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Abstract

Internet of Things (IoT) technology in healthcare has enabled innovative services that
enhance patient monitoring, diagnostics and medical data management. However, secur-
ing sensitive health data while maintaining system efficiency of resource-constrained IoT
devices remains a critical challenge. This work presents a comprehensive end-to-end IoT
security framework for healthcare environments, addressing encryption at two key levels:
lightweight encryption at the edge for resource-constrained devices and robust end-to-end
encryption when transmitting data to the cloud via MQTT cloud brokers. The proposed
system leverages multi-broker MQTT architecture to optimize resource utilization and
enhance message reliability. At the edge, lightweight cryptographic techniques ensure
low-latency encryption before transmitting data via a secure MQTT broker hosted within
the hospital infrastructure. To safeguard data as it moves beyond the hospital to the cloud,
stronger end-to-end encryption are applied to ensure end-to-end security, such as AES-256
and TLS 1.3, to ensure confidentiality and resilience over untrusted networks. A proof-
of-concept Python 3.10 -based MQTT implementation is developed using open-source
technologies. Security and performance evaluations demonstrate the feasibility of the
multi-layer encryption approach, effectively balancing computational overhead with data
protection. Security and performance evaluations demonstrate that our novel HECS4MQTT
(Health Edge Cloud Security for MQTT) framework achieves a unique balance between
efficiency and security. Unlike existing solutions that either impose high computational
overhead at the edge or rely solely on transport-layer protection, HECS4MQTT introduces
a layered encryption strategy that decouples edge and cloud security requirements. This
design minimizes processing delays on constrained devices while maintaining strong
cryptographic protection when data crosses trust boundaries. The framework also intro-
duces a lightweight bridge component for re-encryption and integrity enforcement, thereby
reducing broker compromise risk and supporting compliance with healthcare security
regulations. Our HECS4MQTT framework offers a scalable, adaptable, and trust-separated
security model, ensuring enhanced confidentiality, integrity, and availability of health-
care data while remaining suitable for deployment in real-world, latency-sensitive, and
resource-limited medical environments.

Keywords: Internet of Things (IoT); MQTT; healthcare security; lightweight cryptography;
end-to-end encryption; cloud security; multi-broker architecture
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1. Introduction
Internet of Things (IoT) adoption in healthcare has revolutionized the delivery of

medical services, enabling real-time monitoring, personalized care, and remote diagnos-
tics. Wearable devices, implantable sensors, and mobile health applications now form a
connected ecosystem that continuously generates sensitive health data. These data are
transmitted across networks to cloud platforms or healthcare provider dashboards for
processing and intervention. However, the inherent resource constraints of IoT devices
and the critical sensitivity of health-related data present significant challenges to ensuring
security, privacy, and system efficiency.

Conventional security protocols, such as TLS and IPsec, while robust, are often unsuit-
able for constrained environments due to their computational and memory overhead [1–3].
In many IoT deployments, particularly in e-health scenarios, devices operate with limited
processing power, battery capacity, and communication bandwidth. As a result, there is a
growing demand for lightweight cryptographic techniques that can ensure data confiden-
tiality and integrity without degrading device performance or user experience. For instance,
wearable heart rate monitors or portable glucose sensors typically rely on low-power mi-
crocontrollers, which lack the resources to efficiently perform full TLS handshakes.

This research presents a secure, scalable IoT communication framework tailored for
e-health environments. The proposed system incorporates multi-layer encryption strategies
and a multi-broker MQTT architecture to ensure efficient, end-to-end protection of patient
data across distributed hospital settings. At the edge, lightweight encryption schemes
are used to minimize latency and preserve device resources. Data is first transmitted to
a local broker within the hospital network and then securely forwarded to a centralized
cloud MQTT broker, where more computationally intensive security operations are ap-
plied. Finally, authorized medical staff access the data through a secure web or mobile
application, acting as a subscriber. In this work, we extend our previous evaluation of
lightweight encryption schemes presented in [4] by designing a secure, dual-layer MQTT
communication architecture tailored for healthcare IoT systems. The proposed framework
integrates Salsa20-Blake2b encryption at the edge with AES-256 over TLS 1.3 for secure
transmission to the cloud. A custom bridge application is introduced to seamlessly manage
the cryptographic transition between edge and cloud environments, ensuring end-to-end
data confidentiality while maintaining performance efficiency.

To evaluate the effectiveness of the proposed approach, the system was implemented
using multiple encryption schemes and benchmarked in terms of encryption time, memory
usage, CPU cycles, and throughput. The results demonstrate the feasibility of secure,
real-time data transmission in healthcare settings using layered encryption without relying
solely on heavy TLS-based solutions.

The paper is organized as follows. Section 2 presents the theoretical foundations of
lightweight cryptography and MQTT-based communication. Section 3 reviews related
work in the field of IoT encryption and MQTT security. Section 4 introduces the proposed
system architecture. Section 5 details the implementation of the publisher and subscriber
modules. Section 6 presents experimental results, performance and security analysis.
Finally, Section 7 concludes the paper and outlines future work.

2. Theoretical Background
2.1. Message Queue Telemetry Transport (MQTT)

The Message Queuing Telemetry Transport (MQTT) protocol [5] is a lightweight, open-
standard publish–subscribe messaging protocol designed for constrained environments
and low-bandwidth, high-latency networks. Standardized by OASIS and ISO/IEC 20922,
MQTT is widely adopted in Internet of Things (IoT) applications to facilitate efficient
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communication between distributed devices and services. Figure 1 illustrates a standard
MQTT communication model secured by TLS. In this architecture, the MQTT Publisher
sends messages on a specific topic (e.g., Topic1) to the MQTT Broker over a TLS-secured
session. The MQTT Subscriber, which has previously subscribed to the same topic, also
communicates with the broker via another TLS session, ensuring that both data transmis-
sion and topic subscriptions are encrypted. This setup ensures the confidentiality and
integrity of the messages exchanged over potentially insecure networks.

Figure 1. MQTT protocol.

MQTT operates [5] using a client–broker–client architecture. Publishers send messages
to a centralized broker, which then distributes them to all subscribed clients based on hierar-
chical topic filters. This model ensures decoupling between data producers and consumers,
enhancing scalability, interoperability, and system modularity. However, MQTT inherently
lacks direct end-to-end communication between clients. MQTT Version 5.0 [5] introduces
several protocol-level enhancements that address limitations in previous versions and
improve flexibility, robustness, and extensibility [5]. Notable features include:

1. Reason Codes: provide explicit acknowledgment feedback, enabling more granular
error reporting and diagnostic capability.

2. Shared Subscriptions: allow multiple clients to share a single subscription, supporting
distributed processing and load balancing.

3. Message Expiry Intervals: define the validity period of a message, preventing outdated
data from being delivered.

4. Topic Aliases: replace long topic strings with shorter aliases to reduce payload size,
which is beneficial for low-bandwidth links.

5. User Properties: enable the transmission of custom metadata through MQTT packets
for application-specific use cases.

Security in MQTT is typically implemented through Transport Layer Security (TLS),
which ensures confidentiality, integrity, and authentication of transmitted data. However,
MQTT itself does not enforce any specific security mechanisms, placing responsibility on
the application layer to implement key management, access control, and encryption policies
appropriate for the deployment context. For full protocol specification and implementation
guidance, the official OASIS documentation of MQTT Version 5.0 serves as the authoritative
reference [5].

2.2. Lightweight Cryptography for MQTT

Lightweight cryptography has gained prominence as a practical solution for address-
ing the limitations of resource-constrained IoT devices, including limited processing power,
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restricted memory, and energy constraints. Lightweight cryptography refers to encryption
techniques designed to minimize resource usage while maintaining acceptable levels of
security [4]. Algorithms such as ChaCha20, Salsa20, SIMON, SPECK, and TinyAES are
particularly well-suited for edge environments due to their reduced key scheduling com-
plexity, smaller code footprint, and lower computational requirements. These schemes
often trade off marginal cryptographic strength or feature sets in exchange for practical
performance on constrained platforms.

Authenticated encryption schemes [4], particularly AEAD (Authenticated Encryption
with Associated Data) modes like AES-GCM and ChaCha20-Poly1305, are critical in such
applications as they ensure both confidentiality and message integrity. The choice of cipher
must balance security requirements with device capabilities, especially when continuous
data transmission is involved, such as in real-time patient monitoring scenarios.

3. Related Work
Securing communication in resource-constrained IoT environments, particularly in

healthcare, has received increasing attention in recent years. Traditional encryption ap-
proaches, such as TLS or IPsec, offer robust security but remain impractical for low-power
devices due to high computational overhead and memory consumption [1–3]. This limi-
tation has motivated the development and evaluation of lightweight cryptographic algo-
rithms optimized for embedded systems.

3.1. Lightweight Encryption in IoT

Singh et al. [6] proposed the SMQTT and SMQTT-SN security schemes, which utilize
Key Policy and Ciphertext Policy Attribute-Based Encryption (KP/CP-ABE) in combination
with lightweight Elliptic Curve Cryptography. Their work included a security analysis
demonstrating robustness against several attacks. However, the study lacked a compre-
hensive performance evaluation, as it did not offer a comparative analysis with alternative
protocols. Pal et al. [7] and Wang et al. [8] proposed IoT encryption using Attribute-Based
Encryption (ABE) to ensure data confidentiality. However, these approaches impose consid-
erable overhead due to the reliance on the ABE protocol, which may limit their suitability
for resource-constrained publisher devices. Another ABE-based solution was presented
by Bisne et al. [9]. It was compared with other AES protocols with different modes and
demonstrated better results compared to AES. Iqbal et al. [10] proposed a new security
scheme for MQTT by integrating MQTT with the ARIA encryption algorithm for securing
the MQTT payload and MbedTLS for network tunnel encryption. Some other security
approaches were related to improving AES by deriving new protocols from the standard
AES, such as the work presented in [11–14]. Hamad et al. [15] presented a new enhanced
protocol called SEEMQTT, which is proposed to ensure end-to-end data confidentiality, in-
tegrity, and authorization between publishers and subscribers. The framework establishes a
secure communication channel between clients and KeyStore servers using Identity-Based
Encryption (IBE). Buccafurri et al. [16] introduced MQTT-I, a protocol designed to provide
end-to-end data flow integrity in MQTT systems, even in the presence of an untrusted
broker. Leveraging Merkle Hash Trees, the approach ensures integrity across dynamic,
multi-topic data streams without requiring direct coordination between publishers and
subscribers. Although, it was proven by authors, the scope of this study is limited to data
integrity. Li et al. [17] proposed iTLS, a lightweight secure transport protocol tailored
for resource-constrained IoT environments, which employs identity-based encryption to
reduce handshake complexity and session overhead. Unlike traditional TLS, iTLS employs
identity-based cryptography (IBC) to enable certificate-free, implicit mutual authentication
and early key generation, allowing encrypted data to be sent without additional round trips.
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Compatible with TLS 1.3, iTLS reduces network overhead by over 61% and handshake
latency by at least 60%, offering strong security and efficiency for low-power IoT networks.
Although iTLS is more lightweight than traditional TLS, it still requires the use of AES,
ChaCha20, or a similar encryption scheme for payload-level protection to ensure true
end-to-end security. This is particularly important when the MQTT broker is untrusted or
compromised—a risk that becomes more significant in cloud-hosted broker environments.

The introduction of authenticated encryption schemes has further expanded the de-
sign space for secure IoT communication. Sadio et al. [18] proposed securing MQTT and
MQTT-SN communication in constrained environments using the ChaCha20-Poly1305
authenticated encryption with associated data (AEAD) scheme. Their approach leverages
ChaCha20 as a lightweight stream cipher for confidentiality, combined with Poly1305 as
a one-time message authenticator to ensure data integrity and authenticity. A similar im-
proved security scheme was proposed by Alharbi et al. [4], which employs Salsa20 for confi-
dentiality and Blake2b for message integrity. A comprehensive performance evaluation was
conducted against several encryption protocols, including AES variants, TinyAES-HMAC,
ASCON, SIMON-HMAC, SPECK-HMAC, and ChaCha20-Poly1305, using both 128-bit and
256-bit keys where applicable. The results demonstrate that the proposed scheme achieves
lower CPU cycles, faster encryption time, and higher throughput. While the scheme in [4]
focused on evaluating the performance of a lightweight encryption configuration using
Salsa20 and Blake2b at the edge, our proposed HECS4MQTT framework extends this
by integrating it into a multi-layer architecture that separates edge and cloud security.
HECS4MQTT framework incorporates multi-broker MQTT communication and introduces
a bridge component that re-encrypts data with AES-256 and TLS 1.3 before transmission to
the cloud.

Performance benchmarking of encryption algorithms is essential in the context of
IoT hardware because of the tight constraints imposed by device hardware. For example,
Wijayanto et al. [19] conducted a comparative analysis of the AES, Grain V1, and RC4
encryption algorithms, evaluating both their security and performance effectiveness. The
study confirmed that all three algorithms successfully mitigated passive sniffing threats.
Additionally, a cryptanalytic assessment was performed to estimate the time required
to break each algorithm’s key, revealing that AES offered the highest level of resistance
and thus the strongest security among the three. Performance benchmarks showed that
RC4 delivered the fastest encryption and decryption times. Al-Ani et al. [20] conducted
an in-depth evaluation of the MQTT protocol by experimentally assessing the impact of
various cryptographic techniques—specifically AES-CBC, RSA, and an ECC-AES hybrid
scheme—on processing time and message size. The findings indicated that payload encryp-
tion consistently led to increased processing latency and larger message sizes. These results
underscore the trade-offs between security strength and communication efficiency when in-
tegrating cryptographic methods into MQTT-based systems. The existing body of literature
on securing MQTT-based communication in IoT environments consistently emphasizes the
challenge of achieving a balance between robust security and the operational constraints of
resource-limited devices [1–3]. A wide range of encryption protocols—ranging from tradi-
tional symmetric schemes to modern lightweight cryptography—have been proposed and
evaluated to address these challenges. However, each solution presents inherent trade-offs.
Protocols offering stronger cryptographic guarantees often introduce increased computa-
tional complexity, memory consumption, and energy usage, which can negatively impact
the performance and responsiveness of constrained nodes [1–3]. Conversely, schemes
optimized for low overhead may compromise on cryptographic strength.
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3.2. MQTT Multi-Broker Related Work

Multi-broker MQTT architectures have been investigated to improve the resilience
and scalability of MQTT-based IoT environments. Kurdi et al. [21] proposed a multi-tier
MQTT architecture based on fog computing, where each MQTT broker is equipped with
an authentication manager responsible for mutual authentication between entities. Their
approach introduces a lightweight authentication scheme that combines hash functions
with XOR operations, targeting reduced storage and communication overhead. Their
evaluation reports an 89% reduction in storage overhead and a 23% reduction in commu-
nication overhead, highlighting its efficiency and scalability in industrial IoT scenarios.
The focus and contributions of the current work differ in both scope and depth. Rather
than addressing authentication as the primary security concern, this research centers on the
confidentiality and integrity of IoT e-health data at the edge and end-to-end security when
data moves to the cloud. Also, there are other papers that introduced a similar multi-layer
MQTT without focusing on encryption, like the work presented in [22,23].

HECS4MQTT addresses a clear gap in current work, where existing solutions either
employ strong encryption mechanisms such as TLS, AES, or identity-based encryption that
are unsuitable for resource-constrained IoT devices or rely solely on lightweight encryption
schemes that lack sufficient protection when data moves beyond the edge to less trusted
environments such as the cloud. Compared to existing works, our proposed architecture
integrates lightweight encryption at the edge—where IoT devices operate under strict
resource constraints—and applies robust end-to-end encryption when transmitting data
from hospital premises to the cloud. This layered encryption approach is embedded within
a scalable MQTT framework, where multiple brokers are deployed to localize traffic and
reduce bottlenecks across distributed hospital networks. In our system, each local broker is
responsible for managing encrypted communication from resource-constrained publishers,
enabling low-latency and energy-efficient data transmission. As data transitions from
the edge to external cloud platforms, additional encryption layers are applied, ensuring
end-to-end security across potentially untrusted network segments. This separation of en-
cryption responsibilities between the edge and the cloud ensures that encryption protocols
are tailored to the capabilities of each system component. This layered design mitigates
risks associated with centralized processing, reduces latency, and enhances message relia-
bility. The use of multi-broker coordination further enables healthcare providers to access
encrypted patient data from any authorized endpoint while maintaining compliance with
privacy regulations and ensuring cryptographic resilience throughout the data lifecycle.

While many of these studies evaluate individual encryption methods or architectural
components, relatively few integrate a full-stack, real-time system that combines layered
encryption, MQTT-based transmission, and multi-level broker infrastructure tailored for
healthcare environments. This work aims to address this gap by proposing and imple-
menting a complete secure communication pipeline—from IoT publisher nodes through
local and cloud brokers to end-user subscriber applications—while benchmarking multiple
lightweight encryption schemes under realistic operational conditions.

3.3. Limitation of Lightweight Encryption and the Need for Layered Security

While lightweight encryption schemes have been widely recognized as effective
solutions for securing resource-constrained IoT devices, their scope of applicability remains
largely confined to local or edge-level communications. These cryptographic mechanisms,
designed to minimize CPU cycles, memory usage, and energy consumption, are optimized
to operate within the tight hardware limitations of IoT nodes such as wearables, sensors, and
embedded devices. Algorithms like ChaCha20, TinyAES, SIMON, and SPECK demonstrate
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efficiency on such platforms by reducing computational complexity and supporting real-
time data processing.

However, as IoT ecosystems scale and data transmission extends beyond the local
premises of edge environments toward remote cloud infrastructures, the security landscape
changes considerably. Communication across public or semi-trusted networks introduces
increased exposure to sophisticated attack vectors, including man-in-the-middle attacks,
replay attacks, and key compromise risks. In such scenarios, the lightweight encryption
schemes that prioritize performance over cryptographic strength may no longer offer
sufficient resilience against these threats. This renders lightweight encryption alone in-
adequate for securing sensitive health data or critical IoT applications once data moves
beyond the trusted local domain. Conversely, applying robust encryption schemes—such
as AES-256 with GCM mode, RSA, or Elliptic Curve Cryptography (ECC) with large key
sizes—provides stronger protection and compliance with regulatory standards like HIPAA
and GDPR for data in transit across untrusted environments. These algorithms offer higher
security margins, resistance to brute-force attacks, and support for advanced features like
mutual authentication and key exchange. However, their computational requirements,
larger memory footprint, and higher energy consumption make them impractical for direct
deployment on constrained IoT devices, especially at the edge, where processing resources
are limited.

This performance-security dichotomy highlights a critical trade-off in IoT environ-
ments. Lightweight encryption satisfies performance demands at the device level but falls
short when higher-grade security is required for wide-area or cloud communication. On
the other hand, robust cryptographic protocols ensure stronger data protection but at the
cost of rendering constrained devices inoperable due to resource exhaustion. To address
this challenge, there is a need for a layered encryption approach that applies lightweight
cryptography for local, edge-level communication while enforcing stronger encryption
mechanisms at the boundary between edge systems and cloud services. Such a design
allows for optimized resource utilization at the device level without compromising the
overall security of the system when sensitive data exits the local trusted environment.

This work embraces this layered security philosophy by integrating lightweight en-
cryption at the edge and robust end-to-end encryption during data transmission to the
cloud through a multi-broker MQTT architecture. This design ensures that security policies
are adaptable to the context of data transmission, providing a balanced solution between
cryptographic strength and resource efficiency. The main contributions of this study are
the following:

1. Designing and implementing a dual-layer encryption architecture that integrates
lightweight encryption at the edge and strong encryption (AES-256 with TLS 1.3) when
transmitting data to the cloud, ensuring confidentiality, integrity, and performance
across the entire data pipeline.

2. Introducing a custom bridge application that operates at the boundary between
trusted (hospital) and untrusted (cloud) environments. The bridge functions
as both subscriber and publisher—decrypting edge-encrypted messages and re-
encrypting them using cloud-grade protocols before forwarding—effectively decou-
pling transport-level and application-level encryption.

3. Demonstrating an architecture that enhances security without increasing complexity
at the edge, thereby preserving the performance benefits of Salsa20-Blake2b while
ensuring data remains protected when it leaves the local network.

4. Validating the system through an end-to-end implementation, including local and
cloud Mosquitto brokers, certificate-based TLS setup, and performance evaluation,
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showcasing its applicability to real-world healthcare IoT deployments where both
performance and privacy are critical.

4. Proposed Architecture
This section introduces secure and scalable end-to-end architecture for IoT-based

e-health monitoring systems. The proposed framework is designed to ensure data confiden-
tiality and reliability across constrained environments by employing layered encryption
mechanisms and a multi-broker MQTT infrastructure. It supports direct communication
from IoT sensing nodes to cloud-based systems and ultimately to healthcare professionals,
enabling real-time decision-making while maintaining strict privacy and security standards.

4.1. High-Level Architecture Overview

The system architecture, illustrated in Figure 2, is composed of four core layers: the
Perception Layer, the Local MQTT Broker, the Cloud Integration Layer, and the Application
Layer. Each layer has a distinct responsibility in the secure acquisition, transmission,
processing, and presentation of healthcare data, from sensor-level interactions to cloud-
based storage and clinical dashboards.

 

Figure 2. End-to-end secure IoT architecture for e-health applications using layered encryption and
multi-broker MQTT.

4.2. Perception Layer

The Perception Layer comprises wearable medical devices equipped with physio-
logical sensors capable of monitoring vital signs such as heart rate, body temperature,
and blood oxygen saturation. The IoT node handles both sensing and computation tasks,
performing lightweight encryption on collected data using ciphers suitable for constrained
environments, such as ChaCha20 or Salsa20. Once encrypted, the data is transmitted
wirelessly using MQTT over TLS, with the microcontroller acting as the MQTT publisher.
This direct publishing model eliminates the need for a separate edge gateway, reducing
system complexity and improving responsiveness.

To enhance system robustness in case of local broker failure, edge device publishers
implement automatic reconnection logic. Upon detecting a disconnection, the MQTT client
on the publisher side iteratively attempts to reconnect to a predefined list of alternative
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local brokers (e.g., covering different floors or subnets within the hospital). This fallback
list is configured during the device provisioning phase.

4.3. Local MQTT Broker

In the proposed architecture, a locally deployed MQTT broker is utilized as an inter-
mediate security and routing layer within the hospital network. This broker, implemented
using the Eclipse Mosquitto platform, runs on a dedicated edge server or embedded device
such as a Raspberry Pi. Its primary role is to receive data from resource-constrained IoT
publishers—such as wearable or diagnostic devices—which encrypt the data payload using
lightweight cryptographic algorithms (e.g., Salsa20-Blake2b). The local broker functions
in conjunction with a custom-built bridge application that acts as a security gateway. The
bridge application subscribes to the local broker and is responsible for decrypting incoming
lightweight-encrypted messages and re-encrypting the payload using AES-256 before for-
warding them to the cloud-based MQTT broker over a TLS 1.3 channel. Resource efficiency
is prioritized at the edge, and stronger cryptographic guarantees are enforced when data
leaves the hospital premises.

A critical component of the proposed multi-layer security framework is the secure
and efficient management of cryptographic keys. To meet the dual requirements of
resource-constrained IoT edge devices and compliance-driven cloud communication, a
hybrid key management model is adopted. At the edge, IoT devices encrypt payloads
using lightweight ciphers (Salsa20 for confidentiality and Blake2b for integrity) with pre-
provisioned static symmetric keys. This design minimizes computational and memory
overhead, aligning with the limited resources of typical embedded medical devices. The
symmetric keys for AES-256 encryption are securely created and managed using Ama-
zon Web Services Key Management Service (AWS KMS) [24]. During the initial system
deployment phase, each hospital or medical environment will provision its infrastructure,
registering all local MQTT brokers and subscribers as legitimate devices within AWS KMS,
allowing only authenticated and authorized devices to request symmetric keys for encryp-
tion and decryption. In addition to the symmetric encryption applied at the application
layer, the proposed framework enforces transport-layer security using TLS 1.3 to protect
all communications between internal system components, particularly between the local
MQTT broker, cloud MQTT broker and subscriber. To ensure mutual authentication and
prevent unauthorized access, the framework utilizes X.509 certificates issued by trusted
Certificate Authorities (CAs). These certificates are securely installed and configured at
three locations within the architecture: local broker, cloud broker and subscriber.

To ensure real-time monitoring of system health and broker availability, the proposed
framework includes a heartbeat failure detection mechanism at the local MQTT broker level.
Each local broker is configured to periodically publish a lightweight “I am online” status
message to a cloud-facing topic (e.g., hospital/floor1/broker/status). This message is sent
at a fixed interval (e.g., every 10 s) and includes metadata such as: broker identifier (e.g.,
hostname or floor-specific ID), current timestamp, status code (e.g., “online”, “degraded”).
The cloud-side subscriber component subscribes to all registered broker status topics (e.g.,
hospital/+/broker/status) and updates an internal status table reflecting broker health.
If a subscriber does not receive a heartbeat from a broker within the configured timeout
threshold (e.g., 2× heartbeat interval), it flags the broker as unavailable or disconnected
and notifies the user interface layer. This information is visualized in the system’s cloud
dashboard, enabling administrators to monitor all local brokers and identify broker failures
in real time.
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4.4. Cloud Integration Layer

As messages move beyond the hospital network, they enter the Cloud Integration
Layer, which comprises a cloud-hosted MQTT broker capable of supporting large-scale
distributed systems. Before transmission to the cloud, data is re-encrypted using stronger
end-to-end encryption protocols such as AES-256. The cloud broker is integrated with
identity and access management services, enabling dynamic control over who can access
specific patient data. In addition, cloud-native services, such as intrusion detection sys-
tems and data logging modules, provide a robust layer of protection and traceability for
transmitted information.

4.5. Application Layer

The final layer is the Application Layer, where healthcare professionals access patient
data through a secure, web-based dashboard. The dashboard acts as an MQTT subscriber,
receiving real-time updates from the cloud broker through WebSocket connections. The
dashboard presents encrypted health metrics with live updates and supports role-based
access control to restrict user permissions according to clinical responsibilities. Communi-
cation between the web application and the cloud is conducted over HTTPS, and all user
actions are logged to ensure transparency and accountability.

5. Implementation of Secure IoT-Based Communication System
This section presents the implementation of the secure publisher–subscriber system

designed to operate within the proposed e-health IoT architecture. The design focuses on
encryption at the edge using constrained devices and efficient MQTT-based data delivery to
a cloud-based application for healthcare providers. The system enables modular encryption
benchmarking and real-time performance monitoring, supporting integration with both
local and cloud MQTT brokers. The diagram shown in Figure 3 presents the traffic flow
from the IoT constraint node to the subscriber node.

Figure 3. Traffic flow.

5.1. Publisher Implementation at the IoT Node

The publisher emulates a typical IoT edge node, such as a wearable medical device,
that collects and transmits patient-related data. In this implementation, a static image file
is used to represent sensed data for evaluation purposes. The image data is loaded in
binary format and encrypted using one of several available cryptographic schemes prior
to transmission. The supported encryption algorithms include ChaCha20-Poly1305, AES
in EAX, GCM, and CCM8 modes, TinyAES in CTR mode, Salsa20 with Blake2b, Ascon,
and lightweight ciphers such as SIMON and SPECK. Each encryption routine uses either
a fixed 128-bit or 256-bit key, defined in advance. For authenticated encryption schemes,
nonce and tag management are handled within the function, and the encrypted payload is
base64 encoded for safe transmission via MQTT.

The publisher component connects to the local MQTT broker over a non-TLS channel
(port 1883), reflecting real-world scenarios where IoT devices operate in trusted local



Future Internet 2025, 17, 298 11 of 24

environments with limited TLS capability. TLS support is included for both OpenSSL and
WolfSSL, although this is deactivated by default. The publisher constructs a JSON message
containing the encrypted image and a timestamp indicating the moment of publication.
Messages are sent to the MQTT broker on a predefined topic, simulating real-time data
flow from an IoT health sensor.

To assess the performance of each encryption scheme under constrained conditions,
the implementation integrates system-level monitoring. The Linux perf tool is executed
as a subprocess to capture hardware-level statistics, including task clock, CPU cycles,
instructions, cache references, and cache misses. In parallel, a separate thread utilizes the
psutil library to track memory usage, measuring real-time resident set size (RSS) and peak
memory allocation during the transmission phase. The publisher is designed to run for a
fixed number of iterations, transmitting a defined number of encrypted messages at regular
intervals. Upon completion, the system calculates throughput based on the total size of
encrypted data sent over the elapsed time. All metrics—timing, CPU usage, cache behavior,
memory usage, and throughput—are aggregated and logged in a structured CSV format
for subsequent analysis.

Algorithm 1 outlines the core functionality of the publisher module within the pro-
posed framework.

Algorithm 1: Pseudocode For Publisher Component

Input: Image directory path, number of images x, encryption method
Output: Encrypted messages published to MQTT topic, log

performance
Begin

Connect to Local MQTT Broker with TLS
For x number of images do
Load image data from file
Generate timestamp
EncryptedPayload = Encrypt_Payload(image_data,
Encryption_Method)
Construct JSON message with ‘timestamp’ and ‘content’
Publish message to topic
Wait fixed interval before next message
Log performance metrics (latency, throughput, CPU stats)
End For
Save performance data in cvs file
Disconnect from Broker

End

Algorithm 2 outlines the core functionality of the encryption function.

Algorithm 2: Pseudocode For Encryption Function

Input: Image directory path, number of images x, encryption method
Output: Encrypted messages published to MQTT topic, log

Begin
function Encrypt_Payload(data, method)
If method =AES-GCM:
Generate nonce
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Algorithm 2: Cont.

Encrypt data with AES in GCM mode
Concatenate nonce + tag + ciphertext
Encode in base64 and return
If method = Salsa20-HMAC:
Generate nonce
Encrypt data with Salsa20
Generate HMAC using Blake2b
Concatenate nonce + ciphertext + HMAC
Encode in base64 and return

End

Other methods, such as ChaCha20-Poly1305 and CCM8, follow similar encryption
and tagging generation patterns.

5.2. Local MQTT Broker and Bridge Application

The local broker, implemented using Mosquitto, serves as a lightweight, internal
MQTT hub that receives encrypted messages from the publisher. It provides basic message
queuing and forwarding capabilities without any transformation or decryption of the
payload. This broker acts as an intermediary that simplifies edge communication and
enables local scalability by allowing multiple publishers to offload encryption tasks while
forwarding to a common cloud path via the bridge. The broker configuration includes a
listener on port 1883 for local (non-TLS) connections and defines the topic structure (e.g.,
image/test) used to separate and organize published image data.

The same MQTT local broker is running a custom bridge application that was devel-
oped to securely transfer encrypted IoT data from the local MQTT broker, hosted within
the hospital network, to a cloud-based broker. The bridge acts as a middleware layer with
dual MQTT roles. It subscribes to encrypted messages published to the local broker by
edge IoT devices—typically resource-constrained nodes that encrypt their payloads using
lightweight symmetric encryption algorithms such as Salsa20, in conjunction with the
Blake2b hashing function for message integrity. Upon receiving these messages, the bridge
decrypts the payload locally using a pre-shared symmetric key and nonce structure.

Following successful decryption, the bridge performs re-encryption of the payload
using AES-256. This transformation ensures that sensitive healthcare data is protected with
stronger cryptographic guarantees before being transmitted across untrusted networks.
The re-encrypted data is then published to the cloud MQTT broker over a secure TLS
1.3 channel, leveraging a self-signed X.509 certificate for broker authentication.

Functionally, the bridge application encapsulates the following operations:

1. MQTT Subscriber: subscribes to a designated topic on the local Mosquitto broker to
retrieve incoming encrypted messages.

2. Decryption Module: applies the Salsa20 cipher to extract the original message content.
3. Re-encryption Module: uses AES in GCM mode with a 256-bit key to ensure confiden-

tiality and integrity.
4. MQTT Publisher: publishes the transformed message to the cloud broker on a mir-

rored topic, using UTF-8 encoding and base64 to preserve structure.

Algorithm 3 outlines the core functionality of the local broker component.
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Algorithm 3: Pseudocode For Local Broker Component

Input: Encrypted MQTT messages from edge devices
Output: Re-encrypted messages published to cloud broker

Begin
function Bridge_ReEncrypt_Forward()
Connect to Local MQTT Broker as Subscriber
Connect to Cloud MQTT Broker as Publisher
Subscribe to Topic from Edge Devices
For each incoming message do
Extract timestamp and encrypted payload
DecryptedData = Decrypt_Salsa20_Blake2b(encrypted_payload)
ReEncryptedPayload = Encrypt_AES_GCM(DecryptedData)
Construct JSON with original timestamp and re-encrypted content
Publish to cloud broker
End for

End

Each hospital can deploy an identical bridge that independently manages encryption,
translation and secure routing, by incorporating both application-layer and transport-
layer encryption. This design decouples resource-efficient encryption at the edge from
the computationally heavier encryption required for cloud integration, allowing edge
devices to remain lightweight and energy-efficient while maintaining compliance with
cloud security standards and providing architectural scalability.

5.3. Cloud MQTT Broker and Subscriber

The cloud broker is hosted in a secure environment (e.g., AWS) and configured to
accept TLS connections from external clients such as the bridge. It functions identically
to the local broker in terms of topic management but enforces additional security policies.
The subscriber connects to this cloud broker, receives the forwarded encrypted messages,
and is responsible for:

• Verifying the authenticity of the payload using the MAC.
• Decrypting the ciphertext using the shared symmetric key.
• Measuring latency and decryption time.

The subscriber reconstructs the original binary image from the decrypted payload
and stores it locally for further analysis. Decryption operations mirror the encryption
protocol used by the publisher and require proper nonce extraction and HMAC validation.
Only if the integrity check passes is the decryption process executed. The subscriber
also logs message arrival time, processing delays, and total messages received. These
metrics help evaluate end-to-end system performance and protocol efficiency in realistic
deployment scenarios.

Algorithm 4 outlines the core functionality of the subscriber component.

Algorithm 4: Pseudocode For Subscriber Component

Input: Encrypted MQTT messages from edge devices
Output: Re-encrypted messages published to cloud broker

Begin
Connect to Cloud MQTT Broker
Subscribe to Topic
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Algorithm 4: Cont.

For each received message do
Extract ‘timestamp’ and ‘encrypted content’
DecryptPayload = Decrypt_AES_GCM(encrypted_content)
Compute latency = CurrentTime − Timestamp
Save decrypted image
Log metrics (latency, throughput)
End for

End

All cryptographic schemes were implemented using well-established, open-source
cryptographic libraries—primarily PyCryptodome, a widely-used and actively maintained
Python library that supports a broad range of symmetric encryption algorithms, AEAD
modes, and secure random number generation. Here are some sample imports taken from
the source code:

from Crypto.Cipher import AES, ChaCha20,ChaCha20_Poly1305,Salsa20
from Crypto.Util.Padding import pad,unpad
from Crypto.Random import get_random_bytes

6. Performance and Security Analysis
Table 1 summarizes the metrics used to evaluate the proposed layered encryption

framework. The metrics are divided into two categories: security-related metrics, which as-
sess how well the system protects sensitive healthcare data, and performance metrics, which
assess the efficiency of the encryption techniques when applied to resource-constrained
IoT devices.

Table 1. Security and performance metrics.

Metric Tool/Method Evaluated Layer Expected Result

Confidentiality NIST STS, Wireshark Edge and Cloud High entropy, secure
ciphertext

Integrity HMAC tampering, TLS
integrity Edge and Cloud Tampering is detected

Broker compromise
resilience Payload capture test Cloud broker Data unreadable, MAC fails

CPU usage perf, psutil Publisher (constraint node) Salsa20\Blake2b is better
compared to other protocols

Encryption time perf, psutil Publisher (constraint node) Salsa20\Blake2b is better
compared to other protocols

Throughput perf, psutil Publisher (constraint node) Salsa20\Blake2b is better
compared to other protocols

Each metric is listed alongside the tools or methods used to measure it, the specific
layer of the architecture where the evaluation was applied (either edge or cloud), and the
expected outcome based on the design goals.

6.1. Testbed

To evaluate the proposed multi-layer encryption framework under realistic IoT health-
care conditions, we extended our original testbed in this study [4] to include a local MQTT
broker deployed within the hospital (edge) environment. This modification allows us
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to simulate the layered security model: lightweight encryption at the edge and robust
encryption when data leaves the hospital premises toward the cloud. The revised testbed
is illustrated in Figure 4. A similar testbed using the Ubuntu operating system has been
adopted in several research studies. For example, Fan et al. [25] proposed a data protection
protocol for MQTT based on hierarchical ID-based encryption and evaluated its perfor-
mance using Python libraries on an Ubuntu 18.04.4 LTS system with an Intel Core i9-9940X
3.30 GHz processor.

Figure 4. Testbed hardware and software components.

The testbed consists of three main roles: the MQTT Publisher, the Local MQTT Broker,
and the MQTT Subscriber, all deployed on laptops running Ubuntu 22.04 LTS. Each device
is equipped with an Intel Core i5 CPU, 8 GB of RAM, and utilizes the Paho MQTT library
version 1.5.1. The publisher encrypts image data using lightweight ciphers (e.g., Salsa20-
Blake2b) and sends it to the local MQTT broker. The Local Broker, hosted on an identical
laptop, receives and decrypts the incoming messages. A bridge component re-encrypts
them using AES-256 and publishes them over a TLS 1.3 channel to the Cloud MQTT Broker,
which is hosted on an AWS instance running Ubuntu 24.04 LTS and Mosquitto version
2.0.18. The MQTT Subscriber, located on a fourth laptop with the same hardware and
software stack as the publisher, subscribes to the cloud broker and receives the re-encrypted
data for further validation and performance analysis.

6.2. Security Evaluation

In the context of encrypted IoT traffic, particularly for privacy-sensitive domains such
as healthcare, the preservation of statistical unpredictability in ciphertext is essential. To
assess this, we applied the Approximate Entropy (ApEn) test from the NIST Statistical Test
Suite (STS) [26], which measures the frequency and predictability of overlapping patterns
in a binary sequence. A high entropy score indicates that the ciphertext lacks detectable
regularity—an essential criterion for resisting ciphertext-only attacks and for maintaining
the indistinguishability of encrypted data.

Each tested protocol (e.g., CCM8, EAX, GCM, Salsa20, TinyAES) was used to encrypt
identical payloads, representing typical IoT data (e.g., JPEG images from medical sen-
sors). The resulting ciphertexts were subjected to the ApEn test across multiple iterations.
The p-values generated by the test were analyzed to determine whether the output se-
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quences exhibit sufficient randomness. A p-value greater than 0.01, as per NIST criteria [26],
suggests that the ciphertext passes the test and is statistically indistinguishable from a
random sequence.

The proposed framework uses Salsa20-Blake2b at the edge layer for its efficiency and
cryptographic robustness. NIST test results show that Salsa20 achieves high p-values in
Approximate Entropy, typically above 0.40, and in some cases exceeding 0.90, confirming
that it produces statistically unpredictable ciphertext. Table 2 presents the Approximate
Entropy p-values obtained for the Salsa20-Blake2b encryption scheme over eight test rounds.
For each round, the ciphertext was captured and analyzed using the NIST Statistical
Test Suite to evaluate its randomness properties. The average p-values observed across
other protocols were as follows: AES-CCM8—0.457, AES-EAX—0.403, AES-GCM—0.846,
TinyAES—0.296 and Salsa20-Blake2b—0.607. These results highlight the suitability of
Salsa20-Blake2b for resource-constrained edge devices, offering high entropy with low
computational cost, while also affirming the robust randomness characteristics of AES-
GCM, making it an effective choice for cloud-layer encryption within the proposed multi-
broker architecture.

Table 2. p-values in approximate entropy for Salsa20-Blake2b.

Protocol Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

Salsa20-Blake2b 0.88381 0.283651 0.987717 0.411331 0.928822 0.696591 0.213525 0.452711

To ensure message integrity and authentication at the edge, the proposed framework
utilizes the Blake2b hash function in conjunction with the Salsa20 encryption scheme.
Blake2b is a cryptographically secure and efficient hash function, well-suited for constrained
devices due to its speed and simplicity. At the publishing node, each outgoing message
is encrypted using Salsa20 and appended with a keyed HMAC generated using Blake2b.
As shown in Figure 5, when the ciphertext was altered or transmitted with an invalid or
mismatched HMAC, the bridge failed to authenticate the message, generating repeated
errors: “HMAC verification failed at local broker.” Similarly, AES-GCM authentication tag
and TLS1.3 MAC are utilized to ensure data integrity when the data leave the local broker.

 

Figure 5. Detecting tampering at local broker.

To assess the resilience of the proposed HECS4MQTT multi-layer encryption frame-
work, we conduct a structured security analysis based on the MITRE ATT&CK frame-
work [27]. This methodology allows us to map real-world adversarial tactics and techniques
to potential vulnerabilities in the system and to evaluate the effectiveness of our mitigation
strategies. HECS4MQTT demonstrates robust protection against several prevalent attack
vectors, particularly in the domains of network interception, credential compromise, and
payload tampering.

One of the most significant strengths of the framework lies in its defense against
network-based attacks, including traffic interception and man-in-the-middle (MitM) attacks.
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By employing Salsa20-Blake2b encryption at the edge layer and AES-256 encryption with
TLS 1.3 at the cloud layer, HECS4MQTT ensures that sensitive healthcare data is encrypted
during the entire transmission path. The use of authenticated encryption further protects
against data manipulation and unauthorized modifications (aligned with MITRE technique
T1565—Data Manipulation).

Furthermore, the integration of TLS 1.3 with X.509 certificates issued by trusted
Certificate Authorities (CAs) at the local broker, cloud broker and subscriber mitigates
threats associated with unauthorized access or spoofed brokers (e.g., T1557—Man-in-
the-Middle). This is reinforced by mutual certificate validation and strict topic-based
access control at MQTT brokers, reducing the risk of command-and-control misuse via the
application layer (e.g., T1071.001—MQTT protocol abuse).

The framework also mitigates risks related to credential brute-forcing and password
compromise (T1110—Brute Force) through the use of pre-provisioned symmetric keys at
the edge and planned integration with AWS Key Management Service (KMS) at the bridge
and cloud layers.

6.3. Performance Evaluation

Performance evaluation is undertaken with six encryption protocols—Salsa20,
ChaCha20-Poly1305, AES-GCM, CCM8, EAX, and TinyAES—across three payload sizes
(1 KB, 5 KB, and 10 KB). The evaluation considers average throughput, CPU cycles, and
encryption time, offering a granular view of how each protocol scales with data volume.

The experimental results illustrated in this section provide a comprehensive overview
of the performance of the proposed HECS4MQTT framework across its core components:
publisher, local broker bridge, and subscriber.

Figures 6 and 7 capture the behavior of the publisher. Figure 6 presents the execution
of a test cycle where the publisher transmits encrypted image payloads using a selected
protocol (ChaCha20-Poly1305 in this run). The system iterates through multiple encryption
protocols, and for each run, 100 images are published. Figure 7 reports detailed performance
metrics such as CPU cycles, encryption time, throughput, and memory usage (RSS). These
measurements are essential for evaluating the computational overhead of each encryption
protocol on constrained devices.

 

Figure 6. Publisher testing.

Figure 8 shows the terminal output of the local broker bridge. It confirms successful
connection to the local MQTT broker and logs the message transformation and forwarding
activity to the cloud broker. Each message is decrypted (Salsa20), re-encrypted (AES256),
and securely forwarded over TLS 1.3, highlighting the bridge’s role in ensuring layered en-
cryption and secure transition beyond the edge network. Figure 9 presents the subscriber’s
behavior. It logs the receipt of published messages, indicating correct end-to-end delivery.
Together, these figures validate the operational integrity and performance of the multi-layer



Future Internet 2025, 17, 298 18 of 24

encryption approach, confirming that the proposed framework supports secure, scalable,
and efficient MQTT-based communication in IoT healthcare environments.

 

Figure 7. Publisher result per run.

 

Figure 8. Local broker.

 

Figure 9. Subscriber.

Throughput is a critical measure in time-sensitive applications, such as continuous
patient data streaming. For all image sizes, Salsa20 consistently maintains the highest
throughput, particularly notable in the 10 KB scenario, where it achieves over 26,000 bytes/s.
Throughput generally declines with smaller payloads, as observed in 1 KB tests, where
all protocols show reduced data rates due to fixed overheads becoming more promi-
nent. Figure 10 illustrates the average throughput of various encryption protocols across
three image sizes (1 KB, 5 KB, and 10 KB), showing that Salsa20 maintains consistently
high performance.

Encryption time reflects latency and responsiveness, essential for real-time IoT devices.
Across all image sizes, Salsa20 and TinyAES offer the fastest processing times for 1 KB and
5 KB payloads, while EAX consistently exhibits the highest latency, especially noticeable at
10 KB, where it exceeds 135ms. These results highlight the scalability benefits of Salsa20
and raise concerns over EAX’s suitability for edge scenarios. Figure 11 presents the average
encryption time, highlighting that Salsa20 and TinyAES offer the lowest latency.
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Figure 10. Average throughput by protocol and image size.

 

Figure 11. Average encryption by protocol and image size.

Average CPU cycles reveal how demanding each protocol is on device processors, a key
constraint in IoT environments. Salsa20 again proves efficient, requiring the fewest cycles
across all payloads. Figure 12 displays the average CPU cycles consumed by each protocol.

Pereira et al. [28] studied the performance evaluation of e-health applications, noting
the limitations of existing studies and the lack of realistic measurements in the context of IoT
communications. Importantly, they state that a latency below 500 milliseconds is required
for emergency and rapid response e-health applications, particularly in scenarios involving
event-driven alarms where immediate action is critical. In contrast, less time-sensitive
applications, such as those involved in electrocardiogram (ECG) monitoring, can typically
tolerate latency of up to 1 s without compromising clinical utility. All latency measurements
obtained during our experimental evaluation were consistently below 500 milliseconds,
thereby demonstrating the effectiveness of the HECS4MQTT framework.
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Figure 12. CPU cycles by protocol and image size.

7. Conclusions and Discussion
This study has presented a secure and scalable MQTT-based communication frame-

work tailored for healthcare IoT environments. The proposed system leverages a multi-
broker layered encryption model, combining lightweight encryption at the edge (using
Salsa20 and Blake2b) with robust cryptographic protections (AES-256 and TLS 1.3) as data
moves toward the cloud. A key architectural advancement is the introduction of a custom
bridge application, which performs in-place cryptographic translation, decoupling edge-
layer encryption from transport-layer security without imposing computational burdens
on resource-constrained devices.

A comparison with traditional TLS-only architectures highlights the security and
operational benefits of the proposed approach. As shown in Table 3, TLS-only models rely
on a centralized broker to handle all client traffic, which, while offering basic confidentiality
and metadata protection, exposes decrypted payloads at the broker layer. In contrast, the
multi-broker architecture preserves end-to-end confidentiality by maintaining encryption
throughout the data lifecycle. Furthermore, this model reduces the impact of broker
compromise, avoids TLS-related overhead on IoT endpoints, and introduces cryptographic
adaptability suited for varied operational environments, particularly in healthcare, where
privacy, performance, and reliability are paramount.

The modular separation of trust zones—from edge nodes within hospital networks to
cloud infrastructures—also enhances auditability and security governance. Each broker
operates independently, which promotes scalability across multiple hospitals or clinics
while retaining a consistent security posture. This makes the proposed design not only
technically feasible but also strategically aligned with large-scale health data systems that
must comply with privacy regulations.

While the current architecture demonstrates strong performance and security guaran-
tees, several areas offer opportunities for future enhancement:

1. Dynamic Key Management: future research could explore the integration of
lightweight key exchange protocols or identity-based encryption to reduce the reliance
on pre-shared keys at the edge.

2. Mutual TLS Authentication: enforcing client authentication via mutual TLS in the
cloud broker could further enhance access control and mitigate impersonation risks.
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3. Intrusion Detection Integration: the bridge application can be extended with
lightweight anomaly detection modules to monitor traffic patterns and detect signs of
compromise or data leakage.

4. Interoperability Testing: extending the framework to support additional brokers, such
as HiveMQ or EMQX, and testing interoperability in hybrid deployments would
validate its practical adaptability.

Table 3. Comparison of traditional TLS-MQTT with multi-broker layered encryption.

Aspect TLS Only (Single Broker) Multi-Broker Layered Encryption

Architecture Single MQTT broker with TLS
connection from all clients

Local broker (in hospital) + cloud broker,
with edge and cloud layers using different
encryption schemes

Encryption at Edge TLS (standard AES, handshake
overhead)

Lightweight encryption (e.g.,
Salsa20-Blake2b) optimized for
resource-constrained devices

Data Security Beyond the Broker Not preserved—broker decrypts
payload

Preserved—data re-encrypted (e.g.,
AES-256 + TLS 1.3) before leaving trusted
environment

Metadata Protection Protected (TLS encrypts topics,
headers, etc.)

Fully protected via TLS on outer layer;
internal encryption protects payload
end-to-end

End-to-End Confidentiality Broken at broker level—broker sees
plaintext payload

Maintained from publisher to subscriber
through layered encryption

Broker Compromise Risk High—one compromised broker
exposes all client data

Reduced—layered encryption limits
exposure even if a broker is compromised

TLS Overhead on IoT Devices Significant (handshake, certificate
validation)

Avoided—edge uses lightweight
symmetric encryption tailored to
constrained devices

Key Management Complexity Centralized certificate-based
authentication

Multi-key architecture (light at edge,
stronger in cloud) with
symmetric/shared keys

Adaptability for Healthcare Less suitable for edge devices
(wearables, implants)

Highly adaptable—tailored crypto for
edge, strong security when data moves to
public/cloud infrastructure

Compliance and Auditability Requires TLS logs and endpoint
audit trails

Clear separation of trust domains (edge,
hospital, cloud) allows enhanced security
controls and logging

Scalability Across Hospitals Single point of failure Multi-broker allows local independence
and central management in cloud

With the rise of quantum computing, existing cryptographic schemes—especially RSA
and ECC—face potential vulnerabilities. Further extension of this work could incorporate
post-quantum algorithms, such as lattice-based key exchange, particularly at the cloud
layer, where resources are more flexible. Additionally, 6G+ networks will enable ultra-low
latency and edge intelligence, making the proposed multi-broker architecture well-suited
for integration with 6G features like network slicing and secure edge processing. Future
work could include investigating the integration of quantum-resilient cryptography and
assessing the framework’s adaptability to 6G-enabled healthcare IoT systems.
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7.1. Positioning Within Current Research

Recent studies in IoT security have explored various lightweight encryption meth-
ods [4–14,16–20]. However, most existing works either focus solely on lightweight schemes
at the device level or employ TLS in monolithic, single-broker architectures that do not pre-
serve end-to-end confidentiality. This research builds on prior findings by integrating both
dimensions—efficient edge-layer encryption and robust cloud-layer protection—through a
modular, multi-broker MQTT framework.

7.2. Limitations of This Work

While the proposed system demonstrates strong performance and security under
standard operating conditions, several limitations must be acknowledged to inform fu-
ture research and practical deployments. We acknowledge the following: (1) static key
management—the current implementation uses pre-shared symmetric keys at the edge,
which may present management and scalability challenges in large-scale deployments;
(2) limited broker interoperability—the system was primarily tested using a specific MQTT
broker implementation, and broader compatibility with other brokers (e.g., HiveMQ,
EMQX) has not yet been fully validated; and (3) no real-time attack simulation—the system
was evaluated under normal operation scenarios, and future evaluations should include
adversarial testing for various attack surfaces.

7.3. Future Research Directions

Building on the proposed design, future research could explore the following:

1. Integration of post-quantum cryptographic algorithms, especially lattice-based key
exchanges, to ensure long-term cryptographic resilience.

2. Adapting the framework to 6G-enabled infrastructures, leveraging edge intelligence,
ultra-low latency, and secure slicing for healthcare-specific use cases.

3. Development of lightweight dynamic key exchange protocols, such as EDHOC or
identity-based encryption, to reduce reliance on static keys.

4. Embedding intrusion detection capabilities within the bridge application to detect
anomalies and enhance runtime security.

5. Extending performance evaluation to battery-powered IoT devices, including wear-
ables and implantables, in real hospital or smart clinic settings.

In conclusion, this work offers a practical and scalable contribution toward securing
healthcare IoT systems. By combining efficient cryptographic techniques with strategic
architectural layering, it addresses the core challenges of securing sensitive health data
without compromising performance or scalability.
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