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Abstract

This paper proposes a ladder carbon trading-based low-carbon economic dispatch model
for integrated energy systems (IESs), incorporating flexible load optimization and hybrid
energy storage systems consisting of battery and thermal energy storage. First, a ladder-
type carbon trading mechanism is introduced, in which the carbon trading cost increases
progressively with emission levels, thereby providing stronger incentives for emission
reduction. Second, flexible loads are categorized and modeled as shiftable, transferable,
and reducible types, each with distinct operational constraints and compensation mecha-
nisms. Third, both battery and thermal energy storage systems are considered to improve
system flexibility by storing excess energy and supplying it when needed. Finally, a unified
optimization framework is developed to coordinate the dispatch of renewable generation,
gas turbines, waste heat recovery units, and multi-energy storage devices while integrating
flexible load flexibility. The objective is to minimize the total system cost, which includes
energy procurement, carbon trading expenditures, and demand response compensation.
Three comparative case studies are conducted to evaluate system performance under differ-
ent operational configurations: the proposed comprehensive model, a carbon trading-only
approach, and a conventional baseline scenario. Results demonstrate that the proposed
framework effectively balances economic and environmental objectives through coordi-
nated demand-side management, hybrid storage utilization, and the ladder-type carbon
trading market mechanism. It reshapes the system load profile via peak shaving and valley
filling, improves renewable energy integration, and enhances overall system efficiency.

Keywords: integrated energy systems; low-carbon dispatch; ladder-type carbon trading;
flexible loads; hybrid energy storage; renewable energy integration

1. Introduction
With the global emphasis on sustainable development and the urgent need to mitigate

climate change, integrated energy systems (IESs) have emerged as a promising approach
by harmonizing electricity, heat, and gas networks to optimize energy structure, enhance
energy efficiency, and promote the consumption of renewable energy.

Many studies have explored optimal scheduling strategies for IESs, with a focus on
economic efficiency, operational safety, and renewable energy integration [1–3]. However,
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as carbon reduction targets become increasingly stringent, cost-centric dispatch models are
no longer adequate. Environmental impacts should be integrated into operational plan-
ning [4]. The low-carbon potential of IESs remains underutilized. Carbon trading provides
a market-based solution by assigning costs to emissions, encouraging energy producers
to reduce their emissions by imposing costs on carbon output. Traditional carbon trading
mechanisms often apply a uniform price, lacking the granularity to incentivize deeper
emission cuts. A ladder-type carbon trading mechanism, where pricing tiers escalate with
emission levels, can more effectively drive low-carbon transitions [5–7]. The core feature
of the ladder-type carbon trading mechanism is to divide carbon emissions into multiple
tiers, each with a different carbon trading price. This creates progressive cost pressure and
encourages enterprises to actively reduce carbon emissions. The ladder-type carbon pricing
mechanism has gained increasing attention due to its intuitive structure and strong incen-
tive effect on emission reduction. In [8], a robust optimal dispatch strategy for a park-level
IES, considering a ladder-type carbon trading mechanism, is proposed to guide the IES to
control carbon emissions. Reference [9] developed a meteorological classification-based
robust dispatch strategy for multi-microgrid systems, combining wind pattern clustering,
data augmentation, ladder-type carbon trading, and distributed optimization to address
wind power uncertainty while ensuring low-carbon and economical operation. Refer-
ence [10] proposed an integrated demand response exchange mechanism for coordinated
low-carbon dispatch in electricity–gas systems, combining emission reduction valuation,
game-theoretic market clearing, and CCPP-P2G synergy to incentivize decarbonization
while enhancing economic efficiency. Reference [11] introduced a ladder-type carbon trad-
ing mechanism based on the Chinese Certified Emission Reduction (CCER) quota system,
focusing on capacity configuration and lifecycle cost optimization. It employs sensitivity
analysis to determine the carbon trading parameters.

Traditionally, loads in integrated energy systems are treated as inflexible and uncon-
trollable. With the development of smart grid technologies, flexible loads—such as shiftable,
transferable, and reducible electricity and heat demands—can now play a significant role
in balancing supply and demand, smoothing load profiles, and improving the efficiency of
resource allocation [12,13]. Reference [14] proposed an equivalent aggregation method for
large-scale flexible loads in power systems, clustering them into parameter-based groups
to create simplified equivalent models that enable efficient peak shaving and valley filling
in system scheduling while maintaining accuracy and computational speed. In [15], a
method for the economic dispatch of a park-level integrated energy system that considers
the characteristics of flexible loads and variable operating conditions of equipment is pro-
posed. Reference [16] proposed a robust optimization model for CHP demand response
that integrates flexible electric and thermal loads to enhance peak regulation capacity while
addressing uncertainties in wind power and load response. Reference [17] developed a
two-stage stochastic optimization model for integrated energy system planning that incor-
porates flexible thermal/electrical loads and auxiliary devices. Reference [18] proposed
a distributed low-carbon scheduling model for park-level integrated energy systems that
combines game-theoretic energy sharing, improved Shapley value-based benefit allocation,
and integrated demand response to enhance renewable utilization, economic efficiency,
and fair profit distribution while ensuring privacy protection. Reference [19] developed
a low-carbon dispatch framework for integrated energy systems by synergizing carbon
capture technology with power-to-gas conversion, introducing carbon-aware energy stor-
age management, and implementing incentive-based demand response while utilizing
a parallel multi-dimensional dynamic programming algorithm to efficiently address op-
erational uncertainties. Reference [20] proposed a source-load coordinated low-carbon
economic dispatch model for multi-energy virtual power plants, integrating organic Rank-
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ine cycle waste heat recovery and comprehensive demand response to enhance flexibility,
improve carbon capture efficiency, and balance economic and environmental objectives in
system operation. Reference [21] proposed a low-carbon hierarchical demand response
framework for power systems, integrating carbon flow tracking and multi-source-grid-
load coordination to optimize resource allocation and enhance the system’s low-carbon
economic operation.

Although increasing attention has been given to the economic and low-carbon dispatch
of integrated energy systems (IESs), several key challenges remain. In particular, the
modeling and scheduling of flexible loads are often simplified or aggregated in existing
studies without distinguishing between different types of demand-side flexibility. This
limits the accuracy of dispatch outcomes and reduces the potential of flexible loads in
supporting renewable energy integration and carbon emission reduction. To address this, a
detailed modeling framework for flexible loads is proposed in this paper, in which loads are
classified into three categories—shiftable, transferable, and reducible—each with specific
operational constraints and corresponding compensation mechanisms. This classification
allows for more effective use of demand-side resources and enhances system flexibility. A
low-carbon economic dispatch model is formulated, integrating renewable energy sources,
gas turbines, waste heat recovery units, flexible loads, and hybrid energy storage systems
composed of both battery and thermal energy storage. The objective function minimizes
the total system cost, including electricity purchases, carbon trading expenses, and demand
response payments. A ladder-type carbon trading mechanism is introduced to calculate
the carbon trading cost, in which the carbon trading cost increases progressively with
emission levels, thereby providing stronger incentives for emission reduction. Sensitivity
analysis is conducted to determine appropriate values for the key parameters of the carbon
trading mechanism. Finally, three comparative case studies are presented to evaluate
system performance under different configurations. Scenario 1 represents the proposed
model, which incorporates both the ladder-type carbon trading mechanism and flexible
load optimization. Scenario 2 considers a dispatch model that includes only the ladder-type
carbon trading mechanism. Scenario 3 serves as the baseline model, excluding both carbon
trading and flexible load optimization.

The remainder of this paper is organized as follows. Section 2 details the IES structure
and the ladder-type carbon trading mechanism. Section 3 presents the optimization model,
including objective functions and constraints. Section 4 analyzes simulation results across
scenarios. Section 5 presents the conclusions and future directions.

2. IES Structure and Ladder-Type Carbon Trading Mechanism
2.1. Structure of the IES

The structure of the IES used in this paper is illustrated in Figure 1. Energy inputs are
derived from the main power grid and the main gas network, as well as renewable energy
sources such as solar and wind power. Energy conversion devices include gas turbines
(GTs), gas boilers (GBs), and waste heat boilers (WHBs). There exist both battery energy
storage and thermal energy storage systems. The load side includes electrical and thermal
loads, and they are categorized into base loads and flexible loads, which can participate
in demand response. In this paper, it is considered that all electricity purchased by the
IES from the grid is produced by thermal power plants. Therefore, for the IES, there are
three sources of carbon emissions: purchased electricity, gas turbines, and gas boilers. The
difference between the IES’s actual carbon emissions and carbon credit allowances is traded
through the carbon trading market using a ladder-type carbon trading mechanism.
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Figure 1. Framework of the integrated energy system.

2.2. Carbon Credit Allowance Calculation Model

Carbon trading is a mechanism for achieving carbon emissions control by creating
legal carbon credits and allowing them to be traded. The government or regulator allocates
free carbon credit allowances based on the total amount of energy consumed or power
generated by each emission source. If emissions exceed their allowances, they need to
purchase additional ones in the carbon trading market; conversely, if emissions are lower
than the allowances, they can sell the excess emission allowances in the market and obtain
the corresponding revenue. Therefore, the ladder-type carbon trading mechanism mainly
consists of three parts: the carbon credit allowances, the actual carbon emissions, and the
cost of laddered carbon trading. The carbon credit allowance calculating model used in
this paper is as follows [22]:

EIES = Ebuy + EGT + EGB

Ebuy = θe
NT
∑

t=1
Pgrid

t

EGT = θh
NGT
∑

i=1

NT
∑

t=1
(∂e,hPgt

i,t + Hgt
i,t)

EGB = θh
NGB
∑

i=1

NT
∑

t=1
Hgb

i,t

(1)

where EIES is the total carbon credit allowances of the IES; Ebuy, EGT , and EGB are the carbon
credit allowances of the purchased electricity, gas turbines, and gas boilers, respectively;
Pgrid

t denotes the amount of active power purchased from the power grid during time
period t; θe and θh are carbon emission allowances per unit of electrical power and per unit
of thermal power generation, respectively; ∂e,h is the efficiency with which electrical energy
is converted to heat; Pgt

i,t is the electric power generated by GT; Hgt
i,t is the exhaust heat

power recovery of GT; Hgb
i,t is the heat power generated by GB; NGT and NGB represent

the number of units for gas turbines and gas boilers, respectively.
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2.3. Actual Carbon Emissions Calculation Model

The carbon emissions calculation model used in this paper is as follows:

EIESa = Ebuya + EGTa + EGBa

Ebuya = χe
NT
∑

t=1
Pgrid

t

EGTa = χh
NGT
∑

i=1

NT
∑

t=1
(∂e,hPgt

i,t + Hgt
i,t)

EGBa = χh
NGB
∑

i=1

NT
∑

t=1
Hgb

i,t

(2)

where EIESa represents the total actual carbon emissions of the IES; Ebuya is the actual
carbon emissions from main grid thermal units; EMTa and EGBa represent the actual carbon
emissions from gas turbines and gas boilers, respectively; χe denotes carbon emissions
per unit of electrical power generated; and χh denotes carbon emissions per unit of heat
power generated.

2.4. Ladder-Type Carbon Trading Mechanism

Based on the difference between the IES’s total actual carbon emissions and carbon
credit allowances, the amount of carbon emissions for participation in the carbon trading
market can be calculated as follows:

EIEST = EIESa − EIES (3)

Different from traditional carbon trading, the ladder-type carbon trading mechanism
divides the price of carbon trading into multiple intervals in terms of the amount of carbon
emissions traded in the IES, as shown in Figure 2.

Fcost
car =



nEIEST , EIEST ≤ x
n(1 + m)(EIEST − x) + nx, x ≤ EIEST ≤ 2x
n(1 + 2m)(EIEST − 2x) + n(2 + m)x, 2x ≤ EIEST ≤ 3x
n(1 + 3m)(EIEST − 3x) + n(3 + 3m)x, 3x ≤ EIEST ≤ 4x
n(1 + 4m)(EIEST − 4x) + n(4 + 6m)x, 4x ≤ EIEST

(4)

where Fcost
car is the carbon trading cost; n is the carbon trading base price; x is the length of

the carbon trading interval; m is the transaction price growth rate. These parameters can be
determined through simulation-based sensitivity analysis by varying one parameter while
fixing the other two.

 )0, x  ), 2x x  )2 ,3x x  )3 ,4x x  )4 ,x +

n

(1 )n m+

(1 2 )n m+

(1 3 )n m+

(1 4 )n m+

IESTE

( )cost

car IESTF E

Figure 2. Ladder-type carbon trading mechanism.
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3. Low-Carbon Economic Dispatch Optimization Model for the IES
3.1. Mathematical Models for Flexible Loads

The load types considered in this paper include base loads (i.e., uncontrollable loads)
and flexible loads (i.e., controllable loads). According to the control methods of flexible
loads, this paper categorizes flexible loads into three major types—shiftable loads, trans-
ferable loads, and reducible loads—and establishes mathematical models for each type of
flexible load.

3.1.1. Shiftable Loads

A shiftable load refers to a load with constant power and a fixed duration of usage.
When shifting, the entire load must be shifted as a whole, meaning its operating time can
be adjusted, but it cannot be interrupted, and its power consumption remains unchanged
during the shifting process.

To model shiftable loads, we first introduce a binary variable ui,t representing the
shifting state (indicating whether shiftable load i starts shifting at time period t) and a
variable Psh,a f t

i,t representing the load power of shiftable load i at time period t. Then, based

on the original load power Psh,org
i,t of the shiftable load in each time period, the original

operating time range
[
tsh,org
i,− , tsh,org

i,+

]
, and the acceptable shifting time range

[
tsh,acp
i,− , tsh,acp

i,+

]
,

the shiftable load model is constructed, including its constraints and objective function.
The mathematical model is as follows:

ui,t = 0, t /∈
[
tsh,acp
i,− , tsh,acp

i,+ − tsh,org
i,+ + tsh,org

i,−

]
0 ≤

tsh,acp
i,+ −tsh,org

i,+ +tsh,org
i,−

∑
z=tsh,acp

i,−

ui,z ≤ 1, t ∈
[
tsh,acp
i,− , tsh,acp

i,+ − tsh,org
i,− + tsh,org

i,+

]

Psh,a f t
i,t = (1 −

tsh,acp
i,+ −tsh,org

i,+ +tsh,org
i,− )

∑
z=tsh,acp

i,−

ui,z)Psh,be f
i,t , t /∈

[
tsh,acp
i,− , tsh,acp

i,+

]
Psh,a f t

i,t =
t

∑
z=tsh,acp

i,−

ui,zPsh,org

i,t−z+tsh,org
i,−

, t ∈
[
tsh,acp
i,− , tsh,acp

i,+

]
(5)

Fcost
sh = Csh,t

NSH

∑
i=1

tsh,acp
i,+ −tsh,org

i,+ +tsh,org
i,−

∑
z=tsh,acp

i,−

ui,z(

tsh,org
i,+

∑
t=tsh,org

i,−

Psh,org
i,t ∆t) (6)

In Equation (6), Fcost
sh represents the compensation cost for shiftable load scheduling;

Csh,t denotes the unit energy shifting compensation cost at time period t; NSH is the
number of shiftable loads.

Since a shiftable load can be shifted at most once, it can only start shifting at a single
time period within the acceptable shifting time range. Therefore,

0 ≤
tsh,acp
i,+ −tsh,org

i,+ +tsh,org
i,−

∑
z=tsh,acp

i,−

ui,z ≤ 1, t ∈
[
tsh,acp
i,− , tsh,acp

i,+ − tsh,org
i,− + tsh,org

i,+

]
. The third and fourth

equations in (5) indicate that if the load is shifted (i.e.,
tsh,acp
i,+ −tsh,org

i,+ +tsh,org
i,−

∑
z=tsh,acp

i,−

ui,z = 1), then for

time slots outside the acceptable shifting range (i.e., t /∈
[
tsh,acp
i,− , tsh,acp

i,+

]
), the load power

Psh,a f t
i,t = 0, and for time slots inside the acceptable shifting range (i.e., t ∈

[
tsh,acp
i,− , tsh,acp

i,+

]
),

the load power at the shifted starting time equals the original power at the initial operating
time tsh,org

i,− , and the power at the subsequent time slot equals the original power at tsh,org
i,− + 1
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and so on. If the load is not shifted, then the load power Psh,a f t
i,t remains equal to the original

load power Psh,org
i,t . For example, consider a shiftable load with the following characteristics:

original operating time range is [4, 6], and acceptable shifting time range is [10, 15]. The
original load power vector is as follows:

Psh,org
i = [0, 0, 0, Psh,org

i,4 , Psh,org
i,5 , Psh,org

i,6 , 0, 0, . . . , 0] (7)

According to the fourth equation in (5), when t belongs to the acceptable translation
range time period [10, 15], we have

Psh,a f t
i,10 = ui,10Psh,org

i,4

Psh,a f t
i,11 = ui,10Psh,org

i,5 + ui,11Psh,org
i,4

Psh,a f t
i,12 = ui,10Psh,org

i,6 + ui,11Psh,org
i,5 + ui,12Psh,org

i,4

Psh,a f t
i,13 = ui,10Psh,org

i,7 + ui,11Psh,org
i,6 + ui,12Psh,org

i,5 + ui,13Psh,org
i,4

Psh,a f t
i,14 = ui,10Psh,org

i,8 + ui,11Psh,org
i,7 + ui,12Psh,org

i,6 + ui,13Psh,org
i,5 + ui,14Psh,org

i,4

Psh,a f t
i,15 = ui,10Psh,org

i,9 + ui,11Psh,org
i,8 + ui,12Psh,org

i,7 + ui,13Psh,org
i,6 + ui,14Psh,org

i,5 + ui,15Psh,org
i,4

(8)

Since there can only be one ui,t variable with a value of 1, each of the above equations
can only be equal to one of the polynomials on the right. Assuming that t = 10 the shiftable
load i starts to shift, then ui,10 = 1, and the other time slots ui,t = 0, then it is as follows:

Psh,a f t
i,10 = Psh,org

i,4 , Psh,a f t
i,11 = Psh,org

i,5 , Psh,a f t
i,12 = Psh,org

i,6 , Psh,a f t
i,13 = 0, Psh,a f t

i,14 = 0, Psh,a f t
i,15 = 0 (9)

Equation (9) demonstrates that the operational time slot of the shiftable load has been
rescheduled from hours 4–6 to hours 10–12, with the load power profile remaining un-
changed. This example aligns with the mathematical model’s constraints and demonstrates
how the formulation enforces feasible shifting behavior.

3.1.2. Transferable Loads

Transferable loads are not constrained by continuous operating time requirements,
and their power consumption in each time period can be flexibly adjusted. However, the
total power consumption before and after transfer must remain unchanged. To model
transferable loads, we first define the following variables: binary operating state variable
βi,t (indicating whether transferable load i operates at time t, where βi,t = 1 denotes
operation, and βi,t = 0 denotes non-operation) and load power variable Ptr,a f t

i,t . Based on

the original load power Ptr,org
i,t , the original operating time range

[
ttr,org
i,− , ttr,org

i,+

]
, and the

acceptable transfer time range
[
ttr,acp
i,− , ttr,acp

i,+

]
, we construct the transferable load model,

including its constraints and objective function. The mathematical formulation is as follows:
βi,t = 0, t /∈

[
ttr,org
i,− , ttr,org

i,+

]
U
[
ttr,acp
i,− , ttr,acp

i,+

]
βi,tP

tr,min
i ≤ Ptr,a f t

i,t ≤ βi,tP
tr,max
i , t ∈

[
ttr,org
i,− , ttr,org

i,+

]
U
[
ttr,acp
i,− , ttr,acp

i,+

]
NT
∑

t=1
Ptr,a f t

i,t ∆t =
NT
∑

t=1
Ptr,org

i,t ∆t

(10)

where Ptr,min
i and Ptr,max

i are the minimum and maximum operating power of transferable
load i, respectively.

The first and second formulation in (10) indicate that when t is within either the
original or transferable time range, the load power can be adjusted—either set to zero or
within the allowable power bounds

[
Ptr,min

i , Ptr,max
i

]
. In other words, regardless of the
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original load power, the post-transfer load power can be increased or decreased, provided
it remains within the permissible range. The third formulation ensures the total energy
demand remains unchanged before and after transfer.

To formulate the compensation cost objective function for transferable load scheduling,
we define the power adjustment variable ∆Ptr

i,t as follows:

∆Ptr
i,t = Ptr,a f t

i,t − Ptr,be f
i,t (11)

Since ∆Ptr
i,t can be positive or negative, we use its absolute value multiplied by time and

unit energy compensation cost to construct the transferable load scheduling compensation
cost Fcost

tr as follows:

Fcost
tr =

NTR

∑
i=1

NT

∑
t=1

Ctr,t
∣∣∆Ptr

i,t
∣∣∆t (12)

where Ctr.t is the unit energy transfer compensation cost at time period t; NTR is the
number of transferable loads.

Since Equation (12) contains an absolute value (a nonlinear term), it is challenging to
solve directly. To linearize it, we introduce an auxiliary variable Yi,t and reformulate the
objective function as (13) while adding constraint set (14).

Fcost
tr =

NTR

∑
i=1

NT

∑
t=1

Ctr,tYi,t∆t (13)

∆Ptr
i,t ≤ Yi,t

−∆Ptr
i,t ≤ Yi,t

0 ≤ Yi,t

(14)

This ensures both the objective function and constraints remain linear, facilitating
efficient optimization.

This linearization is exact and widely accepted in mixed-integer linear programming
(MILP). It introduces no relaxation or approximation as long as the deviation ∆Ptr

i,t is a
linear function of the decision variables, which is the case in our model. Since the objective

function minimizes Fcost
tr =

NTR
∑

i=1

NT
∑

t=1
CtrYi,t∆t and the constraints enforce Yi,t ≥

∣∣∣∆Ptr
i,t

∣∣∣ , the

optimizer will choose the smallest possible value of Yi,t that satisfies both Yi,t ≥ ∆Ptr
i,t and

Yi,t ≥ −∆Ptr
i,t. This minimal feasible value is precisely as follows:

Yi,t = max
{

∆Ptr
i,t,−∆Ptr

i,t
}
=
∣∣∆Ptr

i,t
∣∣ (15)

Thus, the auxiliary variable Yi,t exactly equals the absolute value of ∆Ptr
i,t at optimality.

Therefore, the linearized formulation is mathematically equivalent to the original nonlinear
form in the objective function and introduces no approximation or relaxation.

3.1.3. Reducible Loads

Reducible loads refer to those capable of enduring partial or complete interruptions or
power reductions, allowing for adjustable operation time or power. To model reducible
loads, we need a continuous variable ∆Pcut

i,t that represents the power reduction of a

reducible load and a continuous variable Pcut,a f t
i,t that represents the load power after
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curtailment. These two variables are used to construct constraints and the compensation
cost objective function for reducible loads. The mathematical formulation is as follows:

Pcut,a f t
i,t = Pcut,org

i,t − ∆Pcut
i,t

0 ≤ ∆Pcut
i,t ≤ θcut

i Pcut,org
i,t

(16)

Fcost
cut = Ccut,t

NCL

∑
i=1

NT

∑
t=1

∆Pcut
i,t ∆t (17)

where θcut
i is the maximum allowable percentage of load that can be curtailed; Pcut,org

i,t is the
original load power of reducible load i at time slot t; Ccut,t denotes the unit energy cutting
compensation cost at time period t; NCL is the number of reducible loads.

The preceding sections have presented the three categories of flexible electric load
models proposed in this study. For flexible thermal loads, analogous operational models
can be established using similar methodologies, which will not be elaborated here for
brevity. Based on the three flexible load operation models established above, IES operators
can optimize flexible load behaviors to reduce expense costs and promote renewable
energy consumption.

It is important to acknowledge that the proposed mathematical models for flexible
loads are developed based on several simplifying assumptions to maintain tractability.
These load models assume ideal shifting, transferring, and curtailment of loads without
accounting for user discomfort, time delays, or behavioral uncertainties. While such as-
sumptions facilitate system-level analysis, they may not fully reflect practical demand-side
flexibility in real-world scenarios. Future research can extend this framework by incorpo-
rating more detailed behavioral models, such as probabilistic user response functions or
elasticity-based demand models. These enhancements would allow for a more accurate
representation of load flexibility and provide deeper insights into the interaction between
human behavior and energy system operation.

3.2. Mathematical Models for Battery Energy Storage and Thermal Energy Storage Systems

The operation constraints and objective function for battery energy storage systems
are as follows: 

0 ≤ αcha
i,t + αdis

i,t ≤ 1
αcha

i,t Pcha
i,min ≤ Pcha

i,t ≤ αcha
i,t Pcha

i,max
αdis

i,t Pdis
i,min ≤ Pdis

i,t ≤ αdis
i,t Pdis

i,max

SOCe
i,t == SOCe

i,t−1 +
ηcha

i Pcha
i,t ∆t

Ee
i,max

− Pdis
i,t ∆t

ηdis
i Ee

i,max

SOCe
i,min ≤ SOCe

i,t ≤ SOCe
i,max

SOCe
i,0 = SOCe

i,ini
SOCe

i,NT = SOCe
i,0

(18)

Fcost
eess =

NT

∑
t=1

NES

∑
i=1

Cess

(
Pcha

i,t + Pdis
i,t )∆t (19)

where αcha
i,t and αdis

i,t are the 0–1 variables representing the charging and discharging states
of electricity energy storage system i at time period t, respectively; Pcha

i,t and Pdis
i,t are the

charging power and discharging power, respectively; Pcha
i,min and Pcha

i,max are the lower and
upper limits of the charging power, respectively; Ee

i,max is the capacity of electricity energy
storage system; ηcha

i and ηdis
i are the charging and discharging efficiencies, respectively;

Ebess
i,min and Ebess

i,max are the lower and upper limits of the state of charge of electricity energy
storage system; SOCe

i,ini is the initial state of charge; Fbess is the operation cost of electricity
energy storage system.
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The operation constraints and objective function for thermal energy storage systems
are as follows: 

0 ≤ χcha
i,t + χdis

i,t ≤ 1
χcha

i,t Hcha
i,min ≤ Hcha

i,t ≤ χcha
i,t Hcha

i,max
χdis

i,t Hdis
i,min ≤ Hdis

i,t ≤ χdis
i,t Hdis

i,max

Ehst
i,t = Ehst

i,t−1(1 − hloss
i ) + (Hcha

i,t µcha
i − Hdis

i,t
µdis

i
)∆t

Ehst
i,min ≤ Ehst

i,t ≤ Ehst
i,max

Ehst
i,0 = Ehst

i,ini
Ehst

i,NT = Ehst
i,0

(20)

Fcost
hst =

NT

∑
t=1

NHST

∑
i=1

Chst(Hcha
i,t + Hdis

i,t )∆t (21)

where χcha
i,t and χdis

i,t are the 0–1 variables representing the charging and discharging states of
the heat storage tank i at time period t; Hcha

i,max and Hcha
i,min are the upper and lower charging

power limits; Hdis
i,max and Hdis

i,min are the upper and lower limits of the discharge power;
Ehst

i,t is the heat energy stored in heat storage tank i at time period t; hloss
i is the self-loss

efficiency; µcha
i and µdis

i are the heat charging and discharging efficiencies, respectively;
Ehst

i,max and Ehst
i,min are the upper and lower limits of the capacity; Ehst

i,ini is the initial amount
of energy stored in heat storage tank i in initial time slot; Fcost

hst is the operation costs of the
heat energy storage system.

It is worth noting that the model does not impose fixed priorities between the battery
energy storage system and thermal energy storage system during the scheduling process.
Instead, the optimization solver dynamically determines their charging and discharging
schedules based on objective function and constraints, including electricity/gas price sig-
nals, renewable energy availability, heat/electricity load demand, carbon trading costs, and
energy storage efficiencies. A key coordination mechanism lies in the charging/discharging
cost coefficients of BESS and TES in the objective function. These coefficients directly influ-
ence their dispatch priorities. Under the premise of satisfying all the constraints, the storage
system with a lower cost coefficient will be scheduled to charge or discharge preferentially.

3.3. Mathematical Models for GT, GB, WHB, and Wind and PV Power Generation Systems

The operation constraints and objective function for GT, WAB, and GB are as
follows [23]:

FGT
i,t =

Pgt
i,t ∆t

η
gte
i LNG

(22)

Hgt
i,t =

Pgt
i,t

η
gte
i

(
1 − η

gte
i − η

gtl
i

)
(23)

0 ≤ Hwab
i,t ≤ ηwab

i Hgt
i,t (24)

0 ≤ Hwab
i,t ≤ Hwab

i,max (25)

Pgt
i,min ≤ Pgt

i,t ≤ Pgt
i,max (26)

−∆Pgt,down
i,max ≤ Pgt

i,t+1 − Pgt
i,t ≤ ∆Pgt,up

i,max (27)

FGB
i,t =

Hgb
i,t ∆t

η
gb
i LNG

(28)

Hgb
i,min ≤ Hgb

i,t ≤ Hgb
i,max (29)
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Fcost
gas =

NT

∑
t=1

Cgas

(
NGB

∑
i=1

FGB
i,t +

NGT

∑
i=1

FGT
i,t

)
(30)

where η
gte
i is electric power generation efficiency coefficient of GT; LNG is the low calorific

value of natural gas, which is typically 9.7 kWh/m3; η
gtl
i is the heat dissipation loss

coefficient; ηwab
i denotes the heat recovery efficiency; Pgt

i,min and Pgt
i,max are the minimum

and maximum electric power output of GT; ∆Pgt,down
i,max and ∆Pgt,up

i,max are the ramp-down and

ramp-up rates of GT; η
gb
i is heat power generation efficiency coefficient of GB; Hgb

i,min and

Hgb
i,max are the minimum and maximum heat power output of GB; Fgas is the cost of natural

gas consumed by GB and GT; Cgas is the price of natural gas per unit.
The operation constraints and objective function for wind and PV power generation

systems are as follows:
0 ≤ ∆Pwpc

i,t ≤ P f wp
i,t (31)

Pawp
i,t = P f wp

i,t − ∆Pwpc
i,t (32)

0 ≤ ∆Ppvc
i,t ≤ P f pv

i,t (33)

Papv
i,t = P f pv

i,t − ∆Ppvc
i,t (34)

Fcost
res,opr =

NT

∑
t=1

[
NWP

∑
i=1

(
CwpPawp

i,t ∆t
)
+

NPV

∑
i=1

(
CpvPapv

i,t ∆t
)
] (35)

Fcost
res,cut =

NT

∑
t=1

[
NWP

∑
i=1

(
Cwpc∆Pwpc

i,t ∆t
)
+

NPV

∑
i=1

(
Cpvc∆Ppvc

i,t ∆t
)
] (36)

where P f wp
i,t is the forecasted wind power output of wind power generation system i; ∆Pwpc

i,t

is the wind power curtailment; Pawp
i,t is the actual wind power; P f pv

i,t is the forecasted PV
power; ∆Ppvc

i,t is the PV power curtailment; Papv
i,t is the actual PV power; Fcost

res,opr is the
operational cost of PV and wind power generation; Fcost

res,cut is the penalty cost for curtailed
wind and solar energy; Cwp and Cpv are the operational cost coefficients for wind and PV
power, respectively; Cwpc and Cpvc are the penalty cost coefficients for curtailed wind and
solar energy per unit.

3.4. Electrical and Thermal Power Balance Constraints

An IES contains both electrical and thermal loads and, therefore, requires electrical and
thermal power balancing at all times. The electrical and thermal power balance constraints
are as follows:

NWP

∑
i=1

Pawp
i,t +

NPV

∑
i=1

Papv
i,t +

NGT

∑
i=1

Pgt
i,t +

NES

∑
i

Pdis
i,t + Pgrid

t = PLoad
t +

NBES

∑
i=1

Pcha
i,t (37)

PLoad
t = Pbase

t +
NSH

∑
i=1

Psh,a f t
i,t +

NTR

∑
i=1

Ptr,a f t
i,t +

NCL

∑
i=1

Pcut,a f t
i,t (38)

NGB

∑
i=1

Hgb
i,t +

NHAB

∑
i=1

Hwab
i,t +

NHST

∑
i=1

Hdis
i,t = HLoad

t +
NHST

∑
i=1

Hcha
i,t (39)

HLoad
t = Hbase

t +
NHSH

∑
i=1

Hsh,a f t
i,t +

NHTR

∑
i=1

Htr,a f t
i,t +

NHCT

∑
i=1

Hcut,a f t
i,t (40)
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3.5. Objective Function of Low-Carbon Economic Dispatch Optimization Model for the IES

Based on the ladder-type carbon trading mechanism and the operation model of
flexible loads, GB, GT, WHB, wind and PV power generation systems, and electricity and
heat energy storage systems, this section constructs the objective function of the low-carbon
economic dispatch optimization model for the IES. The objective function includes the
following costs: carbon trading, purchasing electricity from the main grid, purchasing
natural gas, wind power and PV systems operation cost, abandonment penalties, and the
energy storage and heat storage systems operation cost, compensating for flexible loads.
The objective function is as follows:

minFIES = Fcost
car + Fcost

sh + Fcost
tr + Fcost

cut + Fcost
gas + Fcost

res,opr + Fcost
res,cut + Fcost

eess + Fcost
hst + Fcost

grid (41)

Fcost
grid =

NT

∑
t=1

(
Cbuy

grid,tP
buy
grid,t∆t + Csell

grid,tP
sell
grid,t∆t

)
(42)

Pgrid
t = Pbuy

grid,t + Psell
grid,t (43)

Pbuy
grid,t ≥ 0, Psell

grid,t ≤ 0 (44)

−Isell
grid,tP

grid
max ≤ Pgrid

t ≤ Ibuy
grid,tP

grid
max (45)

0 ≤ Isell
grid,t + Ibuy

grid,t ≤ 1 (46)

where FIES represents the total operational cost of the integrated energy system; Fcost
grid

represents the difference between the IES’s cost of buying electricity from the grid and its
revenue from selling electricity to the grid; Pgrid

t is the power exchanged with the main
grid, with purchased electricity being positive and selling electricity being negative; Cbuy

grid,t

is the power grid time-of-use electricity prices; Csell
grid,t is the price of electricity sales.

The proposed scheduling model is a mix-integer programming problem. Common
commercial solvers (e.g., GUROBI and CPLEX) can be used to find the global optimal
solution quickly.

4. Case Studies
4.1. Parameter Settings

Case studies are presented in this section to verify the low carbon and economy of the
proposed dispatch model considering flexible load optimization. The scheduling step is
1 h, and the scheduling cycle is 24 h. The main equipment parameters are shown in Table 1.
The predicted base electricity load power, base heat load power, and generation of wind
and PV power are shown in Figure 3. Time-of-use electricity prices and the natural gas
price are shown in Figure 4. Parameters of all types of flexible load are shown in Tables 2–4.
The compensation cost coefficients for flexible loads are set to the same value across all
time periods.

To verify the proposed low-carbon economic dispatch model and analyze IES
scheduling under different scenarios, this paper establishes three typical case studies
for numerical analysis.

Scenario 1 (the proposed model): Integrated dispatch model incorporating both ladder-
type carbon trading and flexible load optimization.

Scenario 2: Dispatch model considering only the ladder-type carbon trading mechanism.
Scenario 3: Baseline model without carbon trading and flexible load optimization.
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All programs are performed on a PC with Intel Core i5-11400H CPU and 16G RAM.
The simulation environment is MATLAB R2019b. GUROBI 10.0.3 is used to solve all the
optimization problems.

Table 1. Equipment parameters for the integrated energy system.

Equipment Parameter Value

GB
ηgb

Hgb
min/kW

Hgb
max/kW

0.35
0

150

GT

ηgte

ηgtl

Pgt
min/kW

Pgt
max/kW

∆Pgt,down
max /kW

∆Pgt,up
max /kW

0.35
0.10

0
80
15
15

WHB
ηwab

Hwab
min/kW

Hwab
max/kW

0.65
0

120

Wind Power Generation System Cwp/(CNY/kWh)
Cwpc/(CNY/kWh)

0.50
0.20

PV Power Generation System Cpv/(CNY/kWh)
Cpvc/(CNY/kWh)

0.62
0.30

Electricity Energy Storage
System

ηcha

ηdis

cess
Pcha

min/kW
Pcha

max/kW
Pdis

min/kW
Pdis

max/kW
SOCe

min
SOCe

max

0.95
0.95
0.4
30
40
30
40
0.3
1

Heat Energy Storage System

µcha

µdis

hloss

chst
Hcha

min/kW
Hcha

max/kW
Hdis

min/kW
Hdis

max/kW
Ehst

min/kWh
Ehst

max/kWh

0.95
0.95
0.001
0.45
20
30
20
30
40

160

Main Power Grid Pgrid
max/kW 180

Table 2. Parameters of shiftable electricity and heat loads.

Load Type Original
Operating Time

Original
Load Power

Acceptable
Operating Time

Unit Energy
Compensation Cost

Shiftable electricity load 1 12:00~13:00 25,24 2:00~10:00 0.2
Shiftable electricity load 2 18:00~20:00 24,25,26 7:00~10:00 0.2

Shiftable heat load 19:00~20:00 15,16 5:00~10:00 0.1
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Figure 3. Forecasted profiles of base electricity load, base heat load, and wind and PV power.

Figure 4. Time-of-use electricity purchase and selling prices and the natural gas price.

Table 3. Parameters of transferable electricity and heat loads.

Load Type Original
Operating Time

Original
Load Power

Acceptable
Operating Time

Lower and Upper
Power Limits

Unit Energy
Compensation Cost

Transferable
electricity load 12:00~14:00 25,25,25 3:00~10:00 8~26.7 0.3

Transferable heat load 12:00~13:00 20,20 5:00~10:00 8~26.7 0.2

Table 4. Parameters of reducible electricity and heat loads.

Load Type Maximum Allowable Reduction Percentage Unit Energy Compensation Cost
Reducible electricity load 0.8 0.4

Reducible heat load 0.8 0.2
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4.2. Results and Analysis

This section is organized into four subsections. The first subsection focuses on the
key parameters of the laddered carbon trading mechanism and evaluates their impacts on
system costs and carbon emissions through sensitivity analysis. The second subsection
presents the optimized scheduling results and the impact of different types of flexible loads
on system performance under Scenario 1, where both flexible load optimization and carbon
trading mechanism are implemented. Section 3 compares the system performance under
different scenarios, and Section 4 discusses the impact of hybrid energy storage system and
capacity configuration on system performance.

4.2.1. Sensitivity Analysis of Carbon Trading Parameters

The cost function of the ladder-type carbon trading mechanism includes three key
parameters: the carbon trading base price (denoted as n), the price growth rate (m), and
the interval length (x). In our simulation experiments, the values of these three parameters
are set as follows: n = 250 CNY/t, m = 10%, and x = 0.35 t. They were determined
through simulation-based sensitivity analysis. This approach is consistent with many
related studies, where the parameters are tuned based on the specific system conditions to
achieve a reasonable balance between cost and emission reduction. The simulation results
are as follows:

1. Impact of Carbon Trading Base Price (n)

As shown in Figure 5, when price growth rate m and interval length x are fixed at 10%
and 0.35 t, respectively, an increase in the carbon trading base price leads to a decrease in
carbon emissions, but the overall cost of carbon trading rises, and therefore, the total cost
of the system increases. When the base price exceeds 280 CNY/t, the decrease in carbon
emissions becomes very small, which indicates that the system has reached a relatively
stable low-carbon operation state. Therefore, for this test system, the optimal value for this
parameter should be maintained below 280 CNY/t.

 

Figure 5. Impact of carbon trading base price on system costs and carbon emissions.

2. Impact of Price Growth Rate (m)

In Figure 6, with carbon trading base price n = 250 CNY/t and interval length x = 0.35 t,
it can be observed that an increase in the price growth rate results in higher carbon trading
costs, which, in turn, drives a reduction in carbon emissions. When the growth rate ranges
between 10% and 15%, the emission levels begin to stabilize. Further increases beyond 15%
lead to additional emission reductions but result in higher total system expenditures. When
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the price growth rate exceeds 20%, the carbon emissions are no longer further reduced
despite continued rate increases, while system operating costs keep rising. Therefore, for
this test system, the optimal value for this parameter should be maintained below 20%.

Figure 6. Impact of price growth rate on system costs and carbon emissions.

3. Impact of Interval Length (x):

The interval length (x) defines the threshold of the amount of carbon emissions before
entering the next price tier. As can be seen in Figure 7, as the interval length increases,
the more carbon emissions the system has, the lower the total cost. This is because, as the
interval length increases, fewer tier transitions occur, most of the carbon trading takes place
at the carbon trading base price or the first few tiers, and the price is lower, which makes
the price signal weaker and leads to more carbon emissions. As shown in Figure 7, for the
test system, carbon emissions increase significantly when the interval length is greater than
0.43 t. Therefore, the optimal value for this parameter should be kept below 0.43 t.

 

Figure 7. Impact of interval length on system costs and carbon emissions.

These results demonstrate the significant impact of ladder-type carbon trading param-
eters on the economic and environmental performance of the integrated energy system.
Based on the simulation results, we selected the values n = 250 CNY/t, m = 10%, and
x = 0.35 t in all case studies.

4.2.2. Optimal Scheduling Results Under Scenario 1

The optimal scheduling results of electricity and heat in Scenario 1 are shown in
Figures 8–10. Comparing Figure 8a,b, it can be seen that for flexible electrical loads, shiftable
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load 1 is shifted from 12:00–13:00 to 5:00–6:00. Shiftable load 2 is shifted from 18:00–20:00 to
8:00–10:00. Transferable load is rescheduled from 12:00–14:00 to 3:00–6:00. Reducible load is
curtailed to varying degrees, with higher reductions during peak periods. For flexible heat
loads, as shown in Figure 9, the shiftable thermal load remains unchanged. The transferable
thermal load is rescheduled from 12:00–13:00 to 5:00 and 9:00. The reducible thermal load is
curtailed more significantly during peak demand. These results validate that the proposed
flexible load optimization model effectively coordinates different load types (shiftable,
transferable, and reducible) to achieve the desired system performance objectives while
maintaining operational constraints. The flexible loads are shifted to specific time periods
mainly due to lower electricity prices during those hours, which helps reduce overall
operating costs. This price-driven load-shifting strategy effectively utilizes time-of-use
pricing to achieve economic benefits while ensuring system reliability.

 
(a) (b) 

Figure 8. Power profiles of various electricity loads before (a) and after (b) optimization in Scenario 1.

 
(a) (b) 

Figure 9. Power profiles of various heat loads before (a) and after (b) optimization in Scenario 1.

Figure 10 demonstrates the electricity and heat power optimal dispatch of Scenario 1.
From Figure 10a, it can be observed that the electrical load is primarily met by renewable
energy and gas turbine output, with a small amount of supplementary power purchased
from the grid. As shown in Figure 3, during the 8:00–15:00 period, when wind and solar
resources are abundant, excess electricity is sold back to the grid after meeting local demand.
The battery storage system charges during low-load periods and discharges during peak-
load periods, which not only reduces system operating costs but also alleviates power
supply pressure during peak hours. A comparison of the electrical load curves before
and after optimization reveals that after flexible load scheduling, electricity consumption
increases during the 3:00–10:00 period and decreases during the 10:00–21:00 period. This
demonstrates that flexible load optimization effectively flattens the load curve by “peak
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shaving and valley filling,” reducing peak-valley differences and easing supply pressure
during high-demand periods. Additionally, optimized load scheduling facilitates higher
utilization of renewable energy.

  
(a) (b) 

Figure 10. Optimal dispatch results of electric power (a) and thermal power (b) in Scenario 1.

From Figure 10a,b, it can be seen that the optimization minimizes power purchases
from the grid while keeping the gas turbine at full output. Consequently, waste heat
recovery is prioritized for heating, supplemented by gas boilers and thermal storage. A
comparison of the heat load curves before and after optimization shows that flexible heat
load scheduling similarly achieves peak shaving and valley filling, mitigating heating
pressure during peak periods.

To further investigate the individual impact of each flexible load type, we conducted
three additional simulation experiments, each activating only one type of flexible load. For
consistency and fairness, the total load of each type was equally set: 90 kW for electric
loads and 50 kW for thermal loads. Additionally, compensation pricing coefficients were
set uniformly (0.2 CNY/kWh) across the experiments.

Figures 11–16 illustrate the load profile changes before and after optimization for
each load type. For example, shiftable electric loads moved from peak to off-peak periods
(Figure 11), while shiftable heat loads did not shift due to operational limitations (Figure 14).
Transferable electric loads were reallocated from 12:00–14:00 to 04:00–08:00, extending
across more time slots (Figure 12), and transferable heat loads were shifted from 12:00–13:00
to 09:00–10:00 (Figure 15). Reducible loads were appropriately curtailed, as shown in
Figures 13 and 16.

 
(a) (b) 

Figure 11. Power profiles of electricity load before (a) and after (b) shifting for shiftable load.
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(a) (b) 

Figure 12. Power profiles of electricity load before (a) and after (b) transferring for transferable load.

 
(a) (b) 

Figure 13. Power profiles of electricity load before (a) and after (b) reduction for reducible load.

 
(a) (b) 

Figure 14. Power profiles of heat load before (a) and after (b) shifting for shiftable load.

As shown in Table 5, the results reveal that different flexible load types have vary-
ing impacts on system optimization. Among them, reducible loads provided the most
significant benefits, resulting in the lowest total cost (CNY 5612.65) and lowest carbon emis-
sions (4.78 t). This indicates that reducing peak loads directly eases system stress, thereby
improving both economic and environmental performance. Shiftable loads effectively
redistributed demand from peak to off-peak periods, improving load balance, although
thermal loads were not shifted, limiting overall gains. Transferable loads offered higher
scheduling flexibility but led to the highest system cost (CNY 5670.05), possibly due to the
increased complexity or less effective coordination in the specific setup in the test system.
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(a) (b) 

Figure 15. Power profiles of heat load before (a) and after (b) transferring for transferable load.

 
(a) (b) 

Figure 16. Power profiles of heat load before (a) and after (b) reduction for reducible load.

Table 5. System performance under independent optimization of shiftable, transferable, and
reducible loads.

Scenario 1
Total
Costs
(CNY)

Carbon
Trading

Costs (CNY)
Operation

Costs (CNY)
Renewable

Energy
Output (kW)

Carbon
Emission

(t)

Renewable
Energy

Curtailment
(kW)

Renewable
Energy

Curtailment
Rate (%)

Only shiftable load 5654.65 282.50 5372.15 3765 4.80 85 2.21
Only Transferable load 5670.05 282.50 5387.55 3775 4.80 75 1.95

Only reducible load 5612.65 282.04 5330.61 3755 4.78 95 2.47

In all the above cases, the compensation cost coefficients for flexible loads are assumed
to be fixed across all time periods. To better capture market behavior and improve the
responsiveness of flexible loads, a time-of-use (TOU)-based compensation mechanism can
be introduced. Under this approach, compensation rates are adjusted according to the
temporal variations in electricity prices, incentivizing flexible loads to shift away from high-
cost periods and align with system-level economic and low-carbon goals. This dynamic
pricing strategy allows for a more accurate representation of demand-side flexibility and
enhances the overall efficiency of integrated energy system operations. Future work may
further explore the integration of real-time electricity price signals and seasonal carbon
price variations into the compensation framework to improve its adaptability and realism.

4.2.3. Comparative Analysis Across Scenarios

Figures 17 and 18 present the optimal power dispatch results for electricity and heat in
Scenarios 2 and 3, respectively, providing comparative benchmarks to evaluate the perfor-
mance enhancements achieved in Scenario 1. The electrical power dispatch in Figure 17a
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demonstrates Scenario 2’s operational pattern without flexible load optimization, while
Figure 18 illustrates Scenario 3’s baseline electricity and heat power dispatch that neither
incorporates carbon trading mechanisms nor flexible load optimization. These compara-
tive scenarios serve as critical references for assessing the effectiveness of the proposed
ladder-type carbon trading system and flexible load coordination implemented in Scenario
1, particularly in terms of renewable energy utilization efficiency and emission reduction
performance. The side-by-side analysis of these dispatch outcomes enables a quantitative
evaluation of how each added mechanism contributes to the system’s overall economic
and environmental improvements. Table 6 presents the costs and carbon emissions in
different scenarios.

  
(a) (b) 

Figure 17. Optimal dispatch results of electric power (a) and thermal power (b) in Scenario 2.

  
(a) (b) 

Figure 18. Optimal dispatch results of electric power (a) and thermal power (b) in Scenario 3.

Table 6. System performance under different scenarios.

Scenario
Total
Costs
(CNY)

Carbon
Trading

Costs
(CNY)

Operation
Costs
(CNY)

Renewable
Energy
Output

(kW)

Carbon
Emission (t)

Renewable
Energy

Curtailment
(kW)

Renewable
Energy

Curtailment
Rate (%)

1 5334.91 239.88 5095.03 3850.00 4.33 0 0.00
2 5665.74 282.49 5383.25 3835.00 4.80 15 0.40
3 5347.86 - 5347.86 3335.00 5.53 515 13.38

The comparative analysis of three scenarios reveals significant insights about the
system’s performance. Scenario 3 exhibits substantial wind curtailment during off-peak
periods, while Scenario 2 demonstrates 14.99% improved renewable utilization with corre-
spondingly lower grid purchases, confirming carbon trading’s effectiveness in optimizing
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the energy mix. Most notably, Scenario 1 achieves the optimal balance with 5.35% lower
operating costs (CNY 5095.03 vs. CNY 5383.25), 15.08% reduced carbon trading costs (CNY
239.88 vs. CNY 282.49), and 9.79% lower emissions (4.33 t vs. 4.80 t) compared to Scenario 2
while maintaining the highest renewable output (3850 kW). The carbon trading mechanism
alone (Scenario 2 vs. 3) boosts renewable utilization by 15.00% (3835 kW vs. 3335 kW) and
cuts emissions by 13.20% (4.80 t vs. 5.53 t) despite modest cost increases of 0.66–5.94%.

These results demonstrate that the integrated approach of ladder-type carbon pricing
and flexible load optimization in Scenario 1 creates synergistic effects, delivering superior
economic performance (lowest total cost of CNY 5334.91) alongside environmental benefits
(minimal emissions of 4.33 t), establishing an effective pathway for low-carbon economic
operation of integrated energy systems.

To further evaluate the effectiveness of the proposed flexible load optimization and
the ladder-type carbon trading mechanism, this section compares the actual and pre-
dicted renewable energy output across different scenarios. Figures 19–21 illustrate the
renewable energy utilization under Scenarios 1, 2, and 3, providing insights into the im-
pact of the proposed strategies on reducing renewable energy curtailment and enhancing
system performance.

 
(a) (b) 

Figure 19. Comparison of predicted and actual wind (a) and PV (b) power output in Scenario 1.

 
(a) (b) 

Figure 20. Comparison of predicted and actual wind (a) and PV (b) power output in Scenario 2.
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(a) (b) 

Figure 21. Comparison of predicted and actual wind (a) and PV (b) power output in Scenario 3.

As illustrated in Figures 19–21, When flexible load optimization is applied (Scenario
1), curtailment is completely eliminated, demonstrating that demand-side flexibility can
effectively absorb surplus renewable generation. Comparing Scenario 3 and Scenario 2,
the ladder-type carbon trading mechanism reduces curtailment from 515 kW to 15 kW
and the curtailment rate from 13.38% to 0.40%, highlighting its role as an effective price-
based incentive that prioritizes renewable energy use and improves resource allocation.
These findings confirm that both flexible load optimization and the ladder carbon pricing
mechanism contribute significantly to curtailment reduction, thereby enhancing renewable
energy utilization and supporting the environmental objectives of the system.

4.2.4. Impact of Hybrid Energy Storage System on System Performance

To assess the role of energy storage systems in improving system performance, in this
section, we conducted a comparative simulation analysis based on Scenario 1, with and
without the inclusion of HESS. Figures 22 and 23 show electric and thermal power dispatch
results in Scenario 1 with and without hybrid energy storage. Table 7 demonstrates a
comparison of system performance in Scenario 1 with and without hybrid energy storage.
At the same time, this section also analyzes the impact of varying the capacities of BESS
and TES on the economic and environmental outcomes of the IES. By isolating the capacity
of one storage type while keeping the other fixed, the results reveal how different config-
urations affect total system cost, renewable energy utilization, carbon trading expenses,
and emissions. In the experiment analyzing the impact of varying BESS capacity, TES
capacity is fixed at 160 kWh, while BESS capacity is varied across 120 kWh, 160 kWh, and
200 kWh. Table 8 shows the dispatch results under different BESS capacities. In the experi-
ment analyzing the impact of varying TES capacity, BESS capacity is fixed at 120 kWh, and
TES capacity is varied across 120 kWh, 140 kWh, and 160 kWh. Table 9 shows dispatch
results under different TES capacities.

Table 7. Comparison of system performance in Scenario 1 with and without hybrid energy storage.

Scenario 1
Total
Costs
(CNY)

Carbon
Trading

Costs (CNY)

Operation
Costs
(CNY)

Renewable
Energy

Output (kW)

Carbon
Emission

(t)
Renewable Energy
Curtailment (kW)

Renewable Energy
Curtailment

Rate (%)

With energy storage 5334.91 239.88 5095.03 3850.00 4.33 0 0.00
Without energy storage 5463.25 268.20 5195.05 3770.00 4.65 80 2.08
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(a) (b) 

Figure 22. Optimal dispatch results of electric (a) and thermal (b) power in Scenario 1 with hybrid
energy storage.

  
(a) (b) 

Figure 23. Optimal dispatch results of electric (a) and thermal (b) power in Scenario 1 without hybrid
energy storage.

Table 8. System performance under different BESS capacities.

BESS Capacity
(kWh)

Total Cost
(CNY)

Carbon Trading
Cost (CNY)

Renewable Energy
Output (kW)

Renewable Energy
Curtailment (kW)

Carbon
Emissions (t)

120 5368.84 243.71 3834 16 4.36
160 5379.07 242.44 3840 10 4.35
200 5334.91 239.88 3850 0 4.33

Table 9. System performance under different TES capacities.

TES
Capacity (kWh)

Total
Cost (CNY)

Carbon Trading
Cost (CNY)

Renewable Energy
Output (kW)

Renewable Energy
Curtailment (kW)

Carbon
Emissions (t)

120 5420.53 248.15 3827 23 4.42
140 5394.67 245.93 3831 19 4.38
160 5368.84 243.71 3834 16 4.36

As shown in Table 7, In terms of economic performance, the total system cost de-
creased from CNY 5463.25 without HESS to CNY 5334.91 with HESS, and the operation
cost dropped from CNY 5195.05 to CNY 5095.03. For environmental performance, car-
bon emissions were reduced from 4.65 t to 4.33 t, and carbon trading costs also declined.
Regarding renewable energy integration, the renewable curtailment was significantly re-
duced from 80 kW with a curtailment rate of 2.08% to 0 kW with a curtailment rate of
0.00%. At the same time, the total renewable energy output increased from 3770 kW
to 3850 kW, indicating that the hybrid energy storage system effectively absorbs sur-
plus renewable generation that would otherwise be curtailed. These improvements re-



Energies 2025, 18, 3679 25 of 27

sult from the enhanced scheduling flexibility brought by HESS. On the electricity side,
as shown in Figure 22, BESS charges during low-price or off-peak periods (1:00–6:00),
thereby increasing wind power utilization, and discharges during peak demand periods
(19:00–21:00), reducing dependence on the power grid. On the thermal side, TES stores
surplus heat generated from gas turbines and waste heat boilers and releases it when
needed, greatly enhancing the responsiveness and efficiency of the thermal supply.

As shown in Table 8, increasing the BESS capacity has a significant impact on system
performance. As the BESS capacity increases from 120 kWh to 200 kWh, the total system
cost gradually decreases. Meanwhile, renewable energy curtailment is significantly re-
duced as BESS capacity increases. In particular, the curtailment drops to zero at 200 kWh,
demonstrating that the storage system can fully absorb available renewable energy and thus
enhance its utilization efficiency. In addition, both carbon emissions and carbon trading
costs show a declining trend, reflecting the positive contribution of BESS to low-carbon
system operation. These results indicate that a reasonable increase in BESS capacity can
not only improve economic efficiency but also enhance renewable energy integration and
reduce emissions, yielding substantial overall benefits.

As shown in Table 9, as the TES capacity increases from 120 kWh to 160 kWh, the total
system cost gradually decreases from CNY 5420.53 to CNY 5368.84, and carbon trading
costs also show a consistent decline. Meanwhile, renewable energy curtailment slightly
decreases, and the corresponding carbon emissions are marginally reduced. These findings
indicate that increasing thermal storage capacity can contribute to better cost-effectiveness
and improved renewable energy utilization, albeit with limited impact on carbon emissions.

5. Conclusions
This study proposed and validated a ladder-type carbon trading-based low-carbon

economic dispatch model for integrated energy systems with flexible load and hybrid
energy storage optimization. Three scenarios were simulated to evaluate the impact of
carbon trading and flexible load optimization. The ladder-type carbon trading mechanism
improves environmental performance by increasing renewable energy utilization and
reducing emissions but also raises system costs. Flexible load optimization helps reduce
these costs by shifting consumption to periods with lower prices and higher renewable
availability, enhancing both economic and environmental outcomes. By enabling flexible
charging and discharging, a hybrid energy storage system enhances both electric and
thermal scheduling, absorbs surplus renewable energy, and reduces reliance on the grid,
contributing to a more efficient and low-carbon operation. The interaction between carbon
pricing, demand-side management, and energy storage creates valuable synergies for
achieving low-carbon and economic operation of IESs.

However, the current study has certain limitations. The model assumes perfect fore-
casting of renewable generation and load demand, which may not hold in practical im-
plementations. Additionally, the compensation mechanisms for flexible loads require
careful calibration in real-world applications. Future work should address these limitations
by incorporating uncertainty quantification and exploring more sophisticated demand
response strategies.
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