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Adaptive Decentralized State Estimation for
Multi-Machine Power Grids Under Measurement
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Bogang Qu, Zidong Wang, Bo Shen, Hongli Dong, and Daogang Peng

Abstract—This paper is concerned with the adaptive dynamic
state estimation (DSE) problem for synchronous-generator-based
multi-machine power grids under measurement noise with un-
known statistics. The statistical properties of the measurement
noises are efficiently revealed by utilizing limited measurement
data contained in a sliding window, and such data is employed
to establish the base distribution of the noises, with the aid of
the Gaussian mixture model and the Kernel density estimation
scheme. Subsequently, the component number of the base dis-
tribution of the measurement noises is reduced by designing a
fuzzy c-means clustering algorithm with the Wasserstein distance
criterion. An improved sliding-window-based adaptive cubature
Kalman filtering scheme is then proposed, which leverages the
already obtained statistical characteristics of the measurement
noise and the concept of the Gaussian summation filter. Finally,
the validity of the proposed adaptive DSE algorithm under
various measurement noise statistics is illustrated by simulation
studies conducted on the IEEE 39-bus system featuring three test
scenarios.

Index Terms—Adaptive state estimation, multi-machine power
grids, unknown measurement noises, cubature Kalman filter,
clustering algorithm.

I. I NTRODUCTION

Over the past few decades, the power grids have under-
gone significant evolution due to the high penetration of
renewable power generations and widespread use of power
electronics [12], [29], [48]. These developments frequently
force the power grids to operate under extreme conditions,
thereby increasing the demands for real-time control, reli-
able decision-making, and secure assessment of the grids
[6]. It is worth noting that traditional control/optimization
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schemes may encounter numerous challenges in current power
grid applications due primarily to their inherent limitations
in addressing the inner states of the systems. In response,
substantial research efforts have been dedicated to developing
novel information perception techniques, such as situational
awareness and state estimation (SE), see e.g. [6], [12].

Recently, there has been a significant surge in research
interest focused on the SE problem in areas of target tracking
[19], [37], fault diagnosis [49], and artificial intelligence [10],
[20], [23]. Within the realm of power grids, SE techniques
have garnered considerable research enthusiasm as highlighted
by some notable works [12], [30], [42], [45]. For instance, in
[42], a novel fully distributed unscented information filter has
been designed for large-scale power networks. It is critical to
acknowledge, however, that most existing SE methodologies
for power systems are based on the fundamental assumption
that measurement noises follow aGaussian distribution with
known statistics, but such an assumption may not hold due to
the complex and variable operating status of power grids.

It has been reported in [2], [40] that the noise in phasor mea-
surement units (PMUs) exhibitsnon-Gaussian characteristics
(e.g. thick-tailed/multimodal distribution). These observations
have highlighted the importance of studying the dynamic
state estimation (DSE) problem for power systems under the
influence of non-Gaussian noise. In response to this need,
several key studies have addressed DSE issues in power
systems with non-Gaussian noises. Representative works in
this area include [1], [22]. For example, in [22], an event-based
DSE algorithm has been developed for synchronous generators
under the assumption of non-Gaussian measurement noises.
Mostly recently, a robust particle filtering algorithm has been
introduced in [1] to cater to non-Gaussian observation noises
and various outlier types.

In many practical scenarios, the statistics of measurement
noises are unknown and even time-varying [7], and this vari-
ability can pose challenges to the effective implementation of
existing DSE methods. Specifically, most existing DSE meth-
ods for power systems are predicated on predetermined models
such as system, measurement, and noise models, without fully
considering the actual statistics of the measurement noises. As
a result, there has been a rapidly growing interest in robust
DSE schemes that operate effectively with unknown noise
statistics [1], [8], [46]. Nevertheless, it is crucial to recognize
that these robust DSE schemes are fundamentally passive
in addressing non-Gaussian noises with unknown statistics,
and their results may not be optimal. Therefore, a natural
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progression is to develop “active” DSE schemes, which aim
to enhance estimation performance by fully utilizing the real
statistics of the measurement noises, thereby moving beyond
the limitations of passive approaches.

As of now, adaptive DSE approaches have begun to draw
initial research interest in the power system sector with some
noteworthy contributions in [7], [18]. For instance, an adaptive
Kalman filter has been developed in [18] to enhance the
resilience of the SE algorithm in the face of step changes
in AC/DC microgrids by employing a novel prediction-error
covariance estimation method. Also, an adaptive SE scheme
has been introduced in [7] to improve SE performance in
power systems under unknown and time-varying measure-
ment errors. This scheme operates under the expectation-
maximization (EM) algorithm framework and also utilizes the
EM algorithm to estimate the distribution of measurement
errors. Unfortunately, in the context of multi-machine power
grids, there has been limited focus on adaptive DSE problems
that deal with unknown measurement noises.

TABLE I: Representative schemes and results

Schemes Reference No. Methodologies

Robust

[1], [22] Improved particle filter
[11], [29] Improved Kalman filter
[8], [46] Robust unscented Kalman filter

[31] Robust information filter

Adaptive [7] Adaptive expectation maximization
[18], [47] Prediction-error covariance estimation

In light of the discussions presented earlier and the rep-
resentative results given in Table. I, there is a noticeable
gap in the development of an adaptive DSE algorithm for
synchronous-generator-based (SG-based) power grids under
measurement noises with unknown statistics. Specifically, 1)
the measurement noise is inherently variable over time, which
complicates the task of identifying their precise distributions;
2) the identification work requires extensive measurement data,
and this poses higher demands on the flexibility and efficiency
of the algorithms; and 3) the statistical identification result
of measurement noises is dynamical and time-varying due to
the evolving nature of power systems, which brings additional
challenges in the development of state estimation algorithms.

As such, this paper aims to bridge the gap by introducing
an innovative adaptive DSE algorithm with following key
contributions.

1) A sliding-window-based scheme is proposed to con-
struct the base Gaussian mixture model (GMM) of the
measurement noise, which is achieved using the Ker-
nel density estimation algorithm. The approach utilizes
limited measurement data, and is therefore suitable for
online applications.

2) A novel fuzzy c-means clustering algorithm that incor-
porates the Wasserstein distance criterion is developed.
This method effectively reduces the component number
of the base GMM (resulting in a reduced GMM), thereby
enhancing computational efficiency in real-world appli-
cations.

3) An improved sliding-window-based DSE scheme is de-
signed under the cubature Kalman filtering algorithm

framework, which incorporates the concept of the Gaus-
sian summation filter. Importantly, the parameters of this
scheme are adaptively adjusted according to the reduced
GMM obtained in the previous sliding window, ensuring
dynamic responsiveness to changing grid conditions.

The rest of this paper is organized as follows. Section II
formulates the decentralized model of power grids. In Section
III, the sliding-window-based estimation method is designed
for the distribution of the PMU measurement noises. Section
IV investigates the sliding-window-based adaptive DSE algo-
rithm design problem based on the already obtained statistics
of the PMU measurement noises. In Section V, simulation
studies and discussions are carried out on the IEEE 39-bus
system. Finally, some conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

A. Model of Synchronous Generator

A multi-machine power system withM synchronous gen-
erators (SGs) is considered in this paper, where the4-th order
nonlinear discrete-time state-space model of them-th SG is
of the following form [34]:

δm,k+1 =δm,k + (ωm,k − ωs)∆t, (1a)

ωm,k+1 =ωm,k +
ωs

2Hm

[

Tm,m,k − Pm,k −Di(ωm,k − ωs)
]

×∆t, (1b)

E′
q,m,k+1 =E′

q,m,k +
1

T ′
d0,m

[

− E′
q,m,k − (Xd,m −X ′

d,m)

× Id,m,k + Efd,m,k

]

∆t, (1c)

E′
d,m,k+1 =E′

d,m,k +
1

T ′
q0,m

[

− E′
d,m,k + (Xq,m −X ′

q,m)

× Iq,m,k

]

∆t (1d)

with

Id,m,k =
1

X ′
di

(E′
q,m,k − Vq,m,k),

Iq,m,k =
1

X ′
qi

(−E′
d,m,k + Vd,m,k),

Vd,m,k =Vm,k sin(δm,k − θm,k),

Vq,m,k =Vm,k cos(δm,k − θm,k) (2)

where the subscriptm is the index of SG(m = 1, 2, . . . , N);
the discretization period and time instant are denoted as∆t

andk, respectively;δ andω are, respectively, the rotor angle
and rotor speed of the SG;ws is the nominal synchronous
speed;P is the SG’s terminal active power;ωs

2Hm
stands for the

SG’s inertia time;D andTm represent the damping factor and
mechanical torque input of SG, respectively;Efd represents
the excitation field voltage of SG;E′

d andE′
q are thed-axis and

q-axis transient voltages of SG, respectively;Xd andXq are,
respectively, thed-axis andq-axis synchronous reactances of
SG;X ′

d andX ′
q are thed-axis andq-axis transient synchronous

reactances of SG, respectively;T ′
d0 andT ′

q0 are thed-axis and
q-axis transient open-circuit time instants of SG, respectively;
Id and Iq are, respectively, thed-axis andq-axis currents of
SG; Vd and Vq represent thed-axis andq-axis voltages of
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Fig. 1. Diagram of the adaptive DSE for multi-machine power grids with unknown PMU measurement noise statistics.

SG, respectively; andV and θ are the terminal bus voltage
magnitude and phase angle of SG, respectively.

Based on (1)-(2), the discretized state-space model of the
m-th SG can be written as

xm,k+1 = gm(xm,k, um,k) + wm,k (3)

where xm,k ,
[

δm,k ωm,k E′
q,m,k E′

d,m,k

]T ∈
R

nx is the state vector and um,k ,
[

Vm,k θm,k Tm,m,k Efd,m,k

]T ∈ R
nu is the input

vector (k∆t is simply denoted ask for brevity). The details
of gm(·) is given in (1)-(2), andwm,k represents the process
noise satisfying the probability density function (PDF)pwm,k

.

B. Measurement Model

To facilitate decentralized DSE in power systems, the ap-
proach adopted in this paper is inspired by the methodologies
proposed in [46]. Specifically, the ideal terminal active and
reactive power injections as well as the terminal frequency of
them-th SG are chosen as the PMU measurement, i.e.

fm,k =f0(wm,k − ws + 1), (4a)

Pm,k =Vd,m,kId,m,k + Vq,m,kIq,m,k, (4b)

Qm,k =− Vd,m,kIq,m,k + Vq,m,kId,m,k (4c)

wherem (m = 1, 2, . . . ,M) and k represent the SG index
and the time instant, respectively;f and f0 are the rotor
base frequencies, respectively;P andQ are, respectively, the
active and reactive power injections of the terminal bus. The
definitions ofVd, Vq, Id andIq are all given in (2).

Taking the PMU measurement noise into account, a compact
measurement model of them-th SG can be arranged as

zm,k = hm(xm,k, um,k) + vm,k (5)

where zm,k , [fm,k Pm,k Qm,k]
T ∈ R

ny represents the
measurement vector,hm(·) is determined by (4), andvm,k

denotes the measurement noise with unknown statistics.

C. Problem Statement

In this paper, the aim is to develop an adaptive DSE
algorithm for power grids with the capability to effectively

address the challenges posed by non-Gaussian and time-
varying measurement noises from PMUs. The algorithm is
designed with three primary objectives given as follows.

1) The first objective is to uncover the statistical character-
istics of PMU measurement noises, which is achieved
by creating a base GMM that reflects these characteris-
tics. Here, the base GMM is established using limited
historical measurement data collected within a sliding
window.

2) The second objective is to enhance computational effi-
ciency, which is accomplished by reducing the number
of components in the base GMM, while still retaining
the main density features of the model.

3) The third objective is to estimate the states of a multi-
machine power grid adaptively by utilizing the reduced
GMM obtained from the previous steps.

III. E STIMATION FOR DISTRIBUTION OF UNKNOWN PMU
MEASUREMENT NOISES

In this section, the base GMM is established to describe
the statistics of the PMU measurement noises contained in
a sliding window, and then the clustering-based algorithm is
developed to reduce the component number of the base GMM.
The diagram of the proposed approach is shown in Fig. 1.

A. The Establishment of Base GMM

ConsiderS consecutive scans of PMU measurements con-
tained in thew-th sliding window, i.e.

Zm,w , {zm,k−S , zm,k−S+1, . . . , zm,k−1}
, {zm,w,1, zm,w,2, . . . , zm,w,S} (6)

with w = ⌈ k
S
⌉, the corresponding distribution of these PMU

measurement noises can be characterized with the aid of
previous estimates of measurements and the Kernel density
estimation approach. To be specific, letX̂m,w be the estimates
of them-th SG in thew-th sliding window, i.e.

X̂m,w , {x̂m,k−S|k−S , x̂m,k−S+1|k−S+1, . . . , x̂m,k−1|k−1}
, {x̂m,w,1|1, x̂m,w,2|2, . . . , x̂m,w,S|S},
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and then the corresponding PMU measurement noises of the
w-th sliding window can be represented as

Vm,w , {vm,k−S , vm,k−S+1, . . . , vm,k−1}
, {vm,w,1, vm,w,2, . . . , vm,w,S} (7)

wherevm,w,i ≈ zm,w,s−hm(x̂m,w,s|s, um,w,s) with um,w,s =
um,w,k−S+s−1 (s = 1, 2, . . . , S).

Letting Vm,w be the set of the samples ofvm,w, the base
Gaussian mixture density ofvm,w can be estimated via

f b(vm,w|Θb
m,w) =

1

S

S
∑

s=1

KH(vm,w − vm,w,s) (8)

whereKH is the Gaussian kernel function with bandwidth
matrixH , andS represents the total number of samples. Note
that the base PDF ofvm,w with parameterΘb

m,w (obtained
by applying the kernel density estimation approach) can also
be represented by the GMM [35] in which each sample
corresponds to a specific component of the GMM. Thus, we
rewrite (7) as

f b(vm,w|Θb
m,w) =

S
∑

s=1

αb
m,w,sN (vm,w|µb

m,w,s,Σ
b
m,w,s). (9)

The detailed expression of parameterΘb
m,w is

Θb
m,w = [(θbm,w,1)

T , (θbm,w,2)
T , . . . , (θbm,w,S)

T ]T

where
θbm,w,s = [αb

m,w,s, µ
b
m,w,s,Σ

b
m,w,s]

T ,

N (vm,w|µb
m,w,s,Σ

b
m,w,s) is thes-th component of the GMM

with meanµb
m,w,s = vm,w,s and covarianceΣb

m,w,s = H

(s = 1, 2, . . . , S), and the weight of each component of the
base GMM is denoted asαb

m,w,s with αb
m,w,s =

1
S

.
Remark 1: As it has been discussed in [3], any non-Gaussian

distribution can be sufficiently represented or approximated by
a finite number of Gaussian densities according to the Wienner
approximation theorem. In addition, it has been reported in
[38] that the GMM offers analytical advantages as it allows
for the availability of the joint probability density function
(PDF) of multiple random variables. These facts imply that
the GMM can effectively encompasses various types of non-
Gaussian noises encountered in practical PMU measurements
such as logistic distributions and heavy-tailed distributions.

B. Design of Clustering-based Gaussian Mixture Reduction
Algorithm

Recalling the base GMM given in (9), we can find that
the number of components is large and this would raise the
computational complexity issue in the following state estima-
tor design. As such, the primary objective here is to derive
a reduced Gaussian mixture density, denoted asf r(vm,w),
that closely approximates the base GMM in terms of the
Wasserstein distance. The detailed expression off r(vm,w) is
of the following form

f r(vm,w|Θr
m,w) =

L
∑

l=1

αr
m,w,lN (vm,w|µr

m,w,l,Σ
r
m,w,l) (10)

where the number of componentsL ≪ S, and

Θr
m,w = [(θrm,w,1)

T , (θrm,w,2)
T , . . . , (θrm,w,L)

T ]

with θrm,w,l = [αr
m,w,l, µ

r
m,w,l,Σ

r
m,w,l]

T (l = 1, 2, . . . , L).
Remark 2: For the GMM, a common drawback is that the

tendency for the number of components may grow without
bound. Thus, if the state estimation algorithm simply follows
the statistical model of Gaussian mixture, the number of
components may increase exponentially over time. It is worth
noting that in the GMM, some of the components have similar
shapes or features, and these components can be merged or
replaced by a single component. As such, it motivates us to
develop algorithms to approximate the GMM with a lower
number of components.

The clustering-based Gaussian mixture reduction (C-GMR)
algorithm is developed as follows.

1) Initialization of C-GMR algorithm: At this stage, we
aim to compute the initial parameterΘr

m,w of the reduced
Gaussian mixture density shown in (10). To be specific, we
follow the idea of [33] to find the two closet component of
the base GMM first and then merge them by minimizing the
Wasserstein-based average distance [4].

For sake of simplicity, we denote thei-th (i = 1, 2, . . . , S)
component of the base GMM shown in (9) as

pbi(vm,w) , N (vm,w|µb
m,w,i,Σ

b
m,w,i).

Then, the Wasserstein distance betweenpbi(vm,w) and
pbj(vm,w) (i, j = 1, 2, . . . , S, i 6= j) can be represented as

WD

(

pbi(vm,w), p
b
j(vm,w)

)

=tr

{

Σb
m,w,i +Σb

m,w,j − 2
(

(Σb
m,w,i)

1

2Σb
m,w,j(Σ

b
m,w,i)

1

2

)

}

+ ‖µb
m,w,i − µb

m,w,j‖2. (11)

Suppose that the Wasserstein distance given in (11) is
minimal, the Gaussian density

qmer
i (vm,w) , N (vm,w|µmer

m,w,i,Σ
mer
m,w,i),

which is used to merge the candidate componentspi(vm,w)
andpj(vm,w), can be obtained by minimizing the Wasserstein-
based average distance

Jij = ᾱiWD

(

pbi(vm,w), q
mer
i (vm,w)

)

+ ᾱjWD

(

pbj(vm,w), q
mer
i (vm,w)

)

(12)

with ᾱi =
αb

m,w,i

αb
m,w,i

+αb
m,w,j

and ᾱj =
αb

m,w,j

αb
m,w,i

+αb
m,w,j

, and the

definition ofWD(·) is given in (11).
Once qmer

i (vm,w) is found, it can be used to replace
pbi(vm,w) and pbj(vm,w) and thus, the number of the com-
ponent of the base GMM reduces one. The solution to the
problem (12) is given as follows [5]:

αmer
m,w,i =αb

m,w,i + αb
m,w,j, (13a)

µmer
m,w,i =ᾱiµ

b
m,w,i + ᾱjµ

b
m,w,j, (13b)

Σmer
m,w,i =ᾱ2

iΣ
b
m,w,i + ᾱ2

jΣ
b
m,w,j + ᾱ2

i ᾱ
2
j

×
(

(Σb
m,w,iΣ

b
m,w,j)

1

2 + (Σb
m,w,jΣ

b
m,w,i)

1

2

)

. (13c)

Repeating the aforementioned procedure till the desired num-
berL is achieved, and the initialization ofΘr

m,w is finished.
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2) Computation of cluster centroids: After obtaining the
initial value ofΘr

m,w, we would like to treat each component
of the initial reduced GMM as one cluster first and then use
the Wasserstein-distance-based objective function to find the
new centroid of each cluster. For sake of simplicity, we denote
the l-th (l = 1, 2, . . . , L) component of the reduced GMM
f r(vm,w|Θr

m,w) asqrl (vm,w) , N (vm,w|µr
m,w,l,Σ

r
m,w,l).

The considered objective function is of the following form:

Jm =

L
∑

l=1

S
∑

i=1

ud
ilWD

(

pbi(vm,w), q
r
l (vm,w)

)

(14)

where ud
il is the membership degree ofθrm,w,l for the l-

th cluster withd ∈ [1,∞] being a parameter that controls
the fuzziness, andWD

(

pbi(vm,w), q
r
l (vm,w)

)

represents the
Wasserstein distance betweenpbi (vm,w) andqrl (vm,w).

It is worth mentioning that the termsud
il and

WD

(

pbi(vm,w), q
r
l (vm,w)

)

in (14) rely on the positions
of the new cluster centroids, and one has to find the cluster
centroids in a recursive style till the differences between the
current value and the previous value of the objective function
Jm stay below a predefined threshold.

Taking partial derivation ofJm given in (14) with respect
to uil and letting the derivative be zero, we have

uil =
1

∑L

l′=1

(

WD

(

pb
i
(vm,w),qr

l
(vm,w)

)

WD

(

pb
i
(vm,w),qr

l′
(vm,w)

)

)
1

d−1

(15)

where the termsqrl (vm,w) and qrl′(vm,w) can be obtained by
using the cluster centroids of the last iteration.

Similarly, the new weight, mean and covariance of each
cluster can also be computed, respectively, via

αnew
m,w,l =

∑S

i=1 uil
∑L

l=1

∑S

i=1 uil

, (16a)

µnew
m,w,l =

∑S

i=1 u
m
il vm,w,i

ΣS
i=1u

m
il

, (16b)

Σnew
m,w,l =

∑S

i=1 u
m
il

∑r

m,w,i
∑S

i=1 u
m
il

. (16c)

For ease of illustration, the pseudocode of our proposed C-
GRM algorithm is outlined in Algorithm 1.

IV. D ESIGN OF THE ADAPTIVE STATE ESTIMATOR

In this section, we aim to develop an adaptive state estima-
tion algorithm for a class of multi-machine power grids under
the framework of cubature Kalman filter (CKF), and the idea
of the Gaussian summation filter is adopted to tackle the non-
Gaussian PMU measurement noises.

A. State Prediction

1) Creation of the cubature points: For thew+1-th sliding
window, suppose that the estimatex̂m,w+1,s−1|s−1 and the es-
timation error covariance matrixPxx,m,w+1,s−1|s−1 are avail-
able at time instants− 1. Then, theτ -th (τ = 1, 2 . . . , 2nx)
cubature point can be generated via

ητm,w+1,s−1|s−1 = Sm,w+1,s−1|s−1χ
τ + x̂m,w+1,s−1|s−1

(17)

Algorithm 1 Estimation for distribution of unknown PMU
measurement noises.
For the w-th sliding window:

1: Load the measurement data to thew-th sliding window via (6).
2: Approximate the measurement noise via (7).
3: Establish the base GMM via (8) and (9).

Initialization of C-GMR:
1: while S > L do
2: for i = 1 : S − 1 do
3: for j = i+ 1 : S do
4: ComputeWD

(

pbi(vm,w), p
b
j(vm,w)

)

via (12).
5: end for
6: end for
7: Find (i, j) such thatargminWD

(

pbi(vm,w), p
b
j(vm,w)

)

.
8: Compute the merged terms via (13).
9: Obtainqmer

i (vm,w) to mergepbi(vm,w) andpbj(vm,w).
10: Rebuilt the base GMM via

f
b(vm,w|Θ

b
m,w) = f

b(vm,w|Θ
b
m,w)− α

b
m,w,ip

b
i(vm,w)

− α
b
m,w,jp

b
j(vm,w) + α

mer
m,w,iq

mer
i (vm,w).

11: S = S − 1.
12: end while
13: Obtain the initial result of the C-GMR algorithm:

fr
ini(vm,w |Θ

r
m,w)← fb(vm,w |Θ

b
m,w).

Implementation of C-GMR:
1: while fr

new(vm,w |Θ
r
m,w) 6= fr

old(vm,w |Θ
r
m,w) do

2: for i = 1 : S do
3: for l = 1 : L do
4: ComputeWD

(

pbi(vm,w), p
r
l (vm,w)

)

.
5: end for
6: Compute the membership degreeuil via (15).
7: end for
8: for l = 1 : L do
9: Compute the new terms of each component of reduced

GMM via (16).
10: end for
11: Obtain the newly reduced GMMfr

new(vm,w |Θ
r
m,w).

12: end while

whereSm,w+1,s−1|s−1 is the square root ofPxx,m,w+1,s−1|s−1

in the sense of Cholesky decomposition, i.e.

Sm,w+1,s−1|s−1 =
(

√

Pxx,m,w+1,s−1|s−1

)

×
(

√

Pxx,m,w+1,s−1|s−1

)T
,

and χτ stands for the scalar parameter whose definition is
given as

χτ =

{√
nxeτ , τ = 1, 2, . . . , nx

−√
nxeτ−1, τ = nx + 1, 2, . . . , 2nx

with eτ being a unit vector.

2) Propagation of the new points: We now propagate
each point through the state-transition functiongm(·) given
in (3) to generate a new set of transformed cubature points
ξτ
m,w+1,s|s−1 (τ = 1, 2 . . . , 2nx) with the following form

ξτm,w+1,s|s−1 = gm(ητm,w+1,s−1|s−1, um,w+1,s−1). (18)
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3) Computation of the prediction and prediction error co-
variance: The predictionx̂m,w+1,s|s−1 and prediction error
covariancePxx,m,w+1,s|s−1 can be, respectively, calculated via

x̂m,w+1,s|s−1 =

2nx
∑

τ=1

1

2nx

ξτm,w+1,s|s−1 (19)

and

Pxx,m,w+1,s|s−1 =

2nx
∑

τ=1

1

2nx

ξ̃τm,w+1,s|s−1(ξ̃
τ
m,w+1,s|s−1)

T

+Qm,w+1,s (20)

with ξ̃τ
m,w+1,s|s−1 , ξτ

m,w+1,s|s−1 − x̂m,w+1,s|s−1.

B. Update

1) Creation of the new cubature points: The τ -th (τ =
1, 2 . . . , 2nx) predicted cubature point, which is mapped
through the measurement functionhm(·) in (5), is of the
following form

ετm,w+1,s|s−1 = hm(ϕτ
m,w+1,s|s−1, um,w+1,s−1) (21)

where ϕτ
m,w+1,s|s−1 = Sm,w+1,s|s−1χ

τ + x̂m,w+1,s|s−1

with Sm,w+1,s|s−1 denoting the square root of the matrix
Pxx,m,w+1,s|s−1 in the sense of Cholesky decomposition.

2) Prediction of the measurement and its covariance ma-
trices: The prediction of the measurementẑlm,w+1,s|s−1 can
be computed by

ẑlm,w+1,s|s−1 =

2nx
∑

τ=1

βτ 1

2nx

ετm,w+1,s|s−1 + µr
m,w−1,l. (22)

whereµr
m,w−1,l represents thel-th (l = 1, 2, . . . , L) compo-

nent of the reduced GMM of the PMU measurement noises
which is obtained by using the previous measurements con-
tained in thew-th sliding window. The corresponding mea-
surement prediction error covariance matrixPzz,m,w+1,s|s−1

and the state-measurement prediction error cross-covariance
matrix Pxz,m,w+1,s|s−1 can be computed, respectively, as

P l
zz,m,w+1,s|s−1 =

2nx
∑

τ=1

βτ (ετm,w+1,s|s−1 − ẑlm,w+1,s|s−1)

× (ετm,w+1,s|s−1 − ẑlm,w+1,s|s−1)
T

+Σr
m,w−1,l (23)

and

P l
xz,m,w+1,s|s−1 =

2nx
∑

τ=1

βτ (ϕτ
m,w+1,s|s−1 − x̂m,w+1,s|s−1)

× (ετm,w+1,s|s−1 − ẑlm,w+1,s|s−1)
T . (24)

3) State estimation: The estimationx̂m,w+1,s|s and its
corresponding estimation error covariancePxx,m,w+1,s|s can
be calculated, respectively, via

x̂m,w+1,s|s =

L
∑

l=1

αr
m,w−1,lx̂

l
m,w+1,s|s (25)

and

Pxx,m,w+1,s|s =

L
∑

l=1

αr
m,w−1,lP

l
xx,m,w+1,s|s (26)

where x̂l
m,w+1,s|s andP l

xx,m,w+1,s|s are, respectively, of the
following form:

x̂l
m,w+1,s|s =x̂m,w+1,s|s−1 +K l

m,w+1,s

× (zm,w+1,s − ẑlm,w+1,s|s−1)

and

P l
xx,m,w+1,s|s =Pxx,m,w+1,s|s−1 −K l

m,w+1,sP
l
zz,m,w+1,s|s−1

× (K l
m,w+1,s)

T

with the gain matrix

K l
m,w+1,s =P l

xz,m,w+1,s|s−1(P
l
zz,m,w+1,s|s−1)

−1. (27)

Remark 3: In comparison with the conventional CKF,
the features of the proposed method are that: 1) the state
estimator is of parallel style and each CKF-based parallel
branching is improved by the Gaussian summation filter; 2)
every component of the reduced Gaussian mixture density can
be fully utilized in the corresponding parallel branching of
state estimator; and 3) the parameters of the proposed state
estimator can be matched adaptively with the identification
results of the PMU measurement noise statistics (i.e. the output
of the C-GMR algorithm).

For ease of illustration, the pseudocode of our proposed
adaptive DSE algorithm is outlined in Algorithm 2.

Algorithm 2 Adaptive DSE for multi-machine power grids.
Require: The estimate x̂m,w,S|S and its covariance matrix
Pxx,m,w,S|S at time instantS of the w-th sliding window; the
statistics of the PMU noises of thew-th sliding window (i.e.Θr

m,w).
Adaptive state estimation for the w + 1-th sliding win-
dow:

1: for s = 1 : S do
2: Create cubature pointsητ

m,w+1,s−1|s−1 (τ = 1, 2, . . . , 2nx)
via (17).

3: Generate transformed cubature pointsξτm,w+1,s|s−1 via (18).
4: Compute prediction statêxm,w+1,s|s−1 and corresponding

covariance matrixPxx,m,w+1,s|s−1 in terms of (19)-(20).
5: Create predicted cubature pointsετm,w+1,s|s−1 by using (21).
6: Compute prediction measurement̂zlm,w+1,s|s−1 and

corresponding covariance matricesP l
zz,w+1,s|s−1 and

P l
xz,w+1,s|s−1, respectively, via (21) and (23) with the

distribution of PMU measurement noiseµr
m,w−1,l and

Σr
m,w−1,l (l = 1, 2, . . . , L) obtained in the previousw-th

sliding window.
7: Update prediction values via (24)-(26) to derivex̂m,w+1,s|s

andPxx,m,w+1,s|s.
8: end for

V. SIMULATION EXAMPLE

To validate the effectiveness of the proposed algorithm, this
section details the simulation experiments conducted on the
IEEE 39-bus system [17]. In order to save space, only the3-
rd SG’s states are considered. The distribution of the initial
states is set asx3,0 ∼ N ([0.9 0.5 0.1 0.45]T , diag4{0.012}).
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Moreover, 40 PMU scans (40% of the PMU scans collected
in 1 second) contained in each sliding window are utilized
in the proposed clustering-based GMR algorithm (labeled as
C-GMR), and the number of the reduced Gaussian mixture
component is set as 4. The average mean square error (AMSE)
is adopted to assess the overall estimation performance of the
3-th SG, i.e.AMSE = 1

nx

(

x3,k − x̂3,k

)2
.

A. Scenario 1: Gaussian Distribution with Constant Parame-
ters

In this subsection, it is assumed that the PMU measurement
noise follows Gaussian distribution whose parameters are
constant, i.e.v3,k ∼ N ([0 0 0]T , diag4{0.012}).

The results from the C-GMR algorithm are depicted in
Fig. 2. For brevity, only the frequency measurement is con-
sidered. Specifically: 1) the first subfigure shows the actual
distribution of the frequency measurement noise; 2) the second
subfigure displays the measurement curve under this noise
distribution; and 3) the third subfigure presents the estimation
results achieved by the proposed C-GMR algorithm. Fig. 2
illustrates that the proposed C-GMR algorithm is effective,
especially when the measurement noise follows a Gaussian
distribution with constant parameters.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

20

40
Distribution of measurement noise of active power injection

0 5 10 15 20Time(s)
-10

-5

0

Measurement of active power injection (p.u.)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

50
GMR-based estimation result (The 16-th sliding window) 

Actual GMM

Reduced GMM

15 15.5 16

3.5

4

Fig. 2. Scenario 1: The estimation results of the Gaussian
distribution characterized by constant parameters.

Based on the framework of our proposed adaptive state esti-
mation algorithm, comparisons between the true distribution of
the measurement noise (labeled as T-CKF) and the estimated
distribution of the measurement noise (labeled as A-CKF) are
carried out. The simulation results are given in Fig. 3 where:
1) the state trajectories and the corresponding estimates of SG
3 with the T-CKF and A-CKF are plotted in Fig. 3(a); and 2)
the associated AMSEs are shown in Fig. 3(b).

From Fig. 3, it can be observed that under the Gaussian
measurement noise with constant parameters: 1) the estimation
performance of the A-CKF is close to T-CKF, which verifies
that our proposed adaptive state estimation algorithm is ef-
fective; and 2) the proposed C-GMR algorithm is effective
in revealing the distribution of the PMU measurement noise
whose prior knowledge is totally unknown.
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Fig. 3. Scenario 1: Results of SG 3 (a) Estimation. (b) AMSE.

B. Scenario 2: Non-Gaussian Distribution with Random Pa-
rameters

This subsection aims to verify the effectiveness of the
proposed C-GMR algorithm and the proposed adaptive state
estimation algorithm under the unknown and time-varying
non-Gaussian PMU measurement noises. The GMM with
5 components is adopted to characterize the correspond-
ing non-Gaussian measurement noisesv3,k, i.e. p(v3,k) =
∑N

n=1αnNn(x|µn,Σn) with N = 5. Specifically, the param-
eters of the main component are set asα1 = 0.5, µ1 = 0 and
Σ1 = 0.06, and the parameters of the rest components are ran-
domly generated from the following ranges:αn ∈ [0.1, 0.5],
µn ∈ [0, 1] andΣn ∈ [0.03, 0.07] with n = 2, . . . , 5.

The measurement of frequency is again used for illustration,
with the results of the C-GMR algorithm displayed in Fig. 4
where: 1) the first subfigure presents the actual distribution
of the measurement noise for the frequency; 2) the second
subfigure illustrates the curve corresponding to the frequency
under the influence of the noise distribution; and 3) the third
subfigure demonstrates the estimation result achieved using
the proposed C-GMR algorithm. An observation from Fig. 4
reveals that the proposed C-GMR algorithm is capable of
effectively estimating the distribution of measurement noise,
particularly when the noise follows a multimodal distribution
with randomly generated parameters.

Similar to Scenario 1, comparisons between the T-CKF and
the A-CKF under Scenario 2 are illustrated in Fig. 5. Observa-
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Fig. 4. Scenario 2: Estimation results of the measurement noise
under the non-Gaussian distribution with random parameters.
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Fig. 5. Scenario 2: Results of SG 3 (a) Estimation. (b) AMSE.

tions from this figure reveal several key points: 1) the proposed
adaptive state estimation algorithm demonstrates effectiveness,
particularly when the measurement noise follows a multimodal
distribution with randomly generated parameters, which is
evident from the accurate tracking of the real state trajectories
and the close performance between the T-CKF and A-CKF;
and 2) the results also underscore the effectiveness of the
proposed C-GMR algorithm, and this is particularly notable
in the context of parameter identification for measurement
noise, which significantly influences the performance of state

estimation.

C. Scenario 3: Complicated non-Gaussian Distribution with
Random Parameters

In the context of clustering, one of the notable challenges
arises when the data characteristics are closely similar. In this
scenario, a more complex situation is considered to address
this challenge, i.e. the measurement noisev3,k are generated
randomly from the following ranges:αn ∈ [0.1, 0.5], µn ∈
[0, 0.18] andΣn ∈ [0.055, 0.06] with n = 1, . . . , 5.
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Fig. 6. Scenario 3: Estimation results of the measurement noise
under the complicated non-Gaussian distribution.

To conserve space, the measurement of active power is
used as an example. Fig. 6 displays the outcomes of the C-
GMR algorithm. To be specific: 1) the first subfigure illustrates
the actual distribution of the measurement noise for active
power; 2) the second subfigure shows the measurement curve,
depicting how the noise influences these measurements; and
3) the third subfigure presents the estimation results achieved
using the C-GMR algorithm, highlighting its performance in
parameter estimation. An analysis of Fig. 6 reveals that the
proposed C-GMR algorithm is capable of effectively estimat-
ing the parameters of non-Gaussian measurement noise, even
when the parameters of each component are very close.

Fig. 7 presents the comparative results between the T-CKF
and the A-CKF under Scenario 3, where: 1) the proposed
adaptive state estimation algorithm shows acceptable perfor-
mance in tracking the true trajectories of the states, even
under the influence of complicated measurement noise; 2) the
figure also illustrates the differences between the T-CKF and
A-CKF, providing insight into the adaptive capabilities and
effectiveness of the A-CKF in comparison to the traditional
approach; and 3) the estimation results validate the capability
of the proposed C-GMR algorithm in accurately revealing the
distribution of the measurement noise.

D. Discussions

In order to further discuss the overall performance of the
proposed scheme under different scenarios, the average of
the sum of AMSE (A-AMSE), defined byA−AMSE =
1
K

1
nx

∑K

k=1

(

x3,k − x̂3,k

)2
, is selected as the index withK
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Fig. 7. Scenario 3: Results of SG 3 (a) Estimation. (b) AMSE.

being the total running steps, and the corresponding results are
given in Fig. 8. It is worth noting that the T-CKF and A-CKF
are all based on the proposed adaptive state estimation, and
only the measurement noise distributions used are different
(T-CKF is based on the real distributions and A-CKF is based
on the identified distributions).

From Fig. 8, we can find that the state estimation perfor-
mance of A-CKF is close to the one of T-CKF. Moreover,
Fig. 8 also demonstrates that the statistic identification result
for the unknown PMU measurement noises is close to its true
value (since the differences between the T-CKF and A-CKF
are only the distributions of the measurement noises used).
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Fig. 8. A-AMSEs of T-CKF and A-CKF with three scenarios.

VI. CONCLUSION

In this paper, the adaptive state estimation problem has
been addressed for a class of multi-machine power grids under

PMU measurement noises with unknown statistics. A sliding-
window-based algorithm has been developed to ascertain the
statistical properties of the PMU measurement noises with
aim to reduce computational costs. For adaptive state esti-
mation, an enhanced cubature Kalman filtering algorithm has
been introduced by incorporating the Gaussian summation
filter concept. The parameters of this algorithm have been
dynamically adjusted using the reduced GMM obtained from
the latest sliding window. Finally, experiments on three test
scenarios on the IEEE 39-bus system have been conducted
to demonstrate the effectiveness of our proposed method. An
interesting topic for future research would be to develop deep
clustering schemes to further improve the identification results
of the statistics of PMU measurement noises [9], [15], [24],
[25], [43], [44]. Also, the main results of this paper can
be extended to more general systems under network-induced
phenomena [13], [14], [21], [26]–[28], [32], [36], [41].
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