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Abstract: In this study, a Bayesian model averaging (BMA)-based ensemble modeling system is proposed to project future
flood occurrences for the River Thames using downscaled high-resolution climate projections from the latest general circu-
lation models (GCMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The BMA-based ensemble modeling
system integrates multiple hydrological models into the BMA framework to enhance the accuracy of hydrological forecasting,
which has shown good performance in validation with the NSE higher 0.91, KGE approaching 0.80, and correlation coefficient
higher than 0.96. Daily projections of precipitation and temperature under all four shared socioeconomic pathways were
obtained from three GCM models and were further employed to project future potential evaporation. The BMA-based
ensemble modeling system was then used to forecast annual maximum flood rates and associated 3-day maximum flood
volumes in the future. Our results show that the three GCM models exhibit considerable differences in terms of future flood
projections, but all indicate a general increase in flood occurrence and magnitude under future climate change scenarios. The
future daily flood events under different climate scenarios are likely to become more severe, as indicated by higher mean,
maximum, and 90th quantile values of the AMAX flood series. Meanwhile, the corresponding 3-day flood volumes show
varying patterns in terms of mean and extreme flood volumes under different scenarios, but we would have more chances to
experience severe 3-day flood volumes in future. The results of our study can provide important information for flood risk
management and adaptation planning in the River Thames basin.
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INTRODUCTION

River floods are among the costliest natural disasters, resulting not only in severe direct damages and
fatalities, but also in considerably wider and longer-term adverse economic consequences [1]. In an age
marked by climate change and heightened human activities, flooding risk resilience is becoming increasingly
important around the world, which is pivotal for sustaining economic and population growth. This challenge
is particularly evident in the UK, where rising emissions from human activities, coupled with unprecedented
changes in weather extremes, have resulted in growing floods and posed great threats to local communities.
For instance, in 2012, the UK experienced some of its wettest weather in a century, with widespread flooding
affecting over 8000 properties and causing £400 million worth of damage. A succession of storms reaching
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southern England in the winter of 2013/2014 caused severe floods and £451 million in insured losses.
Moreover, due to climate change and human activities, we are experiencing more frequent extreme weather
events, particularly flooding. The Environment Agency (EA) reports that more than 5 million people living
close to coasts and rivers may be forced to flee their homes as flooding risks increase. In May 2019, the EA
warned that at least £1 billion a year needs to be spent on traditional flood and coastal defences in the face of
climate change. All these facts demonstrate the urgent need to develop effective flood prediction tools to
establish a robust early warning system in response to climate change and human interference.
Reliable flood predictions are crucial for developing corresponding resilience strategies, particularly under

changing environmental conditions. However, numerous challenges exist in flood prediction, with one of the
most critical being the quantification of various uncertainties. Flood predictions are inherently uncertain due
to the necessary simplification of complex natural processes and the limited availability of observations [2].
Extensive uncertainties exist in various processes of flood prediction, such as understanding the effects of
climate change that contribute to nonstationary hydroclimatic conditions, describing the interferences of
anthropogenic activities, and modelling the hydrological system [3]. Specifically, nonstationary hydrocli-
matic conditions resulting from climate change and human activities would intensify challenges on flood
forecasting, indicating more changes in the frequency and intensity of extreme events [4]. Hydrological
processes are dynamic and greatly influenced by temperature and precipitation. Even small changes in
climatic conditions can result in considerable shifts in runoff, evaporation, water storage, and associated
flooding risks [5].
The River Thames, with a total catchment area of 12,935.77 km2, is the second-longest river in the UK and

has a long history of flooding dating back to the Anglo-Saxon Chronicle of 1099 [6]. The river changes from
being tidal to non-tidal at Teddington lock (Kingston) [7]. Climate change predictions suggest an increase in
the magnitude and intensity of rainfall as well as a rise in sea level, which could lead to more frequent floods.
Additionally, new developments planned in the Thames flood plain could interfere with the effectiveness of
existing mitigation measures [6]. Despite several measures in place to manage flood risk, such as the tidal
surge barrier, walls, and embankments, many flood defenses are coming to the end of their design life. Plans
are in place to manage tidal flood risk for the next 100 years, but effective flood risk forecasting under
climate change is required to implement engineering and managerial measures. There are a number of studies
addressing floods in UK as well as River Thames under climate change. For instance, Miller and Hutchins [8]
reviewed the evidence concerning the combined impacts of urbanisation and climate on urban flooding and
urban water quality in UK. Collet et al. [9] analyzed future hot-spots for hydro-hazards in Great Britain
through a probabilistic assessment. Visser-Quinn et al. [10] conducted a spatial-temporal analysis of com-
pound hydro-hazard extremes across UK. Kay et al. [11] investigated the climate change impacts on peak
river flows through national-scale hydrological modelling and probabilistic projections from UK Climate
Projections 2018 (UKCP18).
Although many studies have addressed future floods in the UK under climate change, most of them have

relied on climate projections from the Coupled Model Intercomparison Project (CMIP) phases 3 (CMIP3)
(e.g., [8,9]), and 5 (CMIP5) (e.g., [10,11]). Few studies have addressed future flood forecasting in the UK
based on the latest climate projections from CMIP6. Additionally, various hydrological models have been
proposed to project flood events in the UK under climate change, such as the Grid-to-Grid (G2G) model in
Kay et al. [11] and the CERF (Continuous Estimation of River Flows), PDM (Probability DistributedModel),
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and CLASSIC (Climate and Land-use Scenario Simulation in Catchments) models in Collet et al. [9].
However, ensemble model average methods may provide better performance in mitigating uncertainties in
hydrological model structures and generating more reliable flood projections.
Therefore, this study aims to develop an ensemble flood forecasting system for the River Thames under

climate change by coupling multiple hydrological models, the Bayesian model average (BMA) technique,
and downscaled high-resolution climate projections from CMIP6. In detail, an ensemble streamflow mod-
elling framework will be proposed through integrating multiple hydrological models (i.e., GR4J, Hymod,
IHACRES) into the BMA technique. Such a framework will be demonstrated through historical observations
at the River Thames. The downscaled climate data will be adopted to drive the BMA-based model to generate
historical and future streamflow rates. The annual maximum flow rates and corresponding 3-day flow
volume will be identified to reflect flood events in the studied region. The main contribution of this study is to
explore impacts of climate change on future flood occurrences at River Thames based on the BMA-based
ensemble forecasting framework and the latest climate projections from CMIP6.

RESULTS ANALYSIS AND DISCUSSION

Model calibration and verification

In this study, the three hydrological models (i.e., Hymod, GR4J, and IHACRES) were calibrated through the
SCE-UAmethod [12] based on the streamflow observations at the Kingston station in the River Thames. The
calibration period is from 1930 to 1984 whilst the validation period is from 1985 to 2015. The Nash-Sutcliffe
efficiency (NSE) coefficient, Kling-Gupta Efficiency (KGE) proposed by Gupta et al. [13], and correlation
coefficient were adopted in this study to evaluate the performances of hydrological models in calibration and
validation. The BMA method was then employed to integrate those three models with different weights to
generate ensemble hydrological predictions.
Figures 1 and 2 show the comparison between streamflow observations and predictions from BMA and

different hydrological models in both calibration and validation periods. The results indicate that the pre-
dictions from all hydrological models can generally track the corresponding streamflow fluctuations in both
periods. This indicates that all three conceptual models are applicable for streamflow predictions at the River
Thames. In comparison, the BMA method would be able to generate better streamflow predictions due to the
good performances of the hydrological models. Table 1 presents the performances of individual hydrological
models and the BMA method evaluated by NSE, KGE, and correlation coefficients for different modelling
methods in calibration and validation periods. The results would suggest consistent conclusions with those
obtained from Figures 1 and 2. All hydrological models would have good performance with the NSE values
larger than 0.79 in the calibration period (the GR4J model can approach 0.89) and larger than 0.81 in the
validation period (the GR4J model is around 0.9). Moreover, by integrating the three hydrological models
into the BMA framework, better predictions would be generated with an NSE approaching 0.9 in calibration
and larger than 0.91 in validation. This can also be concluded by their correlation coefficients. Additionally,
the KGE evaluation also demonstrates that BMA method can generate accurate hydrological predictions,
with the KGE approaching 0.80 in the validation period. Consequently, the BMA-based ensemble modelling
system can be employed for future flood forecasting under climate change.
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Future climate changes

Future climate changes are one of the major threats for our society. The rising temperature, changing
precipitation pattern, and other phenomena are expected to pose significant impacts on natural hazards,
especially floods. For the River Thames, significant changes may happen in temperature, precipitation, and
the associated potential evapotranspiration, which will further lead to changes in flood occurrence.
Figure 3 presents the changes in daily mean temperature between the historical period (1951–2010) and the

future period (2040–2099) based on projections from ACCESS-CM2, ACESS-ESM1-5, and BCC-CSM2-
MR under different climate change scenarios. The results suggest apparent temperature increases over the
whole River Thames catchment in the future with the highest temperature rise approaching 3.7°C in the
southeast part from ACCESS-ESM1-5 under SSP585. However, the spatial patterns of temperature increase
would be distinguishable among temperature projections from different GCMs under different SSPs. The
northwest part of River Thames catchment would generally have less temperature rises from ACCESS-CM2
and ACCESS-ESM1-5 whilst the southeast part would have larger temperature increases. The outputs from
BCC-CSM2-MR indicate a similar temperature change pattern under SSP126. However, under other climate
change scenarios, the central or north catchment regions would expect more warming climate. Moreover,
outputs from ACCESS-ESM1-5 would indicate more temperature rises around 3.7°C in the southeast under
SSP585 whilst BCC-CSM2-MR would project the least temperature increases among the three GCMs with
the largest increment around 2.6°C in the north part under SSP585.

Figure 1 The comparison between observations and predictions from BMA and different models in calibration.
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Figure 4 presents the changes in annual precipitation between the historical period (1951–2010) and the
future period (2040–2099) under different climate change scenarios. The results show noticeable dis-
crepancies among the outputs from different GCMs under different SSPs, suggesting significant uncertainties
in future precipitation projections. Under SSP126, both ACCESS-ESM1-5 and BCC-CSM2-MR would
project precipitation increments over the River Thames catchment with the largest increment around
34 mm/year in the south part from BCC-CSM2-MR. In comparison, ACCESS-CM2 would project pre-
cipitation decreases with the largest decrease around 13 mm/year in the west. However, all three GCMs
would project around 20 mm/year rainfall increments under SSP245, but the largest increment may re-
spectively appear in the central south from ACCESS-CM2, southeast from ACCESS-ESM1-5, and west part
from BCC-CSM2-MR. Compared with SSP245, less rainfall would happen over the studied area under
SSP370 and SSP585 since the rainfall increments would significantly decrease. Some increments would

Figure 2 The comparison between observations and predictions from BMA and different models in validation.

Table 1 Efficiency evaluation for different modelling methods

Models
NSE KGE Correlation

Calibration Validation Calibration Validation Calibration Validation

Hymod 0.795 0.816 0.847 0.750 0.905 0.940
GR4J 0.889 0.899 0.868 0.804 0.944 0.959

IHACRES 0.840 0.866 0.844 0.733 0.918 0.947
BMA 0.895 0.912 0.865 0.792 0.947 0.965
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become negative, indicating less rainfall when compared with the historical period. Moreover, more rainfall
changes may occur in the south or south-east parts from ACCESS-CM2 and ACCESS-ESM1-5 under
SSP370 or SSP585 whilst BCC-CSM2-MR would project more rainfall changes in the west part. This also
indicates the spatial discrepancies on rainfall changes among the three GCMs.
The changes in temperature and precipitation would also lead to fluctuations for other hydroclimatic

variable, such as potential evapotranspiration (i.e., PET). Figure 5 indicates the variations of annual PET
between the historical period (1951–2010) and the future period (2040–2099) under different climate change
scenarios. Significant increments may occur mainly due to the temperature rises in this region. Moreover, the

Figure 3 The changes of daily mean temperature between historical period (1951–2010) and future period (2041–2100) from the three
GCM models under different climate change scenarios.
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north or northwest part would have more increases in PET than other regions. Also, the climate projections
from ACCESS-ESM1-5 would lead to more PET increases, followed by the projections from ACCESS-CM2
and BCC-CSM2-MR. More PET increments would occur under SSP585 due to the higher temperature rises,
with the largest PET increment around 150 mm/year from ACCESS-ESM1-5 in the northwest part.

Future flood projections

As described in the section on future climate changes, many hydroclimatic variables, such as precipitation,

Figure 4 The changes of annual precipitation between historical period (1951–2010) and future period (2041–2100) from the three GCM
models under different climate change scenarios.
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temperature, and PET, are expected to exhibit significant variations in the future due to climate change. These
changes will also result in alterations to flood occurrences in the River Thames catchment. Based on the
streamflow projections generated by the BMA-based ensemble modeling system, we will characterize the
future annual maximum flow rates (AMAX) and associated maximum 3-day flood volumes (referred to as 3-
day flood). Also, the historical AMAX and 3-day flood series would be characterized by the historical
streamflow simulations.
Based on the climate projections of ACCESS-CM2, Figure 6 displays histograms for the AMAX and 3-day

flood series in the historical and future periods. The concentration of both AMAX and 3-day flood series is

Figure 5 The changes of annual potential evapotranspiration between historical period (1951–2010) and future period (2041–2100) based
on climate projections from the three GCM models under different climate change scenarios.
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Figure 6 Histograms for AMAX and the associated 3-day flood volumes between historical period and future period driven by climate
projections of ACCESS-CM2.
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more prominent in the historical period, indicating lower flood variations. However, in the future, flood
events demonstrate larger variations, particularly under SSP370 and SSP585. This suggests a greater like-
lihood of experiencing more significant flood events in the future, despite lower precipitation but higher PET
under SSP585 (Figures 4 and 5). Figure 7 displays the histograms of the AMAX and 3-day flood series
generated by the BMA-based ensemble modeling system, using climate projections of ACCESS-ESM1-5.
These histograms exhibit similar characteristics to those in Figure 6, where the AMAX and 3-day flood series
are more tightly distributed in the historical period, whilst future flood events are expected to exhibit greater
variability. In addition, the histograms show that even under the relatively mild SSP126 scenario, there is a
possibility of experiencing flood events exceeding 800 m3/s, which suggests a higher risk of severe flooding
in the River Thames catchment area under climate change. The histograms in Figure 8 depict the flood
projections based on climate projections of BCC-CSM2-MR. Similar to the previous figures, these histo-
grams reveal that more severe flood events may occur in the future. Particularly under SSP245, the maximum
flow rate associated with severe flood events may exceed 900 m3/s, with a corresponding 3-day flood volume
larger than 2500 m3/s. These findings highlight the urgent need for effective flood management strategies to
mitigate the potential impacts of climate change on the River Thames catchment.
Table 2 summarizes the annual maximum (AMAX) flood series under different scenarios based on three

climate models: ACCESS-CM2, ACCESS-ESM1-5, and BCC-CSM2-MR. The table shows the mean,
minimum, maximum, 10th quantile, and 90th quantile values for each model and scenario. For the ACCESS-
CM2 model, the mean AMAX values range from 247.3 to 297.7 m3/s under different scenarios, with no
visible increases in mean flood rates except under SSP370. However, higher maximum and 90% quantile
values can be observed for the AMAX flood series, particularly under SSP370 and SSP585. For instance, the
highest flood rate can reach 820 m3/s with a 90% quantile of 470 m3/s, compared to a maximum and 90%
quantile flood rate of 559 and 389 m3/s, respectively. For the ACCESS-ESM1-5 model, the mean AMAX
values range from 240.7 to 288.0 m3/s under different scenarios, showing a clear increase in the future.
Although the 90% quantile of the AMAX series does not exhibit significant increases in the future (even
decreasing under SSP126), we may observe much higher maximum flood rates, potentially reaching around
800 m3/s or higher, compared to a maximum flood rate of 453 m3/s in the historical period. Similarly, for the
BCC-CSM2-MR model, the mean AMAX values would show apparent increases in the future, with the
highest mean value under SSP245. Moreover, we can also observe significant increments in the 90% quantile
values under all climate change scenarios, although the maximum flood rates would not always be larger than
that in the historical period. The 90% quantile values would be 375, 420, 443, and 402 m3/s, respectively,
under SSP126, SSP245, SSP370, and SSP585, compared to a 90% quantile value of 324 m3/s in the historical
period. Overall, the table suggests that future flood events under different climate scenarios are likely to
become more severe, as indicated by higher mean, maximum, and 90th quantile values of the AMAX flood
series.
Table 3 summarizes the 3-day flood volume series based on the climate projections from the three climate

models (ACCESS-CM2, ACCESS-ESM1-5, and BCC-CSM2-MR) under different scenarios (historical,
ssp126, ssp245, ssp370, and ssp585). For ACCESS-CM2, the mean flood volume ranges from 696.8 to
831.3 m3/s, with the highest mean value under ssp370 scenario. The minimum flood volume occurs under
ssp126, while the maximum and 90% quantile flood volumes are highest under ssp370. For ACCESS-ESM1-
5, the mean 3-day flood volume also exhibits an increasing trend as the AMAX flood series in Table 3, with
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Figure 7 Histograms for AMAX and the associated 3-day flood volumes between historical period and future period driven by climate
projections of ACCESS-ESM1-5.
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Figure 8 Histograms for AMAX rates and the associated 3-day flood volumes between historical period and future period driven by
climate projections of BCC-CSM2-MR.

Natl Sci Open, 2024, Vol. 3, 20230027

Page 12 of 21 https://engine.scichina.com/doi/10.1360/nso/20230027



the highest mean flood values over 804 m3/s under SSP585. Also, we would observe the largest 3-day flood
volume (2180.5 m3/s) and 90% quantile value (1265.3 m3/s) under SSP585. As for BCC-CSM2-MR, the
mean flood volume ranges from 670.3 to 827.8 m3/s, with significant increases in the future compared to that
in the historical period and the highest mean value under ssp245 scenario. We would also observe higher 90%
quantile values and maximum 3-d flood volumes (except SSP126) in the future. Overall, although the three
models show varying patterns in terms of mean and extreme flood volumes under different scenarios, we
would have more chances to experience severe flood events in the future, as also indicated in Table 3,
indicating the urgency for flood resilience in response to future climate changes.

Table 2 Summary for annual maximum (AMAX) flood series

Model Index historical ssp126 ssp245 ssp370 ssp585

ACCESS-CM2

Mean 250.3 250.6 248.3 297.7 247.3

Min 95.7 71.6 36.1 41.7 85.9

Max 559.3 469.7 583.6 820.2 721.1

10Quantile 126.3 125.4 116.3 123.4 106.7

90Quantile 388.7 388.5 388.5 470.0 467.2

ACCESS-ESM1-5

Mean 240.7 250.9 271.4 272.2 288.0

Min 58.7 99.1 101.6 45.7 24.0

Max 453.4 866.8 588.1 798.5 860.3

10Quantile 129.8 113.5 174.8 138.9 96.9

90Quantile 401.5 362.5 408.4 400.3 453.0

BCC-CSM2-MR

Mean 240.1 268.4 294.0 281.2 266.5

Min 70.8 119.2 68.4 96.0 89.1

Max 602.0 442.9 958.4 563.9 741.4

10Quantile 121.5 158.7 159.5 167.4 130.1

90Quantile 324.1 375.2 420.1 443.7 401.8

Table 3 Summary for 3-day flood volume series

Model Index Historical ssp126 ssp245 ssp370 ssp585

ACCESS-CM2

Mean 717.7 709.6 696.8 831.3 689.6

Min 273.3 200.7 105.4 115.9 236.3

Max 1536.9 1354.1 1665.1 2107.7 1951.3

10Quantile 384.6 365.0 328.4 341.2 297.5

90Quantile 1093.1 1072.7 1080.6 1348.9 1252.5

ACCESS-ESM1-5

Mean 687.6 701.1 760.9 757.4 804.6

Min 170.3 278.1 296.1 126.1 98.3

Max 1236.0 2181.5 1679.4 2099.8 2180.5

10Quantile 368.6 326.7 502.4 392.1 270.8

90Quantile 1108.2 1034.5 1128.4 1147.5 1265.3

BCC-CSM2-MR

Mean 670.3 757.2 827.8 791.9 747.7

Min 208.7 339.9 202.7 284.2 250.6

Max 1583.1 1227.6 2538.2 1677.2 1951.9

10Quantile 331.4 427.7 462.0 484.6 371.4
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CONCLUSIONS

In this study, we proposed a BMA-based ensemble modelling system to forecast future flood occurrences in
the River Thames using downscaled high-resolution climate projections from the latest CMIP6 GCM out-
puts. Our approach integrates multiple hydrological models (i.e., Hymod, GR4J, and IHACRES) into the
BMA framework to improve the accuracy of hydrological forecasting. We obtained daily projections of
precipitation and temperature for all four shared socioeconomic pathways from three GCM models (AC-
CESS-CM2, ACCESS-ESM1-5, and BCC-CSM2-MR) and used them to project future potential evapora-
tion. The resulting projections were then used to drive the BMA-based ensemble modelling system, enabling
us to forecast annual maximum flood rates and associated 3-day maximum flood volumes in the future.
All the three hydrological models would perform well in the studied area with an NSE value around 0.80 or

even higher in calibration and ranging from 0.81 to 0.89 in validation. But the BMA method can further
enhance the predictive accuracy for streamflow with an NSE approaching 0.9 in calibration and larger than
0.91 in validation, demonstrating the applicability of the BMA-based ensemble modelling system for future
flood forecasting under climate change.
In terms of future climate changes, significant temperature rises would be observed in the River Thames

region, with the highest temperature increment around 3.7°C in the southeast part from ACCESS-ESM1-5
under SSP585. However, the future precipitations would show considerable variations compared to those in
the historical period. Visible increases in precipitation (around 20 mm/year) may be observed from pro-
jections of all three GCMs under SSP245, even though the spatial pattern in rainfall increases would be
different among those projections. However, rainfall may also decrease in future from projections of AC-
CESS-CM2 and ACCESS-ESM1-5 under SSP585, which can approach 20 mm/year in the north or north-
west part of the studied area. Due to temperature rises, there would be more potential evapotranspiration in
the future, with the highest increment approaching 150 mm/year under SSP585.
The future annual maximum flood rates and the associated 3-day flood volumes are characterized by the

streamflow projections based on the BMA-based ensemble modelling system and climate projections from
three GCMs. The ACCESS-CM2 model showed the highest potential future flood risk, with the largest
increase in flood rates under SSP370. The ACCESS-ESM1-5 model also showed an increase in flood rates in
the future, with the highest flood rates projected under SSP585. In contrast, the BCC-CSM2-MR model
showed decreases in maximum flood rates under SSP126 and SSP370, but apparent increases in the mean
flood rates and 90% quantile values. In general, the results suggest that under different future scenarios, there
may be an increase in the frequency and severity of flooding events in the River Thames. The magnitude of
these increases varies among the three GCM models and the different socioeconomic pathways. However,
the projections consistently suggest that the risk of more frequent and severe flooding in the River Thames
should be considered in future planning and management efforts. The findings also highlight the importance
of using ensemble modeling approaches that account for model uncertainties and capture a range of potential
future outcomes.
There are still some limitations in the current study to be further addressed. Firstly, the climate projections

were directly used to drive hydrological models without bias-correction process based on local observations
at River Thames. This may lead to a mismatch in retrospective flood occurrence between historical simu-
lations and real observations. Also, outputs from three GCMs were adopted in this study, which may only
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show limited uncertainty in future climate projections. More importantly, the results show that projections
from different GCMs would lead to varied flood events. Nevertheless, it is still unclear how much con-
tribution the uncertainty in climate projections will make to the future flood risks.

STUDY AREA AND DATA

River Thames

The River Thames, depicted in Figure 9, is the longest river in England, located at a longitude and latitude of
51°35′8.07″N and 0°36′57.87″W, respectively. It stretches 346 km from its source in Gloucestershire towards

Figure 9 The spatial distribution of the Thames River Basin and associated hydrological gauge station.
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the east, emptying into the North Sea, and has a total catchment area of 12,935.77 km2 [14]. The basin
receives an average precipitation of 710 mm, which is evenly distributed throughout the year, except for
autumn or early winter when the precipitation peaks. The river basin has a temperate climate with oceanic
influence, with summer and winter temperatures of 16.4°C and 4.6°C, respectively, and a mean air tem-
perature of 11°C [15]. The land cover comprises mainly of arable agriculture and pasture throughout the
catchment, while forests and urban areas are primarily located at the lower side of it [16]. The lower Thames
is facing significant flood risks due to an increase in rainfall, particularly during the winter season [17].
Flooding has been one of the major challenges for the River Thames in the 20th/21st century, with major
floods occurring in 1947 and 2007 [18]. The daily streamflow records from 1930 to 2015 at the Gauge station
at Kingston are adopted to calibrate and verify the hydrological models. The associated daily precipitation
data are also obtained from the National River Flow Archive (https://nrfa.ceh.ac.uk/), and the daily potential
evapotranspiration (denoted as PET) data are obtained through averaging the historic gridded potential
evapotranspiration developed by Tanguy et al. [19].

Future climate projections

Future climate projections are required to project future flood events for the River Thames under climate
change. In detail, high-resolution daily projections with a spatial resolution of 0.25 degree are obtained from
the NASA Earth Exchange Global Daily Downscaled Projections CMIP6 (NEX-GDDP-CMIP6) [20]. Three
climate models, namely ACCESS-CM2, ACCESS-ESM1-5, and BCC-CSM2-MR, are selected in this study
to reflect uncertainties in climate projections. ACCESS-CM2 is one of the two ACCESS global coupled
model versions run by the Australian climate community for the Coupled Model intercomparison Project,
CMIP, which provides extensive datasets for a number of climate variables such as temperature, rainfall,
cloud cover, sea-ice extent, and ocean circulation. ACCESS-ESM1-5 is another GCM model participating in
CMIP6 from Australian Community Climate and Earth System Simulator (ACCESS), which includes an
interactive carbon cycle [21]. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center
(BCC) Climate System Model, which has been demonstrated to well capture the observed global warming
trends from 1950 to 2014 [22].
Four shared socioeconomic pathways (i.e., SSP126, SSP245, SSP370, and SSP585), respectively lower,

intermediate, medium-high, and high GHG emission levels, would be considered to characterize the impact
of different climate change scenarios on the flood occurrence at the River Thames. For each model, historical
simulations during 1951–2010 and future projections during 2041–2100 under all four SSPs for daily
precipitation (i.e., pr), maximum air temperature (i.e., tasmax) and minimum air temperature (i.e., tasmin) are
obtained from NEX-GDDP-CMIP6. Based on pr, tasmax, and tasmin, the future daily potential evapo-
transpiration (i.e., PET) would be generated through the Modified-Hargreaves (MH) method [23]:

( )TPET = 0.0025 × 0.408 × RA × + 16.8 × TD , (1)avg
0.5

where RA is extraterrestrial radiation expressed in (MJ m−2 d−1), Tavg is average daily temperature (°C)
defined as the average of the mean daily maximum and mean daily minimum temperature, and TD (°C) is the
temperature range, computed as the difference between mean daily maximum and mean daily minimum
temperature.
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METHODOLOGY

Hydrological models

In this study, three different hydrological models will be used, namely Hymod, GR4J, and IHACRES in
Figure 10, to forecast future floods for the River Thames under climate change. Hymod (Figure 10A) is a
probability-distributed model consisting of three components: a Pareto distribution for reflecting soil storage
capacity, a slow-flow tank for routing groundwater flow, and three identical quick-flow tanks for routing
surface flow [24,25]. Five parameters (Table 4) need to be calibrated/quantified, and two inputs, precipitation
(P (mm/day)) and potential evapotranspiration (PET (mm/day)), are required. State variables in Hymod
include the storage in the nonlinear tank representing the watershed soil moisture content, the three quick-
flow tank storages representing the temporary (short-time) detentions, and the slow-flow tank storage
(subsurface storage) [26].
GR4J (shown in Figure 10B) is a lumped hydrologic model with four parameters (as presented in Table 4),

and its structure includes an interception reservoir for intercepting rainfall and PET, a soil moisture ac-
counting procedure for generating effective rainfall, and a water exchange term for modeling water losses to
or gains from deep aquifers. The routing module of GR4J consists of two flow components with a constant
volumetric split (10%–90%), two unit hydrographs, and a non-linear routing store. More details about GR4J
can be found in some literature (e.g., [27–29]).
The IHACRES model [30,31] is another conceptual rainfall-runoff model to be employed in this study. It

typically has 5–7 unknown parameters and has many versions developed by a number of studies (e.g., [32–
35]). In this study, IHACRES model based on catchment moisture deficit (CMD) [36] will be used. It consists
of two modules: (1) a nonlinear module that generates effective rainfall and the CMD output, and (2) a linear
module that translates effective rainfall into streamflow by routing it through two parallel linear stores based
on the instantaneous unit hydrograph theory [37]. Six unknown parameters, as shown in Table 4, need to be
calibrated for the IHACRES model in this study.

Figure 10 The model structures for Hymod, GR4J, and IHACRES (modified from [38]).
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Bayesian model average

Extensive uncertainties would challenge flood projections under climate change, in which the structural
uncertainty in hydrological models is one of the most important uncertainties to be considered [39]. The
BMA method is adopted in this study to enhance the accuracy for flood projections under climate change. It
is a popular ensemble method of multiple models and can successfully integrate the merits of the multitude of
candidate models and reduce the predictive uncertainty caused by a single model [40–45].
Let y denotes the forecasted variable, Dobs = {y1, y2, …, yT} denotes the real observations during the model

calibration period. Suppose that there are k alterative hydrological models (denoted as fi, i =1, 2, …, k) to be
used for hydrological predictions. However, it is unknown which model is best, leading to uncertainties in
choosing hydrological models. Based on the given observations, Dobs, the probability density function (PDF),
p(y|f1, f2, …, fk, Dobs), can be expressed as

p y f f D p f D p y f D( | , ..., , ) = ( | ) ( | , ), (2)k
i

k

i i i1 obs
=1

obs obs

where p y f D( | , )i i obs is the posterior distribution of y based on model fi alone. p f D( | )i obs denotes the
posterior probability of statistical model fi, known as the likelihood of model fi being the correct prediction
given Dobs. It can reflect how well model Mi matches the observations. Since the sum of posterior model

probabilities is equal to one (i.e., p f D( | )
i
k

i=1 obs = 1), they can be considered as weights of the candidate

models and Equation (2) can be reformulated as

p y f f f w p y f D( | , , ..., ) = ( | , ), (3)k
i

k

i i i1 2
=1

obs

where wi =p f D( | )i obs . The posterior mean and variance of the BMA prediction can be expressed as [46]

Table 4 Model parameters for Hymod, GR4J, and IHACRES

Models Parameters Description Range

Hymod

Cmax (mm) Maximum storage capacity of watershed [200, 700]

bexp Spatial variability of soil moisture capacity [05, 65]

α Factor distributing flow to the quick-flow tank [01, 09]

Rs (1/day) Residence time of the slow-flow tank [0001, 02]

Rq (1/day) Residence time of the quick-flow tank [01, 09]

GR4J

X1 (mm) Capacity of the production soil (SMA) store [100, 1200]

X2 (mm) Groundwater exchange coefficient [−5, 3]

X3 (mm) Capacity of the routing store [20, 300]

X4 (day) Time parameter for unit hydrographs [05, 4]

IHACRES

τq (day) Time constant governing the rate of recession of quickflow [05, 10]

τs (day) Time constant governing rate of recession of slowflow, τq < τs [10, 350]

Vs The proportion of slow flow to total flow [0, 1]

d (mm) CMD threshold for producing flow [50, 550]

e Conversion parameter from potential evapotranspiration to actual evapotranspiration [001, 15]

f CMD stress threshold as a proportion of d [001, 3]
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E y D w f( | ) = , (4)
i

k

i iobs
=1

Var y D w f w f w( | ) = + , (5)
i

k

i i
i

k

i i
i

k

i iobs
=1 =1 =1

2

where i
2 is the variance associated with model prediction fi with respect to observation Dobs. Many methods

have been developed to estimate the parameter wi and σi in Equations (4) and (5). In this study, the
expectation-maximization (EM) algorithm will be used which is recommended by Raftery et al. [42].
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