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Robust H2 Filtering for a Class of Systems With
Stochastic Nonlinearities

Fuwen Yang, Zidong Wang, Daniel W. C. Ho, and Xiaohui Liu

Abstract—This paper addresses the robust 2 filtering problem
for a class of uncertain discrete-time nonlinear stochastic systems.
The nonlinearities described by statistical means in this paper
comprise some well-studied classes of nonlinearities in the liter-
ature. A technique is developed to tackle the matrix trace terms
resulting from the nonlinearities, and the well-known -pro-
cedure technique is adopted to cope with the uncertainties. A
unified framework is established to solve the addressed robust 2

filtering problem by using a linear matrix inequality approach. A
numerical example is provided to illustrate the usefulness of the
proposed method.

Index Terms—Deterministic uncertainty, linear matrix in-
equality (LMI), robust 2 filtering, stochastic nonlinearity.

I. INTRODUCTION

RECENTLY, there have been growing research interests in
the robust filtering problems for stochastic systems, see,

e.g., [4], [6]–[8], [12] and references therein. In particular, a
linear matrix inequality (LMI) approach has been proposed in
[6] to deal with the robust steady-state filtering problem with
multiplicative noises over an infinite-horizon, and the corre-
sponding finite-horizon filtering problem has been studied in
[9] in terms of recursive Riccati-like equations. Also, the mean
square stability has been dealt with in [11] for a class of sto-
chastic systems with both Markovian switching and nonlinear-
ities. On the other hand, in [10], an elegant LMI approach has
been developed to deal with the analysis problem for a class of
systems with stochastic nonlinearities, where the nonlinearities
characterized by statistical means were first introduced in [5].
Unfortunately, the robustness issue in the presence of param-
eter uncertainties has not been addressed.

The main purpose of this paper is: 1) to substantially extend
part of the analysis results in [10] to the uncertain systems; 2) to
derive the explicit expression of an upper bound for the robust

performance; and 3) to deal with the corresponding robust
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filter design problem where the upper bound of the perfor-
mance is minimized. Specifically, we are interested in designing
a filter such that, for all admissible stochastic nonlinearities and
deterministic uncertainties, the overall filtering process is expo-
nentially mean-square quadratically stable, and the filtering
performance is achieved as well. The solution to the filtering
problem is enforced within a unified LMI framework. A numer-
ical example is provided to illustrate the design procedures and
performances.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider the following class of discrete-time systems with
stochastic nonlinearities and deterministic norm-bounded pa-
rameter uncertainties:

(1)

where is the state, is the measured output,
is a combination of the states to be estimated.

is a zero mean Gaussian white noise sequence with covariance
, and , , , , , , and are known real

matrices with appropriate dimensions.
The matrix represents the deterministic

norm-bounded parameter uncertainties satisfying ,
and and are stochastic
nonlinear functions of the states, which are assumed to have
the following first moments for all :

(2)

with the covariance given by

(3)

and

(4)
where and are
known column vectors with compatible dimensions of
and , and are known positive-definite
matrices with appropriate dimensions.

Remark 1: The nonlinearity description in (2)–(4) covers
several classes of well-studied nonlinear systems, for example,
the system with state-dependent multiplicative noises and the
system whose state’s power depends on the sector-bound (or
sign) of the nonlinear state function of the state, see [5], [10].
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Now consider the following filter for the system (1):

(5)

where is the state estimate, is an estimate for , and ,
and are the filter parameters to be determined.
The augmented system is described by combining (5) with

(1) as follows:

(6)

where

(7)

(8)

(9)

(10)

In this paper, our objective is to design the filter (5) for the
system (1) such that, for all stochastic nonlinearities and all ad-
missible deterministic uncertainties, the augmented system (6)
is exponentially mean-square quadratically stable and the esti-
mation error satisfies the performance constraint, i.e.,

(11)

where is a prescribed scalar.

III. ROBUST FILTER DESIGN

Before proceeding, we denote

(12)

In order to derive the robust filter, we need the following
technical results.

Lemma 1: Consider the system

(13)

where , , and
. Here, ,

are column vectors, are
known positive-definite matrices with appropriate dimensions.
If the system (13) is exponentially mean-square stable, and there
exists a symmetric matrix satisfying

(14)

where

(15)

then .

Lemma 2: The system (6) is exponentially mean-square
quadratically stable if, for all admissible uncertainties, there
exists a positive definite matrix satisfying

(16)

Lemma 1 and 2 can be easily proved by using the Lyapunov
method, hence the proofs are omitted.

Lemma 3: [1], [3], [10] If the system (6) is exponentially
mean-square quadratically stable, then

(17)

where is the Kronecker product of matrices; is the spectral
radius of a matrix, and stands for the stack that forms a vector
out of the columns of matrix.

Lemma 4: ( -procedure) [2]. Let , and
be real matrices of appropriate dimensions with satisfying

, then

(18)

if and only if there exists a positive scalar such that

(19)

or equivalently

(20)

Now, let us proceed to compute the performance that is
used in the constraint (11). Define the state variance by

, and then the evolution of the state variance matrix
can be derived from the system (6) as follows:

(21)

Rewrite (21) in the form of stack matrices

(22)

where

(23)

If the system (6) is exponentially mean-square quadratically
stable, it then follows from Lemma 3 that , and

. Hence, the performance is

(24)

Now, suppose that there exists a symmetric matrix such
that the following backward recursion is satisfied:

(25)
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Similarly, if the system (6) is exponentially mean-square
quadratically stable, it then follows from Lemma 3 that (25), in
the steady state, becomes

(26)

To this end, we have the following theorem that gives an al-
ternative to compute the performance.

Theorem 1: If the system (6) is exponentially mean-square
quadratically stable, the performance can be expressed in
terms of as follows:

(27)

where is the solution to (26).
Proof: Noting that

(28)

we have , and the proof follows
from (24) immediately.

Notice that the model (1) involves parameter uncertainties,
hence the exact performance (27) cannot be obtained by
simply solving (26). We now aim to provide an upper bound
for the actual performance.

Suppose that there exists a positive definite matrix such
that the following matrix inequality is satisfied:

(29)

Theorem 2: If there exists a positive definite matrix sat-
isfying (29), then the system (6) is exponentially mean-square
quadratically stable, and

(30)

(31)

where satisfies (26).
Proof: Observing that (29) implies (16), it follows directly

from Lemma 2 that the system (6) is exponentially mean-square
quadratically stable, exists and meets (26). Subtracting (29)
from (26) yields

(32)
which indicates from Lemma 1 that . Also, (30)
implies (31). This completes the proof.

The corollary given below follows immediately from The-
orem 2 and (11).

Corollary 1: If there exists a positive definite matrix sat-
isfying (29) and , then the system (6) is expo-

nentially mean-square quadratically stable, and (11) is satisfied
for some .

Now we are in a position to present the main results on the
addressed robust filter design. For the purpose of clarity, we
only give the sketch of the proof.

Theorem 3: Given a scalar . If there exist positive-
definite matrices , and , real matrices
( , 2, 3), positive scalars and
such that the following linear matrix inequalities are feasible:

(33)

(34)

(35)

(36)

where

(37)

(38)

(39)
then there exists a filter of the form (5) such that the system
(6) is exponentially mean-square quadratically stable and (11)
is satisfied for all stochastic nonlinearities and all admissible
deterministic uncertainties. Moreover, if the LMI’s (33)–(36)
are feasible, the desired filter parameters can be determined by

(40)

where the matrix comes from the factorization
.

Proof: Partition and in (29) as

(41)
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and construct

(42)

which imply that and .
We define the change of filter parameters as follows:

(43)

Using the congruence transformation technique, it is easily
seen that (34) is equivalent to

(44)

which, together with (33), shows that . Ap-
plying similar technique to (35), we obtain

(45)

and therefore

(46)

which infers that (29) is satisfied. Now, we need to prove that
(36) is equivalent to (46). By using the Schur complement to
(46), we have

(47)

Rewrite (47) in the form of (18) as follows:

(48)

where

Applying Lemma 4 to (48), it follows that (48) holds if and
only if there exists a positive scalar parameter such that the
following LMI holds

(49)

Applying the congruence transformation
to (49), we get

(50)
Further applying the congruence transformations

to (50), we obtain

(51)

where

(52)

(53)

is defined in (54) at the top of the next page.
Also, performing the congruence transformation

to (51) results in
(36). Hence, from Corollary 1, we conclude that (6) is
exponentially mean-square quadratically stable and (11) is
satisfied.

Furthermore, if the LMIs (33)–(36) are feasible, then we have

, i.e., . It follows directly

from that . Hence, one
can always find square and nonsingular and , and (40),
is then obtained from (43), which concludes the proof.

In view of (40), we could make the linear transformation on
the state estimate

(55)

and then have a new representation form of the filter as follows:

(56)

where

(57)

We can now see from (56) that, the filter parameters can be
obtained directly by solving LMIs (33)–(36) without solving

for in (40).
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(54)

Finally, we like to point out that, the upper bound can be
readily minimized within the developed LMI framework, which
is illustrated in the next section.

IV. ILLUSTRATIVE EXAMPLE

Consider a discrete-time system described by (1) with sto-
chastic nonlinearities and deterministic norm-bounded param-
eter uncertainties as follows:

where is a zero mean Gaussian white noise sequence with
covariance . Denote , and assume that the
stochastic nonlinear functions and satisfy

In this example, we wish to achieve the smallest . Therefore,
we employ Matlab LMI ToolBox (function mincx) to minimize

in (33) by using Theorem 3 with . we obtain the min-
imum performance , and

V. CONCLUSION

A robust filter has been designed for a class of uncertain
discrete time nonlinear stochastic systems. A key technology
has been used to convert the matrix trace terms into the linear
matrix inequalities. The filter has been obtained under a unified
flexible LMI framework, and sufficient conditions for the solv-
ability of the filtering problem have been given in terms of
a set of feasible LMIs. Our results can be extended to the robust

output control problem.
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