
trace elements exhibit a wider range of chemical behaviours due to their 
diverse positions in the periodic table, compared to the relatively con-
strained variability of major elements (Doglioni et al., 2002). These el-
ements are highly sensitive to changes in temperature (T), pressure (P) 
and the chemical environment during magma formation and ascent, 
making them powerful indicators of magmatic processes and their un-
derlying dynamics.

In EPMA analysis, various approaches can be employed including 
spot analysis at specific points within a mineral grain (eg; core, inter-
mediate, rim), core-to-rim profiles, and elemental mapping. Each 
method offers valuable insight into mineral chemistry. This study fo-
cuses on spot analysis, providing high-precision elemental concentra-
tions at different locations within a crystal. This approach is particularly 
effective for examining mineral zoning and understanding the chemical 
evolution of mineral grains. The core, being the earliest part of the 
mineral to crystallise, reflects the initial conditions of the melt during 
the early stages of formation. The intermediate zone represents the 
transition between the core and the rim and often shows gradual and/or 
abrupt changes in composition due to changes in magma composition, T, 
or P, reflecting processes such as magma mixing, or the introduction of 
new material. The rim, as the last to crystalise, captures the final stages 
of mineral growth, often revealing information on later alteration oc-
currences. This can provide information about cooling and magma 
solidification.

After EPMA was used to determine the major and minor element 
compositions of a sample, LA-ICP-MS was performed to analyse trace 
elements with high precision and sensitivity using precise spot analysis. 
As with EPMA, multiple spots, in this case, the core, intermediate, and 
rim were followed to match those carried out by EPMA. This sequential 
approach ensures a thorough geochemical analysis, combining the 
major and minor elements using EPMA, with the trace elements using 
LA-ICP-MS.

Fig. 3. Location map of the study area showing the distribution of samples collected with sample names. For this study, the geochemical data was used from 12 
samples (S4, S6, S7, S16, S20, S21, S24, S25, S30, S32, S36, S37) (Refer to Supplementary Data Table 1).
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2.5. Age prediction

Dating methods can be specifically tailored to suit different rock 
types, geological conditions, and timescales, ensuring accurate dating 
across a wide range of materials. The selection of the appropriate 
method depends on factors such as the half-life of the radioactive iso-
topes and the minerals present in the rocks. Common examples of 
radiogenic dating techniques include uranium-lead (U-Pb), rhubidium- 
strontium (Rb-Sr), radiocarbon dating (Carbon-14), fission track 
dating, rhenium-osmium (Re-Os), potassium-argon (K-Ar), and argon- 
argon (39Ar/40Ar). For a more comprehensive discussion, readers are 
directed to the literature (Condomines et al., 2003; Reiners et al., 2005; 
Coble et al., 2017; Danǐsík et al., 2017; Reyes-Guzmán et al., 2018; 
Zawacki et al., 2022; Lee et al., 2024). In the context of volcanology, the 
most suitable methods are K-Ar or 39Ar/40Ar, which are particularly 
effective for three key reasons: 

1) they target specific minerals common in igneous rocks, such as 
feldspar, mica, and amphibole,

2) 40K has a decay half-life of 1.25 billion years (Di Vincenzo, 2022), 
meaning that the measured 40Ar can measure a wide range of 
timescales, and

3) they are capable of accurately dating material as young as the Late 
Holocene (Schmitt et al., 2013).

Ar-Ar offers higher precision by irradiating samples to convert 39K to 
39Ar and measuring the ratio of 40Ar to 39Ar (Merrihue and Turner, 
1966; McDougall and Harrison, 1999). The sample is irradiated in a 
nuclear reactor to convert a portion of the stable isotope 39K to 39Ar, 
allowing the 39Ar/40Ar ratio to be measured directly. This method 
involved step-heating, allowing for the release of argon in increments 
(Di Vincenzo, 2007). This method uses the step-heating approach and 

can identify argon loss, excess argon, or trapped argon from a previous 
event resulting in reliable age determinations (Renne et al., 1998). The 
step-heating can detect multiple argon release patterns, revealing if 
separate parts of the sample crystallised differently. While Ar-Ar dating 
is a robust method, sample preparation is very important, with samples 
needing to be fresh, with little/no alteration otherwise this can 
complicate the age interpretation. This method requires more special-
ized equipment, including nuclear reactors and mass spectrometers, and 
can therefore be less accessible to some facilities.

2.6. Clinopyroxene and mineral characteristics

In volcanic rocks, the term ‘zoning’ refers to the spatial variation in 
the composition of a single mineral grain (Ginibre et al., 2007). These 
variations typically appear as distinct layers or regions within the crystal 
and record the physical and chemical changes of the liquid phase during 
crystal growth (see section 2.4). Mineral zoning is observable through 
optical microscopy (Fig. 4) and in back-scattered electron (BSE) images 
via EPMA (Fig. 5).

Different types of mineral zoning, such as concentric, hourglass, and 
oscillatory, reflect the various growth conditions. Readers are directed 
to the literature for a detailed explanation of the different mineral 
zoning patterns (36). Textural and compositional variations associated 
with mineral zoning can provide critical insights into magmatic histories 
and can be used to decipher magmatic processes leading to an eruption 
(MacDonald et al., 2024). In geochemical analysis, mineral zoning is 
valuable for understanding the timing and nature of processes such as 
magma mixing, cooling, and fractional crystallisation.

EPMA and LA-ICP-MS employed on the mineral phase clinopyroxene 
(cpx), which is an important silicate mineral found in a wide range of 
igneous and metamorphic rocks. Its composition and structure make it a 
highly informative mineral to study as it can accommodate a variety of 

Fig. 4. Photomicrographs in cross-polarised light (XPL) showing different mineralogical and textural features. a) First stage euhedral cpx crystal showing concentric 
zoning with distinct rings of varying composition; b) second stage euhedral cpx crystal showing hourglass zoning; c) several second stage euhedral cpx crystals 
showing concentric zoning; d) third stage euhedral and subhedral cpx and ol crystals showing a glomeroporphyritic texture.
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major and trace elements which reflect T, P, and magma compositional 
variations. Cpx is a calcium-magnesium-iron silicate which consists of 
chain silicates with the general formula Ca (Mg, Fe) Si2O6. They can 
vary in composition depending on the relative proportions of Ca, Mg, 
and Fe, resulting in common mineral types of diopside CaMgSi2O6 and 
augite (Ca, Na) (Mg, Fe, Al, Ti) (Si, Al)2O6).

An important indicator of magma evolution can be calculated from 
the data derived from EPMA analysis of cpx minerals, known as the 
magnesium number, or Mg#. The Mg# is the ratio of Mg to the total Fe 
and can be calculated with the following equation: 

Mg# = 100 x Mg / Mg + Fe2+

Higher Mg# values reflect more primitive, mantle-derived magmas 
with higher Mg content, while lower Mg# values suggest more evolved 
magmas enriched in Fe due to fractional crystallisation. During this 
process, early formed Mg-rich minerals such as olivine (ol) crystallise 
out, leaving the remaining melt Fe-enriched. Mg# is valuable for 
comparing samples, modelling fractional crystallisation processes, and 
performing thermobarometry calculations to estimate T and P of cpx 
crystallisation. Although this study does not delve deeply into the Mg#, 
it is important to understand the significance of this geological param-
eter, and how it can be determined through EPMA analysis.

2.7. Laboratory

Geochemical analysis requires high-quality, polished thin sections 
prepared to a thickness of 30 μm and further polished using 0.25 μm 
diamond suspension to achieve a smooth sample surface free from 
scratches or imperfections. This ensured minimal interference during 
electron beam-based analysis. For EPMA, samples must be carbon 
coated with a 20–30 μm layer to enable high-resolution imaging and 

qualitative analysis by establishing conductivity between the electron 
beam and the sample surface. Without this, non-conductive samples 
may accumulate electrical charge, leading to distorted signals and poor 
image quality. For LA-ICP-MS carbon coating is not necessary as it relies 
on a laser rather than electron conductivity, eliminating the risk of 
charging. Samples under the laser beam are required to be free from 
contamination.

Major element compositions were acquired using EPMA from four 
different laboratories: 

● The GeoLab at the Faculty of Geoscience, Utrecht University
● The Faculty of Sciences of the University of Lisbon
● The Department of Earth Sciences, University of Cambridge
● The Sorby Centre for Electron Microscopy, University of Sheffield.

While each laboratory followed the same methodology, slight vari-
ations in operating conditions, standards, and operating crystals were 
chosen (Refer to Supplementary Data Tables 3–7). Calibrations were 
performed using a range of well-characterised mineral standards cor-
responding to the elements of interest (Refer to Supplementary Data 
Tables 3–7). To ensure the accuracy and precision of the measurements, 
the instrument was calibrated at the beginning and end of each session 
daily, and standard materials were periodically reanalysed to monitor 
potential instrumental drift. Matrix effects were corrected using the ZAF 
method (accounting for atomic number (Z), absorption (A), and fluo-
rescence (F)) at the Utrecht, Cambridge, and Lisbon laboratories, while 
the PRF correction method (incorporating primary (P), rear (R), and 
focusing (F)) was applied at the Sheffield laboratory.

Trace element analyses were performed at the Department of Earth 
Sciences “A. Desio” of the University of Milan using an Analyte excite 
193 nm ArF excimer laser coupled with a Thermo Fisher Scientific iCAP- 

Fig. 5. EPMA backscattered electron (BSE) images of cpx crystals displaying mineral zoning. Distinctive compositional zones can be seen which highlights the 
various chemical variations. ab) Third stage samples; cd) First stage samples.
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RQ mass spectrometer. Unlike the EPMA analysis, the data for trace 
element analysis was acquired from a single laboratory. The operating 
conditions were the following for cpx: 6 J/cm2 fluence, 40 μm and 10 Hz 
repetition rate. The acquisition time was 60 s on the sample and 40 s on 
the background. Data reduction was carried out with the software 
package GLITTER (Griffin, 2008) using CaO wt% concentrations from 
microprobe analyses as an internal standard. The international reference 
material BCR-2G (Jochum et al., 2005) was used as a calibration stan-
dard and reference glasses (NIST612 (Pearce et al., 1997); ARM-3 (Wu 
et al., 2019); GSD-2G and ATHO-G (Jochum et al., 2005), were used to 
monitor accuracy. The reproducibility is less than 20 % for most 
elements.

Four samples, S6, S11, S27, and S36 (Fig. 6 and Supplementary Data 
Table 1) were subject to Ar-Ar dating carried out at the Ar-Ar 
Geochronology Laboratory, CNR, Pisa, Italy. The samples were 
crushed and sieved by hand using a pestle and mortar, and fragments 
between 0.25 and 0.5 μm were observed under the microscope to 
remove the grains for analysis, by handpicking fresh, unaltered 
groundmass. During the sample preparation, samples were worked 
mechanically by hand to avoid contamination, and no solvents or sub-
stances were used during the preparation of the material. For the Ar-Ar 
method, readers are referred to (Smellie et al., 2022) for a detailed 

methodology of the technique.
A limited mini data bank was created based on the activities dis-

cussed. These data ultimately reflect the elemental analysis of our 
samples associated with their measured age.

2.8. Data obtained via the Ar/Ar analysis

The results show the first stage sample is 1264.5 +- 9.2 Ka, the 
second stage sample is 179 +- 8.7 Ka, and the third stage samples are 4.3 
+- 6.1 Ka and 3.5+- 7.6 Ka (Fig. 6). The results show three distinct 
phases of activity all within the Quaternary Period and date as the Early 
Pleistocene (first stage), the Middle Pleistocene (second stage), and the 
Holocene (third stage).

The values from dating represent the time that has passed since the 
rock last cooled and solidified, effectively corresponding to the time of 
the volcanic eruption. The value following the +- symbol represents the 
analytical uncertainty, or error, for each date. Larger errors suggest that 
samples may have encountered complexities such as alteration, argon 
loss, or contamination which give a broader timeframe and less precise 
age determinations. Smaller errors may result from a more stable argon 
retention, possibly as these samples have not experienced argon loss 
over time and therefore provide more exact timing. For the third stage, 

Fig. 6. Groundmass Ar/Ar incremental heating analysis showing age spectra. Sample KL2023-07-24-2 is first stage. Sample KL2023-07-25-7 is second stage. Samples 
KL2023-07-20-5 and KL2023-07-19-6- are third stage. All samples were analysed using Alder Creek sanidine (ACs) as a standard (Niespolo et al., 2017).
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the larger errors mean that while the samples likely date from Holocene 
volcanism, the exact timing is less precise. Thus, while we interpret 
these ages as generally within the past 10,000 years, the exact eruption 
date is less constrained. The first and second stages have smaller relative 
errors, indicating more precise ages. Readers are directed to the litera-
ture for a more detailed explanation of how analytical errors are esti-
mated in radiometric dating (Kelley, 2002).

2.9. Data obtained from EPMA and LA-ICP-MS

The distribution of the data points collected via EPMA and LA-ICP- 
MS based on the rock age is presented in Fig. 7. The LA-ICP-MS data 
demonstrates a balanced distribution while the EPMA data are less 
balanced as there is a small representation of the T3 age class (see 
Fig. 8). 

3. Algorithm and implementation

3. Algorithm and implementation

The core objective of this research has been to evaluate the quality of 
the data obtained from the two analytical techniques discussed and 
assess the feasibility of training deep neural networks for AI-based age 
estimation of rocks once the analysis has been carried out. As such two 
separate modelling experiments were carried out. In one approach the 
objective was to assess whether a combination of a neural network 
model coupled with PCA dimensionality reduction and a machine 
learning unsupervised clustering technique able to classify the samples 
into three groups without any information associated with the rock age. 
The second approach involved training a neural network model with a 
portion of the data from each technique based on the age of the rocks 
and then assessing the model’s performance in predicting the age of the 
rock associated with an unseen data set (see Fig. 9).

3.1. Experiment 1

The primary goal of this study was to determine if clustering algo-
rithms could group rock samples into meaningful categories based on 
geochemical data obtained via EPMA and LA-ICP-MS. Specifically, the 
study evaluated whether these clusters aligned with the true age classes 
of the samples previously undertaken at the Geochronology Laboratory, 
CNR, Pisa. The methodology involved constructing an autoencoder to 
create a latent representation of the geochemical data and applying 
several clustering algorithms to the latent space. An autoencoder was 
built using TensorFlow to compress the geochemical data into a latent 
representation. The encoder reduced the dimensionality of the input 
data using dense layers with ReLU activation, creating a latent space 
represented by a 10-dimensional vector designed to capture the most 
significant patterns in the data. The decoder reconstructed the input 
data from the latent representation. The encoder was subsequently used 
to extract the latent space representation of the geochemical data. The 
structure of the model and data flow is illustrated in Fig. 10.

3.2. Experiment 2

In this study, we constructed a robust deep neural network (DNN) to 
classify the age of volcanic rocks using geochemical data derived from 
Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP- 
MS) and Electron Microprobe Analysis (EPMA). The data, encompassing 
(41 for LA-ICP-MS and 15 for EPMA) distinct geochemical features 
serves as a rich representation of the underlying mineralogical and 
elemental composition of the rocks, offering a reliable basis for age 
classification through supervised machine learning (Fig. 11).

The deep learning model was implemented using the TensorFlow 
Keras framework. A carefully designed sequential architecture was 
employed to ensure optimal learning and classification accuracy. The 

architecture is composed of the following layers:

3.2.1. Input layer
The input layer processes the relevant input geochemical features 

representing the rocks’ elemental and mineralogical composition.
A dense layer with 64 neurons was employed, activated using the 

ReLU function to introduce non-linearity.

Fig. 7. Distribution of the data collected via the two techniques according to 
the rock age. T1 = first stage. T2 = second stage. T3 = third stage.
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3.2.2. Hidden layers
Three hidden layers were incorporated to extract complex patterns 

and interactions within the data: First Hidden Layer: 128 neurons with 
ReLU activation., Second Hidden Layer: 64 neurons with ReLU activa-
tion and a Third Hidden Layer: 32 neurons with ReLU activation.

Batch normalization layers were added after each dense layer to 
stabilize and accelerate training by normalizing the activations, thereby 
mitigating internal covariate shifts.

Dropout layers (30 % dropout rate) were interspersed to prevent 
overfitting by randomly deactivating a fraction of the neurons during 
training.

Output Layer: The final output layer consists of 3 neurons, each 
representing one of the predefined age categories. A softmax activation 
function was used to ensure the outputs are interpretable as probabili-
ties, enabling classification into distinct age groups.

Optimization and Training; The network was optimized using the 
Adam optimizer with a multi stage finely tuned learning rate to balance 
convergence speed and precision. The categorical cross-entropy loss 
function was employed, reflecting the multi-class nature of the classifi-
cation task. The model was trained to maximize classification accuracy, 
with training performance monitored through accuracy metrics on the 
training and validation datasets.

This DNN architecture demonstrates a sophisticated approach to 
leveraging geochemical datasets for geological investigations. By inte-
grating techniques such as batch normalization and dropout, the model 
effectively balances learning capacity with generalization, making it a 
powerful tool for classifying the age of volcanic rocks.

4. Results

Several clustering algorithms were applied to the latent space, and 
their performance was compared using metrics such as Adjusted Rand 
Index (ARI), Homogeneity Score, and Adjusted Clustering Accuracy. 
Among these, k-means clustering was the best-performing technique. 
Further information on the above-mentioned metrics and their 

mathematical illustration is provided in the supplementary section of 
this report.

K-means assumes spherical clusters and evenly distributed cluster 
sizes, which seemed to align well with the nature of the dataset. Other 
methods, including Gaussian Mixture Models (GMM), DBSCAN, 
HDBSCAN, and Spectral Clustering, were also tested but did not 
outperform k-means due to the nature of the dataset and the assump-
tions underlying these algorithms. GMM, for instance, accounted for 
overlapping clusters but performed poorly compared to k-means, with 
weaker clustering performance reflected in lower accuracy and homo-
geneity scores.

To visualize the clustering results, the latent space was reduced to 
two dimensions using principal component analysis (PCA). True labels 
representing the age classes of the rock samples and predicted cluster 
labels were plotted for comparison. The visualizations provided a clear 
representation of how well the clusters aligned with the true labels. The 
clustering results are presented in Figs. 12 and 13 for the LA-ICP-MS and 
EPMA associated data.

Key findings demonstrated that considering the LA-ICP-MS, k-means 
clustering in the latent space of an autoencoder effectively grouped rock 
samples based on geochemical data, closely aligning with the true age 
classes. This outcome highlights the utility of combining deep learning 
techniques with traditional clustering methods in geochemical analyses. 
However, there is potential for further refinement. Future work could 
focus on optimizing the autoencoder architecture by experimenting with 
deeper or more complex models to improve latent space representation 
and testing different latent space dimensionalities. However, comparing 
clustering performance for EPMA and LA-ICP-MS data is interesting as it 
seems the EPMA data are incapable of providing enough information to 
the neural network to lead to a meaningful classification. This is highly 
important as it addresses the primary objective of this research.

The datasets used in this study for predicting the age of volcanic 
rocks were derived from two distinct analytical techniques- LA-ICP-MS 
and EPMA. While the EPMA dataset consisted of 417 samples, the LA- 
ICP-MS dataset included only 118 samples. It is acknowledged that 

Fig. 8. Correlation matrix of the data associated with compounds quantified via EPMA.
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the limited size of the latter dataset poses a potential challenge for 
training deep learning models, given the data-intensive nature of such 
approaches. However, it is important to note that obtaining high-quality 
geochemical data from these techniques is labour-intensive, time- 
consuming, and resource-intensive, often making large-scale data 
collection impractical. To ensure a fair and unbiased evaluation of the 
models, 10 % of the data was withheld as an unseen validation set in 
both cases. The results are presented in Fig. 14.

To further evaluate the performance of the classification models 
highlighted in Fig. 14, we computed additional metrics beyond overall 
accuracy, namely precision and recall for each class. Considering EMPA 
samples; the confusion matrix revealed that while the model achieved a 
satisfactory overall accuracy of 73.8 %, performance varied across age 
groups. Specifically, Class 1 yielded a precision of 0.714 and recall of 
0.769, while Class 2 performed the best with a precision of 0.789 and 
recall of 0.833. In contrast, Class 3 showed a notably lower precision of 

Fig. 9. Correlation matrix of the data associated with elements quantified via LA-ICP-MS.

Fig. 10. The data is initially used to train an Autoencoder deep neural network. This configuration forms a latent lower (10D) dimensional representation of the 
original data. This lower dimensional data is then used for clustering via K means clustering algorithm and converted via principal component analysis into two- 
dimensional (2D) space for visualisation of the data.
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0.667 and recall of 0.545. This discrepancy suggests that the model had 
greater difficulty correctly identifying Holocene samples, likely due to 
overlaps in geochemical features or sample imbalance. These metrics 
highlight important areas for further refinement and support the need 
for future investigations into class-specific misclassifications and po-
tential feature enhancements.

Despite the inherent data constraints, the LA-ICP-MS model achieved 
a remarkable classification accuracy of 95 %, significantly out-
performing the EPMA-based model, which yielded an accuracy of 74 %. 
At first sight, this result highlights the potential of LA-ICP-MS data to 
provide superior discriminatory power for age classification, likely due 
to its ability to capture more detailed elemental signatures that are 
closely tied to the volcanic rocks’ age.

In respect to LA_ICO_MS data, confusion matrix reveals high model 
performance with an overall accuracy of 95.8 %, indicating that the 
model can reliably classify rock samples into their correct age cate-
gories. Precision and recall offer deeper insight into per-class perfor-
mance. Class shows a precision of 0.933 and perfect recall of 1.0, 
meaning that while a small number of misclassifications occurred from 
other classes being mistaken for Class 1, all actual Class 1 samples were 
correctly identified. Class 2 demonstrates perfect precision and recall 
(1.0), highlighting the model’s flawless performance in both identifying 
and retrieving samples from this category. Class 3 also exhibits perfect 
precision (1.0), but a slightly lower recall (0.833) due to one mis-
classified instance. This suggests the model is conservative in assigning 
samples to Class 3, preferring not to risk false positives. These metrics 
demonstrate the model’s robust and selective learning ability, with 
minimal overfitting, and highlight areas—particularly Class 3—where 
future refinement may enhance generalization.

The performance discrepancy is further illustrated in the respective 
confusion matrices, which provide a detailed breakdown of classifica-
tion outcomes for each technique. The LA-ICP-MS confusion matrix 
demonstrates a high degree of precision and recall across all classes, 
underscoring its robustness even with a smaller dataset. Conversely, 
while the EPMA technique provides a broader dataset, its lower accu-
racy suggests that its geochemical measurements might lack the speci-
ficity required for precise age classification.

5. Conclusion

This study employed deep learning to classify volcanic rocks using 
geochemical data derived from two distinct analytical techniques and 
link these data to the rock’s geochronology. The results revealed a 
striking disparity in classification performance, with LA-ICP-MS 
achieving an accuracy of 95 %, significantly outperforming the EPMA 
dataset, which yielded an accuracy of 72 %. While the differences in 
outcomes may initially appear surprising, they align well with the 
inherent characteristics of these techniques, the specific requirements of 
the classification task, and certain experimental conditions that warrant 
discussion.

The disparity in performance can be attributed to the fundamental 
differences between EPMA and LA-ICP-MS in terms of analytical capa-
bilities. EPMA is primarily designed for the analysis of major and minor 
elements, focusing on spatial resolution at the micrometre scale. 
Although it provides valuable insights into the mineralogical composi-
tion of rocks, its limited ability to detect trace elements diminishes its 
suitability for age classification tasks. By contrast, LA-ICP-MS is specif-
ically engineered to analyse a broad spectrum of trace elements at high 
sensitivity levels. Such trace elements often carry critical information 
related to magma source, evolution, and geodynamic processes thus the 
LA-ICP-MS dataset inherently provided a more informative and 
discriminative foundation for the classification model.

Another critical factor influencing these results is the difference in 
laboratory conditions under which the data were collected. The EPMA 
data was obtained from four different laboratories (Fig. 15), potentially 
introducing variability in the measurements due to differences in 

Fig. 11. Architecture of the deep neural network designed for classifying the 
age of volcanic rocks based on geochemical features obtained from EPMA and 
LA-ICP-MS. The model includes an input layer with 41 features, multiple hid-
den layers with batch normalization and dropout for improved generalization, 
and a SoftMax output layer for multi-class classification.
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Fig. 12. Clustering of the LA-ICP-MS data after conversion into a 2-dimensional space. Top: Clusters based on the latent space. Bottom: Clusters based on the real age 
of the samples. The metrics associated with this experiment were: Adjusted Clustering Accuracy: 0.677, Adjusted Rand Index (ARI): 0.314, Homogeneity 
Score: 0.328.

A. Salimian et al.                                                                                                                                                                                                                               Applied Computing and Geosciences 27 (2025) 100263 

13 



Fig. 13. Clustering of the EPMA data after conversion into a 2-dimensional space. Top: Clusters based on the latent space. Bottom: Clusters based on the real age of 
the samples. The metrics associated with this experiment were: Adjusted Clustering Accuracy: 0.458, Adjusted Rand Index (ARI): 0.036, Homogeneity Score: 0.028.
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instrumentation, calibration protocols, and operator practices. Inter- 
laboratory variations are well-documented challenges in geochemical 
studies, as even minor differences in analytical setups can lead to in-
consistencies in reported concentrations. Such variability can introduce 
noise into the EPMA dataset, reducing its overall utility for the ML 

model. The LA-ICP-MS data were obtained exclusively from a single 
laboratory, ensuring consistency in analytical conditions. This assump-
tion can be overruled as we carried out the exact tests by training the 
same model with the EPMA exclusively obtained from each lab sepa-
rately and an improvement was observed in the autoencoder model 

Fig. 14. Confusion matrices for the classification of volcanic rock ages using deep learning models. (Top): matrix represents results obtained using EPMA data, with a 
classification accuracy of 74 %. The bottom matrix corresponds to the LA-ICP-MS data, achieving a significantly higher accuracy of 95 %. The matrices illustrate the 
distribution of true versus predicted classifications, highlighting the superior performance of LA-ICP-MS in this study. The reported accuracies reflect the highest 
achieved across 10 separate train-test splits using randomly selected test sets. Across these runs, the lowest observed accuracy for the EMPA data was 68 %, while for 
the LA-ICP-MS data it was 91 %.
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coupled with the PCA algorithm to construct a clustering mimicking the 
real class of the rock ages. These results are presented in the supple-
mentary section.

However, it is also important to consider the practical challenges 
associated with data collection in geochemistry. While the EPMA dataset 
comprised 417 samples, the LA-ICP-MS dataset included only 118 
samples. The limited size of the LA-ICP-MS dataset reflects the 
complexity and resource-intensive nature of obtaining such data in the 
laboratory. Despite these constraints, the LA-ICP-MS model out-
performed the EPMA model, demonstrating the superior quality and 
relevance of its data for age classification tasks. Additionally, 10 % of the 
data was withheld as a test set in both cases, ensuring that the reported 
accuracies reflect the true predictive capabilities of the models.

The confusion matrices for the two techniques further illustrate the 
disparity in performance. The LA-ICP-MS confusion matrix demon-
strates high precision and recall across all age classes, highlighting its 
robustness despite the smaller dataset size. In contrast, the EPMA 
confusion matrix reveals more frequent misclassifications, suggesting 
that the data lacked the granularity needed to differentiate between 
similar age categories effectively. These findings emphasize the impor-
tance of analytical technique selection in geochemical research and 
validate the transformative potential of advanced techniques such as LA- 
ICP-MS when paired with state-of-the-art ML models.

To successfully integrate AI and modern data analytics into the 
physical sciences, the quality and origin of the data cannot be over-
looked. While many advocate for the creation of large data banks to 
advance this objective, our experiments highlight the challenges of using 
data sourced from multiple origins. Inconsistencies and variations in 
data quality can undermine the effectiveness of training ML models. 
Therefore, before compiling such datasets, it is crucial to establish 
standardized protocols and directives to ensure that data from diverse 
sources can be harmonized into a universal and reliable resource for 
model training. This foundational step will enable robust and repro-
ducible AI-driven advancements in the physical sciences.
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