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Robust H Filter Design With Variance
Constraints and Parabolic Pole Assignment

Zidong Wang, Senior Member, IEEE, and Jian’an Fang

Abstract—In this letter, we consider a multiobjective filtering
problem for uncertain linear continuous time-invariant systems
subject to error variance constraints. A linear filter is used to
estimate a linear combination of the system states. The problem
addressed is the design of a filter such that, for all admissible
parameter uncertainties, the following three objectives are si-
multaneously achieved: 1) the filtering process is -stable, i.e.,
the poles of the filtering matrix are located inside a parabolic
region; 2) the steady-state variance of the estimation error of
each state is not more than the individual prespecified value; and
3) the transfer function from exogenous noise inputs to error state
outputs meets the prespecified norm upper-bound constraint.
An effective algebraic matrix inequality approach is developed to
derive both the existence conditions and the explicit expression of
the desired filters. An illustrative example is used to demonstrate
the usefulness of the proposed design approach.

Index Terms—Algebraic matrix inequality, error variance con-
straints, filtering, Kalman filtering, pole assignment.

I. INTRODUCTION

THE FILTERING problem has been playing an important
role in signal processing and control engineering. Among

various filtering schemes, the celebrated Kalman filtering ap-
proach minimizes the norm of the estimation error, under
the assumptions that an exact model is available and the noise
processes have exactly known statistical properties. To improve
the robustness of Kalman filters, in the past decade, the robust

performance of the designed filters has become an impor-
tant issue (see, e.g., [2], [3], [10], and [11]). On the other hand,
it is quite common in filtering problems, such as the tracking of
a maneuvering target and recognition of flight paths from mul-
tiple sources, to have performance objectives that are directly
expressed as upper bounds on the variances of the estimation
error [6]. These prescribed variance restrictions may not be min-
imal but should meet engineering requirements, and therefore,
the obtained filters are often nonunique [7]–[9], [12].

It is well known that, by constraining the poles of the filtering
matrix to lie inside a prescribed region in the open left-half
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plane, the filter designed would have expected transient perfor-
mance. Besides, regional pole assignment can also provide indi-
rect tolerance against plant uncertainties. In the past few years,
the filter design problem with regional pole placement has re-
ceived initial research attention (see, e.g., [11] and references
therein). As indicated in [4], for linear time-invariant contin-
uous systems, a parabolic region is directly related to the max-
imum percent overshoot and the rise time. Therefore, assigning
the poles of the filtering matrix inside a prespecified parabolic
region would guarantee satisfactory transient behavior of the fil-
tering dynamics. It should be pointed out that a parabolic region
cannot be simply represented by the intersections of linear ma-
trix inequality (LMI) regions. Hence, the methods developed in
[11] are not applicable for parabolic pole assignment.

Motivated by the above discussion, in this letter, it is our in-
tention to deal with the robust filtering problem for un-
certain linear continuous time-invariant systems with both error
variance and parabolic pole constraints, so that the resulting fil-
tering process will be provided with expected transient property,
steady-state error variance constraint, and disturbance rejection
behavior, in the presence of parameter uncertainties.

Notation: and denote the -dimensional Eu-
clidean space and the set of all real matrices, respec-
tively. The superscript “ ” denotes the transpose. The notation

(respectively, ), where and are sym-
metric matrices, means that is positive semi-definite
(respectively, positive definite). is the identity matrix with
compatible dimension. stands for the mathematical expec-
tation operator with respect to the given probability measure .

and represent the real and imaginary parts of the
complex number , respectively.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the following class of linear uncertain continuous-
time systems

(1)

(2)

where , , and , , , and are known
constant matrices. is a zero-mean Gaussian white noise
process with covariance . The initial state has the
mean and covariance and is uncorrelated with .

and are real-valued perturbation matrices satisfying

(3)
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where is a real uncertain matrix satisfying ,
and , , and are known constant matrices of appropriate
dimensions.

Assumption 1: The system matrix is Hurwitz stable, and
the matrix or is of full-row rank.

The linear full-order filter is given by

(4)

where denotes the state estimation, and and are filter
parameters to be determined.

The estimation error covariance in the steady state is denoted
by , where

, if the limit exists. By defining

and considering (1), (2), and (4), we obtain the following aug-
mented system:

(5)

When the system (5) is robustly asymptotically stable, the
steady-state covariance defined by

(6)
exists and satisfies the following Lyapunov matrix equation:

(7)

Fact 1: Let and be two positive scalars. If a
complex number satisfies

(8)

then is located within a parabolic region in the left-
hand side of the complex plane where the vertex is at , as
shown in Fig. 1.

Assume that the error state outputs are represented by ,
where is a known constant matrix of appropriate dimension.
Given a desired parabolic pole region , we are now ready
to state the variance-constrained filtering problem consid-
ered for uncertain continuous systems. Our objective is to seek
the filter parameters and such that for all admissible pa-
rameter uncertainties, the following three requirements are si-
multaneously satisfied:

1) The system (5) is -stable, i.e., all poles of the filtering
matrix remain within the parabolic pole region

.
2) The steady-state error covariance meets

(9)

Fig. 1. Parabolic region P(a; b).

where means the th diagonal element of , i.e., the
steady-state variance of the th state.
denotes the prespecified steady-state error estimation
variance constraint on the th state and can be determined
by the practical performance requirements.

3) The norm of the transfer function
from disturbances

to error state outputs (or ) sat-
isfies the constraint , where is the
known error state output matrix, , where

and denotes
the largest singular value of ; and is a given positive
constant.

III. MAIN RESULTS AND PROOFS

Lemma 1: [7] Let , , , , and be real matrices
of appropriate dimensions with and satisfying

. Then, for any scalars and
where , we have: 1)

; and 2)
.

The main results of this letter are given as follows, which
show that the -stability, performance, and the steady-state
constraints on the filtering process are closely related to the pos-
itive definite solutions to a pair of Riccati-like matrix equations.

For notational simplicity, we first make the following
definitions:

(10)

(11)

(12)

(13)

(14)

(15)
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Theorem 1: Assume that the norm upper-bound
and the parabolic region are given. Let and

be sufficiently small constants and be an
arbitrary orthogonal matrix. If there exist scalars ,

, and a matrix such that and the
Riccati-like matrix equations

(16)

(17)

have positive definite solutions and , respec-
tively, where , , , , , and are defined in (10)–(13),
then with the parameters determined by

(18)

the filter (4) will be such that, for all admissible perturbations
and : 1) the filtering matrix satisfies the par-

abolic pole constraint ; 2)
; and 3) the steady-state error covariance exists and meets

.
Proof: We first show that , where is defined in

(15). It follows from Lemma 1 that

(19)

(20)

Set Block-diag . After tedious calculation, we
have from (19) and (20) that

(21)

where

(22)

(23)

(24)

Equation (16) means that , and the ex-
pression of in (18) implies . From Assumption 1,
we know that is invertible. Now, substituting the expression

into (24), we can verify that

(25)

where and are defined in (13) and (14), respectively.

Note that (17) is actually the same as
. Using the expression of in (18) and fact ,

we obtain from (25) that

Now, we have the conclusion that . Let us first
prove that .

1) Denote . Let ,
and it follows from (15) that

(26)

Let be an eigenvalue of and be the
associated eigenvector. Then, we have

(27)

where denotes the complex conjugate transpose. Pre-
multiplying and post-multiplying (26) by and , re-
spectively, yield

(28)

or , which implies from
Fact 1 that the eigenvalues of are situated inside
the parabolic region .

2) Rearrange (26) as

(29)

where .
Then, the proof of can be completed by a
standard manipulation of (29); see [7] for more details.

3) Equation (26) can be further transformed into

(30)

where
. Notice that is asymptot-

ically stable. Subtract (7) from (30) to give
, or

equivalently

which means that and . The proof of
Theorem 1 is then completed.

In view of Theorem 1, if the positive definite solutions
and to (16) and (17) exist, and meets

, , we will have the following conclusions:
1) the augmented system (5) is -stable; 2) ;
and 3) , . Hence, with the
filter (4) whose parameters and are determined by (18), the
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variance-constrained robust filtering gain design task will
be accomplished.

Finally, a solution to the addressed filter design problem is
given as a corollary from Theorem 1.

Corollary 1: Let the desired parabolic pole region ,
the disturbance attenuation constraint , and the
steady-state error variance constraints
be given. If there exist positive definite matrices and

such that the conditions of Theorem 1 are all satisfied,
then a desired filter gain for the addressed filter design
problem can be obtained by (18).

Remark 1: In practical applications, it is very desirable to
directly solve Riccati matrix equations (16) and (17), subject
to the constraint , and then ob-
tain the expected filter parameters readily from (18). We can
see that the key step in designing the expected filters is to con-
sider the solvability of the Riccati-like equations (16) and (17).
When we deal with (16) and (17), the local numerical searching
algorithms suggested in [1] are very effective for a relatively
low-order model. A related discussion of the solving algorithms
for Riccati-like equations can also be found in [5].

IV. NUMERICAL EXAMPLE

In this section, a simple design example is presented to illus-
trate the usefulness and exibility of the theory developed in this
letter.

Consider a linear continuous-time uncertain stochastic
system (1) and (2), with parameters as follows:

It is desired to design robust filter (4) such that: 1) the poles of
the filtering matrix are all constrained to lie inside the
parabolic region ; 2) the transfer function from
disturbances to error state outputs satisfies the con-
straint ; and 3) the steady-state covariance

exists and satisfies , .
By setting , , and

, we solve the Riccati-like matrix equations (16) and
(17) and obtain

Clearly, . Then, for orthogonal “ma-
trices” and , the corresponding expected filter

parameters in these two cases can be obtained from (18), respec-
tively, as the following:

It is easy to verify that all specified performance requirements
are achieved.

V. CONCLUSION

In this letter, we have considered a parabolic pole and vari-
ance-constrained robust filtering problem for linear contin-
uous-time systems. It has been shown that this filtering problem
can be converted into an auxiliary problem that is related to the
solutions of two Riccati-like matrix equations. The existence
conditions and the analytical expression of desired estimators
have been characterized, and a numerical example has been ex-
ploited to show the effectiveness of the proposed design method.
Note that only sufficient conditions have been obtained in our
main results, and one of our future research topics would be
how to reduce the conservatism of the design.
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