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Abstract - The Internet of Things (IoT) has become ingrained 

in our daily lives, transforming the way we interact with 

technology. From smart homes to wearable devices, IoT 

enhances convenience and connectivity. However, this 

widespread adoption raises security concerns. Recent years have 

witnessed a surge in cyberattacks exploiting vulnerabilities in 

IoT devices. Security lapses in device development and the sheer 

volume of interconnected devices contribute to the challenges. 

Data breaches and privacy infringements also loom large, 

highlighting the need for a balanced approach to technological 

advancement and robust cybersecurity measures to safeguard 

personal information and ensure the positive impact of IoT on 

daily life. In this study, we reviewed IoT encryption algorithms 

with focus on the integration between the IoT application layer 

and some encryption algorithms with focus on the MQTT 

protocol. Additionally, we conducted a comparative performance 

analysis of MQTT with and without TLS, highlighting the 

impact of encryption on IoT communication in terms of 

different performance metrics like CPU cycles, memory 

consumption, latency and throughput. 

Keywords - IoT data security, secure MQTT protocol, TLS, 

MQTT, lightweight secure communication, IoT application layer. 

I. INTRODUCTION

In the current landscape, the Internet of Things (IoT) has 
[1] seamlessly integrated into our daily lives, revolutionizing 
the way we interact with technology and the physical world. 
From smart homes to wearable devices, IoT has become an 
indispensable part of our routines, enhancing convenience, 
efficiency, and connectivity. IoT's influence is prominently 
visible in the realm of smart homes, where interconnected 
devices like thermostats, lights, and security cameras 
collaborate to create an intelligent living environment. Home 
automation allows individuals to control various aspects of 
their homes remotely, optimizing energy consumption and 
ensuring security. Beyond the confines of homes, wearable 
devices have also become prevalent. From fitness trackers 
monitoring our physical activity to smartwatches seamlessly 
connecting with our smartphones, these devices provide real- 
time data that empowers individuals to make informed 
decisions about their health and well-being. In the industrial 
sector, IoT plays a pivotal role in enabling the concept of

 

Industry 4.0, where interconnected devices and sensors 
enhance manufacturing processes, improve efficiency, and 
enable predictive maintenance. This integration of IoT in 
industries contributes to the evolution of smart cities, 
intelligent transportation systems, and efficient energy 
management. However, the widespread adoption of IoT comes 
[2] with its own set of challenges, most notably in the realm of
security. As IoT devices proliferate, the attack surface for
malicious actors expands, leading to an increase in security
threats. Recent years have seen a surge in cyberattacks
targeting IoT devices, exploiting vulnerabilities to gain
unauthorized access, manipulate data, or launch large-scale
distributed denial-of-service (DDoS) attacks. One significant
security concern is the insufficient attention given to
cybersecurity measures in the development of IoT devices.
Many devices lack robust security protocols, making them
susceptible to exploitation. Additionally, the sheer volume and
diversity of IoT devices make it challenging to implement
standardized security practices across the ecosystem.
As the Internet continues to penetrate further [2] into various
aspects of human life and the physical environment, the
potential for cyber threats expands alongside. For instance,
even a smart coffee machine may possess vulnerabilities that,
if exploited, could grant an attacker unauthorized access to
manipulate all connected devices within a home network [3].
This includes critical components such as sensors and life- 
supporting medical devices like insulin pumps or heart
pacemakers directly connected to the human body.

II. THEORETICAL BACKGROUND

In the realm of IoT, [4] cryptography seeks to fulfill two 
fundamental objectives of information security: maintaining 
the confidentiality and integrity of data. Encrypting the data is 
essential to ensure its confidentiality as it traverses a 
communication channel. Cryptography algorithms can be 
categorized into two primary types: symmetric key and 
asymmetric key ciphers illustrated in Fig. 1. 
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Fig. 1. Cryptography algorithms [5] 

As discussed in [5], in resource-constrained IoT devices, 
block ciphers are favored over stream ciphers. Table I shows 
that the most well-known algorithms are block ciphers. 

TABLE I.  IOT ENCRYPTION ALGORITHMS [5] 

Structure 

Type 

Algorithms 

SPN AES, Present, GIFT, SKINNY, Rectangle, 
Midori, mCrypton, Noekeon, Iceberg, 
Puffin-2, Prince, Pride, Print, Klein, Led, 
Picaro, Zorro, I-Present, EPCBC 

FN DESL / DESXL, TEA / XTEA/ XXTEA, 
Camellia, Simon, SEA, KASUMI, MIBS, 
LBlock, ITUbee, FeW, GOST, Robin, 
Fantomas 

GFN CLEFIA, Piccolo, Twis, Twine, HISEC 

ARX Speck, IDEA, HIGHT, BEST-1, LEA 

NLFSR KeeLoq, KATAN/KTANTAN, Halka 

Hybrid Hummingbird, Hummingbird-2, Present-
GRP 

In this section, we present a survey of lightweight 
encryption algorithms tailored for the Internet of Things 
(IoT). Additionally, we identify certain gaps in the existing 
literature. The survey encompasses a compilation of recent, 
high-quality publications pertaining to lightweight encryption 
algorithms for IoT. Most of the selected research papers were 
published after the year 2020. The Google Scholar search 
engine served as the primary tool for sourcing these papers. It 
is noteworthy that a substantial proportion of the reviewed 
papers garnered notable citation counts, although it is 
observed that papers published subsequent to the year 2023 
may exhibit fewer citations, underscoring the possibility of 
high-quality contributions with less citations. 

The Internet of Things (IoT) [1] refers to the network of 
interconnected devices or things, enabling them to 
communicate, exchange data, and operate seamlessly to 
enhance efficiency and convenience in various domains. 
Kevin Ashton introduced the IoT paradigm in 1998 [1]. 
Within an IoT network, diverse and heterogeneous devices, 
along with varied communication protocols, facilitate the 

collection and exchange of data among different nodes within 
the network. 

Several methods [6] can be employed to secure MQTT 
communication, focusing on either securing the MQTT broker or 
the data being transferred. Securing the MQTT broker involves 
several techniques. One technique is restricting access based 
on unique client IDs. Another technique is authenticating 
clients with valid credentials using a username and password, 
although these are transmitted in plain text. Additionally, 
installing and maintaining x509 client certificates on client 
applications and devices enhances security. Securing data 
transfer methods include utilizing the TLS protocol to establish 
an encrypted tunnel for MQTT message transfer, though TLS 
support may be limited on some client devices. Another method 
is implementing encryption and decryption routines at the 
client level to secure data endpoints within the MQTT 
communication protocol. The three-layer architecture, the 
most common model in IoT networks [1], comprises the 
application layer, network layer, and perception layer. In the 
four-layer architecture, compared to the three-layer model, an 
additional layer, the data processing layer, is incorporated. 
Expanding on the three- layer model, the five-layer 
architecture introduces two extra layers: the business layer and 
the data processing layer. Since the application layer is the most 
common communication model on IoT, it will be explained in 
further detail. 

1) Perception Layer: The perception layer [2] in IoT is a
pivotal component responsible for interfacing with the 
physical environment. It incorporates various sensors and 
devices to collect data, enabling the system to make informed 
decisions. Devices in this layer, such as sensors and RFID 
tags, gather information on environmental conditions and 
object presence. The collected data is processed locally or 
transmitted for further analysis, facilitating quick decision-
making and efficient system operation. In essence, the 
perception layer bridges the gap between the physical world 
and the digital realm of the IoT system, facilitating data 
acquisition and laying the foundation for intelligent decision-
making. 

2) Network Layer : The IoT network layer [7] is crucial for
managing communication among IoT devices. It ensures 
seamless connectivity, utilizes protocols for standardized data 
exchange, handles scalability challenges, implements security 
measures, and maintains reliability in data transmission. 
Essentially, it forms the backbone of the IoT ecosystem, 
enabling efficient and secure interactions between 
interconnected devices. In the context of IoT network layer 
protocols, Zigbee and 6LoWPAN are indeed more fitting 
examples. Zigbee is a low-power, short-range wireless 
communication protocol suitable for IoT devices, promoting 
efficient connectivity in home automation and industrial 
settings. 6LoWPAN (IPv6 over Low-Power Wireless 
Personal Area Networks) enables the transmission of IPv6 
packets over low-power and lossy networks, optimizing 
communication for resource-constrained IoT devices. These 
network protocols enhance the functionality of the IoT 
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network layer by providing reliable, standardized 
communication mechanisms for interconnected devices. 

3) Application Layer: The IoT application layer [1] is the top
layer in the architecture, facilitating user interaction, 
processing and analyzing data, and implementing application-
specific functionalities. It integrates with external systems, 
ensuring security, and access control, making the IoT system 
user- friendly and adaptable to various domains. Two major 
protocols exist in the application layer of IoT explained in [1]. 

• Message Queuing Telemetry Transport (MQTT) is a
lightweight message passing protocol developed to
facilitate data exchange among numerous devices in a
network. Employing a publish/subscribe mechanism
with a central server or broker, MQTT enables reliable
message publication in low-bandwidth networks. Initially
proprietary in the oil and gas industries for SCADA
systems, MQTT has evolved into an open-source standard
for connecting millions of IoT and industrial IoT devices
across various applications like remote monitoring, health
parameter tracking, and motion detection. The MQTT
protocol offers diverse authentication mechanisms and
encryption techniques based on TLS.

• Constrained Application Protocol (CoAP) is
specifically designed for use with constrained nodes, such
as IoT devices, and networks, including building
automation. Operating as a client-server protocol, CoAP
enables one node (client) to command another by
transmitting CoAP packets. A notable advantage of CoAP
is its capability to integrate resource-constrained devices
into IoT networks, even in environments with limited
resources like low bandwidth and network availability.
CoAP finds predominant adoption in Machine-to-Machine
(M2M) scenarios, including applications in smart homes,
smart energy, and building automation.

Other IoT application layer protocols with their security 
weaknesses were discussed in [1], like XMPP, mDNS, SSDP. 

A. Edge Computing in The Context of IoT

Edge computing in the context of IoT [3] involves
processing data closer to the source of generation, typically 
near or on the IoT devices themselves, rather than relying 
solely on centralized cloud servers. This approach reduces 
latency, enhances real-time processing capabilities, and 
alleviates the burden on network bandwidth. By distributing 
computing power to the edge of the network, edge computing 
improves the efficiency and responsiveness of IoT 
applications, making it particularly valuable for time-sensitive 
tasks, data privacy, and overall system performance. 
According to [3] and [1], edge computing architecture can be 
utilized in order to outsource some cryptographic functions to 
reduce the overhead on IoT resource-constrained devices. 
Edge computing addresses challenges related to device 
mobility and latency by strategically positioning storage and 
processing resources in an intermediate layer between smart 
devices and fog/cloud computing platforms. This approach 
optimizes data processing and analysis by bringing 

computational capabilities closer to the source of data 
generation.  

However, as explained in [3] and [1], introducing edge 
computing in IoT encryption may expose other types of security 
threats by potentially decentralizing encryption processes, 
leading to increased vulnerability. Distributing encryption tasks 
across edge devices could create points of attack, necessitating 
robust measures to safeguard against unauthorized access and 
potential breaches as they operate in more malicious 
environments. 

B. IoT Encryption Algorithms

The traditional encryption protocols face challenges in IoT
environments due to the unique characteristics of IoT devices 
[3],[1],[2],[7],[5]. IoT devices often have constrained 
computational resources, making traditional encryption 
impractical. High energy overhead and large data size in 
encrypted payloads can deplete limited power sources and 
hinder network efficiency. Complex key distribution and 
management are challenging in dynamic IoT ecosystems. 
Traditional encryption may introduce unacceptable delays in 
applications with stringent latency requirements. 
Implementing traditional encryption may require additional 
hardware, increasing device costs. Scalability becomes 
difficult when adapting traditional encryption to the vast and 
diverse IoT ecosystem. To address these issues, lightweight 
encryption protocols are preferred in IoT, striking a balance 
between security and resource efficiency. 

The following list explains some lightweight IoT 
encryption algorithms from various aspects based on the 
reviewed research papers. The papers discussed the IoT 
encryption on application layer are excluded from the below 
list as it will be discussed in another section of this paper, i.e. 
section D. below. 

1) Traditional encryption techniques [8] like RSA or AES
demand significant computational resources and extensive 
memory, potentially leading to a detrimental impact on device 
performance. Simpler encryption methods are susceptible to 
compromise, while cryptographic algorithms are consistently 
improved for server and desktop environments, deploying 
these advancements on resource-limited devices poses 
significant challenges. Moreover, a new algorithm was 
introduced in [8], then the authors utilized FELICS (Fair 
Evaluation of Lightweight Cryptographic Systems) to compare 
the performance and security of the new algorithm including 
Advanced Encryption Standard (AES), PRESENT 
cryptography algorithm, HIGHT cryptography algorithm, 
SIMON&SPECK encryption algorithm, and A Lightweight 
Encryption Algorithm for Secure Internet of Things (SIT). The 
FELICS offers a comprehensive comparison of key 
scheduling, encryption, and decryption performance across 
multiple lightweight algorithms. The proposed algorithm 
demonstrates exceptional efficiency, notably requiring far 
fewer cycles for key scheduling (1641 cycles), encryption (803 
cycles), and decryption (800 cycles) compared to its peers. 
This outstanding performance underscores its speed and 
resource optimization, positioning it as a promising solution 
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in lightweight cryptography. 

2) As discussed in [7], there are different attacks on IoT per
IoT layer, mainly on network and application layers: The 
network layer faces routing attacks such as sinkhole and 
selective forwarding in its multi-hop environment. DDoS 
attacks exploit this layer through spoofing and routing path 
modifications. Eavesdropping poses a significant threat, 
compromising system security and privacy by providing 
attackers access to crucial information about network nodes, 
impacting Quality of Service (QoS). Insecure networks 
become prime targets for eavesdroppers, posing risks of 
identity theft and financial loss. The application layer is 
susceptible to direct end-user access, creating vulnerabilities 
for unauthorized users. Protocols like MQTT, XAMPP, and 
COAP aim to safeguard against attacks but remain vulnerable. 
Security threats such as DDoS, sniffing, malicious node 
injection, and phishing directly impact application 
functionality, posing significant risks. More attacks on 
6LoWPAN were discussed in [9], with additional references 
provided for potential solutions aimed at safeguarding 
6LoWPAN like [10], [11]. In [11], The author addresses the 
unique security challenges posed by IoT devices, stressing the 
need for tailored encryption protocols and authentication 
processes distinct from traditional internet security. In their 
proposed method, the authors conduct a comparative analysis 
between two encryption mechanisms: AES (Advanced 
Encryption Standard with a 128-bit key) and PRESENT with 
an 80-bit key. The authors believe that the PRESENT 
algorithm is lightweight and more suitable for IoT. 

3) As stated in [4], four cryptographic algorithms are
currently in the process of establishing themselves as the 
standard for Lightweight Cryptography (LWC). These 
algorithms were put forward for inclusion in the ISO/IEC 
29192 standard for LWC, developed in 2012. The algorithms 
under consideration are SIMON, SPECK, PRESENT, and 
CLEFIA. The authors proposed the creation of a novel 
Lightweight Cryptography (LWC) solution by incorporating 
the most favorable features from each of the four algorithms. 
This fresh cryptographic solution should exhibit flexibility 
concerning block and key sizes, demonstrate efficient 
performance in both hardware and software implementations, 
and possess resilience against diverse cryptanalytic and 
brute- force attacks. The development of the new algorithm 
could involve integrating elements from each of the four 
algorithms: 

• Simon, introduced by the National Security Agency's
research directorate (NSA) in June 2013, is a block cipher
designed for use in constrained environments with limited
computational power and energy resources. Leveraging
the NSA's extensive cryptography expertise, Simon is
deemed secure and belongs to the Feistel network family.
This family provides advantages in hardware due to the
similarity between encryption and decryption operations,
resulting in a reduced hardware requirement and a more
compact circuit. Simon employs a straightforward round
function incorporating basic operations such as XOR,
AND, and left circular shifts.

• In contrast to Simon's focus on hardware optimization,
SPECK is tailored for software-based implementations,
especially on microcontroller processors.Noteworthy for its
speed and low memory consumption, SPECK performs
only 32 operations on the input and does not rely on a lookup
table. Like Simon, SPECK is based on the Feistel structure,
involving bitwise XOR, modular addition, and circular
shifts in each Feistel round.

• PRESENT, a hardware-oriented block cipher, follows the
Substitution- Permutation network (SPN) design [4],[12].
Accepting a 64-bit block size and offering key sizes of 80
and 128 bits, PRESENT is suitable for applications
prioritizing performance over high security. The cipher
assumes data to be encrypted is of small to medium size,
aligning with its focus on space and performance
optimization for devices with average power consumption.

• CLEFIA, a 128-bit block cipher, supports various key
sizes, including 128, 192, and 256 bits. Structured on the
Feistel network with four data lines and two 32-bit f
functions per round, CLEFIA incorporates a diffusion
switching mechanism (DSM) in its f-functions to enhance
resistance against specific attacks. Additionally, CLEFIA
employs a compact key scheduling approach and a
doubleswap function for efficient round key generation,
making it suitable for both software and hardware
implementations. The algorithm supports multiple key
sizes and utilizes two distinct 8-bit S-boxes [4],[13].

4) As discussed in [5], organizations and research groups
actively contributing to advancements in cryptography for 
enhancing lightweight standards in resource-constrained 
devices include: 

• National Institute of Standards and Technology, USA
(NIST)

• International Organization of Standardization and the 
International Electrotechnical Commission (ISO/IEC) 

• Cryptography Research and Evaluation Committees, Japan
(Cryptrec)

• European Network of Excellence in Cryptology (Ecrypt)

• National Security Agency of the USA (NSA)

• CryptoLUX (University of Luxembourg)

Among the cryptographic algorithms, only PRESENT and 
CLEFIA have received approval from the ISO/IEC 29192 
standard. Meanwhile, Cryptrec targets AES, CLEFIA, TDES, 
Camellia, PRESENT, PRINCE, Piccolo, LED, TWINE, 
SIMON & SPECK, and Midori. 

5) PRESENT [14] is a well-known lightweight block cipher.
Developed in 2007 by A. Bogdanov et al., this cipher is based 
on a substitution-permutation structure. It features a 64-bit 
block size, keys of lengths 80 bits (PRESENT80) and 128 bits 
(PRESENT128) and comprises 31 rounds. It was certified as a 
standard lightweight block cipher by the International 
Organization for Standardization (ISO / IEC 29192-2) in 2012. 

• Problem Statement :  Renowned for its lightweight and
efficient publish-subscribe messaging model, the MQTT
protocol serves as the backbone for numerous IoT
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deployments [5]. Nevertheless, its vulnerability to various 
threats arises from the absence of built-in security 
mechanisms. There are many studies that have been 
carried out to address data security issues in the MQTT 
protocol using cryptography. By default, [15] 
transmissions through MQTT on port 1883 remain 
unencrypted. However, for safeguarding sensitive 
information within messages, the MQTT specification 
suggests employing the TLS protocol on port 8883. While 
many brokers and MQTT platforms support TLS, it 
comes with significant overhead. Upon message 
publication, the TLS protocol necessitates a handshake 
process. Despite IoT payloads being small, they are 
transmitted frequently. Frequent use of TLS protocol 
mandates repeated reconnections and handshake 
processes due to the intermittent  nature of IoT 
connections, leading to substantial power and 
computation consumption. Additionally, the TLS session 
persists until the MQTT client completes its tasks, which 
is not advantageous for short-lived connections. This 
research demonstrates the impact of using TLS with the 
MQTT protocol, particularly highlighting the challenges 
posed by TLS in terms of CPU cycles, memory 
consumption, latency and throughput. 

• Related Work: In this section, research papers that
explore IoT encryption protocols are investigated, and
the incorporation of these algorithms into the MQTT
communication protocol is examined. Message Queuing
Telemetry Transport (MQTT) is anticipated to become
the predominant messaging standard for the Internet of
Things (IoT). It is imperative for MQTT to establish
efficient security measures. However, a notable
drawback of MQTT is its absence of inherent protection
mechanisms. Existing approaches have introduced
processing overhead to devices and remain susceptible to
various attacks. Originally developed by IBM as an
affordable Machine-to- Machine (M2M) interaction
protocol operating atop TCP, MQTT serves as a data
communication protocol within the IoT context and has
gained recognition from OASIS. Hintaw et al. proposed
a modified AES protocol called RSS, comparing it with
the original AES and addressing the need for enhanced
security without significantly increasing implementation
costs [16].

Rahman et al. introduced a new protocol called S-MQTT 
by  integrating the original MQTT with the Elliptic Curve 
cryptosystem (ECC) [17]. ECC, a public key cryptosystem 
similar to RSA, operates with one key for encryption and 
another for decryption. It relies on the mathematics of elliptic 
curves, utilizing the coordinates of points on the curve for 
these operations. The key advantage of ECC lies in its ability 
to achieve an equivalent level of security with much shorter 
key lengths compared to other public key cryptosystems. 
Furthermore, ECC's security level increases more rapidly 
with key size than integer-based discrete logarithm or RSA-
based systems. ECC also boasts faster implementation, 
requiring less bandwidth and power, making it particularly 

valuable for resource-constrained systems with limitations in 
computing power, memory, and battery life. Nevertheless, no 
performance analysis was presented in comparison to other 
encryption methods (Rahman et al., 2018). More-over the IoT, 
yet they remain vulnerable to multiple attacks.  The authors 
introduced a dynamic adaptation of the AES algorithm (D-
AES) tailored for MQTT security by reconfiguring key 
expansion, ShiftRows, and SubBytes transformations of the 
AES algorithm. Publishers encrypt the payload of MQTT 
packets using the D-AES algorithm. Additionally, the 
symmetric key of the D-AES algorithm undergoes encryption 
using the KeyPolicy Attribute-Based Encryption (KP-ABE) 
scheme. Subsequently, the encrypted payload and key are 
transmitted to the broker, which then relays them to 
subscribers.  Subscribers initiate a request for the key to an 
external authority, which executes the key generation 
algorithm and sends the decryption key to the subscribers. 
Experimental results suggest that the proposed method 
marginally increases execution and processing times while 
introducing significant traffic overhead (Hintaw et al., 2023). 
    Iqbal et al. enhanced the security of MQTT by utilizing 
ARIA as an encryption algorithm and MbedTLS to establish 
secure communication channels [18]. The usage of MbedTLS 
facilitated the establishment of secure connections, allowing 
for the encryption and decryption of MQTT messages. As a 
result, the sensitive data transmitted within the IoT network is 
safeguarded. ARIA, the Advanced Encryption Standard (AES) 
designed for the Republic of Korea, stands as the foundational 
cryptographic algorithm. Originating from the Korean Agency 
for Technology and Standards (KATS), ARIA is widely 
acknowledged for its strong encryption features and seamless 
compatibility with AES. This study incorporates the ARIA 
cryptography algorithm into MQTT, facilitating secure data 
transmission within IoT networks using a symmetric key 
encryption approach to ensure the confidentiality and integrity 
of data. MbedTLS, an open- source cryptographic library 
created by Arm Limited, provides a comprehensive array of 
cryptographic functions and protocols, establishing itself as a 
reliable option for secure communication in IoT deployments. 
However, no performance evaluation was conducted on the 
new protocol in comparison to other similar protocols (Iqbal et 
al., 2023).   
Wijayanto et al. evaluated the effectiveness of AES, Grain V1, 
and RC4 algorithms against passive sniffing attacks and their 
performance in data processing time. Results demonstrate that 
all three algorithms successfully thwart passive sniffing 
attacks. Furthermore, the study assessed the resistance of these 
algorithms to cryptanalysis by comparing the time required to 
break their keys. The findings reveal that AES exhibits the 
highest resistance, making it the safest choice compared to 
Grain V1 and RC4.  Additionally, performance testing was 
conducted to assess encryption and decryption processing 
times for each algorithm. RC4 emerged as the fastest 
algorithm, with an average encryption time of 20.4 
microseconds, followed by Grain V1 with 763.4 microseconds, 
and AES with 796.84 microseconds. Similarly, RC4 
demonstrated superior decryption performance, with an 
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average time of 0.13 microseconds, followed by Grain V1 
with 0.18 microseconds, and AES with 1.16 microseconds 
(Wijayanto et al., 2023) [19]. 
     Al-Ani et al. conducted a comprehensive examination of 

the MQTT protocol, incorporating experimentation on an 
MQTT system employing diverse cryptographic techniques, 
namely AES-CBC, RSA, and ECC AES Hybrid Scheme, to 
evaluate processing time and message size. Results suggest 
that encrypting payloads increases both processing time and 
message size. Among the cryptographic techniques tested, 
RSA demonstrates the longest processing time, followed by 
ECC AES Hybrid Scheme and AES-CBC.  

Additionally, the study assesses the effectiveness of attack 
prevention between standard MQTT and secured MQTT 
setups by simulating various IoT attacks, including black-box 
penetration, identity spoofing, DoS, and MITM attacks. The 
findings and ensuing discussion shed light on the 
cryptographic algorithms that impose the most overhead on 
standard MQTT implementation and their resilience against 
common attacks, addressing the research question at hand (Al-
Ani et al., 2023). 

Jayan and Harini explored the advantages of employing 
cryptographic algorithms to mitigate the effects of spoofing on 
MQTT networks. Their approach involves encrypting the 
payload of MQTT packets before publishing, utilizing Rivest- 
Shamir-Adleman (RSA) and ECC algorithms. Their 
experimental findings indicate that ECC exhibits lower time 
complexity compared to RSA, rendering it a superior option 
for IoT devices (Jayan and Harini, 2018) [20]. 

De Rango et al. devised a dynamic IoT security system 
aimed at thwarting attacks on the MQTT protocol. Their 
approach involves employing elliptic curves to encrypt 
MQTT payloads, thereby preventing eavesdropping and data 
tampering attacks. Additionally, they utilize timestamps and 
wake-up patterns to mitigate replay attacks. Enhancements in 
energy efficiency were achieved by adjusting the key strength 
of the ECC algorithm, albeit leading to heightened system 
overhead (De Rango et al., 2019). 

 Hamad et al. provided a model called SEEMQTT for IoT 
systems to ensure secure end-to-end MQTT communications. 
This model is designed to address vulnerabilities in MQTT 
communications and improve security through a combination 
of secret sharing and trust delegation mechanisms (Hamad et 
al., 2022).  

Varma and UniKrishnan explored MQTT, a lightweight 
messaging protocol where the payload serves as the conduit 
for the transmitted data, for its susceptibility to cyber-attacks, 
specifically the Man-in-the-Middle (MITM) attack. The paper 
investigates the susceptibility of the payload to cyber-attacks 
by subjecting it to two different security measures. Initially, 
channel-based security using the Transport Layer Security 
(TLS) is applied to the payload, followed by object-based 
security using the Advanced Encryption Scheme (AES). Both 
encryption techniques for securing MQTT protocol payloads 
are thoroughly examined and discussed (Varma and 
UniKrishnan, 2021). 

 Dewanta et al. introduced the SibProMQTT methodology 
designed to safeguard MQTT communication against Sybil 
attacks. The SibProMQTT approach achieves attack mitigation 
through mechanisms such as message lifetime verification, 
session key validation, and concealment of private information. 
Experimental findings demonstrate that  SibProMQTT can be 
effectively implemented on the ESP32, a low-computational-
resources hardware commonly utilized in IoT devices, incurring 
computational costs of 8.30 ms and 8.44 ms for SHAI and 
SHA256 hash function usage, respectively. Furthermore, post-
installation of SibProMQTT on the ESP32, there remains ample 
space available for additional computations. Additionally, it 
was discussed that both TLS and authenticated key exchange 
(AKE) approaches are too expensive for MQTT IoT 
environments with few resources (Dewanta et al., 2023). 

Sadio et al. advocated for the adoption of ChaCha20- 
Poly1305 AEAD as a means to ensure secure communication 
among constrained nodes over MQTT/MQTT-SN. ChaCha20 
and Poly1305 are recognized as lightweight stream cipher and 
one-time authenticator, gaining prominence within the crypto 
community. They developed a prototype of this solution 
implemented on constrained nodes such as Arduino UNO. The 
paper primarily focuses on presenting results concerning 
memory usage and execution time. Findings demonstrate that the 
proposed scheme demands minimal memory footprint and boasts 
low processing time (Sadio et al., 2019). 

Fan et al. proposed payload encryption using hierarchical 
identity-based encryption (HIBE) for MQTT. The proposed 
scheme exhibits superior performance in terms of time 
complexity and offers protection against replay attacks. In the 
event of an attacker attempting to resend a message, the system 
remains unaffected, and the subscriber simply receives the same 
message again. Furthermore, they formally demonstrated the 
security of the proposed MQHIBE scheme within the standard 
model (Fan et al., 2023). 

Ahmad et al. examined a technique for enhancing the 
security of the MQTT protocol through the implementation of 
TLS and evaluated its performance. By employing TLS in 
MQTT, messages transmitted from MQTT clients to servers 
are encrypted. Analysis conducted using Wireshark 
demonstrated that integrating TLS into MQTT effectively 
encrypts messages within network traffic. The performance 
analysis encompasses both the CPU utilization of the 
application engaged in the MQTT protocol and the packet size 
of the transported messages (Ahmad et al., 2023). 

Sahmi et al. utilized the PRESENT encryption algorithm to 
encrypt MQTT messages (Sahmi et al., 2021). Hkiri et al. 
discussed the implementation of four lightweight cryptographic 
algorithms—PRESENT, LED, Piccolo, and SPARX—on a 
Contiki-based IoT operating system designed for IoT platforms 
[21].  

The evaluation includes an assessment of RAM and ROM 
usage, power and energy consumption, and CPU cycle count. 
The Cooja network simulator is employed in this study to 
identify the most suitable lightweight algorithms for IoT 
applications utilizing wireless sensor network technology 
(Hkiri et al., 2022).  
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The literature on securing MQTT within IoT environments 
reveals a consistent focus on balancing security with the 
limitations inherent to resource-constrained devices. While 
numerous encryption protocols have been proposed and 
tested, each comes with its own set of trade-offs between 
enhanced security, processing time, and system overhead. 

A key insight from this review is the critical need for 
lightweight encryption techniques that do not compromise the 
efficiency of MQTT. The AES-based adaptations and ECC 
implementations emerge as prominent solutions, offering 
strong security while maintaining reasonable performance 
metrics. However, these solutions often introduce 
complexities that may not be suitable for all IoT use cases, 
particularly in environments with extremely limited 
computational resources. In summary, while significant 
strides have been made in enhancing the security of MQTT, 
the quest for an optimal solution—one that seamlessly 
integrates strong encryption with minimal performance trade- 
offs—continues to drive research in this critical area of IoT 
security. 
Table 2 presents a summary of various research works 
focusing on encryption protocols and their performance when 
integrated with MQTT. The studies evaluate different 
encryption techniques and their effectiveness in providing 
security while maintaining performance efficiency. This 
comparative analysis highlights the strengths, limitations and 
testbed of each approach. 
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TABLE II.  COMPARISONS OF DIFFERENT MQTT ENCRYPTION METHODS 

Research 

Work 

Year 

of 

Public

ation 

Encryption 

Protocols 

Performance 

Tool 

Testbed Strengths Limitations 

[18] 2023 -ARIA chipper Wireshark Hardware: Combination of ARIA and TLS provided the -TLS might be not suitable for many IoT
-TLS -Raspberry Pi 3B+ necessary encryption, authentication, and data environments as it is heavy protocol.

-Raspberry Sense HAT integrity mechanisms -No comparison with other protocols.
-Artix-7 CMOD A7 -Using Wireshark
Software: -Complex Testbed
-Modified PahoMQTT

-mbedTLS
[17] 2018 ECC Hardware: Using ECC is better choice when compared to -Lack of comparison with other protocols

-ATmega328P RSA and more lightweight -Using symmetric encryption is more
Software: suitable for IoT when compared to
-Node Js Server symmetric encryption.
-MongoDB
-Eclipse Mosquitto
-MQTT V3.1.1

[22] 2023 -AES-CBC Hardware: -Good evaluation of the three protocols against -Limited to Performance evaluation and
-RSA ESP32 DEVKITV1 four attack implementations: black box four attacks.
-ECC AES Raspberry Pi 3B+ penetration, entity spoofing, DoS and MITM.
Hybrid Scheme Software: 

Eclipse Paho MQTT 

[23] 2018 -ECC
-RSA

Wireshark Hardware: Not mentioned 
Software: 
Not Mentioned 

-Focus on spoofing attacks in IoT environments. -No details about Testbed.
- No detailed and clear analysis

[20] 2019 -ECC Not 
Mentioned 

Hardware: -Prevents reply attacks -Lack of comparison with other protocols

-ESP8266 -IDS for the validation of packets timestamps -Using symmetric encryption is more
-ATmega328P -Analysis for power consumption suitable for IoT when compared to
-Sensor DHT11 symmetric encryption.
Software:

-bcprov-jdk15on-160 library
 for ECC.

[24] 2022 -open-source Hardware: -Novel work by introducing SEEMQTT which -Complex setup
Arduino -Espressif ESP32-WROOM-32D   as provide MQTT main functions. Other papers use
platform publisher existing MQTT implementations and integrate
- IBE -Seven Raspberry Pi 4 Model B 

(RPI4)
them encryption protocols.

-AES one was used as a broker and one
as
subscriber and rest for key stores.
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[25] 2021 -TLS Hardware: 

-Different Laptops
-Software

-Kali Linux
-Paho MQTT client

-MITM attack was analyzed on MQTT with and
without TLS and AES in different scenarios.

-Testbed is not simulating real IoT
environment.
-No performance evaluation.
-TLS and AES is expensive solutions for
IoT with low computational resources.

[26] 2023 -SHA1
-SHA256

Wireshark Hardware: 
-Laptop
-Raspberry
Pi 4b+
Software:
-MQTT (HiveMQ)

-Provided approach to protect Sybil attacks such as
reply back attacks.
-Provided security and performance evaluation
under some scenarios.

- Despite the usage of hashing algorithms,
encryption protocol is not mentioned in the
analysis.
-No comparison with other encryption
protocols in terms of security and
performance analysis.

[27] 2019 -ChaCha20
- Poly1305

Not mentioned Hardware: 
- Arduino Uno
- Raspberry Pi Software:
- Arduino Cryptography Library
-Eclipse Paho MQTT-SN library
-Mosquitto /RSMB as MQTT
broker

-Provided results related to memory footprint and
execution time.
-Provided solution suitable for constrained
resources in terms of memory and processing time.

-No comparison with other encryption
protocols in terms of security and
performance analysis.
-No power consumption analysis.

[15] 2023 ID-based 
encryption 

Python libraries on a 
Ubuntu 18.04.4 LTS 
Linux system 

Hardware: 
-Laptop with Ubunto Linux

-Provided security proof as well as comparison
with TLS and a comparison to the work in [28].

-No comparison with other protocols.
- Decryption cost is high compared with
MQTT with TLS.

[29] 2023 TLS Wireshark Hardware: 
-Raspberry Pi
-ESP32
Software:
Mosquitto
MQTT

-Provided practical way of integrating TLS with
MQTT.

-TLS is not suitable for IoT devices with
low resources.

[30] 2021 PRESENT Not Mentioned Not Mentioned -Provided an approach to integrate PRESENT with
MQTT. PRESENT is lightweight protocol with a
low resources consumption compared to other
protocols.

-No security nor performance evaluation.
-More details is needed to prove the
effectiveness of the protocol.
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The studies provided in Table 2 cover a wide range of 
encryption protocols, including ARIA, ECC, AES, RSA, 
ChaCha20, Poly1305, and PRESENT. Each protocol offers 
different strengths and limitations, highlighting the importance 
of selecting the appropriate encryption technique based on 
specific IoT requirements. Also, various performance tools 
such as Wireshark and different hardware and software 
configurations are used across the studies. This diversity in 
testing environments underscores the need for standardized 
evaluation methods to ensure consistent and comparable 
results. A recurring theme in the research is the trade-off 
between security and performance. While protocols like TLS 
and AES provide strong security, they are often deemed too 
heavy for low-resource IoT devices. Conversely, lightweight 
protocols like ECC and PRESENT offer better performance 
but may not provide the same level of security. 

III. IMPLEMENTATION AND PERFORMANCE ANALYSIS OF 

TLS IN MQTT PROTOCOL 

   This section discusses the implementation and analysis of 
TLS in MQTT using self-signed certificate. The publisher and 
subscriber were implemented in Python and integrated with 
TLS protocol. The self-signed certificate was generated using 
Ubuntu OpenSSL tool. This section provides performance 
analysis of MQTT with TLS compared to MQTT without any 
encryption. Fig 2 shows the hardware and software setup used 
to implement the TLS and analyze its performance against non-
TLS implementation of MQTT. 

Fig. 2. Testbed Hardware and Software Setup 

    The performance that will be conducted in this study is 
related to comparing TLS and non-TLS implementations of 
MQTT using the following performance metrics from the 
publisher side: average CPU utilization in terms of CPU 
cycles, peak memory usage and throughput. The following 
metric is calculated from subscriber side: average latency. 
The publisher represents the IoT resource-constraint device 
while the subscriber represents the end user device to manage 
and control the IoT device. 

A. Hardware Setup

The hardware used in this study includes a MacBook Pro
with 16GB RAM and an Apple M1 Pro chip featuring an 8-
core CPU, which hosts a virtual server acting as a subscriber. 
The publisher runs on a laptop with 16GB RAM and an Intel 
i7 CPU. Additionally, the MQTT broker is hosted on a cloud 
server in AWS, which has specifications of 1 vCPU and 2GB 
of RAM. 

B. Software Setup

The software used in this study is based on Mosquitto
MQTT version 2.0.18 running on the AWS server. Also, the 
software part contains Paho MQTT client of version 1.5.1 
running as publisher and subscriber. The publish and 
subscriber are running Ubuntu 22.04 LTS while the broker is 
running Ubuntu 24.04 LTS. The analysis is performed by 
utilizing Ubuntu tools: perf and psutil. 

C. Methodology

The publisher component is responsible for connecting to
the MQTT broker, reading the image files, and encrypting 
them (if using TLS). Each encrypted image file is then 
published along with a timestamp. Throughout the 
publishing process, the CPU and memory usage are 
monitored and logged in the publisher, i.e. representing the 
IoT device. The subscriber component connects to the 
MQTT broker and subscribes to the topic. It receives the 
messages, decrypts them (if using TLS), and measures the 
latency. The latency is measured by comparing the current 
time with the timestamp sent with the message. This 
approach encountered synchronization issues between the 
publisher and subscriber systems, leading to inaccurate 
latency measurements.  
     To resolve this, the subscriber was configured as a time 
server for the publisher to ensure accurate timestamp 
between the publisher and subscriber. The CPU and memory 
usage in the publisher are monitored using the ‘psutil’ and 
‘perf’ Linux libraries. Data points are collected at regular 
intervals, and the average CPU and memory usage over the 
duration of the experiment are computed. The Latency is 
measured by calculating the time difference between the 
current time and the timestamp sent with each message. The 
latency values are stored, and the average latency is 
computed at the end of the experiment.  
      The throughput is calculated in terms of actual network 
load using the size of the messages sent over the elapsed time. 
This gives a more accurate representation of the performance 
impact on the network. As shown in Fig 3, the subscriber is 
initiated first, establishing a connection with the MQTT 
broker and entering a state of readiness to receive messages. 
This proactive start ensures that the subscriber is fully 
prepared to handle incoming messages as soon as they are 
published.  
     Once the publisher begins its operation, as illustrated in 
Fig 4, it connects to the same MQTT broker and starts 
publishing the pre-determined number of messages (100, 
500, or 1000) to the designated topic. Each message, 
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consisting of a 10KB file, is encrypted (in the case of TLS) 
and timestamped before being sent. As illustrated in Fig 5, 
the subscriber began processing messages after the publisher 
was initiated.   
   The test is conducted four times for each scenario, with the 
publisher sending 10, 50, 100 and 500 messages, respectively. 
As the publisher starts transmitting these messages, the 
subscriber, already in a listening state, promptly receives and 
processes each message. This immediate processing by the 
subscriber minimizes latency and ensures that messages are 
handled efficiently. The synchronization between the start of 
the subscriber and the subsequent message flow from the 
publisher is critical for the accurate measurement of 
performance metrics, such as latency, throughput, CPU, and 
memory usage. 

Fig. 3. Subscriber waiting for messages 

Fig. 4. Publisher start publishing messages 

Fig. 5. Subscriber processing messages and latency 

   To switch between TLS and non-TLS onfigurations in the 
broker, subscriber, and publisher, the use_tls parameter is 
utilized. When use_tls is set to True, the broker is configured 
to listen on port 8883 and use the specified TLS certificates. 
The subscriber and publisher are also set to connect to port 
8883 and use the appropriate CA certificate for secure 
communication. Conversely, when use_tls is set to False, the 
broker listens on port 1883 without any TLS settings, and the 
subscriber and publisher connect to this non-secure port. For 
example, in the broker configuration file (mosquitto.conf), 
enabling TLS would involve setting the listener to port 8883 
and specifying the paths to the CA certificate, server 
certificate, and server key: 

listener 8883 
allow_anonymous true 
cafile /etc/mosquitto/certs/ca.crt 
certfile /etc/mosquitto/certs/mosquitto.crt 
keyfile /etc/mosquitto/certs/mosquitto.key 

For non-TLS, the configuration would simply include: 

listener 1883 
allow_anonymous true 

    In the subscriber and publisher scripts, the use_tls 
parameter controls the configuration. When use_tls is True, 
the scripts set the port to 8883 and configure TLS settings. 
When use_tls is False, they connect to port 1883 without 
TLS settings. 

use_tls = True # or False for non-TLS 
port = 8883 if use_tls else 1883 
ca_cert = "/path/to/ca.crt" if use_tls else None 

    This setup ensures that the system can flexibly switch 
between secure and non-secure communication modes by 
adjusting the use_tls parameter and the corresponding 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/ITIKD63574.2025.11005154, 2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ). 



configuration settings in the broker, subscriber, and publisher. 

IV. DISCUSSION

A. Results

The results of the experiment include the average latency
(milliseconds), throughput (bytes per second), CPU cycles and 
Peak RSS (Resident Set Size) for each scenario (10, 50,100 
and 500 files each one 10KB of size). These metrics provide a 
comprehensive view of the efficiency and overhead 
introduced by TLS encryption compared to non-TLS 
communication for varying message volumes.  
     In Fig 6, the comparison of CPU cycles from publisher side 
is shown for each scenario (10, 50 , 100 and 500 files). The 
CPU cycles are generally higher for the TLS configuration, 
which reflects the increased computational load due to 
encryption. As the number of messages increases, the 
difference in CPU cycles between TLS and non-TLS 
configurations becomes more pronounced. Higher CPU cycles 
observed for TLS indicate more processing power is required 
for secure communication. This can lead to higher power 
consumption, which is a critical factor for battery-powered 
IoT devices. 

Fig. 6.  Publisher CPU cycles comparisons 

When evaluating the performance of IoT devices, Peak RSS 
(Resident Set Size) is a critical metric. It indicates the 
maximum amount of memory a process occupies during its 
execution. Given the constrained resources of IoT devices, 
managing memory usage effectively is essential to ensure 
reliable and efficient operation. In Fig7, the Peak RSS values 
are presented for non-TLS and TLS protocols over varying 
message counts. TLS introduces a clear increase in Peak RSS 
compared to non-TLS. The overall memory usage increase 
is approximately 1 MB. This difference, although modest on 
a laptop, can be significant for IoT devices with very limited 
memory. 

Fig. 7.  Peak RSS comparison 

    For each message count (10, 50, 100, 500), the average 
latency is calculated by taking the average of five readings 
per message count. The results are illustrated in Fig.8, for 
lower message counts, the latency is observed to be higher. 
This can be attributed to the fact that when fewer messages 
are sent, each individual message may experience higher 
overhead relative to the overall operation time. The initial 
setup, connection time, and other fixed overheads have a 
more significant impact when spread across fewer messages. 
The average latency is generally higher for TLS compared to 
non-TLS. This is expected as TLS involves additional 
encryption and decryption processes which introduce more 
overhead. 
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Fig. 8.  Average latency comparison 

    For each message count (10, 50, 100,500), the average 
throughput is calculated by taking the average of five readings 
per message count. The results are illustrated in Fig.9, both 
TLS and non-TLS show a consistent increase in throughput as 
the number of messages increases. This suggests that the 
overhead of encryption in TLS does not significantly impact 
throughput as the message count increases. The throughput 
analysis indicates that the performance of TLS is very close to 
non-TLS, with only slight variations observed at higher 
message counts. 

Fig. 9.  Throughput comparison 

B. Limitations

As previously mentioned, the absence of encryption in
standard MQTT implementations poses significant risks to 

IoT systems. Attackers can exploit this vulnerability to 
manipulate MQTT messages, inserting false data or 
monitoring communications to compromise confidentiality 
and integrity. Such attacks in MQTT environments could 
lead to economic losses or unintended consequences, such as 
raising room temperatures, generating false alarms by 
altering application messages like door statuses, or exposing 
sensitive information like client and message identities that 
are not encrypted. As discussed in this paper, efforts are 
underway to develop lightweight and efficient encryption 
algorithms specifically tailored for securing the MQTT 
protocol. These algorithms aim to balance security, 
performance, and resource constraints inherent in IoT 
environments. However, as mentioned in Table 2, these 
efforts have many limitations: 

• Not considering IoT-related factors such as power
consumption, latency, and bandwidth.

• No end-to-end encryption solutions, such as protecting
only the payload.

• No evaluation and comparison with other similar
solutions.

C. Future Work

Future research efforts should prioritize the development
of lightweight, cost-effective, fine-tuned, and high 
performing security solutions to enhance MQTT security. It 
is crucial to thoroughly evaluate these proposed solutions for 
scalability, compatibility, and adaptability to the resources 
available in IoT deployments, ensuring effective 
management of MQTT security challenges. 

V. CONCLUSION

   This paper details recent research efforts aimed at 
safeguarding data security through various encryption 
algorithms, with a particular emphasis on MQTT. It includes 
a comparative analysis of these algorithms, their respective 
testbeds, strengths, and weaknesses. Further research is 
essential to refine existing protocols to meet the evolving 
security and performance demands of IoT systems. 
Additionally, the paper presents an implementation of TLS 
in MQTT along with a performance analysis compared to 
standard MQTT in terms of CPU cycles, peak RSS, latency, 
and throughput. The use of TLS for secure communication 
introduces additional overheads in latency, CPU cycles, and 
memory usage. These overheads are significant for 
constrained IoT devices, as they can affect the performance 
and energy consumption of the devices. While non-TLS 
communication is faster and less resource-intensive, it does 
not provide the necessary security for sensitive data 
transmission. 
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