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Abstract—In this paper, a synchronization problem is investi-
gated for an array of coupled complex discrete-time networks with
the simultaneous presence of both the discrete and distributed time
delays. The complex networks addressed which include neural and
social networks as special cases are quite general. Rather than the
commonly used Lipschitz-type function, a more general sector-
like nonlinear function is employed to describe the nonlinearities
existing in the network. The distributed infinite time delays in
the discrete-time domain are first defined. By utilizing a novel
Lyapunov-Krasovskii functional and the Kronecker product, it is
shown that the addressed discrete-time complex network with dis-
tributed delays is synchronized if certain linear matrix inequalities
(LMIs) are feasible. The state estimation problem is then studied
for the same complex network, where the purpose is to design a
state estimator to estimate the network states through available
output measurements such that, for all admissible discrete and
distributed delays, the dynamics of the estimation error is guaran-
teed to be globally asymptotically stable. Again, an LMI approach
is developed for the state estimation problem. Two simulation
examples are provided to show the usefulness of the proposed
global synchronization and state estimation conditions. It is worth
pointing out that our main results are valid even if the nominal
subsystems within the network are unstable.

Index Terms—Complex networks, discrete time delays, dis-
tributed time delays, linear matrix inequality (LMI), Lyapunov—
Krasovskii functional, neural networks, state estimation,
synchronization.

I. INTRODUCTION

OMPLEX networks are composed of a large number
of highly interconnected dynamical units and therefore
exhibit very complicate dynamics. Examples of such complex
networks include the Internet, which is a network of routers or
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domains, the World Wide Web, which is a network of web sites,
the brain, which is a network of neurons, and an organization,
which is a network of people. Since the introduction of the
small-world network principle by Watts and Strogatz [35], a
great deal of research has been focused on the dependence of
the asymptotic behavior of interconnected oscillatory agents
on the structural properties of complex networks. It has been
found out that the general structure of the interaction network
may play a crucial role in the emergence of synchronization
phenomena in various fields such as physics, technology, and
the life sciences. Synchronization is attracting more and more
research attention due to its ubiquity in many system models of
the natural world, for example, the large-scale and complex net-
works of chaotic oscillators [15], [19], [26], [32], the coupled
systems exhibiting spatiotemporal chaos and autowaves [28],
[29], and the array of coupled neural networks [1], [14], [18],
[27], [36], [37].

Time delays occur commonly in complex networks because
of the network traffic congestions as well as the finite speed of
signal transmission over the links [4], [8], [9], [12], [13], [29],
[30], [38]. Also, the network couplings often give rise to delays
in biological neural networks, gene regulatory networks, com-
munication networks, and electrical power grids [2], [9], [17],
[19]. It has been recognized that time delays can cause complex
dynamics such as periodic or quasi-periodic motions, Hopf
bifurcation, and higher dimensional chaos. In recent years, the
synchronization problem for various types of networks with
delayed coupling has been extensively studied [2], [9], [17],
[19], [23], [37]. For example, the synchronization criteria have
been established in [17] for complex dynamical network mod-
els with coupling delays for both continuous and discrete-time
cases, which have further been improved in [9] by using less
conservative delay-dependent techniques. A variational method
has been used in [23] to deal with the synchronization problem
for an array of linearly coupled identical connected neural
networks with delays, whereas the similar problem has been
addressed in [37] for an array of coupled nonlinear systems with
delay and nonreciprocal time-varying coupling. It is worth men-
tioning that most of the reported results have addressed the syn-
chronization problem for networks with discrete time delays.
Another kind of time delay, namely, continuously distributed
delays, has started to gain research attention in the context of
synchronization because a complex network usually has a spa-
tial nature due to the presence of an amount of parallel pathways
of a variety of node sizes and lengths. Very recently, in [22],
the synchronization problem has been investigated for coupled
networks with both discrete and distributed time delays.
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One of the important yet challenging issues for understand-
ing the interaction topology of complex networks has to do
with the discrete nature of network topology [31]. The reason is
mainly threefold: 1) the discretization process of a continuous-
time network cannot preserve the dynamics of the continuous-
time part even for small sampling periods; 2) a discrete-time
network is in a better position to model digitally transmitted
signals in a dynamical way than its continuous-time analog,
and 3) the discrete-time networks have already been applied
in a wide range of areas, such as image processing, time series
analysis, quadratic optimization problems, and system identi-
fication. Recently, the synchronization problem for discrete-
time networks has received some initial research interests. For
example, the master—slave synchronization has been discussed
in [19] where the activation function was assumed to be of the
traditional Lipschitz type. In [24] and [25], the synchronization
problem has been studied for an array of discrete-time coupled
complex networks in a systematic way and a series of results
was obtained by using innovative manifold/graph approaches.

Although the synchronization problem for discrete-time
complex networks is now drawing increasing research atten-
tion, there are still several open problems deserving further
investigation. First, despite their importance in modeling the
distribution of propagation delays over a period of sampling
time, the distributed time delays have not yet been addressed
in the synchronization problems for discrete-time complex
networks. The main reason is that it is nontrivial to repre-
sent the distributed time delays in the discrete-time domain
and establish a unified framework to handle both the discrete
and distributed time delays. Second, for large-scale complex
networks, it is quite common that only partial information
about the network nodes (states) is accessible from the network
outputs. Therefore, in order to make use of key network nodes
in practice, it becomes necessary to estimate the network nodes
through available measurements. Note that the state estimation
problem for neural networks (a special class of complex net-
works) was first addressed in [34] and has then drawn particular
research interests, see, e.g., [11] and [12], where the networks
are deterministic and continuous time. Unfortunately, the state
estimation problem for discrete-time complex networks with
or without distributed delays has not been researched yet.
Therefore, the aim of this paper is to deal with the synchroniza-
tion and state estimation problems for discrete-time complex
networks with distributed delays.

In this paper, we investigate the synchronization problem
for an array of coupled complex discrete-time networks with
the simultaneous presence of both the discrete and distributed
time delays. Rather than the commonly used Lipschitz-type
function, a more general sectorlike nonlinear function is em-
ployed to describe the nonlinearities existing in the network.
We first define the distributed time delays for the complex
networks in the discrete-time domain. By utilizing a novel
Lyapunov—Krasovskii functional and the Kronecker product,
we show that the addressed synchronization problem can be
converted into the feasibility problem of a set of linear ma-
trix inequalities (LMIs). We then turn to the state estimation
problem for the same complex networks. Through available
output measurements, we aim to design a state estimator to
estimate the network states such that, for all admissible discrete
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and distributed delays, the dynamics of the estimation error
is guaranteed to be globally asymptotically stable. Again, an
LMI approach is used with the main proof omitted for the state
estimation case. Two simulation examples are provided to show
the usefulness of the proposed the- ory. It is worth pointing out
that our main results are valid even if the nominal subsystems
within the network are unstable.

Notations: The notations are quite standard. Throughout
this paper, R™ and R™*™ denote the n-dimensional Euclidean
space and the set of all n X m real matrices, respectively. The
superscript “T” denotes matrix transposition, and the notation
X>Y (X >Y), where X and Y are symmetric matrices,
means that X — Y is positive semidefinite (positive definite).
For vector or matrix z, z >~ 0 means that each entry of z is non-
negative. I, is the n x n identity matrix. | - | is the Euclidean
norm in R™. The Kronecker product of an n X m matrix X
and a p X ¢ matrix Y is defined by an np X mq matrix X ® Y.
If A is a matrix, denote by Apax(A) (Amin(A)) the largest
(smallest) eigenvalue of A. Matrices, if not explicitly specified,
are assumed to have compatible dimensions. Sometimes, the
arguments of a function will be omitted in the analysis when no
confusion can arise.

II. PROBLEM FORMULATION

Consider the following discrete-time delayed complex net-
work consisting of N coupled nodes of the form:

zi(k+1) = f (zs(k)) + g (z; (k- T(k)))N
+oo
+ Z Hmh (.’L‘Z(k’ - m)) + E wijij(k;),
m=1 j=1
i=1,2,... N ()

where x;(k) = (z51(k), 2i2(k), ..., i (k)T is the state vec-
tor of the ith node. f(), g(-), and h(-) are nonlinear vector-
valued functions satisfying certain conditions given later. The
positive integer 7(k) denotes the discrete time-varying delay
satisfying

Tm < T(k) < ™ keN (2)

where 7, and T3, are known positive integers. The con-
stants f,, >0(m=1,2,...) satisfy the following convergent
conditions:

+o0 +00
D <Aoo D My, < oo 3)
m=1 m=1

T = diag{v1,72,.-.,7} > 0is a matrix linking the jth state
variable if v; # 0, and W = (w;;) € RV*Y is the coupled
configuration matrix of the network with w;; >0 (i # j)
but not all zero. As usual, the coupling configuration matrix
W = (w;;) is symmetric (i.e., W = WT) and satisfies

N N
Sww=Ywk=0  k=12..N @
=1 =1

Remark 1: The model (1) includes the term of the distrib-
uted time delays >, p1,,h(z;(k —m)) in the discrete-time
setting. Such a term is proposed, to the best of the authors’
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knowledge, for the first time for complex networks and the
model and the model (1) can be interpreted as the discrete
analog of the following continuous-time complex network with
mixed time delay:

T — f (aat)) 49 s (0= (1)

N
+ / k(t — s)h (zi(s))ds + Zwijf‘xj(t).

e j=1

As can be seen in the sequel, the inclusion of such a distributed
delay term will bring additional difficulty in the analysis and a
special inequality will need to be developed.

Remark 2: The convergent condition (3) is used to make sure
that the term of Z;c’:ol pmh(z;(k —m)) in (1) as well as the
Lyapunov functional (to be constructed later) are convergent.

Remark 3: The addressed discrete-time delayed complex
networks (1) that include many different kinds of networks
(e.g., neural and social networks) as special cases are quite gen-
eral. For example, we consider the following n-neuron discrete-
time neural network with discrete and distributed delays of
the form:

ui(k+1)= +Z bij £ (u; (k Zcijgj (uj (k—=7(K)))

+ Zd“ Z um i (u;(k—m)) 5)

or, in an equlvalent vector form

u(k + 1) = Au(k) + BF (u(k))
+oo
+CG (u(k—7(k)+ D> pmH (u(k —m)) (6)
where u(k) = (u1(k),uz(k),...,u,(k))T is the neural state

vector, A = diag{a1,as,...,a,} with |a;] <1 is the state
feedback coefficient matrix, the n x n matrices B = [b;;]nxn.
C = [¢ijlnxn, and D = [d;;]nxn are the connection weight
matrix, the discretely delayed connection weight matrix, and
distributively delayed connection weight matrix, respectively.
The positive integer 7(k) is the same as in (2). In (6), F'(u(k)),
G(u(k)), and H(u(k)) denote the neuron activation functions.
tm (m =1,2,...) are scalar constants. It is obvious to see that
the neural network model (5) is just a subnetwork of an array
of coupled neural networks described by (1).

In the literature concerning the synchronization problem for
complex networks, the nonlinearities are usually assumed to
satisfy the Lipschitz-type conditions. In the following, we adopt
a more general sectorlike nonlinear function to describe the
nonlinearities existing in the networks.

Assumption 1: The nonlinear vector-valued functions f, g,
and h are continuous and satisfy [20], [33]

[f(z) = f(y) = Bilz — )" [f(z) — f(y) — Ba(z — )]
<0 Vz,yeR" @)

l9(x) — g(y) — Di(z —y)]" [9(x) — g(y) — Da(x — y)]
<0 Vz,yecR" 3

[h(x) = h(y) = Vi(z —y)]" [h(x) — h(y) — Va(a — y)]
<0 Vz,yeR"? )

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 5, OCTOBER 2008

where By, By, D1, D>, V1, and V5 are constant matrices.

Remark 4: The conditions (7)—(9) are known as sector-like
descriptions of the nonlinearities, which are in a more general
form than the usual Lipschitz functions. By adopting such a
presentation, it would be possible to reduce the conservatism of
the main results caused by quantifying the nonlinear functions
via an LMI technique.

For notation simplicity, we let

a( =(x k()
(fT <x2<k>>,...,fT<xN<k>>)T
:(gT 1).9" (@2(k) ..., g" (e (k)"
H (2(k)) = (hTm( ) AT (22(k)) . BT (e ()

With the matrix Kronecker product, we can rewrite the
network (1) in the following compact form:

7(k)))
+oo
+ Z pmH (x(k —m)) +

Definition 1: The discrete-time complex network (1) or (10)
is said to be globally synchronized if, for all addressed discrete
and distributed delays, the following holds:

z(k+1)=F(z(k)) + G (x(k—

(WeTD)x(k). (10)

lim s (k) — (k)| = 0,

1<i<j<N.
k—+o0

In the rest of this paper, we shall focus on the synchronization
problem and the state estimation problem for the discrete-time
complex network (10) with both discrete and distributed time
delays. By utilizing new Lyapunov—Krasovskii functionals, we
develop an LMI approach to derive sufficient conditions under
which the discrete-time complex network (10) is globally syn-
chronized, and then, we further extend the results obtained to
design the desired state estimator for the same complex network
through available network output.

III. SYNCHRONIZATION OF DISCRETE-TIME
COMPLEX NETWORK

In this section, let us deal with the synchronization problem
for the complex network (10). First, we introduce several
lemmas to be used in the sequel.

Lemma 1: Let X and Y be any n-dimensional real vectors,
and let P be an n X n positive semidefinite matrix. Then, the
following matrix inequality holds:

2XTpy < XTPx +YTPY.

Lemma 2: Let M € R™*™ be a positive semidefinite matrix,
x; € R™, and scalar constant a; > 0 (i = 1,2,...). If the series
concerned is convergent, then the following inequality holds:

“+o00 T “+o00 +o0 “+o00
<Z aixi> M (Z aixi> < (Z ai> Z aixiTMxi. )
i=1 i=1 i=1 i=1
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Proof: Letting m be a positive integer, we have
(Z al-xl-> M(Z aix> = (Z aix> M Z a;X;
i=1 i=1 i=1 j=1
m m
_ T
= Z Z a;a;X; Mx;

i=1 j=1
m m

< ZZ%aiaj (xiTMxi—Fx;»Fij)
i=1j=1
(By Lemma 1)

m m
= E a; E aix;foi
i=1 i=1

and then (11) follows directly by letting m — +oo, which
completes the proof. |
Lemma 3: (Schur Complement) Given constant matrices (21,

s, and Q3, where Q; = QT and Q5 > 0, then
Q1+ Q3TQ§193 <0
if only if
T
IR 3 )
Q3 —Q9
Lemma 4: Let U = (aj)nxn, P ER™", = (27,
23, )T and y= (v, va, .. y)T with zp, yk €
R*(k=1,2,...,N). If Y =U?T and each row sum of U is
zero, then
U@ Py =— Y ay(zi—z) Py —yy).

1<i<j<N

Lemma 5: Let A = (aij)mxn, B = (bij)nxq, and C =
(€ij)mxq = AB.If the sum of all elements in each column of A
(row of B) is zero, then the sum of all elements in each column
(row) of C is zero. Moreover, if A is a symmetric matrix and
the sum of all elements in each row of A is zero, then, for any
positive integer n, the sum of all elements in each row of A”
is zero.

For notation simplicity, we denote by w( ) the (i,7) entry of
the matrix W?2. Now, we give our main result in this paper as
follows.

Theorem 1: Under Assumption 1, the discrete-time complex
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exist three scalar constants d; > 0, d5 > 0, and d3 > 0 and
three positive definite matrices P, ), and R such that the LMIs
shown at the bottom of the page hold, where

Bi=(BTBy+ByB1)/2  Bo=(Bf+BJ)/2 (13)
Di=(DIDo+D3D1)/2 Dy=(DT+D7)/2 (14)
Vi=(e+V'vi)/2 =Wz (as)
+o00
E=(rm—Tm + DQ—021 =) ju (16)
k=1
eij = —P — NU)EJQ)FPF — 61B1 — (Sgél — (53‘71 (17)
Proof: Let Xij (k) = xz(k) — .I‘j(k‘), f“(k) = f(ﬂ?l(k)) —
f(z;(k)), gij (k) = g(zi(k)) — g(z;(k)), hy;(k) =
h(xi(k) —h(z;(k),  and  Tyi(k) = 3207, pmh(ai(k -
m)) — S+ pmh(x;(k —m)). From (7), it follows read-
ily that
[ a:,(k)—xguc) r
f(@i(k)) — f(2;(k))
o | (B B2+ BIBy) /2 — (B + BY) /2
—(By + Bs)/2 I
z; (k) —xj(lc) }
s [f 8) = (s | =7
namely
Xl(k) T Bl 732 Xl(k')
] | R s o
Similarly, from (8) and (9), we have
wmﬂ D —Dg} {xﬁ(k)}
{gu(k) o A L PO
XZ(]{:) T ‘71 —‘72 xz(k)
vt I S | B

To deal with the synchronization of the network (10), we
introduce the following Lyapunov—Krasovskii functional:

network (10) is globally asymptotically synchronized if there V (k) = Vi(k) 4+ Va(k) + Va(k) + Va(k) 21
6”- —NU)ZJFP + 51B2 (SQDQ —N'U}ij].—‘P 53‘72 —N’(U”PP
* P—61 0 P 0 P
* * = 0 0 0 :
Dy = N N B P-Q 0 P <0, 1<i<j<N 12)
* * * * R — 031 0
* * * * * P — %LR
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where +2(G (z (k — ()T (U @ PY(W @ )z(k)
*Q}T xr +o00 T
Va(k) = G" (x(i)) (U G (x(i 23 m=1
(k) i:];(k) (z(1)) (U ® Q)G ((i)) (23) y (U®P)(W®F)x(k)_wT(k)(U@)P)x(kzﬂ)
Va(k) = Z ZGT ) (U® Q)G (x(i)) (24) AVa(k) =Va(k +1) — Va(k)
Jj=k— TM+1 1—] k
I = G (2()(U @ Q)G (x(i))
ZMZ Z H' (2())) (U@ R)H (z(j)) (25 i= k+1z;(k+1)
j=k—1
with Z G (2(1) (U ® Q)G (x(i))
N1 1 1 i=k—7(k)
1 N-1 - -1 =G" (2(k) (U @ Q)G (x(k))
U= T
—G" (z(k—7(k) (U® Q)G (x (k —7(k)))
-1 —1 o N—=11y.n k-1
. - . + Y GT@0) (UG (2()
Notice that from the condition (3), V4(k) is convergent. ikt (h1)+1
Calculating the difference of V' (k) along the system (10), b1
we have - Y GTE) UG (i)
AV (k) = AVi(k) + AV (k) + AVa(k) + AVi(k)  26) _ G;—(’;(;‘)’?z G
where — G (x (k= 7(k) (U@ Q)G (x (k—7(k)))
k—1
A=) =i +Y GTE) Ue Q6 @6)
- (F (x(k)) + G (z (k — 7(k))) i:’“*;j:
oo T + Y GN@) (U Q)G (x(i)
+ D o H (k= m)) + (W @ F)x(k)> e
" - Y @) U e Q6 @)
x (U ® P) <F (z(k)) + G (z (k — 7(k))) i=k—r(k)+1
<GT (x(k) (U © Q)G (x(k))
T
+Zum S (WeT)z(k )> -G k,(f(k —7(k)) (U® Q)G (x (k- 7(k)))
_ IT(k)(U ® P) (k) + i:k;4+l G" (x(i)) (U ® Q)G (x(7)) (28)
= F" (2(k)) (U@ P)F (x(k)) + G" (x (k — 7(k))) AVi(k) = Va(k +1) — Va(k)
x (U P)G (z (k- (k’)))T k—Tm+1 K
oo = G" (x(i) (U © Q)G (x(i))
+ (Z pim H (2 (k — m))) = sz;ﬁzzz_;
m=1 k—Tm
+o0
x (U@ P) Y junH (a(k —m)) - kZW;GT ) (U ® Q)G (x(i))
+ 2T (k)(W ér)T(U®P) k—Tm

> ZGT ) (U ® Q)G ((i))

j=k—-Tpm+1i=j+1

k—Tm

x (W @ D)a(k) + 2FT (x(k)) (U ® P)
><G( (k —7(k))) +2FT (z(k)) (U ® P)

_ T
xzum )+ 2 (k) (U © P) JkZTMH;G J(eReEw)
T k—Tm
(W®F) Jr(o/‘z) +2(G (z (k—7(k)))) - Z (G (x(k)) (U @ Q)G (x(k))
x (U® P) mH (z(k —m)) j=komatl
mZ;M - GT (2(5)) (U@ Q)G (2(4)))
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= (s — )G (2(k)) (U @ Q)G
k—Tm

i=k—1p+1
V4(k +1) = Va(k)
k

—Zuz >, H

i=1 jk‘-‘rll

ST S

J= —1

= Zui (™ @(k)

— H (z(k—

+00
= ZMHT (z(k))
_ Z wHT (x

(By Lemma 2)
<pH" (2(k)) (U@ R)H

(x(k))

GT (2(i) (U ® Q)G (x(i)) (29)
AVi(k) =

(x(7)) (U @ R)H (2(5))

) (U@ R)H ((5))

(U@ R)H («(k))
DU @ R)H (a(k~0)))

(U R)H (z(k))

) (U @ R)H (x(k — 1))

(x(k))

1 (& '
- (Z i H (a(k m))) (UeR)
. m=1
XD fim —m)) (30)
m=1
In view of
WeD)T(UeP)Wel)=WTeTT)(Ue P)(WeT)
=WTuw)e (I'PI)
=NW?® (TPT)
(U@ P)(W®T) =(UW) ® (PT)
=NW @ (PT)

we substitute (27)—(30) into (26) and obtain

AV (k) <FT (x(k)) (U ® P)F (x(k))
+ G (@ (k= 7(k) (U@ P)G (@ (k= 7(k))

+o0
+ (Z pm H (2 (k
“+o00
X > pm H (x(k —m))

+a% (k) (NW? @ (TPT)) z(k)
+2FT (2(k)) (U @ P)G (z (k — 7(k)))
+2FT (z(k)) (U ® P)

T
- m))) (U®P)
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+00
X Z /fLmH (x(k - m))
m=1
+2FT (2(k)) (NW @ PT)x(k)
+2G7T (z(k — 7(k))) (U ® P)
+o0
X Z pm H ($(k - m))
m=1
+2G7T (z(k — 7(k))) (NW @ PT)x(k)
+oo
+ (Z pm H
— 2T (k) (U ® P)xz(k)
+ (147 — 7)) GT (2(k) (U @ Q)G (

— G (x (k — 7(k))) (U ® Q)G (& (k — 7(k))
+ il (@(k)) (U © R)H (x(k))

T
(k — m))> (NW ® PD)a(k)

8
—

&y
N
=

3D
It follows from Lemma 4, Lemma 5, and (31) that

AV(E) < >

{ X; Px”—x (Nw(2)FPF) Xij
1<i<j<N

+ £ (k) PEi; (k) + g (k — 7(k))
7(k)) + b (k) Phy; (k)
—7(k))

2f] (k)

x Pg;; (k —
+ 2f (k) Pgi; (k
+ 2f 8 (k) Phy; (k) —
X (Nw; PT)xq; + 28, (k —
2g7; (k —7(k))
x (Nuwi; PT)xi; (k) — B (k)
X (Nw;j PT)x;;(k) + (1 + Tar — 7o)
x gi; (k) Qgij (k) — gij (k — (k)

7(k))
x Phy; (k) —

x Qgij (k — 7(k)) + jih}; (k) Rhy; (k)
- lﬁ?j(k)Rﬁij(k)}
= 3 dmel)e; k) (32)
1<i<j<N

where the expressions for &;;(k) and @E;) are shown at the
bottom of the next page.
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Therefore, from (32) along with (18)—(20), we obtain

{g?j(k)ég)&j(m — 8 {Xij(k)r

AV (k) < Z £ (k)

1<i<j<N

[z (% P
2o [mis]

= > hk)®i&i (k)

1<i<j<N
< > Amax(®i)) €5 (33)
1<i<j<N

Noticing  that  Ayax(®;;) <0 and letting Mg =

maxi<i<j<nN{Amax(®Pi;j)}, we have XAy <0, and then, it
follows readily from (33) that

AV(E) <X D> xi(k)f.

1<i<j<N

(34
Letting m be a positive integer, one has from (34)
Vim+1)=V(@0) =) AV(k) =X > > |xi(k)
k=1 1<i<j<N k=1
which implies that
m
o Y > xR < V().
1<i<j<N k=1

By letting m — 400, we can deduce that the series
S |xi;(k)|? is convergent for 1 <i < j < N, and there-
fore, |x;;(k)|* — 0, namely

li (k) —x; =
Jim (k) = 5(k)] = 0
which completes the proof of Theorem 1. |

The complex network (10) is a quite general model that
includes both the discrete and distributed time delays in the
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discrete-time domain. For example, if we consider the discrete
time delay only, i.e., h = 0, then, the complex network (10)
reduces to

r(k+1)=F (2(t))+G (z (k—7(k)))+(WaD)z(k). (35)
For the complex network (35), it is straightforward to have the
following synchronization result from Theorem 1.

Corollary 1: Suppose that the conditions (7) and (8) hold
in Assumption 1. The discrete complex network (35) is syn-
chronized if there exist two scalar constants 6; and &, and

two positive definite matrices P and @ such that the following
LMIs hold:

Hij —Nwijl"P—i— (51B2 (SQDQ —NwijI‘P
* P —0,1 P
ij = % " 0 <0
P—-Q

1<i<j<N

KA
|
* [1]1 ©

* *

(36)

where I;; = —P — Nw{ TPT — 6, B; — 6:D; and By, By,
Dl, bg, and = are defined in Theorem 1.

Remark 5: In Theorem 1, the synchronization problem is
studied for an array of discrete-time neural networks with
mixed time delays. Note that the obtained criteria in (12)
are dependent not only on the upper and lower bounds of
the discrete time delays but also on the distributed delays.
Therefore, the criteria are less conservative than the traditional
delay-independent ones. Also, the LMI-based criteria can be
checked efficiently via the Matlab LMI Toolbox.

IV. STATE ESTIMATION OF COMPLEX NETWORKS

As discussed in Section I, for relatively high-order and large-
scale complex networks, sometimes, we can only know the
partial information about the states of the key network nodes
from the network outputs (measurements). Therefore, in order
to make use of the networks in practice, it becomes necessary
to estimate the node states through available network output.

Suppose that the output from the ith node of the complex
network (10) is of the form

yi(k) = Ciz;(k),

where y; (k) = (yi1(k), yi2(k), ..., ¥im(k)) € R™ is the mea-
surement output of the ith node and C; € R™*" is a known
constant matrix.

i=1,2,....,N (37)

&ilk) = [x5(k) £5k) gh(k) g (k—7(k) hf(k) BEk)]
~P — NwTPT  —Nuw;TP 0 —Nw;;TP 0 —Nuw;lP
x P 0 P 0 P
o) _ * * (tv — T + 1)@ 0 0 0
i . x . P-Q 0 P
* * * * R 0
* * * * * P— %R
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Remark 6: Usually, we have m < n which means that the
network output is a linear combination (although partial) of the
information about the network nodes. We wish to design an
easy-to-implement estimator/observer to estimate the network
states through the available network output.

In order to estimate the states of the complex network (10),
we construct the following state estimator:

+o0
B(k+1)=F ((k))+G (& (k—7(k)))+ Y panH (2(k—m))
+ (W @D)ak) + K [y(k) — Ca(k)]  (38)
where
[ ylgzg Ch .
y(k) = y2: = 2
Ly~ (k) Cn
K,
K,
K= (K; € R™™)
i Ky

with K being the estimator gain matrix. Our goal hereafter
is to choose a suitable K; such that (k) asymptotically
approaches x (k).

To this end, we let e(k) = (7 (k),e3 (k),...,en (k)T =
(k) — (k) with g;(k) = Z;(k) — z;(k) being the state esti-
mator error and denote

Pek)) = [IT @), fT @) . T enth)]
= F (#(k) = F (a(k)) (39)

G (e(k) = [37 (1(k), 9" (e2(k)) -, 5" (e (k)]
=G (k) — G (a(k))

(40)
T

(41)

Then, from (10) and (38), we obtain the following system
governing the state error dynamics:

e(k4+1) = —KCe(k) + F (e(k)) + G (e (k — 7(k)))

“+o0
+ Y pmH (e(k —m)) + (W @TD)e(k).  (42)
m=1
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It is easy to verify that
T o o
Aé‘ B1 —B2 Aé‘ nxN
ol [ Tllea] o e @
T o o
€ D, -Do|| ¢ |_ nxN
o) B T[]0 veer @
T o o
€ Vi —Vol| e |_ nxN
o) [N T lat )0 veem us

N N

——

Bl :diag{Bl,Bh...,Bl} B2 :diag{BQ,BQ,...,BQ}
N N

——

D, =diag{ D1, D1,...,D1} Dy =diag{Ds, Da,..., D2}
N N

—_——~
V, =diag{V1,V1,...,Vi} V3 =diag{Vs,Va,..

——
., Vol

By following a similar line as in the proof of Theorem 1, we
can obtain the following result without proof.

Theorem 2: Let K be a given constant matrix. Then, under
Assumption 1, the error system (42) is globally asymptotically
stable if there exist three scalar constants d; > 0, do > 0,
and 63 > 0 and three positive definite diagonal block matri-
cesP = diag{Pl, PQ, . ,PN}, Q = diag{Ql, QQ, ceey QN},
and R = diag{ Ry, Ra, ..., Ry} such that the LMI holds

Z, STP+6,By 6Dy STP 45V, STp

* P-6:1 0 P 0 P

* * Z> 0 0 0

* * x P—-Q 0 P <0

* * * *  pR—031 0

* * * * * P—/]’IR
where S=W®Il—-KC, Z =STPS—P-§B;—

(52]51 — 63\7, and Z2 = (TM — Tm + 1)Q — 52[

Having obtained the analysis results in Theorem 2, we are
now ready to consider the design problem of the state estimator
(10). From Theorem 2 and Lemma 3, the following result can
be derived easily.

Theorem 3: Under Assumption 1, the system (38) becomes
a state estimator of the discrete-time complex network (10)
if there exist three scalar constants &1, d», and d3 and three
positive definite diagonal block matrices P =diag{ P, P, ...,
Py}, Q=diag{Q1,Q2,...,Qn}, and R=diag{R1, Ro, ...,
Ry} such that the LMI shown at the bottom of the page
holds, where W=W @T, Zy = —P — §;B; — 6:D; — 3V,

rZo Zs 5Dy WTP —CTYT 5,5V, WIP-—CTYT WTP - CTYTH
x P —061 0 | o P 0
* * ZQ 0 0
* * * P-Q P 0 <0 (46)
* * * * R — 31 0 0
* * * P-i 'R 0
L * * * * -P J
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Fig. 1. Comparison of state trajectories of z1 (k) and z2 (k).
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Fig. 2. Comparison of state trajectories of 21 (k) and z3 (k).

Z3=WTP —CTYT + 5B, and Z, is defined as in
Theorem 2. In this case, the estimator gain matrix K can be
chosenas K = P~1Y.

V. NUMERICAL SIMULATION

In this section, two numerical examples are presented to
demonstrate the usefulness of the developed designs on the syn-
chronization as well as state estimation problems for the com-
plex network (10). In order to show the validity of our results,
we select an unstable complex network on which the proposed
synchronization and estimation schemes still work well.

Example 1: For simplicity, let us consider the system (10) of
three nodes. Suppose that

n=2 7(k)=3+ 1+ (D" /2 py=20"
(05 0 - J01, i# ]
I= ( 0 0.5) Wi = {—0.2, i=J.
Let the nonlinear vector-valued functions be given by
f(zi(k)) = (—0.5241 (k) 4+ tanh (0.22; (k))
+ 025612(]{1), 0951‘12(/{)
— tanh (0.75z:2(k))"
g (zi(k)) =h(z:(k))
= (0-2332'1 (k‘) — tanh (0.11‘i1(k‘)) 5 O.II‘iQ(]C))T
i=1,2,3.

i=1,2,3
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200+ I

o5
150 o L
., X22(k) s

-
-
- P
.. e

100 P,

-
-
o
-

X4 (K) & Xp(K)

sor e

50 "

-100

250

200 e
150 F
100+ L

3
i
.
501 Leeseseses™” s
ol
" sae

x12(k) & x32(k)
x
S
=

50F &

-100

Then, it can be verified that 7,,, = 3, 7py = 4, n = 1/8, and

—-0.5 0.2 —0.3 0.2
Bl_( 0 0.95) BQ‘( 0 o.2)
02 0 0.1 0
Dl_vl_(o 0.1) DQ_VQ_<0 0.1)'

By using the Matlab LMI Toolbox, we solve LMI (12) and
obtain a feasible solution as follows:

p— 1.5314 —0.2020 Q= 6.1702 —0.7353
—\ —0.2020  2.9295 — \ —0.7353 13.2959

n— 5.5643  —0.4468
~\ —0.4468  9.8905

01 =8.6589 9 = T73.7843 43 = 16.4907.

Then, it follows from Theorem 1 that the system (10) with given
parameters reaches synchronization, which is further verified
by the simulation result shown in Figs. 1 and 2. Fig. 1 shows
that the state of zo (k) asymptotically approaches that of z1 (k),
whereas Fig. 2 shows that the state of x5(k) asymptotically
tends to that of z1 (k).
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Fig. 3. State trajectories of x11 and Z11.

Example 2: Consider the system (10) of three nodes. Sup-
pose that

n=3 (k) =3+ (14 (<)1) 2 py =20
. - _Joaq, i#£j _ (1 0 1
Pt w a=(5 9 4):

—-0.2, i=1j.
Let the nonlinear vector-valued functions be given by

f(xi(k)) = (—0.8z;1 (k) +tanh (0.5z:1 (k))+0.42:2(k),
0.92;2 (k) —tanh (0.6x2(k)),
0.62;3 —tanh (0.4z;3(k)) ",
g (zi(k)) =h(zi(k))
= (0.2z41 (k) —tanh (0.1z; (k)),
0.3zi2(k) —tanh (0.2x;2(k)),
0.3z:3(k)—tanh (0.2z;5(k)))*, i=1,2,3.

i=1,2,3

It can also be checked that 7,,, = 3, 7/ = 4, 7w = 1/2, and

-08 04 O -03 04 O
By = 0 08 O By = 0 02 O
0 0 06 0 0 0.2

Dy =V; = diag{0.2, 0.3, 0.3}
Dy = V5 = diag{0.1, 0.1, 0.1}.

By using the Matlab LMI Toolbox, the LMI (46) can be
solved and the estimator gain matrices are given by

—0.4958 0.4003
0.0001  0.3405 |,
0.1114  0.0002

K, = (i=1, 2, 3).

Then, according to Theorem 3, the system (38) becomes a state
estimator of the discrete-time complex network (10). That is,
the state of the system (38) asymptotically approaches that of
(10). The numerical simulation perfectly supports the theoreti-
cal results. Specifically, in Figs. 3—6, we show the evolution of
the state 1 (k) and its estimator 21 (k) of node 1, as well as the
magnitude |e(k)| of the estimate error for the whole complex
network. It is noticed from Fig. 6 that the magnitude (k)|
of the error between the states of the whole network and its
estimator approaches zero asymptotically.
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Fig. 4. State trajectories of 12 and Z12.
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Fig. 6. Magnitude |e(k)| of estimate error.

Remark 7: It is trivial to consider the synchronization be-
tween the nodes for a stable network. To validate our analysis
results, in Example 1, the given network is unstable which is
of more significance to be used to test the theoretical results.
Similarly, in Example 2, we again employ an unstable network
to test the performance of our designed state estimator. In other
words, both the two examples are nontrivial in evaluating the
designed synchronizer and estimator.
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VI. CONCLUSION

In this paper, we have investigated the synchronization prob-
lem for an array of coupled complex discrete-time networks
with the simultaneous presence of both the discrete and distrib-
uted time delays. Rather than the commonly used Lipschitz-
type function, a more general sectorlike nonlinear function has
been employed to describe the nonlinearities existing in the
network. We have first defined the distributed time delays for
the complex networks in the discrete-time domain. By utilizing
a novel Lyapunov—Krasovskii functional and the Kronecker
product, we have shown that the addressed synchronization
problem can be converted into the feasibility problem of a set
of LMIs. We have then tackled the state estimation problem
for the same complex networks. Through available output
measurements, we have developed an LMI approach to design
a state estimator in order to estimate the network states such
that the dynamics of the estimation error is guaranteed to
be globally asymptotically stable. Two simulation examples
have been provided to show the effectiveness of the proposed
approach. It has been confirmed through simulation that our
main results are valid even if the nominal subsystems within
the network are unstable.
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