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Abstract: Human-induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs)
have been shown to be useful for the development of cell-based regenerative strategies
and for modelling drug discovery. However, stem cell-derived HLCs are not identical
in nature to primary human hepatocytes (PHHs), which could affect the cell phenotype
and, potentially, model reliability. Therefore, we employed the in-depth gene expression
profiling of HLCs and other important and relevant cell types, which led to the identification
of clear similarities and differences between them at the transcriptional level. Through gene
set enrichment analysis, we identified that genes that are critical for immune signalling
pathways become downregulated upon HLC differentiation. Our analysis also found that
TAV.HLCs exhibit a mild gene signature characteristic of acute lymphoblastic leukaemia,
but not other selected cancers. Importantly, HLCs present significant similarity to PHHs,
making them genuinely valuable for modelling human liver biology in vitro and for the
development of prototype cell-based therapies for pre-clinical testing.

Keywords: liver; transcriptomic; stem cells; differentiation

1. Introduction
Liver disease is a leading cause of mortality and morbidity worldwide, accounting

for approximately 2 million deaths annually [1]. While liver transplantation is widely
adopted as a treatment for end-stage liver disease, challenges persist, including the lack
of acceptable donor organs, graft rejection, and the recurrence of viral hepatitis after
liver transplantation. Therefore, more widely available treatments are required, which
include the development of renewable cell-based therapies [2]. A variety of candidate
cell types have been proposed as starting materials [3], yet it is still unclear whether
these cells, when grown in vitro, exhibit similar characteristics to those of primary human
hepatocytes (PHHs).

Induced pluripotent stem cells (iPSCs) offer a renewable resource to generate somatic
cells, including hepatocyte-like cells (HLCs). iPSCs and their HLC derivatives have been
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widely used as validated models for human disease and pharmacotoxicological assess-
ments [3–12], and they have potential for use in the correction of genetic disorders [13,14].
Although HLCs share similar features with PHHs at the transcriptomic level, differen-
tial gene expression patterns have been detected. These differences in gene expression
require further examination, especially if HLCs are to be successfully deployed in disease
modelling and drug development studies.

To address this issue, we used RNA-seq data for iPSCs and HLCs and aligned the
sequencing output to a variety of cell types, including PHHs. Genomic alignment and
expression profiling through unsupervised clustering and principal component analysis
revealed that HLCs matched closely with primary hepatocytes. By cross-comparing the
data, we generated differentially expressed genes and annotated them with key biological
processes that are critical for data interpretation. These were then used for a carcinogenesis
assessment via machine learning algorithms, which enabled us to determine gene signatures
that were specific to cancer.

2. Materials and Methods
2.1. Generation of TAV.iPSC and TAV.HLC Derivatives

A human iPSC line (JHUP106i, hereafter denoted as TAV.iPSC) was cultured rou-
tinely on laminin 521 (BioLamina, Interchim, France)-coated plates in serum-free mTeSR™1
medium (STEMCELL Technologies, Cambridge, UK), as previously described [15]. Cells
were monitored regularly for infection and propagated in antibiotic-free medium. Cells
were characterised for markers of pluripotency and differentiation using flow cytom-
etry before being differentiated into HLC 3D spheroid cultures (hereafter denoted as
TAV.HLC), as previously described [16–18]. Immunostaining (against HNF4A) and q-RT
PCR (against HNF4A and ALB) were also used to identify hepatocyte markers, as previously
described [15,18].

Cyp3A activity was assessed using 50 uM of Luciferin-PFBE substrate (Promega,
Southampton, UK), which was incubated with 3D hepatospheres in HepatoZYME medium
supplemented with 10 ng/mL of HGF. Cytochrome P450 activity was measured 24 h later
using the P450-Glo assay kit (Promega), following the manufacturer’s instructions. To
measure AFP and ALB secretion, supernatants were collected after 24 h and quantified
using commercial ELISA kits (Alpha Diagnostics International, San Antonio, TX, USA).
Data were normalised with the total protein content measured using a bicinchoninic acid
(BCA) assay (Thermo Fisher Scientific, Loughborough, UK).

2.2. RNAseq Sample Preparation

RNA was extracted from TAV.iPSCs and TAV.HLCs (n = 2), differentiated as previously
reported [16–18], using the RNAeasy Mini RNA Extraction Kit (Qiagen, Manchester, UK)
according to the manufacturer’s instructions. RNA was treated with on-column DNAase
I digestion according to the manufacturer’s instructions (Qiagen). RNA quantity and
quality were evaluated using NanodropTM200c (Thermofisher Scientific, Loughborough,
UK). RNA quality was assessed with the TapeStation 2200 system using TapeStation RNA
ScreenTape & Reagents (Agilent, Santa Clara, CA, USA). Up to 1000 ng of total RNA
per sample was applied for SureSelect Strand-Specific mRNA Library Preparation for
Illumina (Agilent) and the TruSeq Stranded mRNA Library Prep Kit (Illumina, Cambridge,
UK) according to the manufacturer’s instructions for library preparation. Libraries were
sequenced in 150PE mode with the Illumina HiSeq System.
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2.3. Quality Control, Alignment of Genomic DNA, and Differential Gene Analysis

The quality of RNA-seq data in FastQ files was checked by FastQC (v0.11.9). Reads
were filtered, and we trimmed the raw reads with (1) Phred quality scores lower than 20, (2)
a length less than 50 nt, (3) expected errors greater than 2, or (4) Ns greater than 0. Dada2
(v1.18) [16] was used to accomplish this step. The filtered and trimmed reads were then
aligned to the reference genome GRCh38 (hg38; version released on 29 November 2021)
using Rsubread (v3.14) [19,20]. The resulting BAM files were then annotated with genomic
features by featureCounts [20]. DESeq2 (v1.34.0) was used to perform differential gene
expression analysis [21]. The iPSC and HLC derivatives were denoted as TAV.iPSCs and
TAV.HLCs, respectively, and were run as two biological replicates. The same method was
used to perform meta-analysis on the public RNA-seq data for cross-dataset comparison.
The details are summarised in Table 1.

Table 1. Gene expression datasets. The gene expression datasets used in this study, derived from ex-
perimental data from TAV.iPSCs and TAV.HLCs, were compared to publicly available gene expression
datasets from a range of normal and diseased phenotype cell derivatives.

# Sample Qty Source Data Description

1 TAV.HLCs 2 In house FPKM Hepatocyte-like cells
2 TAV.iPSCs 2 In house FPKM Induced pluripotent stem cells
3 G.HepG2 7 [22] FastQ Liver cancer cell line
4 G.PHHs 12 [22] FastQ Primary human hepatocytes
5 G.HLCs 9 [22] FastQ Hepatocyte-like cells
6 G.iPSCs 2 [22] FastQ Induced pluripotent stem cells
7 G.CTRL 5 [22] FastQ Primary human liver tissue—healthy
8 Liver-Nor 50 TCGA database Count Primary human liver tissue—normal
9 Liver-Car 374 TCGA database Count Primary human liver tissue—cancer
10 Skin-Nor 1 TCGA database Count Primary human skin tissue—normal
11 Skin-Car 471 TCGA database Count Primary human skin tissue—cancer
12 AML 224 TCGA database Count Acute myeloid leukaemia

13 ALL.P1-3 679 TCGA/TARGET
database Count Acute lymphocytic leukaemia phase 1–3

14 Teratoma 37 [23] FPKM Teratoma
15 Fibroblast 34 [24] FPKM Tissue-specific fibroblasts
16 PBMCbulk 13 [25] TPM Peripheral blood mononuclear cells

Sample cells (TAV.iPSCs and TAV.HLCs) were used to provide RNA for the RNASeq
analysis. Gene expression datasets were assigned sample numbers for downstream analy-
sis. Sample numbers 1 and 2 are used for TAV.iPSC (JHUP106i) and TAV.HLC derivatives.
Sample number 3 is used for HepG2, which represents a liver cancer cell line that can be
used to determine whether the differentiated iPSCs share a certain degree of transcriptomic
similarity with liver cancer. The data used from the results of iPSC differentiation in this
study, using the same technology with a similar experimental design, were, therefore,
considered comparable to other studies. CTRL (healthy liver tissue) and PHHs (primary
human hepatocytes) serve as non-cancerous references. Samples 8–13 originate from the
TCGA/TARGET database (n = 1799), which increases the total sample size to 1920 for the
data analysis, markedly improving the statistical significance. Liver or leukaemia (lym-
phocytic or myeloid) samples were used to extract specific gene signatures for cytotoxicity
assessment. Skin samples were used for a comparison with iPSCs. Samples 14–16 were
obtained from teratoma, fibroblasts, or PBMCs for comparison with iPSCs or leukaemia
cells, respectively.

2.4. Principal Component Analysis (PCA)

To investigate the overall expression profiles across different samples, we normalised
the count matrix to fragments per kilobase of transcript per million mapped reads (FPKM),
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followed by principal component analysis (PCA), using 5000 top-ranked variable protein-
coding genes. PCA was performed using samples 1–16, as described in Table 1.

2.5. Pathway Enrichment Analysis

Hypergeometric testing was performed by using the enricher function in the clus-
terProfiler package (v4.2.2) [26], aiming to assess the enrichment of hallmark signalling
pathways across different samples. Genes with a fold change greater than 1 were defined
as differentially expressed genes and regarded as input. Hallmark gene sets from the
Molecular Signatures Database (MSigDb; v1.2.0) were used for the enrichment analysis.
The enrichment analysis was performed using samples 1–16, as described in Table 1.

2.6. Weighted Correlation Network Analysis (WGCNA)

WGCNA was performed by using the package WGCNA_1.70-3 [27]. A minimum of
10 samples per group should normally be used for WGCNA. Briefly, we filtered out genes
that were not expressed across all samples or were related to non-coding, mitochondrial,
DNase/RNase, ATPase, ribosome, or unannotated open-reading frames. The filtered
genes were then used for one-step network construction and module detection. We used a
soft-thresholding power of 10 based on the criterion of approximate scale-free topology.
WGCNA was performed using samples 1–16, as described in Table 1.

2.7. Phenotype Classification and Prediction

To investigate the transcriptomic similarity between the samples and the refer-
ence data with phenotypic information, we prepared training datasets for (1) a normal
liver (Liver.Nor,), (2) hepatocellular carcinoma (Liver.Car), (3) normal skin (Skin.Nor),
(4) melanoma (Skin.Car), (5) normal peripheral blood mononuclear cells (PBMCs), (6) acute
lymphoblastic leukaemia (ALL), (7) acute myeloid leukaemia (AML), (8) teratoma, and
(9) fibroblasts (Fib.) and cross-compared them with TAV.iPSC and TAV.HLC samples and
reference samples (G.iPSC, G.HLC, G.PHH, G.HepG2) from Gupta et al., 2021 [22]. The
package ranger was used to carry out phenotype classification and prediction.

3. Results
3.1. RNA-Seq Analysis Reveals Transcriptomic Similarity Between iPSC-Derived HLCs
and PHHs

To test whether the iPSC-derived HLCs exhibit transcriptomic similarity with PHHs,
principal component analysis (PCA) was used to display a comparison between the RNA-
seq datasets from this study and those reported by Gupta et al., 2021 [22] (denoted by G).
For this analysis, iPSC and HLC samples, termed TAV-iPSC1, TAV-iPSC2, TAV-HLC1, and
TAV-HLC2, respectively, were generated in this study to investigate their transcriptomic
similarities with the reference data. After averaging the results from these datasets (termed
TAV.iPSC and TAV.HLC) and selecting the 5000 top-ranked variable protein-coding genes
for PCA (Figures 1 and 2), we found that TAV.iPSCs and TAV.HLCs appear to be aggregated
with the samples from the liver, skin, and teratoma, as expected. The samples from the refer-
ence data also appeared comparable, with parallel clustering with the same sample groups.
The samples from PBMC, ALL, and AML aggregated as separate clusters, suggesting that
they share fewer common features with TAV.HLCs and TAV.iPSCs. The AML and ALL
samples are markedly different from each other; however, the ALL samples share some
similar characteristics with the PBMC samples. Fibroblasts from different tissue origins
aggregated as a single cluster away from the other samples, suggesting that TAV.HLCs
and TAV.iPSCs are less likely to share common features with these cells. To gain insight
into the relationships between these samples, we used Pearson’s correlation test with the
same dataset.
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Figure 1. Assessment of inter- and intragroup variability. (A) Principal component analysis (PCA)
depicting all 1920 samples along PC1 and PC2—which reveal 80.97% and 5.51% of the variability, re-
spectively, within the expression dataset. PCA was applied to FPKM-normalised and log-transformed
count data. (B) Pearson’s correlation matrix showing the correlation (r) values across different sam-
ples. The scale bar represents the range of the correlation coefficients (r). Dot sizes show level
of statistical significance. These analyses identify close similarity between TAV.HLCs and healthy
liver samples.
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Figure 2. Assessment of inter- and intragroup variability in TAV.iPSC, TAV.HLC, liver, skin, and
teratoma samples. (A) Principal component analysis depicting selected samples along PC1 and PC-
which reveal 44.05% and 26.17% of the variability, respectively. (B) Spearman’s correlation revealing
a quantitative measure of transcriptomic similarity across all liver samples. This highlights that
TAV.HLCs clustered closely with PHHs and HLCs from Gupta et al., 2021 [22].

By performing unsupervised hierarchical clustering using the top 5000 differentially
expressed genes across each sample (averaged and grouped for clarity), we show that
TAV.HLCs are clustered with G.HLCs generated by Gupta et al., 2021. [22], suggesting
that the top 5000 differentially expressed genes between these samples are partially shared
between these datasets (Figure 2). TAV.iPSCs cluster with skin samples, suggesting pluripo-
tent characteristics (Figure 2). While this differs from the first PCA plot in Figure 1, this is
likely due to variable features in the first two principal components. The iPSCs and HLCs
from the sample data appear more closely related to G.iPSCs and G.HLCs, as expected.
The PBMC/leukaemia, fibroblast, and teratoma sample are clustered separately, suggesting
that TAV.iPSCs and TAV.HLCs do not share distinct features with these samples (Figure 3).

 

Figure 3. Expression profiling reveals transcriptomic similarity across liver samples. (A) Heatmap
showing mean expression levels of the top 5000 variable genes across each sample column.
(B) Dendrogram depicting the transcriptomic distance between the liver samples based on these 5000
variable genes. We identified similarities between the top 5000 variable gene subset of TAV.HLCs and
primary hepatocytes.
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To rule out the possibility that the differentiated HLCs may share transcriptomic
similarities with other tissues, we cross-compared these datasets with the ones from healthy
peripheral blood mononuclear cells (PBMCs), acute lymphocytic leukaemia (ALL), acute
myeloid leukaemia (AML), teratoma, and tissue-specific fibroblasts, which showed this not
to be the case. TAV.HLCs can be seen across these differentially expressed genes (DEGs) to
be transcriptomically similar to primary hepatocytes (Figures 2 and 3).

3.2. Pathway Analysis Shows Downregulated Genes Characteristic of Immune-Associated
Signalling Pathways in iPSCs Compared to Those in HLCs

We then performed a differential analysis of genes highly expressed in iPSCs or HLCs
to gain insight into their biological implications. Through cross-comparison with the
reference datasets, we identified similarly up- (n = 6) or downregulated (n = 151) genes in
the TAV.HLCs (Figures 4–6).

 

Figure 4. Gene expression regulation in iPSC and HLCs. Venn diagram showing the numbers of
(A) up- or (B) downregulated genes shared between the PHH, G.HLC, and TAV.HLC datasets. These
indicate differences between datasets, which are likely attributed to differences in differentiation
protocols.

We then used data from primary human hepatocytes (PHHs) to determine how differ-
ent HLCs were to PHHs following differentiation. By performing a hypergeometric test
using the hallmark gene set, we found that most immune pathways, such as the inflam-
matory response and interferon α/γ response, are enriched in PHHs when compared to
HLCs. Other immune pathways, such as IL6/JAK/STAT3 signalling and IL2/STAT5 sig-
nalling, were found to be dysregulated in TAV.iPSCs and TAV.HLCs (Figure 7). The details
of significantly upregulated genes in the IL2/STAT5 and IL6/JAK/STAT3 pathways are
provided (Supplementary Table S1). Upregulated genes involved in the IL6/JAK/STAT3
pathway were only identified in PHHs. Significantly upregulated genes involved in the
IL2/STAT 5 signalling pathways were identified in PHHs, TAV.HLCs, and HepG2 (Sup-
plementary Table S1). No common genes were identified as upregulated across all three
samples. While TAV.HLCs do not express all the same pathways as PHHs, this is likely due
to culture-specific effects, where not all primary hepatocyte signatures are retained in vitro.
There is a partial pathway activity relationship between PHHs and TAV.HLCs, as shown
in Figure 3. In the IL6/JAK/STAT3 pathway, 23 genes were upregulated in PHHs and an
additional 2 genes were upregulated in TAV.iPSCs. For the IL2/STAT5 signalling pathway,
a total of 63 genes were found to be upregulated in TAV.HLCs (n = 22), G.PHHs (n = 21),
and G.HepG2 (n = 20).
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Figure 5. Heatmap showing scaled mean expression levels of the top DEGs from the available datasets
used in this study. Expression levels in iPSCs (TAV.iPSC), HLCs (TAV.HLC), PHHs (Liver.Nor), and
HepG2 (Liver.Car) across different samples. Using scatter plots of these genes, many of downregu-
lated genes such as HMGB2, BIRC5, ARID3B, and SOX2, they are found to be associated with the
cell cycle.

To gain insights into the biological implications of the DEGs in each cell type, we
performed weighted correlation network analysis (WGCNA), constructing an eigengene
network that gives rise to 45 co-expression modules in a cell type-specific manner, and
found that 14 of the modules were associated with TAV.HLCs. GO term analysis of the
genes in these modules shows significant enrichment of the pathways regarding lipid
metabolism, ECM organisation, and neuronal differentiation (Figure 8).
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Figure 6. Differentially expressed genes in iPSCs and HLCs. Scatter plot showing p values and
log2 fold change in each differentially expressed gene in G.HLCs (top) and TAV.HLCs (bottom).
Upregulated (+1 fold change) and (−1 fold change) downregulated genes are shown. The most
significant genes that are differentially regulated are labelled [22].
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Figure 7. Hallmark gene set enrichment analysis highlights differentially expressed genes charac-
teristic of immune pathways between TAV.iPSC and PHH and TAV.HLC samples. (A) Dot plots
showing hallmark pathways enriched in each sample, with dot sizes denoting the level of statistical
significance and the colour gradient reflecting the average expression level of genes within each set.
(B) Heatmap revealing expression profiles of leading-edge genes characteristic of the IL6/JAK/STAT3
signalling pathway across TAV.iPSC, TAV.HLC, PHH, and HepG2 samples.

Previously, it has been shown that several liver (ALB, HNF4A, HNF1A, NR1H4,
ABCB11) and intestinal genes (CDX2, KLF5, ISX) are co-expressed in iPSC-derived
HLCs [28]. Through the analysis of gene expression datasets, we confirmed consistent
findings (Supplementary Figure S1): TAV.HLCs co-express key liver markers, alongside
intestinal-associated genes (HNF4A, HNf 1A, CDX2, KLF5, ISX). This replicates similar
gene expression in Liver.Norm cells, though we have only identified HNF4A and HNF1A
expression in PHHs.
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Figure 8. Weighted correlation network analysis (WGCNA) of iPSC, HLC, PHH, and HepG2 expres-
sion data in humans. (A) Heatmap showing the Topological Overlap Matrix among 500 randomly
selected genes (with non-coding, etc., removed). Blocks of darker colours along the diagonal represent
each module. The gene dendrogram and module assignment are also shown along the left side
and top. (B) The dendrograms (clustering trees) of the module eigengenes in the human samples.
(C) Pearson’s correlation of co-expression modules revealing module–sample relationships. Module
eigengenes (MEs) are indicated by colours. The number of genes (g) within each module is shown in
brackets. (D) Dot plot showing the top enriched GO terms in selected module eigengenes with the
same colour codes. Bonferroni-corrected log10-converted p values were indicated by dot sizes.

3.3. Analysis of Cancer Signatures in iPSCs or HLCs

Upon the molecular characterisation of HLCs, we then assessed expression profiles
critical for tissue development or cancer progression. Here, we investigated similari-
ties between HLCs and samples that characteristically recapitulate each tissue. We pre-
pared reference datasets from (1) normal liver (Liver.Nor and G.CTRL), (2) hepatocellular
carcinoma (Liver.Car), (3) normal skin (Skin.Nor), (4) melanoma (Skin.Car), (5) PBMC,
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(6) ALL, (7) AML, (8) teratoma, and (9) fibroblast (Fib) samples. These datasets of known
phenotypes served as the input for our supervised machine learning models to be trained.
We then predicted the possibilities of HLCs being classified as each of these tissue types
using Random Forest. The prediction scores for each comparison are shown in the heatmap
in Figure 9. This data highlighted similarities between TAV.iPSCs and TAV.HLCs with
skin carcinoma. However, TAV.HLCs did not present a high prediction score with liver
carcinoma, suggesting a naïve transcriptomic background.

Figure 9. Heatmap showing similarity levels between iPSC, HLC, HepG2, and reference data by
using the Random Forest algorithm. TAV.iPSCs share some common features with melanoma and
teratoma, which is possibly due to the characteristics of iPSCs as proliferating cells. TAV.HLCs are
less likely to share common features with hepatocellular carcinoma, judging from the lower similarity
level of these cells (0.17) with liver cancer cells (Liver.Car) compared to that of the reference dataset
(G.HLC) (0.31) or G.HepG2 (0.37). TAV.HLCs share a few common features with acute lymphoblastic
leukaemia at a similarity level of 0.26, compared to the baseline levels of 0.13 (TAV.iPSC) and 0.19
(G.iPSC). No AML-specific features were detected in any of the TAV.iPSC and TAV.HLC samples.

Considering that we used all genes for prediction, which may not reflect the gene
expression profiles in those cultured in vitro, we next generated distinct gene signatures
characteristic of each phenotype and validated the markers by revisiting the expression
profiles in the HPA datasets. We began by using the data from normal tissue from the
HPA database, aiming to investigate which groups of genes for each type of human tissue
could be used to characterise our TAV.iPSCs and TAV.HLCs (Figure 10). The expression
profiles of liver-specific cancer genes with the greatest expression (log2 fold change > 1)
and statistical significance (adjusted p value < 0.05) are shown in Supplementary Figure S2,
indicating the similar expression of these markers in TAV.HLCs to normal liver cell gene
expression. Through this analysis, we found that the control liver or skin samples were
characterised by higher mean expression levels of liver- or skin-specific gene signatures.
Also, the liver-specific genes were found to be highly expressed in the control samples in
both the tissues and primary liver cells and expressed at lower levels in HLCs. Muscle-
specific genes (negative control) were found to be highly expressed in iPSCs in both studies,
but with lower expression in HLCs.
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Figure 10. Assessment of tissue-specific gene signatures in distinct samples. (A) Heatmap showing
the mean expression levels of the genes characteristic of each reference tissue from the HPA database
(column) in each sample (row). (B,D) Mean expression levels of liver-/muscle-specific genes across
different samples. (C,E) Expression profiles of each liver-/muscle-specific gene across different
samples. Expression levels and percentages are indicated by colour and dot sizes, respectively.

Through a similar analysis, we found that cancer-specific markers were highly ex-
pressed in each of the control samples, suggesting that the gene signatures identified
(Figure 11) implied cancer progression in the sample. ALL-/AML-specific gene signa-
tures were found to be at low levels in the TAV.HLCs compared to the normal samples,
such as fibroblasts or G.PHHs. Unless there is further experimental evidence that shows
ALL-/AML-related characteristics in TAV.HLCs, we would expect them unlikely to exhibit
leukaemic characteristics during sequencing (Figure 11). A hepatocellular carcinoma-
specific gene signature was found to be at much lower levels in the TAV.HLCs compared
to the reference HLCs, suggesting that the TAV.HLCs were unlikely to exhibit liver can-
cer characteristics during sampling (Figure 11). Finally, the expression levels of genes
characteristic of melanoma or teratoma were found to be low in the TAV.HLCs.
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Figure 11. Assessment of cancer-specific gene signatures in distinct samples. (A) Heatmap showing
the mean expression levels of the genes characteristic of each cancer. These genes were selected by
analysing the top DEGs between cancer and normal tissues. The numbers of the selected genes (g)
are indicated in brackets. (B-E) Violin plots showing mean expression levels of each cancer-specific
gene across different samples. (F) Dot plot showing mean expression of top cancer-specific genes
characteristic of ALL, AML, HCC, and melanoma.

As we identified low levels of ALL signatures in the TAV.HLCs, we investigated if this
was a common trend across the iPSC-differentiated HLC sample sets. For this, we compared
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the ALL signature score from G.HLCs and TAV.HLCs alongside gene expression datasets in
iPSC-differentiated HLCs from four separate studies (Supplementary Figure S3) [22,29–32].
All HLC samples were significantly different to the ALL samples, indicating only a partial
recapitulation of ALL signatures. While the ALL signature score in the TAV.HLCs was
slightly higher than that in the other samples, no significant difference was identified
(p < 0.05, Wilcoxon test), except in Study 4, which exhibited a decreased ALL signature score.
Furthermore, we analysed these samples for hepatocellular carcinoma (HCC) signature
scores and identified no significant difference between the TAV.HLCs in this study and
three other studies, though there was a significantly higher HCC signature score identified
in two other iPSC derived HLC datasets, suggesting the usefulness of TAV.HLCs.

Due to the limitations of the HPA database, we generated cancer-specific markers for
(1) ALL, (2) AML, (3) HCC, (4) melanoma, and (5) teratoma through analysing the top
significantly DEG between normal and cancer samples and extracting the unique ones
for downstream analysis. These data are summarised in Figure 11. This indicates that
TAV.HLCs are not transcriptomically similar to HCC cells or the other cancers screened for.

4. Discussion
Non-cancerous human liver cell lines have been developed that have been found

to be similar to PHH [33]. Human iPS cells offer an alternative source of cells for the
modelling and treatment of human diseases to replace animal studies, especially mice,
which have been traditionally used. These studies often cause animal suffering, generate
species-specific data, are expensive to carry out, and result in unforeseen effects in vivo. iPS
cells can be grown almost limitlessly and provide large amounts of material cost-effectively
and relatively quickly for transcriptomics, proteomics, metabolomics, and toxicological
profiling. In this study, we utilised the most advanced software packages and developed
novel algorithms with optimised parameters to investigate the potential for iPSCs to
provide hepatocyte-like (HLC) derivatives that could be useful as reliable surrogates for
studies that are important for the liver. In this study, we found differences in the expression
of proliferation and stemness markers, which have also been documented in previous
studies on HLCs cultured on laminin or MatrigelTM. Furthermore, RIG I expression was
also similar in TAV.HLCs, as has been described previously [15,34]. We also identified
consistent expression in TAV.HLCs of key liver and intestinal gene markers, supporting the
presence of a hybrid cellular state in line with previous observations [28].

Moderate ALL signature scores in TAV.HLCs were found, which were not significantly
different to the ALL scores identified in other iPSC-derived HLC samples. While it is
significantly decreased compared to the signature score in true ALL samples, this highlights
the moderate cancer signature in these cells. The ALL signature score of the TAV.HLCs were
found to be significantly different from the ALL signature scores identified in the HLCs
in Study 4, likely due to the hyperosmolar conditions used for differentiation, suggesting
specific responses due to culturing conditions. G.HLCs were analysed to more closely
align with PHHs in PCA; however, the cancer prediction scores, particularly for HCC, were
lower in TAV.HLCs when compared to G.HLCs, suggesting a lower carcinogenic profile in
these cells and the usefulness of TAV.HLCs.

These findings support our study’s contribution to further understanding basic liver
function and disease and the potential for future pharmacotoxicology studies on drug
treatments and their potential side effects and even potential genotoxicity arising from the
genetic modification of liver cells.

It is important to note that a major limitation to this study may be the interpretation of
our data analysis originating from iPS cells and their differentiation. Batch effects should
always be considered in tissue culturing and engineering. In this case, both we and the orig-
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inators of the reference data grew iPSCs and their HLC-differentiated counterparts under
2D and 3D conditions, which can lead to different cellular behaviours and, therefore, differ-
ent data outputs. We suspect that this is why there are differences presented between the
TAV.HLC and G.HLC datasets. While TAV.HLCs and G.HLCs use similar small-molecule
and growth factor cocktails (i.e., Activin A, Wnt3A, and HGF), TAV.HLCs are differenti-
ated using a 3D spheroid culture approach using oncostatin M, EGF, bFGF, VEGF, and
hydrocortisone 21-hemisuccinate, while G.HLCs are differentiated on 2D monolayers and
use BMP4. Hence, we believe that cell populations should be carefully controlled, ideally
with minimal heterogeneity. We chose not to synchronise cells before treatments because
synchronised cells may contribute to biological variation and transcriptomic differences.
Importantly, we chose to use stringent test conditions that showed that the cells exhibited
markers of pluripotency at the iPSC stage, a definitive endoderm, and hepatoblasts before
expressing markers true to hepatocytes by immunostaining and q-RT PCR, along with
hepatocyte function, as we previously described [17].

Another consideration is our quality control for the paired-end raw sequencing data
before filtering and trimming reads for our analyses. Starting with raw data, which gave
rise to a count matrix for downstream analysis, and using the DESeq2 algorithm instead of
a Limma trend approach could have compromised the DEG analysis. Nonetheless, directly
using FPKM values for validation purposes, such as carcinogenesis assessment, should not
have significantly compromised this analysis. We also used the top 5000 variable protein-
coding genes for PCA to focus on these genes rather than using non-coding transcripts. If
ribosomal genes were included, this could have masked many other genes with biological
significance, and the PCA outcome could have been altered. We observed that most of the
DEGs in the TAV.HLCs were downregulated compared to the TAV.iPSCs, which were highly
proliferative. Many of these genes were found to be associated with immune response and
potentially related to TNF/IFN gene expression levels. This may be due to the quiescent
nature of these HLCs, as supported by previous studies, since during homeostasis, the
primary function of hepatocytes is metabolic activity [34]. Although this supports the
need for further validation of these findings, HLC quiescence, which occurs following
differentiation, may involve IFN-gamma expression, as shown previously by the effects of
IFN-gamma on hepatocyte cell cycle arrest [35].

Importantly, our analysis benefitted from statistical evidence that showed strong
similarities between our TAV.HLCs and primary hepatocytes. To determine whether the
transcriptome profile could be indicative of bias towards carcinogenesis, we included 1916
public samples as training datasets for prediction and focused mainly on hepatocellular
carcinoma and acute lymphoblastic/myeloid leukaemia. From our interpretation of the
TAV sample data, we concluded that our differentiated HLCs are unlikely to undergo
carcinogenesis, although this conclusion may be limited by the selected cancers that we
focused on. In future work, we would increase the training datasets, allowing for the
identification of signatures of pre-malignancy.

We have shown that the transcriptome profile of iPSCs, as expected, is characteristic
of cell proliferation, and it contrasts with that of the HLCs generated in this study. Most
importantly, we observed our HLCs closely match the profile of primary hepatocytes and
exhibit low-risk carcinogenesis. This further strengthens the hypothesis that HLCs do
indeed represent primary hepatocytes and would be useful for the generation of models
to be used as alternatives to using animals for drug efficacy and pharmacotoxicological
testing. In conclusion, this report provides in-depth profiling of these cells and their HLC
derivatives at the transcriptomic level to support their use in studies requiring genuine
surrogates for PHHs isolated from living human donors.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells14120925/s1: Supplementary Figure S1: Expression level
assessment of liver and intestinal genes in distinct samples. This shows that TAV.HLCs co-express
liver (ALB, HNF4A, HNF1A, NR1H4, ABCB11) and intestinal (CDX2, KLF5, ISX) markers, suggesting a
hybrid cell state; Supplementary Figure S2: Expression level assessment of hepatocellular carcinoma-
specific cancer gene signatures in distinct samples. This shows no HCC-specific markers present
in TAV.HLCs, indicating a good representation of normal liver cells; Supplementary Figure S3:
Expression level assessment of ALL (A) and HCC (B) signatures in liver samples. The ALL signature
score was identified from transcriptomic data for PBMCs and ALL controls, exhibiting low and high
scores, respectively, as expected. iPSC-derived HLCs, including G.HLCs, TAV.HLCs, and HLCs
from Studies 1–4, were assessed for ALL signature score, demonstrating low but significant scores
compared to the ALL control samples. The ALL signature scores for TAV.HLCs are not significantly
different to the ALL signature scores in G.HLCs and Studies 1–3, with a significant decrease in the
signature score highlighted in Study 4. This shows low levels of ALL signature scores in HLCs,
which are comparable across many differentiation protocols. B-HCC signature scores in Liver.Nor
and Liver.Car samples show a significant difference, as expected. While no significant difference
is identified between TAV.HLCs and samples from Studies 1, 2, and 3, a significantly higher HCC
signature score is identified in G.HLCs from Study 4. Study 1: Jo, H. Y. et al., 2020 [29]. Study
2: Nghiem-Rao, T.H. et al., (2021) [30], Study 3: Raggi, C. et al., (2022) [31], Study 4: Chui, J.S.
et al., (2024) [32]; Supplementary Table S1: Differential gene expression of genes involved in the
IL6/JAK/STAT3 (denoted as IL6) and IL2/STAT5 (denoted as IL2) signalling pathways across PHH,
TAV.HLC, and HepG2 samples. For IL2, we highlight representative genes across PHHs, HLCs, and
HepG2. For IL6, we focus on genes enriched in PHHs, as these are generally downregulated in HLCs
and HepG2.
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