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Abstract—Single-camera markerless systems have emerged as
a robust methodology for human motion capture and rehabilita-
tion applications. Traditional methodologies typically necessitate
multiple strategically positioned cameras or special equipment,
including sensors to capture patient ambulatory motion, re-
quiring preliminary calibration and synchronization procedures,
which may incur significant costs. This paper presents a wireless
single-camera markerless framework for rehabilitation applica-
tions that leverages advanced deep learning (DL) architectures
to estimate and extract three-dimensional skeletal coordinates
from monocular camera views of ambulatory patients. The
extracted skeletal representation is subsequently transmitted
across wireless communication channels. Then, the rendering
technique has been applied for displaying virtual movement of
the patient for privacy enhancement. Simulations demonstrate
the effectiveness of the framework while maintaining motion
assessment capabilities, presenting opportunities for deployment
in remote healthcare monitoring scenarios.

Index Terms—Wireless transmission, single-camera motion
capture, markerless system, skeleton transmission

I. INTRODUCTION

Markerless motion capture systems are gaining promi-
nence as practical and cost-effective tools for gait analysis
and movement assessment across diverse healthcare contexts,
particularly for patients with neurological impairments and
musculoskeletal disorders. These systems leverage recent ad-
vances in computer vision and deep learning (DL) to estimate
human motion without requiring physical markers, offering
the potential for remote and in-home clinical evaluations.
Prior work, such as that by Scott et al. [1], has demonstrated
the efficacy of single-camera markerless systems in capturing
key gait and movement parameters within clinical settings.
Despite their growing promise, these systems face limitations
in accurately reconstructing detailed 3D skeleton information,
an essential component for informed clinical decision-making
[1]. Furthermore, while much of the existing literature focuses
on the technical validation of these systems for improving
markless motion capture, there remains a significant gap in

understanding their practical integration and application in
real-world clinical workflow [1], [2].

Recent studies have shown that, under controlled conditions,
these systems can capture joint kinematics during overground
walking with sufficient accuracy for clinical use [3]. However,
their performance remains limited in scenarios that require
precise 3D skeleton tracking, which can restrict their appli-
cability for detailed or high-stakes clinical decision making
[1]. In addition, it is not always possible to create a controlled
condition for patients due to medical conditions or the inability
to travel to the hospital.

Complementing the rise of markerless motion capture, re-
mote assessment technologies that integrate video and wire-
less communication are becoming increasingly relevant in
healthcare and rehabilitation due to their convenience, ac-
cessibility, and potential to support continuous monitoring.
These systems enable clinicians to assess patients outside
traditional clinical environments, reducing the burden of in-
person visits. However, they also introduce technical and
logistical challenges, such as high data transmission demands,
particularly when dealing with volumetric or 3D video data,
and increased concerns surrounding patient privacy. In this
context, wireless single-camera markerless motion capture
systems offer a promising middle ground. Their portability,
ease of deployment, and cost-effectiveness make them well-
suited for in-home assessments, especially for individuals with
neurological or musculoskeletal conditions.

In this paper, we address the above challenges by present-
ing a comprehensive framework for wireless, near-real-time
motion analysis using a single-camera, markerless approach.
The proposed system extracts 3D skeletal data from 2D
video inputs via a deep learning-based pose estimation model,
i.e., PoseformerV2 [4], and transmits this information over
a wireless communication channel. This enables usage of
lesser bandwidth for transmission, as instead of the whole
video containing subject and background information, only
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crucial 3D skeleton data is transmitted. To enable efficient
transmission, we employ a Deep Joint Source-Channel Coding
(Deep-JSCC) model, similar to [5], which encodes the 3D
skeletal data into high-dimensional embeddings using a multi-
layer perceptron architecture, followed by decoding at the
receiver end. The performance of the Deep-JSCC model is
systematically evaluated through a series of experimental tests,
demonstrating its viability for effective and nearly real-time
markerless motion capture in wireless settings. In addition,
we apply a privacy-preserving rendering framework that gen-
erates synthetic virtual human movement without the need for
physical markers. This rendering pipeline integrates the SMPL
models [6] and AMASS [7] to animate human figures based on
3D joint coordinates received from the decoder of the model.
Crucially, the rendered videos emphasize skeletal movement
while concealing identifiable attributes such as facial features
and body texture, thereby preserving patient privacy and en-
abling secure remote consultations with healthcare providers.

The major contribution of this work includes:
• A wireless single-camera motion analysis framework is

proposed that transmits only 3D skeletal data, reducing
bandwidth usage.

• A privacy-preserving rendering block is introduced that
reconstructs anonymized human motion videos from the
decoded skeleton data, enabling secure and identity-free
remote clinical assessments.

II. BACKGROUND

A. Human Motion Applications

1) Markerless Motion Capture Applications: Markerless
motion capture (MoCap) refers to techniques that track human
movement without the use of physical markers, relying instead
on video data and advanced algorithms to analyze motion.
This technology has gained attention in clinical biomechanics,
rehabilitation, and sports science due to its potential for cost-
effective and accessible motion analysis [2]. It is also used in
clinical settings for gait analysis and injury prevention. How-
ever, limitations such as reduced accuracy in 3D kinematics
and dependency on environmental conditions (e.g., lighting)
hinder their widespread adoption [2].

2) Single-Camera Markerless System: Recent advance-
ments in computer vision and DL have enabled single-
markless motion capture systems to develop, offering an acces-
sible alternative to traditional multi-camera setups. These sys-
tems utilise single RGB cameras, such as smartphone cameras,
to capture frontal-view videos of moving and walking subjects
[8]. DL models can be used to extract 3D skeleton joints
from these videos, providing accurate gait parameters without
the need for complex calibration or synchronisation [9], [10].
Studies have demonstrated excellent validity and reliability
of monocular systems compared to gold standard assessment
tools, with correlations between classes ranging from 0.92 to
0.99 and percentage errors below clinical acceptability thresh-
olds [10]. These systems show promise for widespread use in
healthcare, sports, and rehabilitation settings, as they can be

operated by non-technical personnel and provide comparable
results to more complex and expensive multi-camera setups
[8], [9].

3) Pose Estimation: Pose estimation is the process of deter-
mining the orientation and location of body segments in three
dimensions. Although markerless systems can attain similar
temporo-spatial measurements to marker-based systems, they
may fail to precisely identify joint centre locations and angles,
which are crucial for clinical applications [2]. Technological
developments like the introduction of the MediaPipe [11],
OpenPose [12], and Poseformer [4] have further made pose
estimation easily available. However, they may lack discussion
and applications or calibration in the medical and rehabilitation
field.

B. Semantic Communication Techniques

Semantic communication (SC) has recently been widely
discussed, focusing on conveying the meaning of information,
rather than the exact bits or raw data that constitute the
message [13]. SC may be implemented via several techniques,
such as joint source-channel coding (JSCC) [14] and DL-based
JSCC (Deep-JSCC) [5]. By emphasising the meaning of the
data rather than just its bits, SC systems mark a paradigm shift
in wireless data transmission, which may make transmitting
large amounts of data efficient.

For wireless motion capture transmission systems enabled
by SC, source coding can be used to compress video and
extract skeletal data, while channel coding can improve re-
sistance to noise. This approach may facilitate the evaluation
of gait and posture through wireless communication channels,
making video-based motion capture assessments both feasible
and accessible, and potentially increasing the efficiency of
healthcare services. Although SC systems show great promise
in applications such as video transmission, their use in the
healthcare and rehabilitation sectors remains limited [15].

III. METHODOLOGY

We introduce a framework, as shown in Fig. 1 that inte-
grates a DL-based pose estimation model, i.e., PoseformerV2
[4] for extracting 3D skeleton from 2D camera video data,
with the Deep-JSCC model for wireless data transmission, as
well as SMPL models [6] and AMASS [7] for synthesizing
anonymized human body animation from received skeletal
data, thereby reducing wireless bandwidth requirements while
maintaining the fidelity of motion information.

A. Problem Formulation

Let the 2D video be represented as V = [I1, I2, . . . , In, . . . ,
IN ] where V ∈ RF×N×M . Here F shows the number of
frames in the video, and frames in the video are represented as
In ∈ RN×M where N×M shows the spatial resolution of each
frame. For all the frames present in the video V , the extracted
3D skeleton is represented as J ′ = [J1, J2, . . . , Jn, . . . , JN ],
J ′ ∈ RF×K×3. The K means 3D joint coordinate extracted
from each frame. In this study, K = 17 as 17 joints are
extracted. These 17 joints are the hip, right hip, right knee,
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Fig. 1. The Wireless Single-Camera Markerless Motion Capture System

right foot, left hip, left knee, left foot, spine, thorax, neck,
head, left shoulder, left elbow, left wrist, right shoulder,
right elbow, and right wrist. For all the frames present in
the video V , the extracted 3D skeleton is represented as
J ′ = [J1, J2, . . . , Jn, . . . , JN ], J ′ ∈ RF×K×3.

The wireless transmission of V is denoted by the function
T (·) and defined as,

J̃ = T (J ′) (1)

where J̃ shows the reconstructed 3D skeleton at the re-
ceiver’s end represented as J̃ = [J̃1, J̃2, . . . , J̃n, . . . , J̃N ],
J ′ ∈ RF×K×3. Further, the received skeleton is input into the
rendering block for the privacy preserving functions, denoted
by the function P(·) and defined as,

V̂ = P(J̃ ) (2)

where V̂ shows the reconstructed virtual rendered mov-
ing objects at the receiver’s end represented as V̂ =
[Î1, Î2, . . . , În, . . . , ÎN ], V ′ ∈ RF×N×M . The ambition of this
work is to display the virtual human motion video such that V̂
is as close as possible with V in terms of the moving angles
of joints of patients for anonymous movement assessment in
the rehabilitation applications.

B. 3D Skeleton Extraction

Aiming to understand the 3D human movement, it is im-
portant to extract the 3D human skeleton data from the video.

In this work, the PoseformerV2 architecture [4] is used to
extract the joints coordinate. The joint extraction process is
represented as E(·). For each frame, the 3D joint information
is extracted by,

Jn = E(In) (3)

where Jn ∈ RK×3 shows the skeleton data from Pose-
formerV2.

C. Wireless Communication Model

1) System model: In this work, we aim to transmit the 3D
skeleton coordinates stored in J ′ via a wireless channel and
reconstruct the skeleton at the receiver’s end. The proposed
model consists of three components: an encoder (NetE), a
noisy physical channel simulating the real environment, and a
decoder (NetD). Here, both the NetE and NetD are deep neural
network models with trainable parameters. These trainable
parameters are updated through back propagation. The NetE
is defined as,

O = NetE(J ′, α) (4)

where α shows the SNR value of noise added in the encoder.
O ∈ RA×C×B . The J ′ is encoded to a higher dimension to
extract the important features from J ′. During the transmis-
sion of the encoded bits to the receiver, noise is introduced
by the physical communication channel. Here, noise such as
additive white Gaussian noise (AWGN) is added as,



Õ = O+ β (5)

where β ∈ RA×C×B denotes the complex normal Gaussian
noise, which is β ∼ CN (0, σ2I). The corrupted bits are
passed through the decoder to generate the skeleton data,
denoted as,

J̃ = NetD(Õ, α) (6)

where J̃ is the reconstructed skeleton at the receiver’s end
after transmission.

2) Deep-JSCC based solution: The objective of the pro-
posed model is to accurately reconstruct the original 3D
skeletal data from encoded representations that may be cor-
rupted due to transmission noise. The model comprises an
encoder–decoder structure, where both NetE and NetD consist
of fully connected layers with learnable nonlinearities and
normalization mechanisms.

In NetE(·), the input 3D joint coordinates are first projected
to a hidden dimension using an FC layer with 64 neurons. This
is followed by two additional FC layers with 128 and 256 neu-
rons, respectively. Each linear transformation is followed by
a Layer Normalization (LayerNorm) layer, which dynamically
modulates the normalized output using a conditioning vector
derived from the input. This adaptivity enables the network
to normalize features in a context-aware manner, improving
stability across varying input distributions. Nonlinearity is
introduced via Parametric ReLU (PReLU) activations, which,
owing to their learnable parameters, provide flexibility in
shaping activations and mitigate the “dying neuron” issue.

During transmission, noise is introduced into the encoded
features to simulate the real-world degradation, allowing the
model to learn robust reconstructions.

At the decoder side, the architecture NetD(·) decodes the
noisy high-dimensional features back to the 3D joint space
using a mirrored structure. The decoder first applies FC layers
with 256, 128, and 64 neurons, successively reducing the
dimensionality of the features. As with the encoder, each
FC layer is followed by a LayerNorm layer and a PReLU
activation. The final linear layer maps the decoded features
back to the original 3D joint coordinate space.

D. Data preprocessing

For different subjects, the 3D skeleton coordinates extracted
are based on the subject’s position in space. Aiming to
avoid the variation in the subject’s coordinate, normalizing
the coordinates is denoted as,

J ′
n,k =

J ′
n,k −

∑N
n=1 Jn,k

N√∑N
n=1(Jn,k−µJk

)2

N

(7)

where µJk
∈ R3 denotes the average value of 3D joint, Jn,k ∈

R3 denotes the k-th 3D joint out of 17 joints from n-th frame,
N denotes the length of all frames. After data preprocessing,
the model transmits all 17 extracted 3D joints in the wireless
channel.

E. Training details

The network is trained to minimize the mean square error
loss, L = E||J ′ − J̃ ||22. Here, || · ||2 shows the L2 norm and
E represents the expectation function. The model is trained
for 100 epochs with a batch size of 64. The SGD optimizer
is used to find the optimum model.

F. Rendered 3D Skeleton framework

The design framework generates human body movement
from 3D joint skeleton data by integrating large motion capture
datasets and temporal pose estimation with parametric human
body models. The framework integrates the rendering tools
from AMASS [7] along with SMPL models [6] to establish a
complete pipeline for human motion synthesis. SMPL model
utilizes 24 axis-angle rotation vectors to represent the relative
rotation angles of 24 human joints. These rotation vectors can
be computed from transmitted 3D joint coordinates. Since the
transmitted 3D skeleton only includes 17 joint coordinates
compared to 24 rotation vectors in the SMPL model, the
missing rotation vectors are set to zero. This approximation
may impact our human body animation, but not too much, as
the necessary human joints are included in the transmitted 3D
skeleton.

With the rotation vectors, the SMPL model generates the
new meshes that represent the current pose of the human body.
Then the new mesh is used to render the human body using
the rendering tool from AMASS. By changing the rotation
vector of the pelvis, we can generate unlimited human body
animation with different root orientations, which benefits to
the doctors’ diagnosis since they can see the walking actions
of patients from any viewpoint.

IV. EXPERIMENTAL DETAILS

The model is trained and tested on the publicly available
datasets named Large Multipurpose Motion and Video
(MoVi). The datasets have been created on 90 subjects per-
forming 20 predefined everyday actions and sports movements,
using different hardware systems, including an optical motion
capture system, video cameras, and inertial measurement units
(IMU). This dataset contains motion capture data, video and
IMU data [16].

A. Evaluation

Accurate extraction of joint angles is a critical aspect of
human motion analysis, as these angles provide essential
insights into biomechanical movement patterns. Therefore,
in this study, we evaluate the performance of our model
by comparing the computed joint angles against reference
measurements. Here, we computed four joint angles, which
are the left elbow, right elbow, left knee, and right knee. These
joints are computed as,

a = J1 − J2, b = J3 − J2 (8)

θ = cos−1(
a · b

∥a∥ · ∥b∥
) (9)



TABLE I
JOINT ANGLE AND CORRESPONDING JOINT COORDINATES

Joint angle J1 J2 J3

θle Left wrist Left elbow Left shoulder

θre Right wrist Right elbow Right shoulder

θlk Left hip Left knee Left foot

θrk Right hip Right knee Right foot

For different joints angle, left elbow (θle), right elbow (θre),
left knee (θlk), and right knee (θrk), the J1, J2, and J3 vary
which are shown in Table I.

The performance of the proposed model was evaluated
along two principal dimensions: (1) the deviation between the
predicted joint angles and the corresponding ground truth val-
ues, and (2) the temporal consistency of joint angle sequences,
assessed by measuring the similarity between consecutive
frames. To access these two metrics as used,

• Dynamic Time Warping (DTW): DTW calculates a
quantitative measure of the similarity between two time
series of data [17]. A lower DTW distance indicates that
the two sequences are more similar. It is evaluated as,

DTW(θi, θ̂j) =Dis(θi, θ̂j) (10)

+min


DTW(θi−1, θ̂j),

2× DTW(θi−1, θ̂j−1),

DTW(θi, θ̂j−1)
(11)

where i, j = {0, 1, . . . , s, . . . , S}. S refers to the total
number of subjects. Dis(·) shows the Euclidean distance
between two points. θ and θ̂ shows the actual and
reconstructed joint angles where θ = {θle, θlk, θre, θrk}
and θ̂ = {θ̂le, θ̂lk, θ̂re, θ̂rk}.

• Mean Per Joint Angular Error (MPJAE): MPJAE
quantifies the absolute difference between the estimated
joint angles and the corresponding ground truth values,
thereby providing an aggregate measure of the model’s
accuracy across all joints. It is computed as follows:

MPJAE =
1

S

S∑
i=1

∥θi− θ̂i∥1 (12)

where i = {0, 1, . . . , s, . . . , S}, S refers to the to-
tal number of subjects used to estimated joints, θ =
{θle, θlk, θre, θrk} signifies the estimated angle of the
joint that serves as the gold standard, and θ̂ =
{θ̂le, θ̂lk, θ̂re, θ̂rk} denotes the reconstructed joint angle.

• Mean Square Error (MSE): MSE finds the average
squared difference between joint values received at the
receiver’s end and actual skeleton joint values. it is
computed as follows:

MSE =
1

N

N∑
n=1

(J̃n − Jn)
2 (13)

where n = {0, 1, . . . , n, . . . , N}, N refers to the total number
of estimated joints and N = 17 as 17 joints are considered in
this work.

V. RESULT AND DISCUSSION

In this section, we evaluate the performance of the proposed
framework by comparing joint angle estimation metrics DTW
and MPJAE, before and after data transmission. These metrics,
commonly adopted in gait analysis, were applied to assess the
fidelity of 3D joint coordinate estimations under varying SNR
conditions. The comparison of the rendering part will be our
future work.
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Fig. 2. MPJAE between the received skeleton and transmitted skeleton under
different SNR.

The MPJAE and DTW values were obtained for AWGN
channels, with SNR values ranging from 0 dB to 15 dB.
Figure 2 and Figure 3 show the trend obtained for MPJAE
and DTW with increasing SNR. MPJAE exhibited consistent
trends, and decreases were observed with noise decreased (or
SNR increased) for the right knee, right elbow, left knee and
left elbow joints as follows: 81.36% (from 11.85 to 2.20),
81.03% (from 12.34 to 2.34), 78.57% (from 15.29 to 3.27),
and 78.07% (from 16.27 to 3.56). Additionally, the DTW also
showed the same trend of decrease for the right knee, right
elbow, left knee, and left elbow joints as follows: 77.15%(from
5.27 to 1.20), 77.40% (from 5.54 to 1.25), 77.93% (from 7.38
to 1.62), and 77.50% (from 7.67 to 1.72). From the figure, one
can see the impact of SNR on the performance of the wireless
transmission.

Comparing it with the ground truth provided with the
dataset, a similar trend was seen there as well. Figures 4 and 5
show the trend obtained for MPJAE and DTW with increasing
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SNR when compared with the ground truth. The decrease in
MPJAE was observed for the right knee, right elbow, left knee
and left elbow joints as follows: 49.11% (from 14.26 to 7.25),
48.91% (from 14.78 to 7.55), 36.63% (from 24.28 to 15.38),
and 35.61% (from 26.70 to 17.19). Additionally, for DTW
values, the decrease was 60.71% (from 5.53 to 2.17), 61.09%
(from 5.72 to 2.22), 38.38% (from 9.87 to 6.08), and 40.41%
(from 10.41 to 6.20) for right knee, right elbow, left knee and
left elbow joints, respectively.

To evaluate the performance of the proposed model, the
MSE was also calculated for all the joints across varying SNR
levels. As evident from Figure 6, the MSE values decrease
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as the SNR values increases. On average, there is a 95%
decrease in the values. Furthermore, to assess the fidelity of
the reconstructed skeletons at the receiver’s end, the MSE
was also computed between the reconstructed data and the
corresponding ground truth skeletons. As evident from Figure
7 there is 25% decrease in the MSE value as the SNR
increases.

It is observed that the use of LN layer throughout the
network serves to minimize internal covariate shift by condi-
tioning the normalization process on the latent representation,
leading to more stable and accelerated convergence during
training. While PReLU activations promote sparsity, which
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is often desirable, caution is exercised in this context as
excessive sparsity may impair the accurate recovery of fine-
grained spatial information in the 3D skeleton data. These
results highlight the robustness of the proposed model under
various wireless transmission conditions, while also identify-
ing the key areas, especially upper limb joint estimations,
that are more susceptible to wireless channel noise. The
proposed framework demonstrates broad applicability across
biomechanics research, sports analysis, and entertainment in-
dustry applications, providing a robust foundation for future
developments in human motion synthesis and analysis.

VI. CONCLUSION

In this paper, we present a framework for a single-camera,
markless wireless motion capture system for healthcare and
rehabilitation applications. The growing complexity of multi-
camera systems underscores the need for a simpler solution.
In contrast to the traditional system, our approach focuses
on the transmission of skeletal keypoints, enabling efficient
compression by isolating essential 3D joint information from
background content, with the help of PoseformerV2 [4]. This
strategy significantly reduces the volume of transmitted data
while preserving critical motion features, particularly those rel-
evant to health monitoring and analysis. After the transmitted
3D skeleton arrives at the receiver, we utilize the rendering tool
from AMASS [7] and SMPL models [6] to render the human
body animation using the 3D skeleton. The results demonstrate
the effectiveness of the proposed model and indicate its strong
potential for real-time deployment in practical applications.
Our future work will be further investigating the usage of
AMASS and SMPL for improved performance.
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