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Adaptive Decentralized State Estimation for
Multi-Machine Power Grids Under Measurement
Noises with Unknown Statistics

Bogang Qu, Zidong Wang, Bo Shen, Hongli Dong, and Daogang Peng

Abstract—This paper is concerned with the adaptive dynamic schemes may encounter numerous challenges in current power
state estimation (DSE) problem for synchronous-generator-based grid applications due primarily to their inherent limitations
multi-machine power grids under measurement noise with un- in addressing the inner states of the systems. In response,

known statistics. The statistical properties of the measurement bstantial h efforts h b dedicated to d lobi
noises are efficiently revealed by utilizing limited measurement SUPStantial research eriorts have been dedicated o aeveloping

data contained in a sliding window, and such data is employed Novel information perception techniques, such as situational
to establish the base distribution of the noises, with the aid of awareness and state estimation (SE), see e.g. [6], [12].

the Gaussian mixture model and the Kernel density estimation Recently, there has been a significant surge in research
scheme. Subsequently, the component number of the base disynterest focused on the SE problem in areas of target tracking

tribution of the measurement noises is reduced by designing a . . R .
fuzzy c-means clustering algorithm with the Wasserstein distance [19], [37], fault diagnosis [49], and artificial intelligence [10],

criterion. An improved sliding-window-based adaptive cubature [20], [23]. Within the realm of power grids, SE techniques
Kalman filtering scheme is then proposed, which leverages the have garnered considerable research enthusiasm as highlighted

already obtained statistical characteristics of the measurement hy some notable works [12], [30], [42], [45]. For instance, in
noise and the concept of the Gaussian summation filter. Finally, 1421 4 novel fully distributed unscented information filter has

the validity of the proposed adaptive DSE algorithm under b desi d for | | tworks. It | itical t
various measurement noise statistics is illustrated by simulation €en designed for large-scale power networks. It is critical 1o

studies conducted on the IEEE 39-bus system featuring three test 2Cknowledge, however, that most existing SE methodologies
scenarios. for power systems are based on the fundamental assumption
Index Terms—Adaptive state estimation, multi-machine power that measurement noises foIIovaﬁuss_lan distribution with
grids, unknown measurement noises, cubature Kalman filter, known statistics, but such an assumption may not hold due to
clustering algorithm. the complex and variable operating status of power grids.
It has been reported in [2], [40] that the noise in phasor mea-
|. INTRODUCTION surement units (PMUs) exhibitson-Gaussian characteristics
Over the past few decades, the power grids have und e.g. thl_ck—t_a|led/mult|m_odal distribution). Th_ese observatloqs
ve highlighted the importance of studying the dynamic

gone significant evolution due to the high penetration imati DSE blem f " der th
renewable power generations and widespread use of pO\f/Eﬁ’te estimation ( ) problem 1or power systems under the
uence of non-Gaussian noise. In response to this need,

electronics [12], [29], [48]. These developments frequent!é) veral key studies have addressed DSE issues in power

force the power grids to operate under extreme conditions;, ) . . ) .
thereby increasing the demands for real-time control, re ystems _W'th non-Gaussian noises. Representative works in

able decision-making, and secure assessment of the g area |r_1clude [1], [22]. For example, in [22], an event-based
[6]. It is worth noting that traditional control/optimization E algorithm has k_Jeen developed fo_r synchronous genera_tors
under the assumption of non-Gaussian measurement noises.
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progression is to develop “active” DSE schemes, which aim  framework, which incorporates the concept of the Gaus-
to enhance estimation performance by fully utilizing the real  sian summation filter. Importantly, the parameters of this
statistics of the measurement noises, thereby moving beyond scheme are adaptively adjusted according to the reduced
the limitations of passive approaches. GMM obtained in the previous sliding window, ensuring
As of now, adaptive DSE approaches have begun to draw dynamic responsiveness to changing grid conditions.
initial research interest in the power system sector with someThe rest of this paper is organized as follows. Section II
noteworthy contributions in [7], [18]. For instance, an adaptiv®rmulates the decentralized model of power grids. In Section
Kalman filter has been developed in [18] to enhance thg the sliding-window-based estimation method is designed
resilience of the SE algorithm in the face of step chang@sr the distribution of the PMU measurement noises. Section
in AC/DC microgrids by employing a novel prediction-erroy investigates the sliding-window-based adaptive DSE algo-
covariance estimation method. Also, an adaptive SE scheftm design problem based on the already obtained statistics
has been introduced in [7] to improve SE performance #f the PMU measurement noises. In Section V, simulation
power systems under unknown and time-varying measuggudies and discussions are carried out on the IEEE 39-bus
ment errors. This scheme operates under the expectatigyistem. Finally, some conclusions are drawn in Section VI.
maximization (EM) algorithm framework and also utilizes the
EM algorithm to estimate the distribution of measurement Il. PROBLEM EORMULATION
errors. Unfortunately, in the context of multi-machine power
grids, there has been limited focus on adaptive DSE problefs Model of Synchronous Generator

that deal with unknown measurement noises. A multi-machine power system wit/ synchronous gen-
_ ) erators (SGs) is considered in this paper, wheretttie order
TABLE I: Representative schemes and results nonlinear discrete-time state-space model of ixh SG is
Schemes| Reference No. Methodologies of the following form [34]:
1], [22] Improved particle filter
Robust [11], 129] Improved Kalman filter 5m7k+1 =5m,k + (wm,k — Ws)At7 (13)
[8], 146] Robust unscented Kalman filter W
B1] Robust information filter Wi k1 =Wm |k + =—— [Tm,m,k — Pk — Di(wm i — ws)]
Adantive [7] Adaptive expectation maximization 2H,
P [18], 1471 Prediction-error covariance estimation x At, (1b)
1
/ . / /

In light of the discussions presented earlier and the re€q7m,k+1 —E kT Téo [_ Eymge = Xam = Xg)
resentative results given in Table. |, there is a noticeable o1 ‘B }At (10)
gap in the development of an adaptive DSE algorithm for dm.k 1“”””“ '
synchronous-generator-based (SG-based) power grids unggr Efz,m,k + T [ — Eé,m,k + (Xgm — X;,m)
measurement noises with unknown statistics. Specifically, 1) q0,m
the measurement noise is inherently variable over time, which X Igm.i| At (1d)
complicates the task of identifying their precise distributions;

2) the identification work requires extensive measurement da‘fﬁ

and this poses higher demands on the flexibility and efficiency Loy =——(E V)
of the algorithms; and 3) the statistical identification result X .k Dl
of measurement noises is dynamical and time-varying due to 1

the evolving nature of power systems, which brings additional Tom. k= X (=B, + Vi),

challenges in the development of state estimation algorithms. .
) : ) ) X Viamoe =V, ke S0 ks — O k)
As such, this paper aims to bridge the gap by introducing
an innovative adaptive DSE algorithm with following key Vame =Vim ke c08(0m. — Om,k) 2)
contributions. where the subscript: is the index of SGm = 1,2,...,N);

1) A sliding-window-based scheme is proposed to comhe discretization period and time instant are denoted\as
struct the base Gaussian mixture model (GMM) of thand k, respectivelyy andw are, respectively, the rotor angle
measurement noise, which is achieved using the Kexnd rotor speed of the SGys is the nominal synchronous
nel density estimation algorithm. The approach utilizespeed;P is the SG’s terminal active powesr— stands for the
limited measurement data, and is therefore suitable f86G’s inertia time;D andT,, represent the damplng factor and
online applications. mechanical torque input of SG, respectively;, represents

2) A novel fuzzy c-means clustering algorithm that incorthe excitation field voltage of S@;, and £, are thed-axis and
porates the Wasserstein distance criterion is developgehxis transient voltages of SG, respectively; and X, are,
This method effectively reduces the component numberspectively, thei-axis andg-axis synchronous reactances of
of the base GMM (resulting in a reduced GMM), thereb$G; X, and X are thed-axis andg-axis transient synchronous
enhancing computational efficiency in real-world applireactances of SG, respectivelif;, andT,, are thed-axis and
cations. g-axis transient open-circuit time instants of SG, respectively;

3) An improved sliding-window-based DSE scheme is ddy and I, are, respectively, thé-axis andg-axis currents of
signed under the cubature Kalman filtering algorithr8G; V; and V;, represent thel-axis andg-axis voltages of
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Fig. 1. Diagram of the adaptive DSE for multi-machine powadgmwith unknown PMU measurement noise statistics.

SG, respectively; and” and # are the terminal bus voltageaddress the challenges posed by non-Gaussian and time-

magnitude and phase angle of SG, respectively. varying measurement noises from PMUs. The algorithm is
Based on (1)-(2), the discretized state-space model of tthesigned with three primary objectives given as follows.

m-th SG can be written as 1) The first objective is to uncover the statistical character-

" = g(x U e) + W 3) istics of PMU measurement noises, which is achieved

mokt1 = Jmidm, ke, tm,k ok by creating a base GMM that reflects these characteris-

where znx 2 [Smk @ik B Eim k}T c tics. Here, the base GMM is established using limited

; 2 Y N historical measurement data collected within a sliding

R"= is the state vector and wu,,
[Vm,k Ome Trmm Efdﬂn,k}T € R" is the input )
vector (At is simply denoted ag for brevity). The details

of g, (+) is given in (1)-(2), andw,, , represents the process
noise satisfying the probability density function (POF),, , .

window.
The second objective is to enhance computational effi-
ciency, which is accomplished by reducing the number
of components in the base GMM, while still retaining
the main density features of the model.

3) The third objective is to estimate the states of a multi-
B. Measurement Model machine power grid adaptively by utilizing the reduced

To facilitate decentralized DSE in power systems, the ap- GMM obtained from the previous steps.

proach adopted in this paper is inspired by the methodologies
proposed in [46]. Specifically, the ideal terminal active angl||. EsTIMATION FOR DISTRIBUTION OF UNKNOWN PMU
reactive power injections as well as the terminal frequency of MEASUREMENT NOISES

the m-th SG are chosen as the PMU measurement, i.e. ) ) ) ) )
In this section, the base GMM is established to describe

S =fo(Wmx —ws + 1), (4a) the statistics of the PMU measurement noises contained in

Pk =Vamkdamk + Vomkdgm k; (4b) @ sliding window, and then the clustering-based algorithm is

O = — Vam il Vo (4c) develqped to reduce the component num_ber of the_bas_e GMM.
ok dmokigm.k T Va,m,k dm,k The diagram of the proposed approach is shown in Fig. 1.

wherem (m = 1,2,..., M) and k represent the SG index
and the time instant, respectively; and f, are the rotor

base frequencies, respectively;and @) are, respectively, the
active and reactive power injections of the terminal bus. The ConsiderS consecutive scans of PMU measurements con-

A. The Establishment of Base GMM

definitions ofVy, V,, I; and 1, are all given in (2). tained in thew-th sliding window, i.e.
Taking the PMU measurement noise into account, a compact N
measurement model of the-th SG can be arranged as Zmgw = {2m k=9, Zm k—S+15 - - -5 Zm k—1}
A
={z , 2 sy Zmow, 6
Zmk = hm(xm,k,um,k)+vm,k (5) { m,w,ls “m,w,2 m,w,S} ( )

with w = (%], the corresponding distribution of these PMU
measurement noises can be characterized with the aid of
previous estimates of measurements and the Kernel density
estimation approach. To be specific,)é;;w be the estimates

of the m-th SG in thew-th sliding window, i.e.

where zo k = [fok Pmik Qmui]T € R™ represents the
measurement vectokh,,(-) is determined by (4), and,, j
denotes the measurement noise with unknown statistics.

C. Problem Satement

A - A ~
. L. . = 1T k—Slk—S Tm. k— _ e s T 1 k—
In this paper, the aim is to develop an adaptive DSE ™" {Zm psin—ss Emp-st1lh-s1 mk-1k-1}

A - ~ ~
algorithm for power grids with the capability to effectively = {Emw 111 Fmow2i2 - Tmw,s|s )
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and then the corresponding PMU measurement noises of thibere the number of components« S, and
w-th sliding window can be represented as or . —[6] )7 (o ) G )7

o m,w,1 m,w,2 m,w,L
V, = _ _ _
- A {Um,k Stk ok 1} with G:nwl [amwbﬂmwl’xmwl] (l - 1 2 L)
= {Um,w,1, Umow,2s - -+ Um,w,S } @) Remark 2: For the GMM, a common drawback is that the

tendency for the number of components may grow without
bound. Thus, if the state estimation algorithm simply follows
the statistical model of Gaussian mixture, the number of
components may increase exponentially over time. It is worth
noting that in the GMM, some of the components have similar

Wherevm,w,i ~ Zm,w,s_hm(jm,w,ﬂsaum,w,s) with Um,w,s =
Um,w,k—S+s—1 (S = 1, 2, ceey S)

Letting V;,, ., be the set of the samples of, .,, the base
Gaussian mixture density of,, ,, can be estimated via

. . s shapes or features, and these components can be merged or
(Wi w|Om.w) =5 > Ku(vmw—vmws) () replaced by a single component. As such, it motivates us to
s=1 develop algorithms to approximate the GMM with a lower

where Ky is the Gaussian kernel function with bandwidtmumber of components.
matrix H, andS represents the total number of samples. Note The clustering-based Gaussian mixture reduction (C-GMR)
that the base PDF of,, ,, with parameter@’;nyw (obtained algorithm is developed as follows.
by applying the kernel density estimation approach) can alsol) Initialization of C-GMR algorithm: At this stage, we
be represented by the GMM [35] in which each sampkim to compute the initial parameté;, , of the reduced
corresponds to a specific component of the GMM. Thus, vigaussian mixture density shown in (10) To be specific, we
rewrite (7) as follow the idea of [33] to find the two closet component of

g the base GMM first and then merge them by minimizing the

£ (Umw|OF, ) = Za?n 0N Vo1 0.5 S s)- (9) Wasserstein-based average distance [4].
’ o o For sake of simplicity, we denote theth i = 1,2,...,5)

component of the base GMM shown in (9) as

s=1

The detailed expression of parame&¥, ,, is

9?71., - [(efnwl) (efan)Tv (emwS) ]T
where

p?(vm,w) é N(’Um7’w|:u?n,w,z’ Efn w, z)

Then, the Wasserstein distance betwepﬂvm,w) and

, , , , . pg(vmw) (1,7 =1,2,...,85,i # j) can be represented as
0 m,w,s — [am,w,sa :um,w,s’ m,w,s] b b
Wp (pi (Um,w)vpj(vm,w))

)

N (Um |18 2550 X5 0.) 1S the sth component of the GMM

with mean s, ,,, = vmw,s and covariance?, . = H —tr{Efn wi F 20w = 2((2h 0 ) EE (2 1)])}
(s=1,2,...,9), and the we|ght of each component of the ) , )

base GMM is denoted as?, . _ with a? . _— L. + b w,i = Py - (11)

m,w,s m,w,s S

Remark 1: As it has been discussed in [3], any non-GaussianSuppose that the Wasserstein distance given in (11) is
distribution can be sufficiently represented or approximated Byinimal, the Gaussian density

a finite number of Gaussian densities according to the Wienner mor N mer  <mer

approximation theorem. In addition, it has been reported in 0" (Vm,w) = N (Ol i Zm i),

[38] that the GMM offers analytical advantages as it allowmahich is used to merge the candidate components,, .,)

for the availability of the joint probability density functionandp;(v,,..,), can be obtained by minimizing the Wasserstein-
(PDF) of multiple random variables. These facts imply thajased average distance

the GMM can effectively encompasses various types of non-

o — A b m
Gaussian noises encountered in practical PMU measurements Jij = @iWp (pz(vm,w),ql (vm,w))
such as logistic distributions and heavy-tailed distributions. + a;Wp (05 (vmw), @ (Vm,w)) (12)
b b
. . . . . with @; = i anda; = vy and the
B. Design of Clustering-based Gaussian Mixture Reduction G e tal L & el

definition of Wp(-) is given in (11).

Once ¢ (vm,) is found, it can be used to replace
?(vm.w) and p%(vm ) and thus, the number of the com-
nent of the base GMM reduces one. The solution to the
yroblem (12) is given as follows [5]:

Algorithm

Recalling the base GMM given in (9), we can find th
the number of components is large and this would raise t
computational complexity issue in the following state estim
tor design. As such, the primary objective here is to derive

a reduced Gaussian mixture density, denotedfaS, ),  Omuw,i =0 i O s (13a)
that closely approximates the base GMM in terms of theumer '_diMmei—i_aj:ulr)nwj’ (13b)
Wasserstein distance. The detailed expressiofi”0f,, .,) is mer osb 4250 99
> =052 Y + aj o
of the following form mwsi ™ Z} it b MW, A J \
L ((EWWZEW’LU]) (Emwjzmwz) ) (13C)
I (Vm,wl O, ) = Zaﬁl,w,ﬂ\/(vm,dﬁn,w,z, Yr.w.) (10)  Repeating the aforementioned procedure till the desired num-
1=1 ber L is achieved, and the initialization &y, ,, is finished.
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2) Computation of cluster centroids. After obtaining the Algorithm 1 Estimation for distribution of unknown PMU
initial value of ©7, ., we would like to treat each componenfn€asurement noises.
of the initial reduced GMM as one cluster first and then ude" the w-th sliding window: S _
the Wasserstein-distance-based objective function to find the L0ad the measurement data to theth sliding window via (6).
. L 2. Approximate the measurement noise via (7).
new centroid of each cluster. For sake of simplicity, we denot§. qiapiish the base GMM via 8) and (9).
thel-th (( = 1,2,...,L) coznponent of the reduced GMM | isiaiiation of C-GMR:
fT(Um,w|®:n_,w) aquT(_Um,yJ) = N(?m,lt_lmrn,w,lv Ean,w,l_)' 1: while S > L do
The considered objective function is of the following form:5.  for ;= 1:5 — 1 do

L S 3: for j=i+1:5do
: b 1 b m,w i .
Jm — Z Z u;i[WD (p?(vm,’lU)a Qf (Um,w)) (14) ;" eng?g:pUtEWD (pz ('Umﬁw)7p] ('U s )) via (12)
=1i=1 6: end for
7:

where v, is the membership degree @f, ,, for the I- Find (i, j) such thatarg min Wp (p? (vmn.w), P} (vm,w))-

th cluster withd € [1,00] being a parameter that controls 8: ~ Compute the merged terms via (13).

the fuzziness, andVp (p!(vm,w), qf (m.w)) represents the 9 Obtain g;"*" (vm w) to mergep;(vm,w) and pj(vm,w).
S v ; ’ 10:  Rebuilt the base GMM via

Wasserstein distance betwegmm,w) and g (vm,w)-

It is worth mentioning that the termsu? and P Wmw|Om ) = 1* (V] O ) = Ao o197 (V)
Wp (P (vm,w), 4] (vmw)) N (14) rely on the positions — Al P (W) + OB G (V)

of the new cluster centroids, and one has to find the cluster S_g_1
centroids in a recursive style till the differences between thg. onq while
current value and the previous value of the objective functian: Obtain the initial result of the C-GMR algorithm:

Jm Stay below a predefined threshold. Fii Vmw|Omas) = £ (Vim0 O )
Taking partial derivation of/,,, given in (14) with respect Implementation of C-GMR:
to u;; and letting the derivative be zero, we have 1: while f7 e (Vm,w|Om.w) # fo1a(Vmw|Oh..) do
1 2: fori=1:5do
U] = . (15) 3 for il=1:Ldo
L ( Wp (P?(Um,w)aqz‘(vmww)) ) ot & CompUteWD (p?(vm’w)’p{(vm’w))'
P b - 5: end for
Wo (0} (0.t (o) 6: Compute the membership degreg via (15).
where the terms; (vy,,.,) andgqj, (vm,») can be obtained by 7:  end for
using the cluster centroids of the last iteration. 8. forl=1:Ldo
Similarly, the new weight, mean and covariance of eact’ giﬂn;ﬂpl:/tig (Tg) new terms of each component of reduced
cluster can also be computed, respectively, via 100 end for '
Z-S— iy 11 Obta!n the newly reduced GMM;, .., (Vm,w|Oh, w)-
g | =, (16a) 12: end while
Do1e1 Qi Wil
Mnew :Zle u?llvm-,w-,i (1 )
mow,t 2 um wheresS,, ,,11,5—1)s—1 is the square root P, ,,, w41,s—1)s—1
Z-S um ST in the sense of Cholesky decomposition, i.e.
E?T?,‘:/U,l _ i=1 Szl m,w,i . (16C)
Dy ufy g (. /p
For ease of illustration, the pseudocode of our proposed C- mywtl,s—1ls—1 _(\/ i 1,s-1]5-1)
GRM algorithm is outlined in Algorithm 1. T
X (\/wa,m,w+l,s—l|s—l) ’

IV. DESIGN OF THE ADAPTIVE STATE ESTIMATOR

In this section, we aim to develop an adaptive state estinﬁ‘i_]d X7 stands for the scalar parameter whose definition is
tion algorithm for a class of multi-machine power grids unddfVen as
the framework of cubature Kalman filter (CKF), and the idea
of the Gaussian summation filter is adopted to tackle the non- . Vnzer, T=1,2,...,n4
Gaussian PMU measurement noises. - { — Nglr_1, T=ng+1,2,...,2n,

A. Sate Prediction

. ) . with e, being a unit vector.
1) Creation of the cubature points. For thew + 1-th sliding

: : 2) Propagation of the new points. We now propagate
ndow, suppose that the estimatg ,, 41 s—1s—1 and the es- ! " . )
Window, sUpp ! whls—1ls—1 each point through the state-transition functigp(-) given

timation error covariance matrik,, ,,, ,+1,s—1/s—1 are avail- . .
. . T in (3) to generate a new set of transformed cubature points
able at time instant — 1. Then, ther-th (7 = 1,2...,2n,) T( )tog -~ . . P
(r=1,2...,2n,) with the following form

cubature point can be generated via m,w+1,s[s—1

N wHl,s—1|s—1 — Sm.,w+1-,sfl\sleT + T w+1,5—1]s-1 T — T 18
’ ’ (17) gm,w-l—l,s\s—l - gm(nm,w+l,s—l|s—l’ ’U/m7w+173_1). ( )
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3) Computation of the prediction and prediction error co-

variance: The predictionz,, .,41,ss—1 and prediction error
covariancel,, m,w+1,5)s—1 €an be, respectively, calculated via

2N, 1

4 _ T
m,w+1,s|s—1 — I m,w+1,s|s—1
T=1 x

(19)

and

2N,

_ T T T
me,m,w+1,s|571 - E m m,w+1,s\s—1(§m,w+1,s|s—l)
x

T=1

+ Qm,w+1,s (20)

with &

T A 57' — 3
m,w+1,s/s—1 = Sm,w+1,s|s—1 m,w+1,s/s—1-

B. Update
1) Creation of the new cubature points:. The 7-th (7 =

1,2...,2n,) predicted cubature point, which is mapped Remark 3:

through the measurement functidn,(-) in (5), is of the
following form
arn,w+1,s|s—l = h’m((p:n,w-l—l,s\s—l?um-,erl-,S*l) (21)

where szn,wﬂ,s\sq Smwt1,sls—1X" T Tm,w1,s]s—1

and
L
_ T !
me,m,w+l,s|s - § am,w—l,lpmm,m,w+l,s\s (26)
=1

where it and P!

m,w+1,s|s zx,m,w+1,s|s

following form:

are, respectively, of the

N A !
LTm,w+1,s]s =Tmwt1,s[s—1 + Km,w+1,s

X (Zm,w+1,s - Zm7w+175‘571)
and

l _ l !
me,m,w+l,s|s _Pmm,m,w+1,s|571 - Km,w+1,spzz,m,w+1,s\sfl

% (Kl )T

m,w+1,s

with the gain matrix
(27)

In comparison with the conventional CKEF,
the features of the proposed method are that: 1) the state
estimator is of parallel style and each CKF-based parallel
branching is improved by the Gaussian summation filter; 2)
every component of the reduced Gaussian mixture density can
be fully utilized in the corresponding parallel branching of

l _pl l -1
Km,erl,s _sz,m,w+1,s|571(Pzz,m,w+l,s|571) :

with S, w41,5s—1 denoting the square root of the matrixstate estimator; and 3) the parameters of the proposed state

Pyromowt1,s)s—1 In the sense of Cholesky decomposition.

2) Prediction of the measurement and its covariance ma-
trices: The prediction of the measureme:d;lywﬂys‘571 can
be computed by

2Ny
sl

1
_ E T T T
Zm,w-i—l,s\s—l - ﬁ m Em,w-l—l,s\s—l + Mm,w—l,l' (22)
T=1 x

where;, ., represents théth (I = 1,2,...,L) compo-

estimator can be matched adaptively with the identification
results of the PMU measurement noise statistics (i.e. the output
of the C-GMR algorithm).

For ease of illustration, the pseudocode of our proposed
adaptive DSE algorithm is outlined in Algorithm 2.

Algorithm 2 Adaptive DSE for multi-machine power grids.

Require: The estimate &,, ., 5s and its covariance matrix
Prym,w,sis at time instantS of the w-th sliding window; the

nent of the reduced GMM of the PMU measurement noisgtistics of the PMU noises of the-th sliding window (i.e.07, ,,).

which is obtained by using the previous measurements ¢
tained in thew-th sliding window. The corresponding mea-

surement prediction error covariance matfx, ,,, ,41,ss—1

laptive state estimation for the w + 1-th sliding win-

1: for s=1:5do

2:  Create cubature point§;, ., 1 _1js—1 (T = 1,2,...,2ng)

and the state-measurement prediction error cross-covariance via (17).

matrix P, ., w+1,s]s—1 Can be computed, respectively, as
2N,
[ o T( T ~l
Pzz,m,w-i—l,s\s—l - Zﬂ (Em,w-l—l,s\s—l - Zm,w-l—l,s\s—l)
T=1

sl

-
X (Em,erl,s\sfl - Zm,erl,s\sfl)

A @3)
and
2Ny
l N
Pzz,m,w+1,s|s—l = E ﬂT((p:n7w+17s\s—1 - Im,w+1,s|s—l)
T=1
2l T
X (‘{5;1,71;+1,s|571 - Zm,w+1,s|571) . (24)

3) Sate estimation: The estimationz,, ,,11 s, and its
corresponding estimation error covarianeg, ,, .,+1,s|s can
be calculated, respectively, via

L

~ o r ~1

T w+1,s|s = E am,wfl,l'rm,uH»l,s\s (25)
=1

3:  Generate transformed cubature poigfs,, . ,,—1 via (18).
4:  Compute prediction staté,, ,,+1,5s—1 and corresponding
covariance matrix, , m,w11,s/s—1 iN terms of (19)-(20).
5. Create predicted cubature poinf§ ,, 1,51 by using (21).
6: Compute prediction measurement%fn’w1,5‘5,1 and
corresponding  covariance matrice?zlzywﬂ’s‘s,1 and
e wi1s]s_1, Tespectively, via (21) and (23) with the

distribution of PMU measurement noisg@,, ,;; and
Yw—14 (I = 1,2,...,L) obtained in the previouso-th
sliding window.

7:  Update prediction values via (24)-(26) to deri¥g, .,+1,s|s
and Pwac,m,w+l,s\s-

8: end for

V. SIMULATION EXAMPLE

To validate the effectiveness of the proposed algorithm, this
section details the simulation experiments conducted on the
IEEE 39-bus system [17]. In order to save space, only3the
rd SG’s states are considered. The distribution of the initial
states is set ass o ~ N([0.9 0.5 0.1 0.45]7, diag,{0.01%}).
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The actual state

Moreover, 40 PMU scanst{% of the PMU scans collected

in 1 second) contained in each sliding window are utilizec % - — -acke Rotar angle Rotor angle
in the proposed clustering-based GMR algorithm (labeled cgu _ V/v
C-GMR), and the number of the reduced Gaussian mixtur ~ : ‘ ‘ ‘ ‘ _
8 0 5 10 15 20 21 21.2 21.4
componentis set as 4. The average mean square error (AMS 3 Rotor speed Rotor speed
is adopted to assess the overall estlmat|on performance of t - L1 1005 ; \
3-th SG, i.e.AMSE = - (254 — #5.) . AR
20'50 5; 1‘0 1‘5 26 114 115 116 117
= g-axis transient voltage g-axis transient voltage
£ ‘ ‘ 1.06 i/
A. Scenario 1: Gaussian Distribution with Constant Parame- g Losig . ok '|, e
ters % 5 10 15 20 104 115 12 125

d-axis transient voltage 06 d-axis transient voltage

In this subsection, it is assumed that the PMU measureme?f;055
noise follows Gaussian distribution whose parameters a *0-58“"'«;
constant, i'ev&k ~ N([O 0 O]Tvdiag4{0'012})' 5 10 15 20 058 10 102 104
The results from the C-GMR algorithm are depicted in Time(s) Time(s)
Fig. 2. For brevity, only the frequency measurement is con- @

sidered. Specifically: 1) the first subfigure shows the actual
distribution of the frequency measurement noise; 2) the secol

subfigure displays the measurement curve under this noi

distribution; and 3) the third subfigure presents the estimatic

results achieved by the proposed C-GMR algorithm. Fig. .

illustrates that the proposed C-GMR algorithm is effective

especially when the measurement noise follows a Gaussi

distribution with constant parameters.

Time(s)
0 Distribution of measurement noise of active power injection (b)
20l i i Fig. 3. Scenario 1: Results of SG 3 (a) Estimation. (b) AMSE.
04 03 0.2 0.1 0 01 02 03 0.4 ) _ o _
Measurement of active power injection (p.u.) B. Scenario 2: Non-Gaussian Distribution with Random Pa-
or W‘MM/V\’M‘W 1 rameters
B 3-515 154 s | This subsection aims to verify the effectiveness of the
% 5 10 Time(s) 15 20 proposed C-GMR algorithm and the proposed adaptive state
5 GMR-based estimation result (The 16-th sliding window) estimation algorithm under the unknown and time-varying
non-Gaussian PMU measurement noises. The GMM with
eauce . .
5 components is adopted to characterize the correspond-
0 . ing non-Gaussian measurement noisgs., i.e. p(vsx) =
0.4 0.3 02 ,1 02 03 0.4

SN N (2] pin, £n) With N = 5. Specifically, the param-
Fig. 2. Scenario 1: The estimation results of the Gaussiaters of the main component are setrgs= 0.5, 11 = 0 and
distribution characterized by constant parameters. ¥, = 0.06, and the parameters of the rest components are ran-
domly generated from the following ranges;, € [0.1,0.5],
Based on the framework of our proposed adaptive state egti- € [0, 1] andX,, € [0.03,0.07] with n =2,...,5.
mation algorithm, comparisons between the true distribution of The measurement of frequency is again used for illustration,
the measurement noise (labeled as T-CKF) and the estimaidth the results of the C-GMR algorithm displayed in Fig. 4
distribution of the measurement noise (labeled as A-CKF) amhere: 1) the first subfigure presents the actual distribution
carried out. The simulation results are given in Fig. 3 wheref the measurement noise for the frequency; 2) the second
1) the state trajectories and the corresponding estimates of Sbfigure illustrates the curve corresponding to the frequency
3 with the T-CKF and A-CKF are plotted in Fig. 3(a); and 2under the influence of the noise distribution; and 3) the third
the associated AMSEs are shown in Fig. 3(b). subfigure demonstrates the estimation result achieved using
From Fig. 3, it can be observed that under the Gaussitire proposed C-GMR algorithm. An observation from Fig. 4
measurement noise with constant parameters: 1) the estimatieveals that the proposed C-GMR algorithm is capable of
performance of the A-CKF is close to T-CKF, which verifieeffectively estimating the distribution of measurement noise,
that our proposed adaptive state estimation algorithm is @rticularly when the noise follows a multimodal distribution
fective; and 2) the proposed C-GMR algorithm is effectiverith randomly generated parameters.
in revealing the distribution of the PMU measurement noise Similar to Scenario 1, comparisons between the T-CKF and

whose prior knowledge is

totally unknown.

the A-CKF under Scenario 2 are illustrated in Fig. 5. Observa-
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Distribution of measurement noise of frequency
5F T T T =
/\‘
j \ N
0 I I - .
5 05 Measuroement of frequghscy (Hz) 15
60F T T ”" o R
50 1
40 1
I I I I
0 5 10 Time(s) 15 20
GMR-based estimation result (The 13-th sliding window)
5F ‘ ‘ - Actual GMM
! . Reduced GMM
/]
0 4.._4»:;/ L L S
-1 0.5 0 0.5 1 15

Fig. 4. Scenario 2: Estimation results of the measuremesenoi
under the non-Gaussian distribution with random parameters.o_ ! ‘ : : ! ‘ ‘ : ‘

—-—-—T-CKF

The actual state

g-axis transient voltage

Rotor angle Rotor angle
— — —A-CKF T
4038 'l IV ,\
A Y
A
o8l hA yy !
5 10 15 20 19.6 198 20 20.2
Rotor speed Rotor speed
L 1.02
1OLPA, K oL
1 1
5 10 15 20 10 10.5 11

g-axis transient voltage

10 15
d-axis transient voltage

20

18 185 19
d-axis transient voltage

0.
1
,o.e‘ﬂb"l \j‘
e A Argly
0.58 1

10 15
Time(s)

20

20 20.5 21
Time(s)

RMSE (p.u.)

Time(s)

(b)

estimation.

C. Scenario 3: Complicated non-Gaussian Distribution with
Random Parameters

In the context of clustering, one of the notable challenges
arises when the data characteristics are closely similar. In this
scenario, a more complex situation is considered to address
this challenge, i.e. the measurement naisg are generated
randomly from the following rangesy, € [0.1,0.5], u, €
[0,0.18] and X, € [0.055,0.06] with n =1, ..., 5.

Distribution of measurement noise of active power injection
T T T T T T T T

08 06 04 02 0 02. 04 0.6
Measurement of active power injection (p.u.)

5F

ot i

5 | | | | 1
0 5 10 Time(s) 15 20
GMR-based estimation result (The 36-th sliding window)

T T T T T T

. Actual GMM

. Reduced GMM
0 ol s smeel I I I I I
-1 -0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6. Scenario 3: Estimation results of the measuremesenoi
under the complicated non-Gaussian distribution.

To conserve space, the measurement of active power is
used as an example. Fig. 6 displays the outcomes of the C-
GMR algorithm. To be specific: 1) the first subfigure illustrates
the actual distribution of the measurement noise for active
power; 2) the second subfigure shows the measurement curve,
depicting how the noise influences these measurements; and
3) the third subfigure presents the estimation results achieved
using the C-GMR algorithm, highlighting its performance in
parameter estimation. An analysis of Fig. 6 reveals that the
proposed C-GMR algorithm is capable of effectively estimat-
ing the parameters of non-Gaussian measurement noise, even
when the parameters of each component are very close.

Fig. 7 presents the comparative results between the T-CKF
and the A-CKF under Scenario 3, where: 1) the proposed
adaptive state estimation algorithm shows acceptable perfor-
mance in tracking the true trajectories of the states, even

Fig. 5. Scenario 2: Results of SG 3 (a) Estimation. (b) Amsginder the influence of complicated measurement noise; 2) the

tions from this figure reveal several key points: 1) the propos
adaptive state estimation algorithm demonstrates effectiven
particularly when the measurement noise follows a multimod&

figure also illustrates the differences between the T-CKF and
A-CKF, providing insight into the adaptive capabilities and
effectiveness of the A-CKF in comparison to the traditional
&Bproach; and 3) the estimation results validate the capability

%e proposed C-GMR algorithm in accurately revealing the
istribution of the measurement noise.

distribution with randomly generated parameters, which Is

evident from the accurate tracking of the real state trajectories | ,

and the close performance between the T-CKF and A-CKP; Discussions

and 2) the results also underscore the effectiveness of thén order to further discuss the overall performance of the
proposed C-GMR algorithm, and this is particularly notablproposed scheme under different scenarios, the average of
in the context of parameter identification for measuremetite sum of AMSE (A-AMSE), defined byA — AMSE =
noise, which significantly influences the performance of stage ;- S (s — j?g_’k)Q, is selected as the index witR
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The actual state PMU measurement noises with unknown statistics. A sliding-
Rowrange e et 200l window-based algorithm has been developed to ascertain the
S statistical properties of the PMU measurement noises with
aim to reduce computational costs. For adaptive state esti-

mation, an enhanced cubature Kalman filtering algorithm has
been introduced by incorporating the Gaussian summation
filter concept. The parameters of this algorithm have been
5 10 15 20 we u u2 us dynamically adjusted using the reduced GMM obtained from
e oo q""‘:is"""”Sie“‘V‘)"age the latest sliding window. Finally, experiments on three test

] 1'“WW scenarios on the IEEE 39-bus system have been conducted
to demonstrate the effectiveness of our proposed method. An

5 10 15 20 10.5 11 115

Rotor speed Rotor speed
: : : m

5 10 15 20 10 11 12

d-axis transient voltage d-axisransientvotage  INteresting topic for future research would be to develop deep
‘ ‘ ossh sy | Clustering schemes to further improve the identification results
| ‘ ‘ oMy ITRR of the statistics of PMU measurement noises [9], [15], [24],
5 mTlme(s) 15 20 10 1 2 [25], [43], [44]. Also, the main results of this paper can
be extended to more general systems under network-induced
(@) phenomena [13], [14], [21], [26]-[28], [32], [36], [41].
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