
Application Layer Security: MQTT perspective with
TLS Implementation and Analysis

Saud S. Alharbi David Bell Wasan Awad

Department of Computer Science Department of Computer Science College of Information Technology

Brunel University

London, United Kingdom.

Brunel University

 London, United Kingdom

Ahlia University

Kingdom of Bahrain
saud.alharbi@brunel.ac.uk david.bell@brunel.ac.uk wawad@ahlia.edu.bh

Abstract - The Internet of Things (IoT) has become ingrained

in our daily lives, transforming the way we interact with

technology. From smart homes to wearable devices, IoT

enhances convenience and connectivity. However, this

widespread adoption raises security concerns. Recent years have

witnessed a surge in cyberattacks exploiting vulnerabilities in

IoT devices. Security lapses in device development and the sheer

volume of interconnected devices contribute to the challenges.

Data breaches and privacy infringements also loom large,

highlighting the need for a balanced approach to technological

advancement and robust cybersecurity measures to safeguard

personal information and ensure the positive impact of IoT on

daily life. In this study, we reviewed IoT encryption algorithms

with focus on the integration between the IoT application layer

and some encryption algorithms with focus on the MQTT

protocol. Additionally, we conducted a comparative performance

analysis of MQTT with and without TLS, highlighting the

impact of encryption on IoT communication in terms of

different performance metrics like CPU cycles, memory

consumption, latency and throughput.

Keywords - IoT data security, secure MQTT protocol, TLS,

MQTT, lightweight secure communication, IoT application layer.

I. INTRODUCTION

In the current landscape, the Internet of Things (IoT) has
[1] seamlessly integrated into our daily lives, revolutionizing
the way we interact with technology and the physical world.
From smart homes to wearable devices, IoT has become an
indispensable part of our routines, enhancing convenience,
efficiency, and connectivity. IoT's influence is prominently
visible in the realm of smart homes, where interconnected
devices like thermostats, lights, and security cameras
collaborate to create an intelligent living environment. Home
automation allows individuals to control various aspects of
their homes remotely, optimizing energy consumption and
ensuring security. Beyond the confines of homes, wearable
devices have also become prevalent. From fitness trackers
monitoring our physical activity to smartwatches seamlessly
connecting with our smartphones, these devices provide real-
time data that empowers individuals to make informed
decisions about their health and well-being. In the industrial
sector, IoT plays a pivotal role in enabling the concept of

Industry 4.0, where interconnected devices and sensors
enhance manufacturing processes, improve efficiency, and
enable predictive maintenance. This integration of IoT in
industries contributes to the evolution of smart cities,
intelligent transportation systems, and efficient energy
management. However, the widespread adoption of IoT comes
[2] with its own set of challenges, most notably in the realm of
security. As IoT devices proliferate, the attack surface for
malicious actors expands, leading to an increase in security
threats. Recent years have seen a surge in cyberattacks
targeting IoT devices, exploiting vulnerabilities to gain
unauthorized access, manipulate data, or launch large-scale
distributed denial-of-service (DDoS) attacks. One significant
security concern is the insufficient attention given to
cybersecurity measures in the development of IoT devices.
Many devices lack robust security protocols, making them
susceptible to exploitation. Additionally, the sheer volume and
diversity of IoT devices make it challenging to implement
standardized security practices across the ecosystem.
As the Internet continues to penetrate further [2] into various
aspects of human life and the physical environment, the
potential for cyber threats expands alongside. For instance,
even a smart coffee machine may possess vulnerabilities that,
if exploited, could grant an attacker unauthorized access to
manipulate all connected devices within a home network [3].
This includes critical components such as sensors and life-
supporting medical devices like insulin pumps or heart
pacemakers directly connected to the human body.

II. THEORETICAL BACKGROUND

In the realm of IoT, [4] cryptography seeks to fulfill two
fundamental objectives of information security: maintaining
the confidentiality and integrity of data. Encrypting the data is
essential to ensure its confidentiality as it traverses a
communication channel. Cryptography algorithms can be
categorized into two primary types: symmetric key and
asymmetric key ciphers illustrated in Fig. 1.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

Fig. 1. Cryptography algorithms [5]

As discussed in [5], in resource-constrained IoT devices,
block ciphers are favored over stream ciphers. Table I shows
that the most well-known algorithms are block ciphers.

TABLE I. IOT ENCRYPTION ALGORITHMS [5]

Structure

Type

Algorithms

SPN AES, Present, GIFT, SKINNY, Rectangle,
Midori, mCrypton, Noekeon, Iceberg,
Puffin-2, Prince, Pride, Print, Klein, Led,
Picaro, Zorro, I-Present, EPCBC

FN DESL / DESXL, TEA / XTEA/ XXTEA,
Camellia, Simon, SEA, KASUMI, MIBS,
LBlock, ITUbee, FeW, GOST, Robin,
Fantomas

GFN CLEFIA, Piccolo, Twis, Twine, HISEC

ARX Speck, IDEA, HIGHT, BEST-1, LEA

NLFSR KeeLoq, KATAN/KTANTAN, Halka

Hybrid Hummingbird, Hummingbird-2, Present-
GRP

In this section, we present a survey of lightweight
encryption algorithms tailored for the Internet of Things
(IoT). Additionally, we identify certain gaps in the existing
literature. The survey encompasses a compilation of recent,
high-quality publications pertaining to lightweight encryption
algorithms for IoT. Most of the selected research papers were
published after the year 2020. The Google Scholar search
engine served as the primary tool for sourcing these papers. It
is noteworthy that a substantial proportion of the reviewed
papers garnered notable citation counts, although it is
observed that papers published subsequent to the year 2023
may exhibit fewer citations, underscoring the possibility of
high-quality contributions with less citations.

The Internet of Things (IoT) [1] refers to the network of
interconnected devices or things, enabling them to
communicate, exchange data, and operate seamlessly to
enhance efficiency and convenience in various domains.
Kevin Ashton introduced the IoT paradigm in 1998 [1].
Within an IoT network, diverse and heterogeneous devices,
along with varied communication protocols, facilitate the

collection and exchange of data among different nodes within
the network.

Several methods [6] can be employed to secure MQTT
communication, focusing on either securing the MQTT broker or
the data being transferred. Securing the MQTT broker involves
several techniques. One technique is restricting access based
on unique client IDs. Another technique is authenticating
clients with valid credentials using a username and password,
although these are transmitted in plain text. Additionally,
installing and maintaining x509 client certificates on client
applications and devices enhances security. Securing data
transfer methods include utilizing the TLS protocol to establish
an encrypted tunnel for MQTT message transfer, though TLS
support may be limited on some client devices. Another method
is implementing encryption and decryption routines at the
client level to secure data endpoints within the MQTT
communication protocol. The three-layer architecture, the
most common model in IoT networks [1], comprises the
application layer, network layer, and perception layer. In the
four-layer architecture, compared to the three-layer model, an
additional layer, the data processing layer, is incorporated.
Expanding on the three- layer model, the five-layer
architecture introduces two extra layers: the business layer and
the data processing layer. Since the application layer is the most
common communication model on IoT, it will be explained in
further detail.

1) Perception Layer: The perception layer [2] in IoT is a
pivotal component responsible for interfacing with the
physical environment. It incorporates various sensors and
devices to collect data, enabling the system to make informed
decisions. Devices in this layer, such as sensors and RFID
tags, gather information on environmental conditions and
object presence. The collected data is processed locally or
transmitted for further analysis, facilitating quick decision-
making and efficient system operation. In essence, the
perception layer bridges the gap between the physical world
and the digital realm of the IoT system, facilitating data
acquisition and laying the foundation for intelligent decision-
making.

2) Network Layer : The IoT network layer [7] is crucial for
managing communication among IoT devices. It ensures
seamless connectivity, utilizes protocols for standardized data
exchange, handles scalability challenges, implements security
measures, and maintains reliability in data transmission.
Essentially, it forms the backbone of the IoT ecosystem,
enabling efficient and secure interactions between
interconnected devices. In the context of IoT network layer
protocols, Zigbee and 6LoWPAN are indeed more fitting
examples. Zigbee is a low-power, short-range wireless
communication protocol suitable for IoT devices, promoting
efficient connectivity in home automation and industrial
settings. 6LoWPAN (IPv6 over Low-Power Wireless
Personal Area Networks) enables the transmission of IPv6
packets over low-power and lossy networks, optimizing
communication for resource-constrained IoT devices. These
network protocols enhance the functionality of the IoT

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

network layer by providing reliable, standardized
communication mechanisms for interconnected devices.

3) Application Layer: The IoT application layer [1] is the top
layer in the architecture, facilitating user interaction,
processing and analyzing data, and implementing application-
specific functionalities. It integrates with external systems,
ensuring security, and access control, making the IoT system
user- friendly and adaptable to various domains. Two major
protocols exist in the application layer of IoT explained in [1].

• Message Queuing Telemetry Transport (MQTT) is a
lightweight message passing protocol developed to
facilitate data exchange among numerous devices in a
network. Employing a publish/subscribe mechanism
with a central server or broker, MQTT enables reliable
message publication in low-bandwidth networks. Initially
proprietary in the oil and gas industries for SCADA
systems, MQTT has evolved into an open-source standard
for connecting millions of IoT and industrial IoT devices
across various applications like remote monitoring, health
parameter tracking, and motion detection. The MQTT
protocol offers diverse authentication mechanisms and
encryption techniques based on TLS.

• Constrained Application Protocol (CoAP) is
specifically designed for use with constrained nodes, such
as IoT devices, and networks, including building
automation. Operating as a client-server protocol, CoAP
enables one node (client) to command another by
transmitting CoAP packets. A notable advantage of CoAP
is its capability to integrate resource-constrained devices
into IoT networks, even in environments with limited
resources like low bandwidth and network availability.
CoAP finds predominant adoption in Machine-to-Machine
(M2M) scenarios, including applications in smart homes,
smart energy, and building automation.

Other IoT application layer protocols with their security
weaknesses were discussed in [1], like XMPP, mDNS, SSDP.

A. Edge Computing in The Context of IoT

Edge computing in the context of IoT [3] involves
processing data closer to the source of generation, typically
near or on the IoT devices themselves, rather than relying
solely on centralized cloud servers. This approach reduces
latency, enhances real-time processing capabilities, and
alleviates the burden on network bandwidth. By distributing
computing power to the edge of the network, edge computing
improves the efficiency and responsiveness of IoT
applications, making it particularly valuable for time-sensitive
tasks, data privacy, and overall system performance.
According to [3] and [1], edge computing architecture can be
utilized in order to outsource some cryptographic functions to
reduce the overhead on IoT resource-constrained devices.
Edge computing addresses challenges related to device
mobility and latency by strategically positioning storage and
processing resources in an intermediate layer between smart
devices and fog/cloud computing platforms. This approach
optimizes data processing and analysis by bringing

computational capabilities closer to the source of data
generation.

However, as explained in [3] and [1], introducing edge
computing in IoT encryption may expose other types of security
threats by potentially decentralizing encryption processes,
leading to increased vulnerability. Distributing encryption tasks
across edge devices could create points of attack, necessitating
robust measures to safeguard against unauthorized access and
potential breaches as they operate in more malicious
environments.

B. IoT Encryption Algorithms

The traditional encryption protocols face challenges in IoT
environments due to the unique characteristics of IoT devices
[3],[1],[2],[7],[5]. IoT devices often have constrained
computational resources, making traditional encryption
impractical. High energy overhead and large data size in
encrypted payloads can deplete limited power sources and
hinder network efficiency. Complex key distribution and
management are challenging in dynamic IoT ecosystems.
Traditional encryption may introduce unacceptable delays in
applications with stringent latency requirements.
Implementing traditional encryption may require additional
hardware, increasing device costs. Scalability becomes
difficult when adapting traditional encryption to the vast and
diverse IoT ecosystem. To address these issues, lightweight
encryption protocols are preferred in IoT, striking a balance
between security and resource efficiency.

The following list explains some lightweight IoT
encryption algorithms from various aspects based on the
reviewed research papers. The papers discussed the IoT
encryption on application layer are excluded from the below
list as it will be discussed in another section of this paper, i.e.
section D. below.

1) Traditional encryption techniques [8] like RSA or AES
demand significant computational resources and extensive
memory, potentially leading to a detrimental impact on device
performance. Simpler encryption methods are susceptible to
compromise, while cryptographic algorithms are consistently
improved for server and desktop environments, deploying
these advancements on resource-limited devices poses
significant challenges. Moreover, a new algorithm was
introduced in [8], then the authors utilized FELICS (Fair
Evaluation of Lightweight Cryptographic Systems) to compare
the performance and security of the new algorithm including
Advanced Encryption Standard (AES), PRESENT
cryptography algorithm, HIGHT cryptography algorithm,
SIMON&SPECK encryption algorithm, and A Lightweight
Encryption Algorithm for Secure Internet of Things (SIT). The
FELICS offers a comprehensive comparison of key
scheduling, encryption, and decryption performance across
multiple lightweight algorithms. The proposed algorithm
demonstrates exceptional efficiency, notably requiring far
fewer cycles for key scheduling (1641 cycles), encryption (803
cycles), and decryption (800 cycles) compared to its peers.
This outstanding performance underscores its speed and
resource optimization, positioning it as a promising solution

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

in lightweight cryptography.

2) As discussed in [7], there are different attacks on IoT per
IoT layer, mainly on network and application layers: The
network layer faces routing attacks such as sinkhole and
selective forwarding in its multi-hop environment. DDoS
attacks exploit this layer through spoofing and routing path
modifications. Eavesdropping poses a significant threat,
compromising system security and privacy by providing
attackers access to crucial information about network nodes,
impacting Quality of Service (QoS). Insecure networks
become prime targets for eavesdroppers, posing risks of
identity theft and financial loss. The application layer is
susceptible to direct end-user access, creating vulnerabilities
for unauthorized users. Protocols like MQTT, XAMPP, and
COAP aim to safeguard against attacks but remain vulnerable.
Security threats such as DDoS, sniffing, malicious node
injection, and phishing directly impact application
functionality, posing significant risks. More attacks on
6LoWPAN were discussed in [9], with additional references
provided for potential solutions aimed at safeguarding
6LoWPAN like [10], [11]. In [11], The author addresses the
unique security challenges posed by IoT devices, stressing the
need for tailored encryption protocols and authentication
processes distinct from traditional internet security. In their
proposed method, the authors conduct a comparative analysis
between two encryption mechanisms: AES (Advanced
Encryption Standard with a 128-bit key) and PRESENT with
an 80-bit key. The authors believe that the PRESENT
algorithm is lightweight and more suitable for IoT.

3) As stated in [4], four cryptographic algorithms are
currently in the process of establishing themselves as the
standard for Lightweight Cryptography (LWC). These
algorithms were put forward for inclusion in the ISO/IEC
29192 standard for LWC, developed in 2012. The algorithms
under consideration are SIMON, SPECK, PRESENT, and
CLEFIA. The authors proposed the creation of a novel
Lightweight Cryptography (LWC) solution by incorporating
the most favorable features from each of the four algorithms.
This fresh cryptographic solution should exhibit flexibility
concerning block and key sizes, demonstrate efficient
performance in both hardware and software implementations,
and possess resilience against diverse cryptanalytic and
brute- force attacks. The development of the new algorithm
could involve integrating elements from each of the four
algorithms:

• Simon, introduced by the National Security Agency's
research directorate (NSA) in June 2013, is a block cipher
designed for use in constrained environments with limited
computational power and energy resources. Leveraging
the NSA's extensive cryptography expertise, Simon is
deemed secure and belongs to the Feistel network family.
This family provides advantages in hardware due to the
similarity between encryption and decryption operations,
resulting in a reduced hardware requirement and a more
compact circuit. Simon employs a straightforward round
function incorporating basic operations such as XOR,
AND, and left circular shifts.

• In contrast to Simon's focus on hardware optimization,
SPECK is tailored for software-based implementations,
especially on microcontroller processors.Noteworthy for its
speed and low memory consumption, SPECK performs
only 32 operations on the input and does not rely on a lookup
table. Like Simon, SPECK is based on the Feistel structure,
involving bitwise XOR, modular addition, and circular
shifts in each Feistel round.

• PRESENT, a hardware-oriented block cipher, follows the
Substitution- Permutation network (SPN) design [4],[12].
Accepting a 64-bit block size and offering key sizes of 80
and 128 bits, PRESENT is suitable for applications
prioritizing performance over high security. The cipher
assumes data to be encrypted is of small to medium size,
aligning with its focus on space and performance
optimization for devices with average power consumption.

• CLEFIA, a 128-bit block cipher, supports various key
sizes, including 128, 192, and 256 bits. Structured on the
Feistel network with four data lines and two 32-bit f
functions per round, CLEFIA incorporates a diffusion
switching mechanism (DSM) in its f-functions to enhance
resistance against specific attacks. Additionally, CLEFIA
employs a compact key scheduling approach and a
doubleswap function for efficient round key generation,
making it suitable for both software and hardware
implementations. The algorithm supports multiple key
sizes and utilizes two distinct 8-bit S-boxes [4],[13].

4) As discussed in [5], organizations and research groups
actively contributing to advancements in cryptography for
enhancing lightweight standards in resource-constrained
devices include:

• National Institute of Standards and Technology, USA
(NIST)

• International Organization of Standardization and the
International Electrotechnical Commission (ISO/IEC)

• Cryptography Research and Evaluation Committees, Japan
(Cryptrec)

• European Network of Excellence in Cryptology (Ecrypt)

• National Security Agency of the USA (NSA)

• CryptoLUX (University of Luxembourg)

Among the cryptographic algorithms, only PRESENT and
CLEFIA have received approval from the ISO/IEC 29192
standard. Meanwhile, Cryptrec targets AES, CLEFIA, TDES,
Camellia, PRESENT, PRINCE, Piccolo, LED, TWINE,
SIMON & SPECK, and Midori.

5) PRESENT [14] is a well-known lightweight block cipher.
Developed in 2007 by A. Bogdanov et al., this cipher is based
on a substitution-permutation structure. It features a 64-bit
block size, keys of lengths 80 bits (PRESENT80) and 128 bits
(PRESENT128) and comprises 31 rounds. It was certified as a
standard lightweight block cipher by the International
Organization for Standardization (ISO / IEC 29192-2) in 2012.

• Problem Statement : Renowned for its lightweight and
efficient publish-subscribe messaging model, the MQTT
protocol serves as the backbone for numerous IoT

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

deployments [5]. Nevertheless, its vulnerability to various
threats arises from the absence of built-in security
mechanisms. There are many studies that have been
carried out to address data security issues in the MQTT
protocol using cryptography. By default, [15]
transmissions through MQTT on port 1883 remain
unencrypted. However, for safeguarding sensitive
information within messages, the MQTT specification
suggests employing the TLS protocol on port 8883. While
many brokers and MQTT platforms support TLS, it
comes with significant overhead. Upon message
publication, the TLS protocol necessitates a handshake
process. Despite IoT payloads being small, they are
transmitted frequently. Frequent use of TLS protocol
mandates repeated reconnections and handshake
processes due to the intermittent nature of IoT
connections, leading to substantial power and
computation consumption. Additionally, the TLS session
persists until the MQTT client completes its tasks, which
is not advantageous for short-lived connections. This
research demonstrates the impact of using TLS with the
MQTT protocol, particularly highlighting the challenges
posed by TLS in terms of CPU cycles, memory
consumption, latency and throughput.

• Related Work: In this section, research papers that
explore IoT encryption protocols are investigated, and
the incorporation of these algorithms into the MQTT
communication protocol is examined. Message Queuing
Telemetry Transport (MQTT) is anticipated to become
the predominant messaging standard for the Internet of
Things (IoT). It is imperative for MQTT to establish
efficient security measures. However, a notable
drawback of MQTT is its absence of inherent protection
mechanisms. Existing approaches have introduced
processing overhead to devices and remain susceptible to
various attacks. Originally developed by IBM as an
affordable Machine-to- Machine (M2M) interaction
protocol operating atop TCP, MQTT serves as a data
communication protocol within the IoT context and has
gained recognition from OASIS. Hintaw et al. proposed
a modified AES protocol called RSS, comparing it with
the original AES and addressing the need for enhanced
security without significantly increasing implementation
costs [16].

Rahman et al. introduced a new protocol called S-MQTT
by integrating the original MQTT with the Elliptic Curve
cryptosystem (ECC) [17]. ECC, a public key cryptosystem
similar to RSA, operates with one key for encryption and
another for decryption. It relies on the mathematics of elliptic
curves, utilizing the coordinates of points on the curve for
these operations. The key advantage of ECC lies in its ability
to achieve an equivalent level of security with much shorter
key lengths compared to other public key cryptosystems.
Furthermore, ECC's security level increases more rapidly
with key size than integer-based discrete logarithm or RSA-
based systems. ECC also boasts faster implementation,
requiring less bandwidth and power, making it particularly

valuable for resource-constrained systems with limitations in
computing power, memory, and battery life. Nevertheless, no
performance analysis was presented in comparison to other
encryption methods (Rahman et al., 2018). More-over the IoT,
yet they remain vulnerable to multiple attacks. The authors
introduced a dynamic adaptation of the AES algorithm (D-
AES) tailored for MQTT security by reconfiguring key
expansion, ShiftRows, and SubBytes transformations of the
AES algorithm. Publishers encrypt the payload of MQTT
packets using the D-AES algorithm. Additionally, the
symmetric key of the D-AES algorithm undergoes encryption
using the KeyPolicy Attribute-Based Encryption (KP-ABE)
scheme. Subsequently, the encrypted payload and key are
transmitted to the broker, which then relays them to
subscribers. Subscribers initiate a request for the key to an
external authority, which executes the key generation
algorithm and sends the decryption key to the subscribers.
Experimental results suggest that the proposed method
marginally increases execution and processing times while
introducing significant traffic overhead (Hintaw et al., 2023).
 Iqbal et al. enhanced the security of MQTT by utilizing
ARIA as an encryption algorithm and MbedTLS to establish
secure communication channels [18]. The usage of MbedTLS
facilitated the establishment of secure connections, allowing
for the encryption and decryption of MQTT messages. As a
result, the sensitive data transmitted within the IoT network is
safeguarded. ARIA, the Advanced Encryption Standard (AES)
designed for the Republic of Korea, stands as the foundational
cryptographic algorithm. Originating from the Korean Agency
for Technology and Standards (KATS), ARIA is widely
acknowledged for its strong encryption features and seamless
compatibility with AES. This study incorporates the ARIA
cryptography algorithm into MQTT, facilitating secure data
transmission within IoT networks using a symmetric key
encryption approach to ensure the confidentiality and integrity
of data. MbedTLS, an open- source cryptographic library
created by Arm Limited, provides a comprehensive array of
cryptographic functions and protocols, establishing itself as a
reliable option for secure communication in IoT deployments.
However, no performance evaluation was conducted on the
new protocol in comparison to other similar protocols (Iqbal et
al., 2023).
Wijayanto et al. evaluated the effectiveness of AES, Grain V1,
and RC4 algorithms against passive sniffing attacks and their
performance in data processing time. Results demonstrate that
all three algorithms successfully thwart passive sniffing
attacks. Furthermore, the study assessed the resistance of these
algorithms to cryptanalysis by comparing the time required to
break their keys. The findings reveal that AES exhibits the
highest resistance, making it the safest choice compared to
Grain V1 and RC4. Additionally, performance testing was
conducted to assess encryption and decryption processing
times for each algorithm. RC4 emerged as the fastest
algorithm, with an average encryption time of 20.4
microseconds, followed by Grain V1 with 763.4 microseconds,
and AES with 796.84 microseconds. Similarly, RC4
demonstrated superior decryption performance, with an

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

average time of 0.13 microseconds, followed by Grain V1
with 0.18 microseconds, and AES with 1.16 microseconds
(Wijayanto et al., 2023) [19].
 Al-Ani et al. conducted a comprehensive examination of

the MQTT protocol, incorporating experimentation on an
MQTT system employing diverse cryptographic techniques,
namely AES-CBC, RSA, and ECC AES Hybrid Scheme, to
evaluate processing time and message size. Results suggest
that encrypting payloads increases both processing time and
message size. Among the cryptographic techniques tested,
RSA demonstrates the longest processing time, followed by
ECC AES Hybrid Scheme and AES-CBC.

Additionally, the study assesses the effectiveness of attack
prevention between standard MQTT and secured MQTT
setups by simulating various IoT attacks, including black-box
penetration, identity spoofing, DoS, and MITM attacks. The
findings and ensuing discussion shed light on the
cryptographic algorithms that impose the most overhead on
standard MQTT implementation and their resilience against
common attacks, addressing the research question at hand (Al-
Ani et al., 2023).

Jayan and Harini explored the advantages of employing
cryptographic algorithms to mitigate the effects of spoofing on
MQTT networks. Their approach involves encrypting the
payload of MQTT packets before publishing, utilizing Rivest-
Shamir-Adleman (RSA) and ECC algorithms. Their
experimental findings indicate that ECC exhibits lower time
complexity compared to RSA, rendering it a superior option
for IoT devices (Jayan and Harini, 2018) [20].

De Rango et al. devised a dynamic IoT security system
aimed at thwarting attacks on the MQTT protocol. Their
approach involves employing elliptic curves to encrypt
MQTT payloads, thereby preventing eavesdropping and data
tampering attacks. Additionally, they utilize timestamps and
wake-up patterns to mitigate replay attacks. Enhancements in
energy efficiency were achieved by adjusting the key strength
of the ECC algorithm, albeit leading to heightened system
overhead (De Rango et al., 2019).

 Hamad et al. provided a model called SEEMQTT for IoT
systems to ensure secure end-to-end MQTT communications.
This model is designed to address vulnerabilities in MQTT
communications and improve security through a combination
of secret sharing and trust delegation mechanisms (Hamad et
al., 2022).

Varma and UniKrishnan explored MQTT, a lightweight
messaging protocol where the payload serves as the conduit
for the transmitted data, for its susceptibility to cyber-attacks,
specifically the Man-in-the-Middle (MITM) attack. The paper
investigates the susceptibility of the payload to cyber-attacks
by subjecting it to two different security measures. Initially,
channel-based security using the Transport Layer Security
(TLS) is applied to the payload, followed by object-based
security using the Advanced Encryption Scheme (AES). Both
encryption techniques for securing MQTT protocol payloads
are thoroughly examined and discussed (Varma and
UniKrishnan, 2021).

 Dewanta et al. introduced the SibProMQTT methodology
designed to safeguard MQTT communication against Sybil
attacks. The SibProMQTT approach achieves attack mitigation
through mechanisms such as message lifetime verification,
session key validation, and concealment of private information.
Experimental findings demonstrate that SibProMQTT can be
effectively implemented on the ESP32, a low-computational-
resources hardware commonly utilized in IoT devices, incurring
computational costs of 8.30 ms and 8.44 ms for SHAI and
SHA256 hash function usage, respectively. Furthermore, post-
installation of SibProMQTT on the ESP32, there remains ample
space available for additional computations. Additionally, it
was discussed that both TLS and authenticated key exchange
(AKE) approaches are too expensive for MQTT IoT
environments with few resources (Dewanta et al., 2023).

Sadio et al. advocated for the adoption of ChaCha20-
Poly1305 AEAD as a means to ensure secure communication
among constrained nodes over MQTT/MQTT-SN. ChaCha20
and Poly1305 are recognized as lightweight stream cipher and
one-time authenticator, gaining prominence within the crypto
community. They developed a prototype of this solution
implemented on constrained nodes such as Arduino UNO. The
paper primarily focuses on presenting results concerning
memory usage and execution time. Findings demonstrate that the
proposed scheme demands minimal memory footprint and boasts
low processing time (Sadio et al., 2019).

Fan et al. proposed payload encryption using hierarchical
identity-based encryption (HIBE) for MQTT. The proposed
scheme exhibits superior performance in terms of time
complexity and offers protection against replay attacks. In the
event of an attacker attempting to resend a message, the system
remains unaffected, and the subscriber simply receives the same
message again. Furthermore, they formally demonstrated the
security of the proposed MQHIBE scheme within the standard
model (Fan et al., 2023).

Ahmad et al. examined a technique for enhancing the
security of the MQTT protocol through the implementation of
TLS and evaluated its performance. By employing TLS in
MQTT, messages transmitted from MQTT clients to servers
are encrypted. Analysis conducted using Wireshark
demonstrated that integrating TLS into MQTT effectively
encrypts messages within network traffic. The performance
analysis encompasses both the CPU utilization of the
application engaged in the MQTT protocol and the packet size
of the transported messages (Ahmad et al., 2023).

Sahmi et al. utilized the PRESENT encryption algorithm to
encrypt MQTT messages (Sahmi et al., 2021). Hkiri et al.
discussed the implementation of four lightweight cryptographic
algorithms—PRESENT, LED, Piccolo, and SPARX—on a
Contiki-based IoT operating system designed for IoT platforms
[21].

The evaluation includes an assessment of RAM and ROM
usage, power and energy consumption, and CPU cycle count.
The Cooja network simulator is employed in this study to
identify the most suitable lightweight algorithms for IoT
applications utilizing wireless sensor network technology
(Hkiri et al., 2022).

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

The literature on securing MQTT within IoT environments
reveals a consistent focus on balancing security with the
limitations inherent to resource-constrained devices. While
numerous encryption protocols have been proposed and
tested, each comes with its own set of trade-offs between
enhanced security, processing time, and system overhead.

A key insight from this review is the critical need for
lightweight encryption techniques that do not compromise the
efficiency of MQTT. The AES-based adaptations and ECC
implementations emerge as prominent solutions, offering
strong security while maintaining reasonable performance
metrics. However, these solutions often introduce
complexities that may not be suitable for all IoT use cases,
particularly in environments with extremely limited
computational resources. In summary, while significant
strides have been made in enhancing the security of MQTT,
the quest for an optimal solution—one that seamlessly
integrates strong encryption with minimal performance trade-
offs—continues to drive research in this critical area of IoT
security.
Table 2 presents a summary of various research works
focusing on encryption protocols and their performance when
integrated with MQTT. The studies evaluate different
encryption techniques and their effectiveness in providing
security while maintaining performance efficiency. This
comparative analysis highlights the strengths, limitations and
testbed of each approach.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

TABLE II. COMPARISONS OF DIFFERENT MQTT ENCRYPTION METHODS

Research

Work

Year

of

Public

ation

Encryption

Protocols

Performance

Tool

Testbed Strengths Limitations

[18] 2023 -ARIA chipper Wireshark Hardware: Combination of ARIA and TLS provided the -TLS might be not suitable for many IoT
-TLS -Raspberry Pi 3B+ necessary encryption, authentication, and data environments as it is heavy protocol.

-Raspberry Sense HAT integrity mechanisms -No comparison with other protocols.
-Artix-7 CMOD A7 -Using Wireshark
Software: -Complex Testbed
-Modified PahoMQTT

-mbedTLS
[17] 2018 ECC Hardware: Using ECC is better choice when compared to -Lack of comparison with other protocols

-ATmega328P RSA and more lightweight -Using symmetric encryption is more
Software: suitable for IoT when compared to
-Node Js Server symmetric encryption.
-MongoDB
-Eclipse Mosquitto
-MQTT V3.1.1

[22] 2023 -AES-CBC Hardware: -Good evaluation of the three protocols against -Limited to Performance evaluation and
-RSA ESP32 DEVKITV1 four attack implementations: black box four attacks.
-ECC AES Raspberry Pi 3B+ penetration, entity spoofing, DoS and MITM.
Hybrid Scheme Software:

Eclipse Paho MQTT

[23] 2018 -ECC
-RSA

Wireshark Hardware: Not mentioned
Software:
Not Mentioned

-Focus on spoofing attacks in IoT environments. -No details about Testbed.
- No detailed and clear analysis

[20] 2019 -ECC Not
Mentioned

Hardware: -Prevents reply attacks -Lack of comparison with other protocols

-ESP8266 -IDS for the validation of packets timestamps -Using symmetric encryption is more
-ATmega328P -Analysis for power consumption suitable for IoT when compared to
-Sensor DHT11 symmetric encryption.
Software:

-bcprov-jdk15on-160 library
 for ECC.

[24] 2022 -open-source Hardware: -Novel work by introducing SEEMQTT which -Complex setup
Arduino -Espressif ESP32-WROOM-32D as provide MQTT main functions. Other papers use
platform publisher existing MQTT implementations and integrate
- IBE -Seven Raspberry Pi 4 Model B

(RPI4)
them encryption protocols.

-AES one was used as a broker and one
as
subscriber and rest for key stores.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-
an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

[25] 2021 -TLS Hardware:

-Different Laptops
-Software

-Kali Linux
-Paho MQTT client

-MITM attack was analyzed on MQTT with and
without TLS and AES in different scenarios.

-Testbed is not simulating real IoT
environment.
-No performance evaluation.
-TLS and AES is expensive solutions for
IoT with low computational resources.

[26] 2023 -SHA1
-SHA256

Wireshark Hardware:
-Laptop
-Raspberry
Pi 4b+
Software:
-MQTT (HiveMQ)

-Provided approach to protect Sybil attacks such as
reply back attacks.
-Provided security and performance evaluation
under some scenarios.

- Despite the usage of hashing algorithms,
encryption protocol is not mentioned in the
analysis.
-No comparison with other encryption
protocols in terms of security and
performance analysis.

[27] 2019 -ChaCha20
- Poly1305

Not mentioned Hardware:
- Arduino Uno
- Raspberry Pi Software:
- Arduino Cryptography Library
-Eclipse Paho MQTT-SN library
-Mosquitto /RSMB as MQTT
broker

-Provided results related to memory footprint and
execution time.
-Provided solution suitable for constrained
resources in terms of memory and processing time.

-No comparison with other encryption
protocols in terms of security and
performance analysis.
-No power consumption analysis.

[15] 2023 ID-based
encryption

Python libraries on a
Ubuntu 18.04.4 LTS
Linux system

Hardware:
-Laptop with Ubunto Linux

-Provided security proof as well as comparison
with TLS and a comparison to the work in [28].

-No comparison with other protocols.
- Decryption cost is high compared with
MQTT with TLS.

[29] 2023 TLS Wireshark Hardware:
-Raspberry Pi
-ESP32
Software:
Mosquitto
MQTT

-Provided practical way of integrating TLS with
MQTT.

-TLS is not suitable for IoT devices with
low resources.

[30] 2021 PRESENT Not Mentioned Not Mentioned -Provided an approach to integrate PRESENT with
MQTT. PRESENT is lightweight protocol with a
low resources consumption compared to other
protocols.

-No security nor performance evaluation.
-More details is needed to prove the
effectiveness of the protocol.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-
an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

The studies provided in Table 2 cover a wide range of
encryption protocols, including ARIA, ECC, AES, RSA,
ChaCha20, Poly1305, and PRESENT. Each protocol offers
different strengths and limitations, highlighting the importance
of selecting the appropriate encryption technique based on
specific IoT requirements. Also, various performance tools
such as Wireshark and different hardware and software
configurations are used across the studies. This diversity in
testing environments underscores the need for standardized
evaluation methods to ensure consistent and comparable
results. A recurring theme in the research is the trade-off
between security and performance. While protocols like TLS
and AES provide strong security, they are often deemed too
heavy for low-resource IoT devices. Conversely, lightweight
protocols like ECC and PRESENT offer better performance
but may not provide the same level of security.

III. IMPLEMENTATION AND PERFORMANCE ANALYSIS OF

TLS IN MQTT PROTOCOL

 This section discusses the implementation and analysis of
TLS in MQTT using self-signed certificate. The publisher and
subscriber were implemented in Python and integrated with
TLS protocol. The self-signed certificate was generated using
Ubuntu OpenSSL tool. This section provides performance
analysis of MQTT with TLS compared to MQTT without any
encryption. Fig 2 shows the hardware and software setup used
to implement the TLS and analyze its performance against non-
TLS implementation of MQTT.

Fig. 2. Testbed Hardware and Software Setup

 The performance that will be conducted in this study is
related to comparing TLS and non-TLS implementations of
MQTT using the following performance metrics from the
publisher side: average CPU utilization in terms of CPU
cycles, peak memory usage and throughput. The following
metric is calculated from subscriber side: average latency.
The publisher represents the IoT resource-constraint device
while the subscriber represents the end user device to manage
and control the IoT device.

A. Hardware Setup

The hardware used in this study includes a MacBook Pro
with 16GB RAM and an Apple M1 Pro chip featuring an 8-
core CPU, which hosts a virtual server acting as a subscriber.
The publisher runs on a laptop with 16GB RAM and an Intel
i7 CPU. Additionally, the MQTT broker is hosted on a cloud
server in AWS, which has specifications of 1 vCPU and 2GB
of RAM.

B. Software Setup

The software used in this study is based on Mosquitto
MQTT version 2.0.18 running on the AWS server. Also, the
software part contains Paho MQTT client of version 1.5.1
running as publisher and subscriber. The publish and
subscriber are running Ubuntu 22.04 LTS while the broker is
running Ubuntu 24.04 LTS. The analysis is performed by
utilizing Ubuntu tools: perf and psutil.

C. Methodology

The publisher component is responsible for connecting to
the MQTT broker, reading the image files, and encrypting
them (if using TLS). Each encrypted image file is then
published along with a timestamp. Throughout the
publishing process, the CPU and memory usage are
monitored and logged in the publisher, i.e. representing the
IoT device. The subscriber component connects to the
MQTT broker and subscribes to the topic. It receives the
messages, decrypts them (if using TLS), and measures the
latency. The latency is measured by comparing the current
time with the timestamp sent with the message. This
approach encountered synchronization issues between the
publisher and subscriber systems, leading to inaccurate
latency measurements.
 To resolve this, the subscriber was configured as a time
server for the publisher to ensure accurate timestamp
between the publisher and subscriber. The CPU and memory
usage in the publisher are monitored using the ‘psutil’ and
‘perf’ Linux libraries. Data points are collected at regular
intervals, and the average CPU and memory usage over the
duration of the experiment are computed. The Latency is
measured by calculating the time difference between the
current time and the timestamp sent with each message. The
latency values are stored, and the average latency is
computed at the end of the experiment.
 The throughput is calculated in terms of actual network
load using the size of the messages sent over the elapsed time.
This gives a more accurate representation of the performance
impact on the network. As shown in Fig 3, the subscriber is
initiated first, establishing a connection with the MQTT
broker and entering a state of readiness to receive messages.
This proactive start ensures that the subscriber is fully
prepared to handle incoming messages as soon as they are
published.
 Once the publisher begins its operation, as illustrated in
Fig 4, it connects to the same MQTT broker and starts
publishing the pre-determined number of messages (100,
500, or 1000) to the designated topic. Each message,

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

consisting of a 10KB file, is encrypted (in the case of TLS)
and timestamped before being sent. As illustrated in Fig 5,
the subscriber began processing messages after the publisher
was initiated.
 The test is conducted four times for each scenario, with the
publisher sending 10, 50, 100 and 500 messages, respectively.
As the publisher starts transmitting these messages, the
subscriber, already in a listening state, promptly receives and
processes each message. This immediate processing by the
subscriber minimizes latency and ensures that messages are
handled efficiently. The synchronization between the start of
the subscriber and the subsequent message flow from the
publisher is critical for the accurate measurement of
performance metrics, such as latency, throughput, CPU, and
memory usage.

Fig. 3. Subscriber waiting for messages

Fig. 4. Publisher start publishing messages

Fig. 5. Subscriber processing messages and latency

 To switch between TLS and non-TLS onfigurations in the
broker, subscriber, and publisher, the use_tls parameter is
utilized. When use_tls is set to True, the broker is configured
to listen on port 8883 and use the specified TLS certificates.
The subscriber and publisher are also set to connect to port
8883 and use the appropriate CA certificate for secure
communication. Conversely, when use_tls is set to False, the
broker listens on port 1883 without any TLS settings, and the
subscriber and publisher connect to this non-secure port. For
example, in the broker configuration file (mosquitto.conf),
enabling TLS would involve setting the listener to port 8883
and specifying the paths to the CA certificate, server
certificate, and server key:

listener 8883
allow_anonymous true
cafile /etc/mosquitto/certs/ca.crt
certfile /etc/mosquitto/certs/mosquitto.crt
keyfile /etc/mosquitto/certs/mosquitto.key

For non-TLS, the configuration would simply include:

listener 1883
allow_anonymous true

 In the subscriber and publisher scripts, the use_tls
parameter controls the configuration. When use_tls is True,
the scripts set the port to 8883 and configure TLS settings.
When use_tls is False, they connect to port 1883 without
TLS settings.

use_tls = True # or False for non-TLS
port = 8883 if use_tls else 1883
ca_cert = "/path/to/ca.crt" if use_tls else None

 This setup ensures that the system can flexibly switch
between secure and non-secure communication modes by
adjusting the use_tls parameter and the corresponding

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

configuration settings in the broker, subscriber, and publisher.

IV. DISCUSSION

A. Results

The results of the experiment include the average latency
(milliseconds), throughput (bytes per second), CPU cycles and
Peak RSS (Resident Set Size) for each scenario (10, 50,100
and 500 files each one 10KB of size). These metrics provide a
comprehensive view of the efficiency and overhead
introduced by TLS encryption compared to non-TLS
communication for varying message volumes.
 In Fig 6, the comparison of CPU cycles from publisher side
is shown for each scenario (10, 50 , 100 and 500 files). The
CPU cycles are generally higher for the TLS configuration,
which reflects the increased computational load due to
encryption. As the number of messages increases, the
difference in CPU cycles between TLS and non-TLS
configurations becomes more pronounced. Higher CPU cycles
observed for TLS indicate more processing power is required
for secure communication. This can lead to higher power
consumption, which is a critical factor for battery-powered
IoT devices.

Fig. 6. Publisher CPU cycles comparisons

When evaluating the performance of IoT devices, Peak RSS
(Resident Set Size) is a critical metric. It indicates the
maximum amount of memory a process occupies during its
execution. Given the constrained resources of IoT devices,
managing memory usage effectively is essential to ensure
reliable and efficient operation. In Fig7, the Peak RSS values
are presented for non-TLS and TLS protocols over varying
message counts. TLS introduces a clear increase in Peak RSS
compared to non-TLS. The overall memory usage increase
is approximately 1 MB. This difference, although modest on
a laptop, can be significant for IoT devices with very limited
memory.

Fig. 7. Peak RSS comparison

 For each message count (10, 50, 100, 500), the average
latency is calculated by taking the average of five readings
per message count. The results are illustrated in Fig.8, for
lower message counts, the latency is observed to be higher.
This can be attributed to the fact that when fewer messages
are sent, each individual message may experience higher
overhead relative to the overall operation time. The initial
setup, connection time, and other fixed overheads have a
more significant impact when spread across fewer messages.
The average latency is generally higher for TLS compared to
non-TLS. This is expected as TLS involves additional
encryption and decryption processes which introduce more
overhead.

CPU

120000000

100000000

80000000

60000000

40000000

20000000

10 50 100 500

Messages Messages Messages

Messages

Number Of Messages

Peak RSS

24

23.5

23

22.5

22

21.5

21

10 50 100 500

Messages Messages Messages Messages

non-TLS TLS

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

Fig. 8. Average latency comparison

 For each message count (10, 50, 100,500), the average
throughput is calculated by taking the average of five readings
per message count. The results are illustrated in Fig.9, both
TLS and non-TLS show a consistent increase in throughput as
the number of messages increases. This suggests that the
overhead of encryption in TLS does not significantly impact
throughput as the message count increases. The throughput
analysis indicates that the performance of TLS is very close to
non-TLS, with only slight variations observed at higher
message counts.

Fig. 9. Throughput comparison

B. Limitations

As previously mentioned, the absence of encryption in
standard MQTT implementations poses significant risks to

IoT systems. Attackers can exploit this vulnerability to
manipulate MQTT messages, inserting false data or
monitoring communications to compromise confidentiality
and integrity. Such attacks in MQTT environments could
lead to economic losses or unintended consequences, such as
raising room temperatures, generating false alarms by
altering application messages like door statuses, or exposing
sensitive information like client and message identities that
are not encrypted. As discussed in this paper, efforts are
underway to develop lightweight and efficient encryption
algorithms specifically tailored for securing the MQTT
protocol. These algorithms aim to balance security,
performance, and resource constraints inherent in IoT
environments. However, as mentioned in Table 2, these
efforts have many limitations:

• Not considering IoT-related factors such as power
consumption, latency, and bandwidth.

• No end-to-end encryption solutions, such as protecting
only the payload.

• No evaluation and comparison with other similar
solutions.

C. Future Work

Future research efforts should prioritize the development
of lightweight, cost-effective, fine-tuned, and high
performing security solutions to enhance MQTT security. It
is crucial to thoroughly evaluate these proposed solutions for
scalability, compatibility, and adaptability to the resources
available in IoT deployments, ensuring effective
management of MQTT security challenges.

V. CONCLUSION

 This paper details recent research efforts aimed at
safeguarding data security through various encryption
algorithms, with a particular emphasis on MQTT. It includes
a comparative analysis of these algorithms, their respective
testbeds, strengths, and weaknesses. Further research is
essential to refine existing protocols to meet the evolving
security and performance demands of IoT systems.
Additionally, the paper presents an implementation of TLS
in MQTT along with a performance analysis compared to
standard MQTT in terms of CPU cycles, peak RSS, latency,
and throughput. The use of TLS for secure communication
introduces additional overheads in latency, CPU cycles, and
memory usage. These overheads are significant for
constrained IoT devices, as they can affect the performance
and energy consumption of the devices. While non-TLS
communication is faster and less resource-intensive, it does
not provide the necessary security for sensitive data
transmission.

Average Latency

1800

1600

1400

1200

1000

800

600

400

200

10 50 100 500

Messages Messages Messages Messages

Number Of Messages

non-TLS TLS

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

 REFERENCES

[1] M. Abbasi, M. Plaza-Hernandez, J. Prieto, and J. M. Corchado, “Security
in the Internet of Things Application Layer: Requirements, Threats, and
Solutions,” IEEE Access, vol. 10, pp. 97197–97216, 2022, doi:
https://doi.org/10.1109/access.2022.3205351.

[2] Y. Harbi, Z. Aliouat, A. Refoufi, and S. Harous, “Recent Security Trends
in Internet of Things: A Comprehensive Survey,” IEEE Access, vol. 9,
pp.113292–113314, 2021, doi:
https://doi.org/10.1109/access.2021.3103725.

[3] M. N. Khan, A. Rao, and S. Camtepe, “Lightweight Cryptographic
Protocols for IoT Constrained Devices: A Survey,” IEEE Internet of
Things Journal, vol. 8, no. 6, pp. 1–1, 2020, doi:
https://doi.org/10.1109/jiot.2020.3026493.

[4] Hasan, H., Ali, G., Elmedany, W. and Balakrishna, C., 2022, November.
Lightweight encryption algorithms for internet of things: a review on
security and performance aspects. In 2022 International Conference on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT) (pp. 239-244). IEEE.

[5] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight
Cryptography Algorithms for Resource-Constrained IoT Devices: A
Review, Comparison and Research Opportunities,” IEEE Access, vol. 9,
pp. 28177–28193, 2021, doi:
https://doi.org/10.1109/access.2021.3052867.

[6] Iordan Stoev, Snezhinka Zaharieva, A. Borodzhieva, and Gergana
Staevska, “An Approach for Securing MQTT Protocol in ESP8266 WiFi
Module,” Jul. 2020, doi:
https://doi.org/10.1109/electronica50406.2020.9305164.

[7] Jahangeer, A., Bazai, S. U., Aslam, S., Marjan, S., Anas, M., & Hashemi,
S. H. A review on the security of IoT networks: From network layer’s
perspective. IEEE Access, 11, 71073-71087, 2023.

[8] Alluhaidan, A. S. and Prabu, P., 'End to End encryption in resource-
constrained IoT device', IEEE Access, 2023.

[9] A. Behal, “Comparison Of MQTT And COAP Protocol Using Contiki
OS For Low Power And Lossy Networks In IoT,” Jul. 2023, doi:
https://doi.org/10.1109/icccnt56998.2023.10307381.

[10] G. Glissa and A. Meddeb, “6LowPSec: An end-to-end security protocol
for 6LoWPAN,” Ad Hoc Networks, vol. 82, pp. 100–112, Jan. 2019, doi:
https://doi.org/10.1016/j.adhoc.2018.01.013.

[11] Aruna Gawde, Nishit Sakariya, A. Shah, and Dishith Poojary,
“Lightweight Authentication and Encryption Mechanism in Routing
Protocol for Low Power and Lossy Networks (RPL),” Jun. 2018, doi:
https://doi.org/10.1109/iccons.2018.8663178.

[12] S. Katsikeas et al., “Lightweight amp; secure industrial IoT
communications via the MQ telemetry transport protocol,” IEEE Xplore,
Jul. 01, 2017. https://ieeexplore.ieee.org/abstract/document/8024687.

[13] L. Bisne and M. Parmar, “Composite secure MQTT for Internet of
Things using ABE and dynamic S-box AES,” 2017 Innovations in Power
and Advanced Computing Technologies (i-PACT), Apr. 2017, doi:
https://doi.org/10.1109/ipact.2017.8245126.

[14] Nayancy, S. Dutta, and S. Chakraborty, “A survey on implementation of
lightweight block ciphers for resource constraints devices,” Journal of
Discrete Mathematical Sciences and Cryptography, pp. 1–22, Jun. 2020,
doi: https://doi.org/10.1080/09720502.2020.1766764.

[15] Fan, C. et al. (2023) 'An Efficient Data Protection Scheme Based on
Hierarchical ID-Based Encryption for MQTT', ACM Transactions on
Sensor Networks (TOSN), 19(3), pp. 21.

[16] A. J. Hintaw, S. Manickam, S. Karuppayah, M. A. Aladaileh, M. F.
Aboalmaaly, and S. U. A. Laghari, “A Robust Security Scheme Based
on Enhanced Symmetric Algorithm for MQTT in the Internet of
Things,” IEEE Access, vol. 11, pp. 43019–43040, 2023, doi:
https://doi.org/10.1109/ACCESS.2023.3267718.

[17] A. Rahman, S. Roy, M. S. Kaiser, and Md. S. Islam, “A Lightweight
Multi-tier S-MQTT Framework to Secure Communication between low-
end IoT Nodes,” in Proceedings of the 5th International Conference on
Networking, Systems and Security (NSysS), pp. 1-6, 2018,IEEE.

[18] M. Iqbal, Agus, Aji Teguh Prihatno, Derry Pratama, B. Jeong, and H.
Kim, “Enhancing IoT Security: Integrating MQTT with ARIA Cipher
256 Algorithm Cryptography and mbedTLS,” Aug. 2023, doi:
https://doi.org/10.1109/platcon60102.2023.10255171 .

[19] Ardhi Wijayanto, Saffira Syafa Nugrahani, Dewi Wisnu Wardani, Hasan
Dwi Cahyono, and Haryono Setiadi, “Performance Comparison of AES,

Grain V1, and RC4 Algorithms on the MQTT Protocol,” Aug. 2023, doi:
https://doi.org/10.1109/icitacee58587.2023.10277160.

[20] F. De Rango, G. Potrino, M. Tropea, and P. Fazio, “Energy-aware
dynamic Internet of Things security system based on Elliptic Curve
Cryptography and Message Queue Telemetry Transport protocol for
mitigating Replay attacks,” Pervasive and Mobile Computing, vol. 61,
p. 101105, Jan. 2020, doi: https://doi.org/10.1016/j.pmcj.2019.101105.

[21] A. Hkiri, Mouna Karmani, and Mohsen Machhout, “Implementation and
Performance Analysis of Lightweight Block Ciphers for IoT applications
using the Contiki Operating system,” May 2022, doi:
https://doi.org/10.1109/setit54465.2022.9875503.

[22] Ayman Al-Ani, Wong Kang Shen, A. K. Al-Ani, S. A. Laghari, and O.
E. Elejla, “Evaluating Security of MQTT Protocol in Internet of Things,”
Sep. 2023, doi: https://doi.org/10.1109/ccece58730.2023.10288857.

[23] Jayan, A. P. and Harini, N, 'A Scheme to Enhance the Security and
Efficiency of MQTT Protocol', International Journal of Pure and Applied
Mathematics, 119(12), 2018, pp. 13975–13982.

[24] M. Hamad, A. Finkenzeller, H. Liu, J. Lauinger, V. Prevelakis, and S.
Steinhorst, “SEEMQTT: Secure End-to-End MQTT-Based
Communication for Mobile IoT Systems Using Secret Sharing and Trust
Delegation,” IEEE Internet of Things Journal, pp. 1–1, 2022, doi:
https://doi.org/10.1109/jiot.2022.3221857.

[25] Varma, A. and UniKrishnan, S. (2021) 'Effect of payload security in
MQTT protocol over transport and application layer', in IOP Conference
Series: Materials Science and Engineering, 1166(1), p. 012019.

[26] Favian Dewanta, I. Wahidah, Sofia Naning Hertiana, Danu Dwi
Sanjoyo, and H. Syed, “SibProMQTT: Protection of the MQTT
Communication Protocol Against Sybil Attacks Applied for IoT
Devices,” Sep. 2023, doi:
https://doi.org/10.1109/icicdt59917.2023.10332423.

[27] O. Sadio, I. Ngom, and C. Lishou, “Lightweight Security Scheme for
MQTT/MQTT-SN Protocol,” 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS), Oct.
2019, doi: https://doi.org/10.1109/iotsms48152.2019.8939177.

[28] Singh, M., Rajan, M. A., Shivraj, V. L. and Balamuralidhar, P. 'Secure
MQTT for Internet of Things (IoT)', Proceedings of the 5th International
Conference on Communication Systems and Networks Technologies,
2015, pp. 746-751.

[29] Ahmad, M. Z. et al. 'Performance Analysis of Secure MQTT
Communication Protocol', Proceedings of the 2023 19th IEEE
International Colloquium on Signal Processing & Its Applications
(CSPA), Kedah, Malaysia, 2023,pp. 225-229.

[30] I. Sahmi, A. Abdellaoui, T. Mazri, and N. Hmina, “MQTT-PRESENT:
Approach to secure internet of things applications using MQTT
protocol,” International Journal of Electrical and Computer Engineering
(IJECE), vol. 11, no. 5, p. 4577, Oct. 2021, doi:
https://doi.org/10.11591/ijece.v11i5.pp4577-4586.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

