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The development of an accurate electricity consumption forecast model is crucial for stable operation 
and intelligent management of power systems. Traditional methods often overlook user heterogeneity 
and lack measures to address concept drift caused by distribution changes in electricity data over 
time. We propose an adaptive electricity consumption probability forecasting method tailored 
to universal environments. The method includes a nonmonotonic correlation elimination-based 
recursive feature selection that adaptively determines the optimal feature combination. Our model 
incorporates a joint loss function combining point and probability forecasting evaluations to accurately 
quantify online batch errors. It also features a buffer to store batch data showing pattern changes and 
dynamically adjusts weights to counteract concept drift. We validated our method, adaptive electricity 
consumption forecast for universal environments (AECF-UC), against some mainstream methods using 
a multi-environment dataset. Comparative and ablation experiments show that AECF-UC outperforms 
others, achieving average RMSE, pinball loss and CRPS of 0.3041, 0.0567 and 0.1683 respectively, with 
the joint loss method improving prediction accuracy by about 6% over the single-loss method. These 
results indicate that the proposed method exhibits certain advantages in universality and adaptability.

Keywords Electricity consumption forecasting, Concept drift, Probability forecasting, Hidden Markov 
model

Energy consumption has surged with the rapid economic development of various countries1,2. Electricity 
consumption forecast is essential for understanding its variation trends, facilitating the rational allocation of 
power resources, and ensuring the safety and economic efficiency of both the generation and consumption 
processes3,4. Consequently, research on electricity consumption forecasts has attracted widespread attention 
from scholars worldwide.

Accurate electricity consumption forecast requires complete datasets and suitable forecasting models. 
At the dataset level, the integration of smart meters in different power systems enables the construction and 
development of complete electricity consumption datasets5,6. At the model level, due to the variability between 
regions and buildings, accurate multiuser forecasting is more challenging than single-user forecasting. Namely, 
more instabilities and uncertainties are encountered when implementing multiuser electricity consumption 
forecast7,8. Moreover, nonlinear and nonstationary electricity consumption data always make traditional 
forecasting methods ineffective9. To address these issues, data-driven forecasting methods are widely used. 
These methods aim to provide effective solutions to address the volatility of electricity consumption data by 
continuously receiving new data. According to the different forms of prediction results, data-driven electricity 
consumption forecast methods can be broadly categorized into two types10: point forecasting and probabilistic 
forecasting. Specifically, point forecasting methods take a single value as the predicted electricity consumption 
value. This forecasting technology is widely used and relatively mature11–16. However, as electricity consumption 
patterns become more uncertain or variable, electricity consumption demand becomes difficult to accurately 
forecast by using only point forecasting methods. Consequently, an increasing number of scholars are focusing 
their research on probabilistic forecasting. Different from those of point forecasting, the outputs of probabilistic 
forecasting are probability density functions or confidence intervals of electricity consumption. Compared with 
point forecasting, probabilistic forecasting provides the possible distribution of future electricity consumption 
and effectively evaluates the uncertainties of forecasting17.
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 a. Julian et al.18 proposed an online probabilistic load forecasting method that considers temporal correlations 
and is suitable for producing multivariate forecasts. Lin et al.19 proposed a dual-stage attention-based long 
short-term memory (LSTM) network for probabilistic forecasting, and a feature attention-based encoder 
was built in the first stage. A. Bracale based on multivariate quantile regression (MQR), which refines the 
probabilistic forecasts of individual electricity consumption online20. D. Salinas et al.21 proposes DeepAR, a 
methodology for producing accurate load probabilistic forecasts, based on training an autoregressive recur-
rent neural network model on many related time series.

 b. A. Faustine et al.22 presented a parameterized quantile regression approach for short-term probabilistic load 
forecasting at the distribution level, along with a scoring metric proposed to assess the issue of robustness 
when applied in real time. C. Wang et al.23 proposed a Bayesian neural network called the Bayesian decoder 
transformer (BNNDeT), which achieves joint probabilistic forecasting for multi-energy loads by considering 
their complex coupling relationships and related uncertainties. S. Zhou et al.24 proposed a multi-dimensional 
adaptive short-term forecasting method for electrical load based on Bayesian Autoformer network (BSAuto), 
which can address the issues of data volatility and model uncertainty. The hidden Markov model (HMM) 
structure is adept at capturing potential state changes and probabilistic transfer relationships in sequences for 
probabilistic inference purposes. It is widely used in probabilistic forecasting tasks due to its flexibility and 
scalability25–30. Among these, V. Álvarez et al.30 proposed an adaptive probabilistic load forecasting (APLF) 
method based on HMM. It can adapt to dynamic changes in electricity consumption data through online 
learning and accurately assess the uncertainty of electricity consumption. This approach has exhibited great 
superiority in electricity consumption forecasts. However, certain limitations are still encountered when 
applying the abovementioned methods to multi-environment forecasting scenarios.

User heterogeneity: In electricity consumption forecast tasks, heterogeneity refers to the diversity of electricity 
consumption patterns resulting from differences among users in aspects such as their living habits, residential 
environments, and economic conditions. This diversity necessitates that forecasting models adapt to the specific 
characteristics of different users to accurately predict their electricity consumption.

Concept drift: The distribution of electricity consumption data changes over time, and the phenomenon of 
concept drift inevitably occurs31. If the utilized forecasting methods are not sufficiently flexible for addressing 
such a dynamic data distribution, its accuracy cannot be guaranteed.

Some of the electricity consumption forecast methods are summarized in Table 1 attempt to address the 
challenges of user heterogeneity and concept drift. However, despite their efforts, the existing methods still 
struggle to fully address these challenges, particularly in multi-environment. Therefore, this work proposes an 
adaptive electricity consumption forecast method with good generalizability for use in cases with different user 
environments and time dimensions. The main contributions of this study can be summarized as follows.

• To address the problem of user heterogeneity, a nonmonotonic correlation-based recursive method is de-
signed. This method selects the optimal observation features for users and makes the model universal.

• To address the problem of concept drift, we add a buffer module based on a joint loss function. This module 
enables the model to quickly adapt to the given data distribution and improves the comprehensive perfor-
mance of the prediction method.

• To improve the performance of the model, and address generalization capability, multi-environment datasets 
are conducted some analysis (e.g., a heterogeneity analysis and ablation analysis).

The remainder of this paper is organized as follows. “Load data analysis” describes the composition of the 
utilized datasets and analyses the relationships among multi-environment loads and their uncertainties. “Design 
and Implementation” introduces the proposed model and elaborates on the specific design and implementation 

Methods

Forecasting

Brief description

Addressed issue

Point Probabilistic Heterogeneity Drift

OARNN √ An electricity consumption forecasting capable of continuously learning from newly arriving data and adapting to 
new patterns √

GNN √ A load forecasting model based on spatiotemporal attention
convolutional mechanism √

TFT √ A novel attention-based load forecasting model that combines high-performance multi-horizon forecasting √

QLSTM √ A probabilistic Electricity consumption forecasting for individual consumers using pinball loss guided LSTM √

DeepAR √ A probabilistic forecasting model based on training an autoregressive recurrent neural network model on many 
related time series √

MQR √ A multivariate quantile regression forecasting that refines probabilistic forecasting of individual electricity 
consumptions online √

BNNDeT √ An electricity consumption forecasting based on multi-task BNN that extracts data features through Bayesian 
multiple encoder √

BSAuto √ A multi-dimensional adaptive short-term forecasting method for electrical load based on Bayesian Autoformer 
network √

APLF √ A probabilistic electricity consumption forecasting based on the adaptive online learning of hidden Markov models √

This work √ An adaptive approach for electricity consumption forecasting in universal environments √ √

Table 1. Descriptions of the related electricity consumption forecasting methods.
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process. For verification purposes, a series of comparative experiments and ablation analyses are conducted in 
“Experiments and results”. Finally, “Conclusion” draws the conclusion.

Load data analysis
Datasets
The multi-environment dataset is summarized and described in Table  2. It comprises three sub-datasets: an 
individual dataset (containing electricity consumption, electricity price, and weather information data), a 
campus dataset (containing electricity consumption and weather information data), and a region dataset 
(containing electricity consumption and weather information data). Specifically, the individual sub-datasets can 
be further divided into standard (Std) groups and dynamic time-of-use (DTou) groups. The data are derived 
from the Low Carbon London project performed by UK Power Networks31. The campus dataset is also divided 
into Downtown Campus and Polytechnic Campus datasets, and the data are obtained from the campus system 
of Arizona State University in the United States32. The region dataset consists of load demand data from Dayton 
and New England, which are separately provided by PJM Interconnection and the ISO-NE organization, 
respectively33,34. The datasets generated and analysed during the current study are available in the  h t t p s :  / / d 
a t a  . l o n d o  n . g o v .  u k / b l  o g / e l e  c t r i c i  t y - c o n  s u m p t  i o n - i n  - a - s a m  p l e - o f  - l o n d o n - h o u s e h o l d s /, https://cm.asu.edu, and 
https://www.iso-ne.com repository.

Heterogeneity analysis
The electricity consumption data can be decomposed into trend, seasonal and remainder components using 
the seasonal-trend decomposition with loess (STL) method35. This method is used to decompose the electricity 
consumption of multiple environments in 1 week, and each decomposed component is shown in Fig. 1.

For individual electricity consumption, the trend component displays fluctuations with sharp peaks, 
indicating irregular short-term usage patterns. In contrast, the campus-level consumption shows clear and 
relatively stable periodic trends, highlighting regular daily electricity usage behaviors. Regional-level data exhibit 
broader, smoother fluctuations, suggesting aggregated and averaged usage patterns over larger user groups, thus 
reflecting less abrupt and more gradual changes. The differences in the data distributions across the environments 
are evident in their trend, seasonal, and residual components, especially in the trend and residual components. 
These differences indicate the heterogeneity between the electricity load data.

Fig. 1. Trend, seasonal and remainder components of multi-environment electricity consumption in 1 week.

 

Sub-dataset Group Number of users Contained information Number of timestamps Frequency

Individual
Std 300

EC, EP, and WI 17,520 Every 30 min
DTou 200

Campus
Downtown 2

EC and WI 8760 Every 1 h
Polytechnic 2

Region
Dayton 1

EC and WI 8760 Every 1 h
New England 9

Table 2. Basic information of the multi-environment datasets. EC∀, electricity consumption; EP∀, electricity 
price; WI∀, weather information (including temperature, pressure, dewpoint, humidity, and wind bearing.
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To ascertain these differences, an analysis of variance (ANOVA) is utilized. It can assess the disparities 
among the means of the multi-environmental electricity consumption data36,37. In the ANOVA, to quantify the 
differences between groups, the F statistic is calculated by

 

F =
(N − k)

k∑
i=1

ni

(
X̄i − X̄

)2

(k − 1)
k∑

i=1

ni∑
j=1

(
Xij − X̄i

)2
 (1)

 where F is the F statistic, N represents the total sample size, k denotes the number of groups, ni is the amount 
of data in the ith group, Xij is the jth data point of the ith group,‾Xi is the mean of the ith data group, and‾X is 
the overall population mean. The F statistic for the multi-environment electricity consumption data is shown 
in Fig. 2. The red blocks indicate smaller values, and the blue and green blocks indicate higher values. Most of 
the F statistics are represented by blue and green, indicating that variations in the means are prevalent across 
the multi-environmental data. Subsequent hypothesis testing is conducted to determine the significance of the 
differences. With the significance level set at 0.05, 90% of the P values are below this threshold, which indicates 
substantial heterogeneity among the data.

Concept drift analysis
The proposed buffer module addresses the issue of concept drift arising from variations in the data distribution. 
In this work, three existing detection methods are applied: the drift detection method (DDM)38, an adaptive 
window (ADWIN)39 and the Page–Hinkley (PH) method40. These methods are utilized collectively to assess the 
presence of concept drift within the experimental data. Figure 3 illustrates the joint evaluation results obtained 
by applying these concept drift detection methods to the electricity consumption data contained in the multi-
environment dataset. The top graph shows the number of drifts that occur during the entire detection process. 
To provide a more tangible understanding of concept drift, we randomly select eight households, and their 
specific detection outcomes are illustrated in the subsequent eight graphs. The instances of detected concept drift 
are marked by colored vertical lines corresponding to each method, while the gray rectangular areas denote the 
drift warning zones identified by the DDM. In Fig. 3a, significant changes can be seen in the data distribution. 
The drifts occur at timestamps 2600, 7600, and 12,400, and all three methods detect drift around these points. 
The three methods detect different amounts of concept drift not only in different time series but also in different 
locations within the same series. It indicates that concept drift widely exists in electricity consumption data.

Design and implementation
To address the problems of user heterogeneity and concept drift, this paper proposes an adaptive electricity 
consumption forecast method for universal environments (AECF-UC). The framework of AECF-UC, which 
includes data flow, feature adaptation, learning and prediction, and joint buffer design modules, is illustrated in 
Fig. 4. The specific contents of each component are described below.

Data flow
AECF-UC forecasts the probability distribution of multi-environmental electricity consumption data on the 
next day online, with a resolution of 1 h. The temporal characteristics, denoted by m(t), indicate the hour of the 
day for weekdays (ranging from 1 to 24), weekends and holiday (ranging from 25 to 48) and serve as position 

Fig. 2. F statistic for a multi-environment dataset.
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encodings. The related data selected for forecasting include observed variables temperature, pressure, the dew 
point, humidity, wind bearing, and electricity price.

Data losses and anomalies frequently occur during the processes of data collection and communication, 
potentially leading to a decline in forecasting performance. To address this issue, anomalies are detected based 
on Z scores, which measure the deviation of data points from the mean. Specifically, we assume that electricity 

Fig. 4. Framework diagram of the AECF-UC model.

 

Fig. 3. Detection results produced by three concept drift occurrence detection algorithms on electricity 
consumption data from multi-environment dataset.
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consumption data follow a Gaussian distribution, with anomalies typically situated at the extremities of the 
distribution, far from the center. The deviation of the data points is quantified by the following normalization 
formula.

 
Zi = (ct+i − µglobal)

σglobal
 (2)

 where ct+i represents the electricity consumption data and µglobal and σglobal are the global mean and standard 
deviation, respectively. These parameters are adaptively updated according to the following equations:

 
µglobal

′ = 1
n

[(n − 1) µglobal + µn] (3)

 
σglobal

′ = 1
n

[(n − 1) σglobal + σn] (4)

 where µn and σn are the mean and standard deviation of the nth batch, respectively. A distance threshold Zthr is 
established to identify outliers, and data points exceeding this threshold are considered anomalies. The distance 
threshold Zthr are determined using the probabilistic quantile of standard normal distribution:

 
Zthr = Φ−1

(
1 − α

2

)
 (5)

where Φ−1 is the inverse cumulative distribution function (CDF) of N (0,1), and α denotes the significance level 
(empirically set to 0.05 for 95% confidence interval). This theoretically ensures that only 5% of normal data 
points are misclassified as anomalies. The threshold is dynamically adjusted when global statistics µglobal and 
σglobal are updated via Eqs. (3)–(4), enhancing robustness against distribution drift. When a new batch of data 
is input, missing values and outliers are detected. Then, the online prediction model generates forecasts based 
on positional encoding information, and these prediction results are used to fill in or replace the missing or 
anomalous values.

Feature adaptation
The presence of redundant irrelevant information or the omission of important information can lead to a 
decrease in the accuracy of the electricity consumption prediction model. A feature adaptation module is used 
to choose appropriate feature subsets, thereby mitigating the differences among them.

A nonmonotonic correlation recursion elimination (NCE) method is proposed to select features. The 
correlation coefficient between the electricity consumption data Y and the observed features X is captured by 
measuring the change between the orderings of the random variables41. For a dataset of sample size n, the 
expected value of all possible ranking differences is

 
E

(∑n−1

i=1
|ri+1 − ri|

)
=

n
(
n2 − 1

)
2 (n + 1)

 (6)

where ri is the rank of Yi, and |ri+1-ri| denotes the amount of change between the rankings of adjacent observations. 
Then, Normalization is achieved by dividing the sum of rank differences by the sum of the largest possible rank 
differences d:

 
d =

(
n2 − 1

)
2

 (7)

and to ensure the correct normalization, the coefficient 3 is added. Finally, the correlation coefficient formula is 
finally obtained as

 
ξn (X, Y ) = 1 −

3
∑n−1

i=1 |ri+1 − ri|
n2 − 1

 (8)

where ξn indicates the correlation coefficient. Based on the results of ξn in the training set, feature data exceeding 
the feature threshold D are retained in the initial feature subset. Subsequently, the most appropriate feature 
subset is obtained by the feature recursive elimination (FRE) method. FRE selects the optimal subset of features 
via iterative elimination and shifting, effectively screening out a k-dimensional feature subset after repeated 
iterations.

Equations (9)–(10) are used to help the model better handle non-linear relationships in the data or to reduce 
noise.

 
α =

{ 1 |ot − o| > W
0 |ot − o| < W  (9)

 ur(·) = [1, α1, · · · , αk] (10)
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 where ot is the value of the feature at t, and ō is the average value of the corresponding feature. W is the threshold 
value of the corresponding feature, and W is set with distinct values for different features: 12 (temperature), 
88 (pressure), 18 (dew point), 0.6 (humidity) and 4 (wind bearing). The final observed feature is determined 
through this process, enabling the use of a predictive model for application in universal environments.

Learning and prediction
The state-space model is used to establish the relationship between the actual electricity consumption values and 
the observed feature sequence for prediction. The crux of implementing forecasting within this model hinges 
on the derivation of two probability matrices: p(yt|yt-1) and p(yt|ot). yt is actual electricity consumption at t time, 
yt-1 is electricity consumption at the previous moment (i.e. at t-1 time), and ot denote the observed features at t 
time (such as weather, holidays, electricity price, and other external features that affect electricity consumption). 
The matrix p(yt|yt-1) reflects the probability distribution of the electricity consumption yt given the previous 
electricity consumption yt-1, it describes the conditional probability matrix for state transitions. p(yt|ot) reflects 
the probability distribution of the electricity consumption yt given the observed features ot, it describes the 
conditional probability matrix for output relationships. When m = m(t), the relationships are expressed as 
follows:

 p(yt|yt−1) = N(yt; uT
c ηc,m, σc,m) (11)

 p(ot|yt) = N(yt; uT
r ηr,m, σr,m) (12)

where the feature vectors uc
T = [1, yt−1]T and ur = ur(or)∈RR, together form the mean with parameters 

ηc,m∈R2ηr,m∈RR σc,m∈R, and σr,m∈R, which are the standard deviations. We organize them into model 
initialization parameters Θ.

 Θ =
{

uT
r ηr,m, σr,m, uT

c ηc,m, σc,m

}
 (13)

The model executes recursive calculations to determine the standard deviation and mean and obtains the 
probability matrix of the transformation relationships using a Gaussian distribution to achieve online prediction. 
Figure 5 shows the online learning process of the AECF-UC model. Specifically, after performing data cleansing 
and feature selection, the input data are acquired, including the feature data Xt[ot, ot+1, …, ot+L], whose shape is 
(k×L), and the electricity consumption data Yt[yt, yt+1, …, yt+L]. The forecasted electricity consumption ŷt+i and 
standard error êt+i at time t + i can be obtained by

 
ŷt+i =

ûT
c ηc,mσ2

r,m + ûT
r ηr,m

(
σ2

c,m +
(
vT ηc,m

)2
ê2

t+i−1

)

σ2
r,m + σ2

c,m + (vT ηc,m)2ê2
t+i−1

 (14)

 
êt+i =

√
σ2

r,m

(
σ2

c,m + (vT ηc,m)2ê2
t+i−1

)

σ2
r,m + σ2

c,m + (vT ηc,m)2ê2
t+i−1

 (15)

Fig. 5. AECF-UC model for online learning processes.
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 where v = [0, 1]T, ŷt = 0, êt = 0, and i = 1, 2, …, L. Furthermore, the latest prediction model is updated by 
combining the previous parameter and the actual electricity consumption yt.

 
ηi = ηi−1 + Pi−1uti

λ + uT
tiPi−1uti

(
cti − uT

tiηi−1
)

 (16)

 
σi =

√
σ2

i−1 − 1
γi

(
σ2

i−1 − λ(cti − uT
tiηi−1)2

λ + uT
tiPi−1uti

)
 (17)

 
Pi = 1

λ

(
Pi−1 − Pi−1utiu

T
tiPi−1

λ + uT
tiPi−1uti

)
 (18)

Algorithm 1. Online learning step for AECFUC.
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 γi = 1 + λγi−1 (19)

The initial value η0 (i = 1) is set as a zero vector with a length of L; P0 (i = 1) denotes the L×L identity matrix; g0 = 0; 
and σ0 = 0. Γ, consisting of four state variables Pc, m, Pr, m, γc, m, and γr, m, can be written as follows:

 Γ = {Pc,m, Pr,m, γc,m, γr,m} (20)

Then, forecasted electricity consumption is used as important data to quantify the batch loss in the buffer module.

Joint buffer design
The buffer module provides a dynamic updating mechanism to enable online prediction models to learn 
incrementally to adapt to changes in the distribution of observed data and to maintain data representations at 
multiple time scales. The core mechanism is to mitigate the problems of “catastrophic forgetting” and “overfitting 
to the new distribution” of the model due to changes in the data distribution by dynamically balancing the learning 
of historical knowledge and new data. The playback buffer stores historical data and mixes it proportionally with 
new data during training, forcing the model to optimize the loss of both current and historical distributions. The 
total loss function is calculated as follows:

 Ltotal = αLcurrent(Xnew, ynew) + βLhistorical(Xbuffer, ybuffer) (21)

 where α and β control the weights of the old and new data, preventing the model from forgetting the old patterns 
due to the dominance of the new data. To ensure the accuracy of the model’s probabilistic prediction, a joint loss 
function is proposed that combines the features of point forecasting and probabilistic forecasting. This function 
serves as the foundational mechanism of the buffer module.

 
loss = ls

k + 1
L

t+L∑
i=t

lp (i)1−k  (22)

 ls =
√

(ĉt − ct)2 + (ĉt+1 − ct+1)2 + · · · + (ĉt+L − ct+L)2 (23)

 

lp (i) =




q
(

ci − ĉ
(q)
i

)
ci ⩾ ĉ

(q)
i

1 − q
(

ĉ
(q)
i − ci

)
ci < ĉ

(q)
i

 (24)

 where ĉi is the predicted value, ci is the actual value, q is the quantile, ls is the point forecasting error, and lp is the 
probability forecasting error. The replay buffer retains historical data and introduces the historical loss gradient 
(∇L Historical) during each parameter update, effectively imposing a soft constraint on the direction of parameter 
updates to prevent them from deviating entirely from historically optimal regions.

Then, the least-squares method42 is employed to determine the optimal buffer threshold and size. When the 
loss value reaches this threshold, the data are worthy of further investigation. The batch of data is deposited into 
the buffer to prepare for the dynamic adjustment of the learnable weights. As the buffer reaches its maximum 
capacity, the oldest batch of data is replaced by the most recent batch, thereby maintaining a current and relevant 
data buffer for model training.

To illustrate the whole online learning process more intuitively and clearly, the specific pseudocode is given 
in Algorithm 1.

Experiments and results
Experimental environment and parameter settings
The configurations employed for the experiments are as follows: CPU/Intel(R) Core (TM) i7-10700, Memory/24 
GB, Graphics Card/NVIDIA GeForce GTX 3080, and Programming Language/Python 3.10.

The values of the parameters, especially the consumption feature forgetting factor and feature thresholds are 
very important for the results. We conduct more than 1,000 sets of exhaustive traversal experiments, with the 
corresponding accuracy results represented by varying colors; darker hues denote smaller errors. The results are 
optimal when the values of λd, λr, and D are 0.2, 0.7, and 0.14, respectively. The optimization results obtained for 
these three parameters are shown in Fig. 6 and the hyperparameter settings for all models are demonstrated in 
Table 3.

Evaluation indicators
The root means square error (RMSE) is used to quantify the overall prediction performance, which can reflect 
the accuracy of the forecasting interval and the corresponding point forecasting ability of the model. These 
evaluation indicators can be mathematically expressed by

 

RMSE =

√√√√ 1
N

N∑
t=1

(ct − ĉt)2 (23)
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where N is the number of predicted data points and ct and ĉt are the actual and predicted electricity consumption, 
respectively. The pinball loss is used as an indicator to evaluate the probabilistic predictions. It can quantify the 
uncertainty of the predictions.

 

pinball_loss(q, ct) =




q
(

ct − ĉ
(q)
t

)
ct ⩾ ĉ

(q)
t

1 − q
(

ĉ
(q)
t − ct

)
ct < ĉ

(q)
t

 (24)

 where q is the quantile.

Comparison experiment
In this section, the proposed model is compared with existing load forecasting models, namely, the online adaptive 
recurrent neural network (OARNN)14, GNN15, TFT16, QLSTM19, MQR20, DeepAR21, fully parameterized 
sequence-to-quantile regression (Fpseq2q)21, BNNDeT22 and APLF29. The experimental results are recorded in 
Table 4 in groups, and the individual probabilistic forecasting results of these models are shown in Fig. 7.

Table 4 presents the overall prediction errors induced by the proposed model and the existing load forecasting 
models on a multi-environment dataset, as assessed by the RMSE, pinball loss and CRPS. The proposed model 
exhibits superior overall performance in universal environments, with average RMSE, pinball loss and CRPS 
values of 0.3041, 0.0567 and 0.1683, respectively. Specifically, In the Individual dataset, the models (the proposed 
model, GNN, and BNNDeT) that take heterogeneity into account have better performance. Compared to 
BNNDeT, the proposed model has better RMSE and CRPS, with an average RMSE and CRPS of 0.1364 and 
0.1073, respectively. This result indicates that the proposed model can better adapt to the variability and volatility 
of individual data than the baselines and outperforms the other adaptive models, such as the OARNN, MQR, 
BSAuto and APLF. Due to the proposed method considers the volatility and even concept drift of data affected 
by the environment. The proposed model is more stable than other models as it fully considers the differences 
among individual users, demonstrating its effectiveness in a generalized environment.

Figure 7 demonstrates the load forecasting curves of different methods, with the probabilistic forecasting 
curves explicitly displaying 60% and 90% confidence intervals. Comparing the OARNN with other prediction 

Model Parameters

OARNN Hidden layer sizes: 64, Number of Layers: 2

GNN Number of Layers: 4; Hidden Units 64

QLSTM LSTM unit: 16; FC unit: 16; layer: 3

FPSeq2Q N:100, Latnet size: 64, Head size: 4, Num layer:4

BNN FC-1 unit: 512 Layer:1; FC-2 unit: 256 layers: 4

BNNDeT Encoder layer: 4; Decoder layer: 4; Decoder multi-head: 8; model dimension: 24

BSDeAuto Encoder layer: 4; Decoder layer: 4; Decoder multi-head: 8; model dimension: 24

APLF Forgetting factors 1: 0.2; Forgetting factors 2: 0.7

Table 3. Parameter settings for all models.

 

Fig. 6. Optimization results of parameter λd, λr, and D.
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models, it is observed that the results of probabilistic forecasting, which include prediction intervals, are more 
intuitive than those of point forecasting. Some of the probabilistic predictions fall outside the 60% confidence 
interval, but most of them fall within the 90% confidence interval. The proposed model ensures that most of 
the prediction points fall within the 90% confidence interval, and its prediction range is more accurate, which 
indicates that the proposed model has good probabilistic forecasting performance.

Ablation experiments
To verify the effectiveness of the feature-adaptive module and the buffer module, ablation experiments are 
conducted, as shown in Fig. 8. The predictive performance is evaluated using the RMSE and pinball metrics. The 
experimental group employing the feature-adaptive module, and the buffer module exhibits the best forecasting 
performance. In contrast, the removal of these two modules results in the largest prediction error. These modules 
are crucial for addressing the problem of concept drift and user heterogeneity and are effective at enhancing 
forecasting performance. The contribution of the buffer module is greater due to the higher forgetting factor of 
the observed feature data compared to that of the historical electricity consumption data.

Fig. 8. The effects of different modules on the predicted results. g1: Individual Std, g2: Individual Tou, g3: 
Campus Downtown, g4: Campus Polytechnic, g5: Region Dayton, g6: Dayton New England.

 

Fig. 7. The result of an individual electricity consumption probabilistic forecasting, 90% and 60% represent the 
confidence interval.
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To analyze the correlation results and the associations of the feature selection process, the related results 
are tested. One hundred individuals in the DTou group are used to exploring the relationships between the 
prediction results and the different selected features, and the corresponding results are shown in Table 5.

According to Table 5, the temperature, pressure, dewpoint, humidity, wind bearing, and electricity price are 
selected for the analysis of the prediction results. Overall, the more information contained in the features, the 
worse the prediction ability of the model is. However, some combinations of features are better than a single 
feature, such as “AE” in C6

2 and “DEF” in C6
3. Therefore, compared with a fixed feature input, the proposed 

adaptive feature selection method has the best performance, with an average error of 0.1577. This indicates the 
effectiveness of feature selection, and the impact of user heterogeneity is mitigated.

In Fig. 9a, we compare the predictive performances of three methods using different features: temperature 
as the sole fixed feature, six sets of data as fixed features, and the NCE method to adaptively selecting features. 
To clearly observe the performance differences among these methods, we normalize their prediction errors. 
It is observed that the NCE method performs better in the prediction task than do the fixed features. This is 
attributed to the use of inappropriate observed features for prediction, which may lead to poor estimates. The 
findings underline the importance of selecting correct features for enhancing the accuracy of model prediction 
and validate the feasibility of employing NCE in the feature selection. We further explore different feature 
selection methods for electricity consumption forecast, including the linear Pearson correlation method and the 
nonlinear Spearman correlation method, to assess the advantages of nonmonotonic correlation. Additionally, 
we compare correlation analysis and recursive elimination to ascertain the effectiveness of the NCE method 
in the feature selection process. The results are shown in Fig.  9b, and the prediction error is normalized to 
clearly observe the performance differences. We observe that the predictive performance attained by combining 
correlation and recursion is superior to that of correlation or recursion alone. The NCE method outperforms 
the feature subsets selected by the Pearson and Spearman correlation methods with recursive elimination. In 
summary, NCE is most suitable for feature selection in electricity consumption forecast tasks.

To evaluate the effectiveness of the joint loss buffer design, we conduct a comparison experiment with the 
single-loss buffer method. Experiments are carried out over various forecasting steps, including half a day (a step), 
one day (two steps), two days (four steps) and one week (fourteen step), and the experimental results are shown 
in Fig. 10. The prediction accuracy of the buffer design using the joint loss method improves by approximately 
6% over that of the single-loss method. The joint loss function demonstrates superior performance across 
different datasets and prediction durations. The adoption of the joint loss method in electricity consumption 
forecast enables the model to better adapt to data changes, effectively mitigates the concept drift problem, and 
provides superiority in model adaptability. The prediction accuracy decreases as the prediction dimensionality 
increases, but the RMSEs remain within 0.18 (g1-g5) and 1.5 (g6). These results affirm the effectiveness of the 
model in short-term electricity consumption forecast scenarios.

Conclusion
In this paper, we propose an adaptive electricity consumption forecast method (AECF-UC) to address two 
key challenges: user heterogeneity and concept drift. Specifically, the nonmonotonic correlation recurrence 
elimination method can find suitable feature data in multiple environments, enabling the application of the 
model in universal environments. We introduce a buffer module based on the joint loss function. It can ensure 
that the data used for training and updating the model accurately reflects the current data distribution, thereby 
aiding the online learning model in adapting to concept drift. We conduct various experiments on multi-
environment datasets to assess the accuracy of AECF-UC and compare it with other methods. These datasets 
represent challenging scenarios with varying scales, domains, and consumption patterns. The experimental 
results demonstrate that the proposed model attains the best overall performance in universal environments, 
with average RMSE, pinball loss and CRPS of 0.3041, 0.0567 and 0.1683 respectively.

Table 5. Relationship between the forecasting result and the different feature selections.
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However, recursive feature selection with non-monotonic correlation elimination improves feature quality, 
but it increases the computational complexity of the model and lacks finer-grained modeling of user behavior. 
Efficient and comprehensive feature selection methods can be further explored in the future to cope with user 
heterogeneity.
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Fig. 10. The prediction errors are induced under various forecasting steps. g1: Individual Std, g2: Individual 
Tou, g3: Campus Downtown, g4: Campus Polytechnic, g5: Region Dayton, g6: Region New England. (one step 
represents 12 h ahead)

 

Fig. 9. The effects of different observed features on the predicted results.
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