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Robust H∞ Control for Networked Systems
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Abstract—In this paper, the robust H∞ control problem is
considered for a class of networked systems with random com-
munication packet losses. Because of the limited bandwidth of the
channels, such random packet losses could occur, simultaneously,
in the communication channels from the sensor to the controller
and from the controller to the actuator. The random packet loss
is assumed to obey the Bernoulli random binary distribution,
and the parameter uncertainties are norm-bounded and enter
into both the system and output matrices. In the presence of
random packet losses, an observer-based feedback controller is
designed to robustly exponentially stabilize the networked system
in the sense of mean square and also achieve the prescribed H∞
disturbance-rejection-attenuation level. Both the stability-analysis
and controller-synthesis problems are thoroughly investigated. It
is shown that the controller-design problem under consideration
is solvable if certain linear matrix inequalities (LMIs) are feasible.
A simulation example is exploited to demonstrate the effectiveness
of the proposed LMI approach.

Index Terms—H∞ control, linear matrix inequality (LMI),
networked systems, random packet loss, stochastic stability.

I. INTRODUCTION

S INCE NETWORKS may greatly decrease the hardwiring,
the cost of installation and implementation, in recent years,

of networked control systems (NCSs) have found successful
applications in a wide range of areas such as industrial au-
tomation, distributed/mobile communication, unmanned vehi-
cles, and Internet-based control. While NCSs have received
increasing research attention, they have also given rise to new
challenges due to inherent network-limited bandwidth. Among
all the challenges that emerged, the intermittent data packet
losses and the signal-transmission delay are known to be two
of the main causes for the performance deterioration or even
the instability of the controlled networked system. Hence, it is
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not surprising that, in the past few years, the control problem
of networked systems with packet losses (or data missing) and
time-delays has attracted considerable research interests (see,
e.g., [1], [7], [10], [11], [14], [26]–[29], and references therein).
This paper is concerned with the impact of packet losses (or
data missing) on the design of NCSs.

In the literature, there have been basically three approaches
for modeling the packet-loss phenomenon in the NCSs. An
arguably popular approach is to view the packet loss as a
binary switching sequence that is specified by a conditional
probability distribution in the signal-transmission channel. The
binary switching sequence obeys a Bernoulli distributed white
sequence taking on values of zero and one with certain proba-
bility [13]. Recently, there have been some results published on
such a model (see, e.g., [19], [21]–[24], and references therein).
The second approach is to use a discrete-time linear system with
Markovian jumping parameter to represent random packet-loss
model for the network. A few control methodologies have been
developed for such a system [12], [18]. The third approach is
to replace the packet losses by zeros and then construct an
incompleteness matrix in the measurement. Such an idea has
been used [16], [17] to deal with the robust filtering problems,
with data missing or packet losses.

It should be pointed out that, in almost all the existing
literature, it has been implicitly assumed that the packet-loss
problem occurs only in the channel from the sensor to the
controller. Another typical kind of packet losses, which happen
in the channel from the controller to the actuator, has not been
adequately studied. In addition, in the presence of packet losses,
the system-performance requirements such as robustness and
disturbance rejection attenuation have not yet gained sufficient
research attention. The purpose of this paper is, therefore, to
shorten the aforementioned gap.

In this paper, we aim to tackle the robust H∞ control problem
for a class of NCSs with both random sensor-to-controller
and controller-to-actuator packet losses. These random packet
losses are modeled as a linear function of the stochastic
variable satisfying Bernoulli random binary distribution. An
observer-based controller is designed such that the closed-loop
NCS is robustly stochastically exponentially stable, and the
prescribed H∞ disturbance-rejection-attenuation performance
is also achieved. Both the stability-analysis and controller-
synthesis problems are thoroughly investigated. It is shown that
the controller-design problem under consideration is solvable if
certain linear matrix inequalities (LMIs) are feasible. A simu-
lation example is exploited to demonstrate the effectiveness of
the proposed LMI approach.

Notation. The notation X ≥ Y (respectively, X > Y ),
where X and Y are symmetric matrices, means that X − Y
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is positive semidefinite (respectively, positive definite). E{x}
stands for the expectation of the stochastic variable x. Prob{·}
means the occurrence probability of the event “·.” If A is
a matrix, λmax(A) [respectively, λmin(A)] means the largest
(respectively, smallest) eigenvalue of A. l2[0,∞) is the space of
square integrable vectors, and I

+ is the set of positive integer.
In symmetric block matrices, “∗” is used as an ellipsis for terms
induced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

There are different ways to define note Quality-of-Service
(QoS) for NCS [4]. In this paper, we take into account two of
the most popular QoS measures: 1) the point-to-point network
allowable data-dropout rate that is used to indicate the prob-
ability of data packet dropout in data transmission and 2) the
point-to-point network throughput that is used to indicate how
fast the signal can be sampled and sent as a packet through the
network. Another important QoS measure, maximum allowable
equivalent delay bound, will be investigated in our future work.

To the NCS considered in this paper, the sampling period h
and the data-dropout rate ρ determine the control performance.
We assume that the data are single-packet transmitted, different
data packet has the same length L, and the network throughput
distributed by packet scheduler is Qik

in t ∈ [ikh, ik+1h). The
network allowable data-dropout rate is related with the packet
scheduler, backlog controller, and algorithm complex of loss
dropper policy. As will be seen later, we will use different data-
dropout rates (measurement missing probability) to quantify
the random packet losses in the sensor-to-controller channel
and the controller-to-actuator channel. On the other hand, the
sampling period h is decided by network throughput Qik

and
the number of sensors. Small sampling period can have good
control performance but can induce network congest and im-
prove the data-dropout rate.

Since there has been a rich body of literature studying
appropriate sampling method [9], in this paper, we assume that
a sampled-data model can be obtained through online measure-
ment such as sending probing data packet to measure network
characteristics and QoS scheduling. Consider the following
NCS after sampling:{

xk+1 = (A+∆A)xk +B2uk +B1wk

zk = (C1 +∆C)xk +D1wk
(1)

where xk ∈ R
n is the state, uk ∈ R

m is the control input,
zk ∈ R

r is the controlled output, wk ∈ R
q is the disturbance

input belonging to l2[0,∞), and A, B1, B2, C1, and D1 are
known real matrices with appropriate dimensions. The parame-
ter uncertainties ∆A and ∆C are assumed to be of the form[

∆A

∆C

]
=

[
H1

H2

]
FkE (2)

where H1, H2, and E are known real constant matrices of
appropriate dimensions, and Fk represents an unknown real-
valued time-varying matrix satisfying FkF

T
k ≤ I .

Remark 1: As discussed before, networked systems are be-
coming more and more popular for the reason that they have
several advantages over traditional systems, such as low cost,
reduced weight and power requirements, simple installation

and maintenance, and high reliability. If network media is
introduced to control-system design, the data-packet-dropout
phenomenon, which appears in a typical network environment,
will naturally induce missing observations, which makes the
controller-design problem much more involved.

In this paper, the measurement with random communication
packet loss is described by

yk = αkC2xk +D2wk (3)

where the stochastic variable αk ∈ R is a Bernoulli distributed
white sequence with

Prob{αk = 1} =E{αk} := ᾱ (4)

Prob{αk = 0} =1− E{αk} := 1− ᾱ. (5)

Here, yk ∈ R
p is the measured output vector, and C2 and D2

are known real matrices with appropriate dimensions.
The dynamic observer-based control scheme for the system

(1) is described by{
x̂k+1 = Ax̂k +B2uk + L(yk − ᾱC2x̂k)
ûk = −Kx̂k

uk = βkûk

(6)

where x̂k ∈ R
n is the state estimate of the system (1), ûk ∈ R

m

is the control input without transmission missing, and L ∈
R

n×p and K ∈ R
m×n are the observer and controller gains,

respectively. The stochastic variable βk ∈ R, mutually indepen-
dent of αk, is also a Bernoulli distributed white sequence with

Prob{βk = 1} =E{βk} := β̄ (7)

Prob{βk = 0} =1− E{βk} := 1− β̄. (8)

Remark 2: It can be noticed from (3) and (6) that the inde-
pendent Bernoulli distributed white sequences αk and βk are in-
troduced to reflect the random packet losses in, respectively, the
sensor-to-controller and controller-to-actuator channels. The
random packet-loss mode in the sensor output (3) was first
introduced in the study in [13] and has been subsequently
studied in many recent NCS papers (see, e.g., [19], [21]–[24]).
However, very few papers have considered the packet-loss
problems in both sensor-to-controller and controller-to-actuator
channels, despite its significance in the current networked
systems.

Let the estimation error be

ek := xk − x̂k. (9)

The closed-loop system can be obtained by substituting (3) and
(6) into (1) and (9)


xk+1 = (A+∆A− β̄B2K)xk + β̄B2Kek + (βk − β̄)

×B2Kxk + (βk − β̄)B2Kek +B1wk

ek+1 = ∆Axk + (A− ᾱLC2)ek − (αk − ᾱ)LC2xk

+ (B1 − LD2)wk

(10)

or in a compact form as follows:

ηk+1 = Āηk + εkÃηk + B̄wk (11)
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where

ηk =
[
xk

ek

]

Ā =
[
A+∆A+ β̄B2K −β̄B2K

∆A A− ᾱLC2

]

εk =
[
(βk − β̄)I 0

0 (αk − ᾱ)I

]

Ã =
[
B2K B2K
LC2 0

]

B̄ =
[

B1

B1 − LD2

]
.

It should be pointed out that in the closed-loop system (11),
there appear stochastic quantities αk and βk. This differs from
the traditional deterministic systems without random packet
losses. To deal with the stochastic parameter system (11), we
are now in a position to introduce the concept of stochastic
stability in the mean-square sense.
Definition 1: The closed-loop system (11) is said to be

exponentially mean-square stable if, with wk = 0, there exist
constants φ > 0 and τ ∈ (0, 1), such that

E
{‖ηk‖2

} ≤ φτk
E

{‖η0‖2
}
, for all η0 ∈ R

n, k ∈ I
+.
(12)

In this paper, we aim to design the controller (6) for the sys-
tem (1), such that, in the presence of random packet losses, the
closed-loop system (11) is exponentially mean-square stable,
and the H∞ performance constraint is satisfied. More specifi-
cally, we like to design a controller such that the closed-loop
system satisfies the following two performance requirements
(Q1) and (Q2).

(Q1) The closed-loop system (11) is exponentially mean-
square stable.

(Q2) Under the zero-initial condition, the controlled output
zk satisfies

∞∑
k=0

E
{‖zk‖2

}
< γ2

∞∑
k=0

E
{‖wk‖2

}
(13)

for all nonzero wk, where γ > 0 is a prescribed scalar.

III. MAIN RESULTS AND PROOFS

Throughout this paper, without loss of generality, we will
make the following assumption for technical convenience.
Assumption 1: The matrix B2 is of full-column rank, i.e.,

rank(B2) = m.
For the matrix B2 of full-column rank, there always exist two

orthogonal matrices U ∈ R
n×n and V ∈ R

m×m, such that

B̃2 = UB2V =
[
U1

U2

]
B2V =

[
Σ
0

]
(14)

where U1 ∈ R
m×n and U2 ∈ R

(n−m)×n and Σ = diag{σ1,
σ2, . . . , σm}, where σi (i = 1, 2, . . . ,m) are nonzero singular
values of B2.

In the derivation of our main results, we will need the
following three lemmas.
Lemma 1: Ho and Lu [8, Lemma 3]. For the matrix B2 ∈

R
n×m that is of full-column rank, if matrix P1 is of the

following structure:

P1 = UT

[
P11 0
0 P12

]
U = UT

1 P11U1 + UT
2 P22U2 (15)

where P11 ∈ R
m×m > 0, and P22 ∈ R

(n−m)×(n−m) > 0, and
U1 and U2 are defined in (14), then there exists a nonsingular
matrix P ∈ R

m×m, such that B2P = P1B2.
Remark 3: The purpose of Lemma 1 is to find a solution of

B2P = P1B2 for P , which will later facilitate our development
of the LMI approach to the controller design. The assumption
of B, being a full-column rank, is just for presentation conve-
nience, which does not lose any generality, as we can always
conduct congruence transformation on B. If the condition (15)
holds, then P exists, but it may not unique unless B is square
and nonsingular.
Lemma 2: (S-procedure) [3], [25]. Let M = MT and H

and E be real matrices of appropriate dimensions with F sat-
isfying FFT < I , then M +HFE + ETFTHT < 0, if and
only if there exists a positive scalar ε > 0, such that

M +
1
ε
HHT + εETE < 0 (16)

or equivalently


 M H εET

HT −εI 0
εE 0 −εI


 < 0. (17)

Lemma 3: Tarn and Rasis [20, Theorem 2]. Let V (ηk) be a
Lyapunov functional. If there exist real scalars λ ≥ 0, µ > 0,
ν > 0, and 0 < ψ < 1, such that

µ‖ηk‖2 ≤ V (ηk) ≤ ν‖ηk‖2 (18)

and

E {V (ηk+1)|ηk} − V (ηk) ≤ λ− ψV (ηk) (19)

then the sequence ηk satisfies

E
{‖ηk‖2

} ≤ ν

µ
‖η0‖2(1− ψ)k +

λ

µψ
. (20)

In the following theorem, a sufficient condition is established
for the exponentially mean-square stability of the closed-loop
system (11).
Theorem 1: Suppose that both the controller gain matrix

K and the observer gain matrix L are given. The closed-loop
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system (11) is exponentially mean-square stable if there exist
positive definite matrices P1 and P2 satisfying

[
A+∆A− β̄B2K β̄B2K

∆A A− ᾱLC2

]T [
P1 0
0 P2

]

×
[
A+∆A− β̄B2K β̄B2K

∆A A− ᾱLC2

]

+
[
B2K B2K
LC2 0

]T [
β2

1P1 0
0 α2

1P2

]

×
[
B2K B2K
LC2 0

]
−

[
P1 0
0 P2

]
< 0 (21)

where α1 = [(1− ᾱ)ᾱ]1/2, and β1 = [(1− β̄)β̄]1/2.
Proof: Define a Lyapunov functional

Vk = xT
k P1xk + eT

k P2ek (22)

where P1 and P2 are positive definite solutions to (21). It
follows from (10) that

E {Vk+1|xk, . . . , x0, ek, . . . , e0} − Vk

= E
{
xT

k+1P1xk+1 + eT
k+1P2ek+1

} − xT
k P1xk − eT

k P2ek

= E
{[

(A+∆A− β̄B2K)xk + β̄B2Kek

+ (βk − β̄)B2Kxk + (βk − β̄)B2Kek

]T
× P1

[
(A+∆A− β̄B2K)xk + β̄B2Kek + (βk − β̄)

× B2Kxk + (βk − β̄)B2Kek

]
+ [∆Axk + (A− ᾱLC2)ek − (αk − ᾱ)LC2xk]

T

× P2 [∆Axk + (A− ᾱLC2)ek − (αk − ᾱ)LC2xk]}
− xT

k P1xk − eT
k P2ek. (23)

Noting that E{(αk− ᾱ)2}= (1− ᾱ)ᾱ and E{(βk− β̄)2}=
(1− β̄)β̄, we have

E {Vk+1|xk, . . . , x0, ek, . . . , e0}−Vk

=
[
(A+∆A−β̄B2K)xk+β̄B2Kek

]T
×P1

[
(A+∆A−β̄B2K)xk+β̄B2Kek

]
+[∆Axk+(A−ᾱLC2)ek]

T P2 [∆Axk+(A−ᾱLC2)ek]

+(1−β̄)β̄ [B2Kxk+B2Kek]
T P1 [B2Kxk+B2Kek]

+(1−ᾱ)ᾱxT
k CT

2 LTP2LC2xk−xT
k P1xk−eT

k P2ek

=ηT
k Ληk (24)

where

Λ := AT
1 P1A1 +AT

2 P2A2 +
[
B2K B2K
LC2 0

]T

×
[
β2

1P1 0
0 α2

1P2

] [
B2K B2K
LC2 0

]
−

[
P1 0
0 P2

]
(25)

and

A1 := [A+∆A− β̄B2K β̄B2K] (26)

A2 := [∆A A− ᾱLC2]. (27)

It follows from (21) that Λ < 0, and hence

E{Vk+1|xk, . . . , x0, ek, . . . , e0} − Vk

= ηT
k Ληk ≤ −λmin(−Λ)ηT

k ηk < −αηT
k ηk (28)

where

0 < α < min {λmin(−Λ), σ}
σ := max {λmax(P1), λmax(P2)} . (29)

From (28), we have

E{Vk+1|xk, . . . , x0, ek, . . . , e0}
− Vk < −αηT

k ηk < −α

σ
Vk := −ψVk. (30)

Therefore, by Definition 1, it can be verified from Lemma 3
that the closed-loop system (11) is exponentially mean-square
stable. This completes the proof. �

Next, we will continue to explore the sufficient conditions for
achieving the robust H∞ performance constraints. Note that, in
the stochastic setting, we use the expression (13) to quantify the
H∞ performances where the expectation operator is utilized on
both the controlled output and the disturbance input (see [2] for
more details).
Theorem 2: Given a scalar γ > 0. The system (11) is ro-

bustly exponentially mean-square stable and the H∞ norm
constraint (13) is achieved for all nonzero wk, if there exist
positive-definite matrices P1 and P2, a positive real scalar
ε > 0, and real matrices K and L satisfying (31), shown at the
bottom of the page.




−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗

P1A− β̄P1B2K β̄P1B2K P1B1 −P1 ∗ ∗ ∗ ∗ ∗ ∗
0 P2A− ᾱP2LC2 P2B1 − P2LD2 0 −P2 ∗ ∗ ∗ ∗ ∗
C1 0 D1 0 0 −I ∗ ∗ ∗ ∗

β1P1B2K β1P1B2K 0 0 0 0 −P1 ∗ ∗ ∗
α1P2LC2 0 0 0 0 0 0 −P2 ∗ ∗

0 0 0 HT
1 P1 HT

1 P2 HT
2 0 0 −εI ∗

εE 0 0 0 0 0 0 0 0 −εI




< 0 (31)
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Proof: We first show that there exists a positive scalar ε >
0, such that (31) holds if and only if the inequality (32) holds,
shown near the bottom of the page.

The condition (32) can be rewritten in the form of (16) as
follows:

M̂ + ĤF Ê + ÊTFTĤT < 0 (33)

where we have the expression shown at the bottom of the page.
Applying Lemma 2 to (33), we know that (32) holds if

and only if there exists a positive scalar parameter ε, such
that LMI (34) holds, shown at the bottom of the page. Using
Schur complement, we can easily see that (34) implies (31).
Therefore, from the condition of this theorem, we can conclude
that (32) is true.

Now, it is clear from Theorem 1 that the system (11) is
exponentially mean-square stable since (32) results in (21).

Now, for any nonzero wk, it follows from (10) and (24) that

E{Vk+1} − E{Vk}+ E{zT
k zk} − γ2

E{wT
k wk}

= E
{[
(A+∆A− β̄B2K)xk + β̄B2Kek

+ (βk − β̄)B2Kxk + (βk − β̄)B2Kek +B1wk

]T
× P1

[(
A+∆A− β̄B2K)xk + β̄B2Kek

+ (βk − β̄)B2Kxk + (βk − β̄)B2Kek +B1wk

]
+ [∆Axk + (A− ᾱLC2)ek

− (αk − ᾱ)LC2xk + (B1 − LD2)wk]
T

× P2 [∆Axk + (A− ᾱLC2)ek − (αk − ᾱ)
× LC2xk + (B1 − LD2)wk]

− xT
k P1xk − eT

k P2ek +
[
(C1 +∆C)xk +D1wk]T

× [(C1 +∆C)xk +D1wk]− γ2wT
k wk

}
= E

{[
ηk

wk

]T [
Λ + Λ1 Λ2

ΛT
2 Λ3

] [
ηk

wk

]}
(35)




−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗

A+∆A− β̄B2K β̄B2K B1 −P−1
1 ∗ ∗ ∗ ∗

∆A A− ᾱLC2 B1 − LD2 0 −P−1
2 ∗ ∗ ∗

C1 +∆C 0 D1 0 0 −I ∗ ∗
β1B2K β1B2K 0 0 0 0 −P−1

1 ∗
α1LC2 0 0 0 0 0 0 −P−1

2




< 0 (32)

M̂ =




−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗

A− β̄B2K β̄B2K B1 −P−1
1 ∗ ∗ ∗ ∗

0 A− ᾱLC2 B1 − LD2 0 −P−1
2 ∗ ∗ ∗

C1 0 D1 0 0 −I ∗ ∗
β1B2K β1B2K 0 0 0 0 −P−1

1 ∗
α1LC2 0 0 0 0 0 0 −P−1

2




Ĥ = [ 0 0 0 HT
1 HT

1 HT
2 0 0 ]T

Ê = [E 0 0 0 0 0 0 0 ]




−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗

A− β̄B2K β̄B2K B1 −P−1
1 ∗ ∗ ∗ ∗ ∗ ∗

0 A− ᾱLC2 B1 − LD2 0 −P−1
2 ∗ ∗ ∗ ∗ ∗

C1 0 D1 0 0 −I ∗ ∗ ∗ ∗
β1B2K β1B2K 0 0 0 0 −P−1

1 ∗ ∗ ∗
α1LC2 0 0 0 0 0 0 −P−1

2 ∗ ∗
0 0 0 HT

1 HT
1 HT

2 0 0 −εI ∗
εE 0 0 0 0 0 0 0 0 −εI




< 0 (34)
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where

Λ1:= [C1+∆C 0 ]T[C1+∆C 0 ] (36)

Λ2:=AT
1 P1B1+AT

2P2(B1−LD2)+AT
3D1 (37)

Λ3:=BT
1 P1B1+(B1−LD2)TP2(B1−LD2)+DT

1 D1−γ2I (38)

and Λ is defined in (25).
By Schur complement, (32) implies that[

Λ + Λ1 Λ2

ΛT
2 Λ3

]
< 0 (39)

and, therefore, we have from (35) that

E{Vk+1} − E{Vk}+ E{zT
k zk} − γ2

E{wT
k wk} < 0. (40)

Summing up (40) from zero to ∞ with respect to k yields

∞∑
k=0

E
{‖zk‖2

}
< γ2

∞∑
k=0

E
{‖wk‖2

}
+ E{V0} − E{V∞}. (41)

Since η0 = 0 and the system (11) is exponentially mean-square
stable, it is easy to conclude that

∞∑
k=0

E
{‖zk‖2

}
< γ2

∞∑
k=0

E
{‖wk‖2

}
(42)

which means the specified H∞ norm constraints is achieved,
and the proof is then complete. �

In Theorem 2, the stability analysis has been conducted
based on the stochastic Lyapunov stability theory and the S
procedure. In the following, we will deal with the controller-
design problem and derive the explicit expression of the con-
troller parameters in terms of LMIs. Therefore, the controller
design can be easily implemented by using the MATLAB LMI
toolbox.
Theorem 3: Given a scalar γ > 0. The system (11) is expo-

nentially mean-square stable, and the H∞ norm constraint (13)
is achieved for all nonzero wk if there exist positive-definite
matrices P11 ∈ R

m×m, P22 ∈ R
(n−m)×(n−m), and P2 ∈ R

n×n,
and real matrices M ∈ R

m×n and N ∈ R
n×p, such that we

have (43), shown at the bottom of the page, where P1 :=
UT

1 P11U1 + UT
2 P22U2, and U1 and U2 come from (14). More-

over, the controller parameters are given by

K = V Σ−1P−1
11 ΣV TM, L = P−1

2 N. (44)

Proof: Since there exist P11 > 0 and P22 > 0, such that
P1 = UT

1 P11U1 + UT
2 P22U2, where U1 and U2 are defined in

(14), it follows from Lemma 1 that there exists a nonsingular
matrix P ∈ R

m×m, such that B2P = P1B2. Now, let us calcu-
late such a matrix P from the relation B2P = P1B2 as follows:

P1U
T

[
Σ
0

]
V T = UT

[
Σ
0

]
V TP (45)

i.e.,

UT

[
P11 0
0 P12

] [
Σ
0

]
V T = UT

[
Σ
0

]
V TP (46)

which implies that

P = (V T)−1Σ−1P11ΣV T. (47)

So far, we can conclude from (44) and (47) that

B2P = P1B2 M = PK N = P2L (48)

and, therefore, it is not difficult to see that (43) is equivalent to
(31). The rest of the proof follows from Theorem 2. �
Remark 4: In Theorem 3, the robust H∞ control problem is

solved for a class of networked systems with random commu-
nication packet losses. In the presence of random packet losses,
an observer-based feedback controller is designed to robustly
exponentially stabilize the networked system in the sense of
mean square and also achieve the prescribed H∞ disturbance-
rejection-attenuation level. It is shown that the controller-design
problem under consideration is solvable if the LMI (43) is
feasible.

As a by-product, we point out that an optimization problem
can be formulated as follows: (O1) The optimal H∞ control
problem:

min
P11>0,P22>0,P2>0,M,N

γ subject to (43). (49)

In the next section, we will illustrate how to solve the
optimization problem addressed above.

IV. SIMULATION EXAMPLE

The main purpose of an uninterruptable power supply (UPS)
is to provide a clean and stable power to a load, regardless
of the power-grid conditions, such as blackouts. UPSs have
been widely used for office equipment, computers, communi-
cation systems, medical/life support, and many other critical




−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −P2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗

P1A− β̄B2M β̄B2M P1B1 −P1 ∗ ∗ ∗ ∗ ∗ ∗
0 P2A− ᾱNC2 P2B1 −ND2 0 −P2 ∗ ∗ ∗ ∗ ∗
C1 0 D1 0 0 −I ∗ ∗ ∗ ∗

β1B2M β1B2M 0 0 0 0 −P1 ∗ ∗ ∗
α1NC2 0 0 0 0 0 0 −P2 ∗ ∗

0 0 0 HT
1 P1 HT

1 P2 HT
2 0 0 −εI ∗

εE 0 0 0 0 0 0 0 0 −εI




< 0 (43)
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systems. Recent market requirements include a target expec-
tation for UPS reliability of 99.999% power availability, per-
formance demands of zero switch over time, and complex
network connectivity and control methods, such as simple
network-management protocol. Therefore, the control problem
of network-enabled high-performance UPS has come to play an
important role in today’s networked world.

In this section, we shall study the networked control problem
for the UPS system in order to demonstrate the effectiveness
and applicability of the proposed method. Our objective is to
control the pulsewidth-modulated inverter, such that the output
ac voltage is kept at the desired setting and undistorted, with
strong robustness in the presence of disturbance in load. The
control signal is transmitted through network cables and, due to
the limited bandwidth of the network, the usage of the network
may give rise to probabilistic signal losses (packet dropout),
which would deteriorate the performance of the networked
system. Hence, in the presence of random packet losses, we
aim to design an observer-based feedback controller in order
to robustly exponentially stabilize the networked system in
the sense of mean square and also achieve the prescribed H∞
disturbance-rejection-attenuation level.

In this application, a UPS with 1 kVA is considered that is
described by the discrete-time model matrices with sampling
time of 10 ms at half-load operating point as follows [15]:

A =


 0.9226 −0.6330 0

1.0 0 0
0 1.0 0




B1 =


 0.5

0
0.2


 B2 =


 1
0
0




C1 = [ 0.1 0 0 ] C2 = [ 23.738 20.287 0 ]
D1 =0.1 D2 = 0.2

H1 =


 1
0
1


 H2 = 0.2 E = [ 1 0 0 ] .

First, let us design an H∞ controller (6) with random packet
loss with ᾱ = β̄ = 0.95, such that the H∞ performance index
is minimized. That is, we like to deal with the problem (O1).
Solving the optimization problem (49) by using the LMI Tool-
box, we obtain that γmin = 0.4428 and

K = [ 1.1154 −0.6931 0.0007 ]

L = [ 0.0251 0.0294 0.0145 ]T .

If the initial conditions are set as x0 = [1 0 0]T, x̂0 =
[0 0 0]T, and the disturbance input is assumed to be wk =
1/k2, the simulation result of the state responses are given in
Fig. 1, which has verified that our goal is achieved.

Next, let us consider the case when the packet-loss prob-
ability is relatively higher. Assuming that ᾱ = β̄ = 0.7, we
are again interested in designing an H∞ controller (6) that
minimizes the H∞ performance index γ > 0. Solve the LMI
problem (49) to obtain γmin = 4.9549 and

K = [ 0.7865 −0.7153 0.1651 ]
L = [ 0.0069 0.0205 0.0178 ]T .

Fig. 1. H∞ control with γmin = 0.4428.

Fig. 2. H∞ control with γmin = 4.9549.

Similar to the first case, the simulation result of the state
responses given in Fig. 2 has confirmed that the controlled
system is exponentially stable in the mean square.
Remark 5: We can observe from Figs. 1 and 2 that, when

the packet losses are severer, the dynamical behavior of the
NCS takes longer to converge to zero and, furthermore, the
robustness of the closed-loop system is rather degraded, i.e.,
the minimum value γmin in the second case is much larger than
that in the first case.

V. CONCLUSION

In this paper, a novel robust H∞ control problem has been
considered for a class of networked systems with random
communication packet losses. The random packet losses have
been allowed to occur, simultaneously, in the communication
channels from the sensor to the controller and from the con-
troller to the actuator. In the presence of random packet losses,
an observer-based feedback controller has been designed to
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robustly exponentially stabilize the networked system in the
sense of mean square and also achieve the prescribed H∞
disturbance-rejection-attenuation level. Both the stability-
analysis and controller-synthesis problems have been investi-
gated in detail. It has been shown that the controller-design
problem under consideration is solvable if an LMI is feasible.
Simulation results have demonstrated the feasibility of the
addressed control scheme. One of our future research topics
would be the study of NCSs with simultaneous packet dropout,
network-induced delays, and quantized signal transmissions,
where the latest delay-dependent techniques (e.g., [5] and [6])
can be employed.
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