
A model-driven architecture approach for recovering microservice
architectures: Defining and evaluating MiSAR

Nuha Alshuqayran a,* , Nour Ali b , Roger Evans c

a College of Computer and Information Sciences (CCIS), Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
b Department of Computer Science, Brunel University of London, Uxbridge, UK
c Computing Engineering and Mathematics, University of Brighton, UK

A R T I C L E I N F O

Keywords:
Microservices
Model-driven engineering
MDA
Microservicearchitecture recovery
Reverse engineering

A B S T R A C T

Context: Microservice architecture is an architectural style in modern software systems, characterized by small,
independent services called microservices. This architecture is ideal to facilitate rapid feature deployment.
However, it presents a challenge for software engineers, who often lack a comprehensive architectural view due
to the distributed nature and complex interdependencies of microservices.
Objective: This paper presents a Model Driven Architecture approach for MicroService Architecture Recovery
called MiSAR. Building on previous work that defined a Platform Independent Metamodel, this study seeks to
extend this metamodel, introduce a Platform Specific Metamodel, and establish mapping rules. The goal is to
enable the semi-automatic recovery of architectural models for microservice systems.
Methods: An empirical study was conducted on nine microservice systems to define MiSAR’s artefacts and support
semiautomatic recovery of architectural models. These artefacts are then implemented and used to semi-
automatically recover the architectures of three systems. The effectiveness of MiSAR is evaluated based on
metrics such as recall, precision, and F-measure, to assess the recovered models against actual architectures. We
also compared the recovered architectural models with the ones documented by the developers.
Results: The study identified key requirements for the Platform Independent Metamodel to support compre-
hensive microservice architecture recovery, leading to an incremental extension of the MiSAR Platform Inde-
pendent Metamodel. Mapping rules were established to effectively transform Platform Specific Models into
Platform Independent ones. Furthermore, MiSAR was successfully implemented to recover architecture models.
An evaluation using three systems demonstrated that MiSAR could recover architectural models with a high
degree of completeness and correctness when compared with the actual architecture.
Conclusion: The MiSAR artefacts, including the extended Platform Independent Metamodel and mapping rules,
effectively produce expressive architectural models of microservice systems. Systems confirmed MiSAR’s ability
to semi-automatically recover accurate architectural models, providing a holistic view often missing in current
software engineering practices.

1. Introduction

As software applications evolve, their conceptual architectures often
no longer represent their implementations. As software engineers lack
an accurate and holistic understanding of their applications, it is hard to
successfully refactor, migrate and upgrade them [1]. To overcome these
issues, software architecture recovery (or reconstruction) [2], has
recently received considerable attention [3,4] to obtain the actual
(as-implemented) architectural structure and description from system
artefacts such as source code. Architecture Recovery is an important
asset for many software engineering activities, enabling software

engineers to have control and understand improvements in software
systems.

Software companies today emphasize continuous delivery to
enhance customer value. MicroService Architecture (MSA) is a popular
strategy for achieving this [5]. MSA is a type of service-oriented archi-
tectural style which is technology agnostic, and involves designing
software as a set of independent services, each with a single business
responsibility and independently running in isolation to other micro-
services [6]. While no precise definition pertaining to MSA exists, its key
characteristics include: independent deployability of microservices,
microservices should own their own state and they should communicate

* Corresponding author.

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2025.107808
Received 30 July 2024; Received in revised form 31 May 2025; Accepted 2 June 2025

Information and Software Technology 186 (2025) 107808

Available online 3 June 2025
0950-5849/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-3944-9334
https://orcid.org/0000-0003-3944-9334
https://orcid.org/0000-0002-0161-5600
https://orcid.org/0000-0002-0161-5600
https://orcid.org/0000-0001-9506-6587
https://orcid.org/0000-0001-9506-6587
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2025.107808
https://doi.org/10.1016/j.infsof.2025.107808
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2025.107808&domain=pdf
http://creativecommons.org/licenses/by/4.0/

via lightweight mechanisms and smart endpoints [7].
The MSA approach provides significant benefits including reliability,

scalability, separation of concerns and ease of deployment [6,8,9].
However, the challenge of not fully understanding the implemented
software architecture is emphasized in its nature: an evolutionary ar-
chitecture composed of numerous, dynamic, small and distributed
microservices with several inter- and intra-dependencies. Microservices
architectures are inherently complex due to their reliance on other
microservices and infrastructural components such as API gateways and
monitoring components. This complexity increases with a high number
of dependencies and the use of multiple technologies [7].

Architecture recovery [10] is a promising approach to aid in com-
prehending MSAs’complexity as it allows software engineers (devel-
opers/architects) to obtain an architectural model of the implemented
system and its structure. Microservice architecture recovery supports
software engineers in obtaining an up-to-date architecture of the
implemented system and this has many benefits to software engineers in
many cases which include: 1) comprehending the complexities of
distributed microservice systems and identifying inter-service commu-
nication; 2) obtaining an up-to-date architecture for documentation; 3)
inter-team communication and architecture awareness among different
microservice teams because microservices of the same system are
developed by different autonomous teams with different technologies;
4) identifying architecture inconsistencies between the implementation
and an architecture and identifying architecture smells.

However, specific challenges for microservice architecture recovery
include: microservices not being first-class software elements, micro-
service systems use different languages and technologies, and micro-
services are highly interdependent, complicating analysis and
architecture abstraction. Therefore, there is a dearth of available ar-
chitecture recovery approaches within the area of microservices [8].
Available approaches partially recover the architecture of microservice
systems as they lack support for key architectural concepts related to
asynchronous communication, e.g., [11] and microservice infrastruc-
ture, e.g., [12] and they haven’t been evaluated for effectiveness. To
address these issues, we propose the MicroService Architecture Recov-
ery (MiSAR) approach, which follows the Model Driven Engineering
(MDE) paradigm [13] to support the recovery of architectural models of
microservice systems.

Our previous work conducted an empirical study where we manually
extracted and clustered architectural concepts from microservice sys-
tems [10]. The latter, produced a Platform-Independent metamodel
from analysing the source of the systems. However, an architecture re-
covery approach was not defined which is capable of semi-automatically
recover architectural models. MiSAR was initially developed using 8
systems [10], and in this work, we expanded it by incorporating an
additional 9 systems, leading to a total of 19 systems informing the
design.

Therefore, in this paper, we define the holistic microservice archi-
tectural approach for MiSAR by defining the Model Driven Architecture
(MDA) aretfacts: Platform Independent Metamodel, Platform Specific
Metamodel and transformation rules that are able to generate archi-
tectural models of implemented microservice systems in a semi-
automatic way. To achieve this, we have designed an empirical study
where we identify a set of architectural requirements and apply them to
extend the Platform-Independent Metamodel and define mapping rules,
which automatise the architecture recovery process. Then, we imple-
ment the artefacts and use MiSAR to semi-automatically recover archi-
tectural models of 3 microservice systems. Finally, we evaluate the
MiSAR recovered models and measure their completeness and correct-
ness by comparing them to the actual architectures of the implemented
systems. We also compare MiSAR models to the documentation written
by the developers.

The main contribution of this paper is the introduction of a Model-
Driven Architecture (MDA) approach for microservice architecture re-
covery, which semi-automatically generates expressive architectural

models of microservice systems. The expressiveness of these architec-
tural models encompasses elements such as support for asynchronous
communication and infrastructure patterns, which are vital components
of a microservice architecture [6]. This achievement is facilitated
through the following sub-contributions: (i) Introduction of the MiSAR
Platform-Specific Metamodel; (ii) Inclusion of mapping rules that are
well defined and structured to support the automatic transformation
from Platform Specific Models to Platform Independent Models; (iii)
Implementation of MiSAR artefacts, including: 1) mapping rules in
QVTo [14], 2) Platform-Specific and Platform-Independent metamodels
in Ecore [15], and 3) parser to support the semi-automatic generation of
architectural models; (v) Definition of MiSAR’s recovery process; (vi)
Application of MiSAR’s recovery process to three systems and the
evaluation of their semi-automatically generated architectural models.

This paper is organised as follows. Section 2 presents background
information on model-driven engineering. Section 3 introduces MiSAR.
Section 4 presents the study design used to define and formalize the
MiSAR artefacts. Section 5 and Section 6 present our results leading to
MiSAR artefacts and their implementation. Section 7 explains MiSAR’s
recovery process. Then, in Section 8, we evaluated MiSAR through three
systems. Section 9 discusses our approach. Section 10 describes related
work. Lastly, we conclude the paper and envision future research.

2. Model-driven engineering

This section provides a brief background on Model-Driven Engi-
neering (MDE) [13]. MDE depends on three key characteristics: (a) a
model that requires languages for its description, (b) model trans-
formations which define rules and their specification for the purpose of
describing the way in which a particular model can be transformed into
other models, and (c) metamodels which are models of languages used
to describe other models. A model is considered to” conform to” or ”is an
instance of” a metamodel. A metamodel identifies each concept that is
used in defining a specific model, and the models use the concepts ac-
cording to the relationships and rules specified by the metamodel [16,
13].

MDE has started to be recognised in the research community for
addressing reverse engineering problems in the last few years [17]. The
MDE approach brings various benefits. The main one is that it considers
models as first class citizens, which abstract the complexities of the
systems and support their comprehension. MDE approach raises the
abstraction level of the development lifecycle because it shifts the
emphasis from code to models [18].

Another benefit is the separation of concerns as models can be
reusable and independent of their graphical notation. Also, an archi-
tectural model can be manipulated in other contexts and transformed
into other forms. MDE is also supported with languages and plugins that
aid the semi-automatic generation and manipulation of models.

Model-Driven Architecture (MDA) is a set of guidelines for imple-
menting MDE from the Object Management Group (OMG). In MDA,
models can be Platform-Specific Models (PSMs) and Platform-
Independent Models (PIMs) [19]. A PSM contains a set of technical
concepts linked to technology-specific platforms, open or proprietary,
such as Web Services, .NET, CORBA, J2EE and others. A PIM abstracts
away technical details and is independent of platforms and technologies.

Previously, MDA has been used to generate code of service-oriented
architecture [20]. In this work, we focus on the MDA’s PIM and PSM
abstraction levels in relation to the modeling of MSA. These models are
critical for architecture recovery, where a PIM supports the architectural
model recovered and a PSM supports the technology of implemented
microservice systems.

3. Overview of the microservice architectural recovery (MiSAR)
approach

This section presents an overview of MiSAR and how it supports the

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

2

architecture recovery of microservice systems. MiSAR follows MDE [13]
to recover semi-automatically architectural models of existing micro-
service systems, by developing bottom-up, model-driven trans-
formations for obtaining architectural models from the implementation
level. MiSAR can unveil the architectural aspects and aims to abstract
the complexities of MSA by allowing software engineers to understand
an architecture’s implemented structure.

MiSAR considers elements at three different abstraction levels (see
Fig. 1). Level M0 includes the microservice software system as a set of
physical artefacts. It currently considers source code, configuration,
Docker, Docker compose, build files (POM) at the microservice level and
project build files at system level, which contain information used by
Maven to build a project. The M1 level, is the PSM which represents the
software artefacts of M0 in different models, which conform to their
Platform-Specific Metamodel, and supports the technology of the
implemented microservice system. The M2 level represents the PIM,
which abstracts the concepts of MSA in a technology-independent way.

Mapping rules are needed to map an implemented microservice-
based system into an architectural model by instantiating the
Platform-Independent Metamodel. The current mapping rules only
support reverse engineering (as in Fig. 1) which involves transforming
from lower abstraction levels to higher ones and not forward engi-
neering. Future extensions of MiSAR could explore mechanisms for
maintaining consistency/conformance between different abstraction
levels.

In our previous work [10], we identified an initial
Platform-Independent Metamodel by studying eight microservice sys-
tems. This paper extends that metamodel, introduces the
Platform-Specific Metamodel, and defines the mapping rules between
them by incorporating nine additional systems, bringing the total to 19
systems that inform the design of MiSAR. Furthermore, this work im-
plements these rules to automatically generate architecture models for
microservice systems.

3.1. Platform-Independent metamodel

The Platform Independent Metamodel defines the microservice
architectural elements that describe a microservice architecture in a
technology independent way. In the following, we explain the Platform-
Independent Metamodel (as presented in [10]), which will be refined in
Section 5.1. As shown in Fig. 2, Microservice is the central and main
building block of our metamodel, and it is generally a software appli-
cation that offers a completely independent service. Microservices are
broadly classified into Functional Microservice types, which realize the
system’s business capabilities, and Infrastructure Microservice types,
which implement an infrastructure pattern/component addressing a
particular concern of a MSA, such as API Gateway, Configuration, Dis-
covery and Registry and Tracing. The deployment concern of a MSA
model is represented by the concept of Ambient as in [21] and Container
elements. A container is an execution environment used to isolate each
microservice, leveraging the host’s hardware and operating system ca-
pabilities while enabling each microservice to appear as a completely
stand-alone software artefact. The Service Dependency element de-
scribes the communication between one consumer microservice and one
provider microservice. The Service Interface element aggregates all
Service Operations as well as exposes Endpoints of a microservice. An
Endpoint is the service URI that can be called by remote consumers; it is
defined by the path and HTTP method, e.g., GET/POST/PUT. A Service
Operation reflects the main procedure/function that is directly executed
by calling a corresponding endpoint.

3.2. Platform-specific metamodel

The MiSAR Platform-Specific Metamodel supports several platforms:
the Java Language, Docker, Spring boot framework and technologies
which include Consul, Eureka, MongoDB, MySQL, Neo4j Graph data-
base, OAuth2 and RabbitMQ. Fig. 3 presents the parts of the MiSAR
Platform-Specific Metamodel that include the Distributed Application
Project as root element. It is described by application name and its root
repository URI. Distributed Application Project captures the

Fig. 1. MiSAR abstraction levels.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

3

architecture’s development artefacts (multi-module project and module
projects) as well as the runtime artefacts (Docker containers). The run-
time artefacts are the collection of Docker Container Definition elements
involved in the architecture and are defined in the Docker Compose as
well as the Docker files. Each Docker Container Definition is described
by a container name, build path, image name, and whether it generates
logs or not. The build path denotes the path of the module project if the
artefacts are locally available; otherwise, the image name denotes the
artefacts at the remote Docker Hub. The Docker Container Port and
Docker Container Link runtime information is also captured for each
Docker container.

The development artefacts are generally represented by the Appli-
cation Project element, which is equivalent to a multi-module project
along with its module projects, each represented by a Micro-
serviceProject element. The Microservice Project element generalises a
wide range of project artefacts implemented in any framework or lan-
guage, including Java Spring Boot/Cloud. Each Microservice Project
defines a collection of Dependency Library elements that can be found in
project build artefacts such as Maven POM.XML or Gradle BUILD.
GRADLE. It also defines a collection of settings in YAML or PROPERTIES
artefacts. These settings are represented with the Configuration Property
element, which defines important functionality and execution infor-
mation. The Java Spring Web Application Project element is a subtype of
the Microservice Project element which reflects the specific character-
istics of Spring Boot/Cloud framework applications.

4. Empirical study design

This section presents the aim and research questions of our study,
followed by the research design and the protocol used to select systems
for addressing two of our research questions.

4.1. Study aims and research questions

This study aims to incrementally formalize the Model Driven Ar-
chitecture (MDA) artefacts of MiSAR using microservice-based systems.
To achieve this, we defined three research questions:

RQ1: What are the architectural elements that are required for an
existing microservice architectural model?
RQ2: What are the mapping rules between the Platform Specific
Model and the Platform Independent model needed to automatize
the model transformation of MiSAR?
RQ3: How does MiSAR perform in recovering semi-automatically
microservice architectural models?

RQ1 focuses on including new architectural elements into the PIM
metamodel [10] and RQ2 focuses on defining mapping rules between
the PSM and the PIM by analyzing manually microservice systems. RQ3
focuses on applying all MiSAR implemented artefacts and obtaining
semi-automatically architectural models at PIM level of microservice

Fig. 2. Initial design of the MiSAR platform independent metamodel (version 1), as presented in [10].

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

4

systems. To evaluate the recovered architectural models, we will: 1)
compare them with the actual architectures of the implemented systems,
2) we will compare them with the documented architectures and 3) we
will evaluate the efficiency of the automatic recovery.

4.2. Research design

We follow the guidelines of [22]. To answer RQ1 and RQ2, our
research design adopts an example-driven approach, where we have
derived MiSAR from example microservice systems. This approach has
been used in software engineering such as in metamodelling [23] and
architecture reconstruction [24].

The example microservice systems used were searched on the github
repository. We followed the guidelines in [25] to report the data source
selection and threats to validity. We mainly analysed the source code,
configuration files and documentation of the microservice systems.

In the following, we describe the design of our study, as depicted in
Fig. 4:

Manual Architecture Recovery: This phase is divided into Activities
A1 and A2. Both include manual recovery and are always performed in
parallel to enhance and refine MiSAR in increments.

Activity A1. Application to metamodel: In this activity, we create
increments to the PIM metamodel by applying the systems in Table 1
and identifying new architectural requirements. The objective of this
activity is to validate the existing metamodel concepts against real
systems and evolve the PIM metamodel accordingly. For each system,
we analyze its source code and configuration files, abstract relevant
elements, and identify corresponding architectural concepts. We then
instantiate the metamodel using elements from its latest increment to
create instances of the identified architectural concepts. Details of this
process are provided in Section 5.1. If instantiation is successful, the
current metamodel is considered sufficient for the given system. If not,
we refine the metamodel incrementally by: 1) Defining new architec-
tural concepts, 2) Updating or re-evaluating relationships (e.g., associ-
ations), and 3) Grouping related concepts for better integration. This
iterative process results in new requirements that guide the metamodel’s
evolution, as discussed in Section 5.1.

Activity A2. Application to mapping rules: We manually analysed the
implementation of the nine systems to define MiSAR’s mapping rules
between the PSM and the PIM repository. In the previous study [10], we
defined mapping rules between source code and PIM, which are not
applicable in the MiSAR approach. The objective of Activity 2 involves

Fig. 3. Artefacts defined in the MiSAR platform-specific metamodel, supporting Java Spring and Docker containers.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

5

defining structured mapping rules between the PSM and PIM to enable
the automatic model transformation for generating architectural
models.

Evaluation of MiSAR: To answer RQ3, we implemented the MiSAR
artefacts and used them to semi-automatically recover the architectures
of systems. We have evaluated the MiSAR approach through systems.
The details of the evaluation are described in Section 8.

4.3. Selecting the systems for RQ1 and RQ2

Based on the guidelines in [25], we designed a selection protocol,
consisting of the steps as illustrated in Fig. 5, which also shows the
number of systems filtered at each step. The steps for the selection and

filtering of the 9 best systems can be found on GitHub.1 We also defined,
following the guidelines of [22], a list of inclusion and exclusion criteria
to select the systems. We implemented the criteria in 4 steps as presented
in Table 1. The list of selected systems in this empirical study is shown in
Table 2.

Step 1. Basic search: We designed our search string to be a
conjunction of two corresponding populations: Microservice population
AND Frameworks technology population. Concerning the Microservice
population, we have considered that Microservice itself should be a
recurrent keyword, just to make sure, we have widened the search by
including a more open keyword with the prefix service:

Microservice population = (microservice* OR “micro-service”* OR
“micro service”* OR “microservice architecture”*).

As for the Frameworks technology population, we included the
frameworks and technologies which currently MiSAR is designed to
support. As a result, the string is:

Frameworks technology population = (spring* AND java* AND
(docker-compose OR docker) * OR netflix* OR asynchronous* OR
reactive*).

We applied the search string over the GitHub repository and the
outcome resulted with 121 items.

Step 2. Initial scan for system documentation: The title, description,
architectural diagram and documentation of the projects were reviewed
by one of the authors. Projects were discarded for not having a clear
description (or written in other languages than English, e.g., Chinese
and Spanish), any documentation, paper or tutorial pages. The outcome
result set of this step turned out to have a length of 78 items.

Step 3. System functionality considered: Two authors were appoin-
ted to every remaining project to examine the functionality of the sys-
tems. We included projects which implement at least two business
functionalities (e.g.,

“Stock Price Viewer” system was excluded since it implements only
one business service named “stock-service”) and excluded projects that
only implement infrastructure services, (e.g., “Microservice Monitoring”
system was excluded since it only implements monitoring infrastructure
services). The outcome result set of this step turned out to have a length
of 55 items.

Step 4. Source artefact analysis: All three authors were involved in an

Fig. 4. Research design methodology.

Table 1
The selection criteria for the systems studied.

Criteria

Inclusions Step
num

• Have architectural diagram and documentation. 2
• Implement business functionality. 3
• Implemented with Spring Boot/Spring Cloud framework in Java. 4
• Include one or more infrastructure Netflix OSS libraries (e.g., Zuul,

Eureka, Hystrix, Sidecar).
• Each module runs in a single process (Docker technology).
• Implement lightweight synchronous/asynchronous interaction style

and smart endpoints.
• Consist of independent individual services.
• Have Maven POM or Gradle build file(s).

Exclusions Stem
num

• Do not use Spring Boot/Spring Cloud framework. 4
• Do not have Docker Compose file(s).
• Do not revolve around an accumulation of independent individual

services.
• Do not have any data processing libraries (MongoDB, MySQL, or

Graph).
• Do not have Maven POM or Gradle build file(s).
• Do not have Java source files (e.g., “java” resulted in JavaScript).
• Do not have a clear description, documentation, paper, or tutorial

pages.
2

• Use fewer than two functional microservices. 3
• Only include infrastructure microservices (e.g., development tools,

operation frameworks).

1 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/
EmpiricalStudyReplication/SelectedSyst emsUsedToDefineMiSARartefacts

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

6

https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/SelectedSyst
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/SelectedSyst
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/SelectedSystemsUsedToDefineMiSARartefacts

analysis which checks the files of the artefacts in full and searches
through source files to classify the systems as included or excluded based
on existence of essential framework artefacts as pointed in the inclusion/
exclusion criteria in Table 1. Each researcher is responsible for analyzing
the artifacts of their assigned systems to identify specific patterns or
technologies. The division of the responsibilities for each researcher and
how the 9 systems were selected can be found on GitHub.2

5. Results of RQ1 and RQ2

In this section, we present our analysis and results according to our
research questions: RQ1 and RQ2. As stated in Section 4.2, activities 1
and 2 are performed in parallel, but we have separated them for pre-
sentation purposes.

5.1. MiSAR platform-independent metamodel (RQ1)

In this section, we present our analysis of the architectural concepts
empirically derived from the nine systems in a number of increments.
Each increment identified/ elicited a set of requirements that enhance
architectural support and expressiveness within a microservice archi-
tectural metamodel. The Req column in Table 2 indicates which re-
quirements emerged from the analysis of each system. For each elicited
requirement, we explain how we have fulfilled it by modifying the
Platform Independent Metamodel to create an updated Platform Inde-
pendent Metamodel version (see Fig. 6), enabling the recovery of more
expressive architectural models for microservice systems. We represent
these modifications in labelled boxes, where Requirement- denotes the
elicited requirement, and Application of requirement- describes how the
requirement was fulfilled within the metamodel.

5.1.1. Increment–1: supporting components of microservice patterns
Context-1: Many microservice patterns are supported in

microservice-based implementations by the usage of frameworks. For
example, service operations are not defined in the source. For illustra-
tion, the edge-service microservice in system 7 (mentioned in Table 2)
uses API Gateway and Circuit Breaker patterns via Spring Boot/Cloud

framework, without explicitly implementing any Service Operations in
its source artefacts. This discussion leads to the following requirements:

Context-2: An infrastructure microservice can have multiple infra-
structure patterns. For illustration, the bookstoreconsul-discovery
microservice from system 9 provides multiple infrastructure patterns
simultaneously, including Configuration and Registry and Discovery.

We drew inspiration for the microservice pattern categories from the
groupings presented in [35] and [36]. For each system we analysed, we
checked the presence of these groupings and patterns. Therefore, we
added a new enumeration type, Infrastructure Pattern Category, to the
metamodel (see Fig. 6).

Context-3: An Infrastructure microservice can use a pattern compo-
nent as a client or provider. To illustrate, the edge-service microservice
in system 7 uses both infrastructure patterns: Registry and Discovery,
and Configuration. The discovery-service provides Registry and Dis-
covery to edge-service, since the edge-service uses this pattern to reg-
ister its address. The config-server is considered a Configuration
provider since edge-service needs this pattern to pull its centralized
configuration properties.

5.1.2. Increment–2: supporting synchronous communication through
endpoints

Context-1: Request-response synchronous inter-service communica-
tion is usually represented by Service Dependencies. However, it is also
important to know which Service Operations invoke remote provider
operations. This is often unclear in the source code due to frameworks
abstracting Service Operation implementations.

In addition, information about the format of the request and response
data messages at the provider’s endpoint is important to be represented.
Also, the response/output message should be specified by the data type
of the object returned, if any.

In response to the requirements of Increment 2, Fig. 6 illustrates how
the Endpoint, Service Message and ServiceOperations are defined.

5.1.3. Increment–3: supporting asynchronous communication
Context-1: Unlike synchronous request-response, in asynchronous

message-driven communication, the consumer does not directly invoke
a remote Service Operation nor an Endpoint of the provider; instead,
they send an event/message to an intermediary Infrastructure
Microservice.

To illustrate, we examine the message-driven inter-service commu-
nication implemented in System 2. In this system, there are three
queues- weathersimple:queue, weatherbackend:queue and weath-
erservice:queue, which are bound to the message exchanges. We observe
that when a microservice’s outbound queue corresponds to another
microservice’s inbound queue, a Dependency exists between them, as
the former sends messages to the latter. In this context, inbound queues
act as asynchronous alternatives to traditional service endpoints.

The metamodel now has now a QueueListener and Message Desti-
nation concepts as shown in Fig. 6.

Fig. 5. Step by Step filtering process for selecting the systems in our study.

Table 2
Selected microservice systems from GitHub for analysis.

Microservice

ID Project Name URL Count Req

1 Spring-Netflix-OSS-microservices [26] 9 2.1,2.2
2 Spring-RabbitMQ-microservices [27] 7 3.1
3 Cloud-enabled-microservice [28] 7 1.3
4 Event-sourcing-microservices [29] 10 1.3
5 Spring-cloud-sidecar-polygot [30] 7 1.1,1.2,1.3
6 Microservices-basics-spring-boot [31] 10 2.1,2.2
7 Spring-cloud-event-sourcing [32] 15 1.1, 1.3
8 Spring-Boot-Graph-Processing [33] 9 1.3, 3.1
9 BookStoreApp-Distributed-Application [34] 14 1.2, 3.1

2 https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/
EmpiricalStudyReplication/SelectedSyst emsUsedToDefineMiSARartefacts/Ste
psforSelectionOfSystems.pdf

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

7

https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/EmpiricalStudyReplication/SelectedSyst
https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/EmpiricalStudyReplication/SelectedSyst
https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/EmpiricalStudyReplication/SelectedSystemsUsedToDefineMiSARartefacts/StepsforSelectionOfSystems.pdf
https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/EmpiricalStudyReplication/SelectedSystemsUsedToDefineMiSARartefacts/StepsforSelectionOfSystems.pdf

Fig. 6. Final PIM metamodel (version 4).

Requirement-1.1 → Infrastructure components such as Circuit Breaker, Data Store, Cash Store and asynchronous Message Bus concepts need to
be directly associated with Microservices.

Application of requirement-1.1 → Reposition the association of the Data Store, Cash Store, Circuit Breaker and asynchronous Message Bus
concepts from Service Operation to Microservice instead.

Requirement-1.2 → One Infrastructure Microservice can have multiple-infrastructure patterns.

Application of requirement-1.2 → A new Infrastructure Pattern Component concept is introduced. A microservice can aggregate zero to many
Infrastructure Pattern Components. Each component represents an architectural element supporting a pattern’s functionality and is classified
into a specific Infrastructure Pattern Category. All subtypes of Infrastructure Microservice from metamodel version 1 are now instances of this
enumeration.

Requirement-1.3 → The metamodel should distinguish infrastructure pattern components that microservices use. Infrastructure pattern com-
ponents should be divided into two types: those that provide services to microservices and those that request them.

Application of requirement-1.3 → Infrastructure pattern component has two subtypes: Infrastructure Pattern Server Component and Infra-
structure Pattern Client Component. The first represents infrastructure patterns provided by a microservice, i.e., subtypes of infrastructure
microservice, while the second represents infrastructure patterns that are used/requested by a microservice, i.e., consumers of remote infra-
structure microservices.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

8

5.2. MiSAR mapping rules (RQ2)

We analysed the nine systems using Activity 2. A sample of the
defined mapping rules are shown in Table 3. MiSAR’s mapping rules are
in a structured tree that maps PSM element(s) into target PIM element
(s). Mapping rules are represented with a Left-Hand Side (L-H-S) and a
Right-Hand Side (R-H-S). At the L-H-S, PSM elements are specified by
their attributes’ values and the references between them. Mapping rules
check that the L-H-S or PSM elements exist. If they exist, then PSM

elements are transformed into a group of target PIM elements specified
at R-H-S, with specific attribute values and references between them. L-
H-S elements’ are identified before the word ’indicates’ and R-H-S ele-
ments’ are identified after ’indicates’. The aim of this structure is to
formalize the transformation, facilitate the implementation and even-
tually make the recovery process more automatic. Using the structured
format, one can facilitate storage, filtering and grouping of rules, query
all the mapping rules that transform a particular target (PIM element),
and then group them by each source (PSM element).

Requirement-2.1 → Service Operations should be linked to their exposed Endpoints.

Application of requirement-2.1 → The association of Service Operation is re-positioned from Service Interface to Endpoint. This association is an
optional association that goes from Endpoint to Service Operation.

Requirement-2.2 → An Endpoint of a microservice should define the format and type of its data messages, if any.

Application of requirement-2.2 → A Service Message concept is introduced. Service Message is associated with Endpoint and it is defined by
MessageType, i.e., request/response/error, Schema and Schema Format, i.e.,

XML/JSON.

Requirement-3.1 → A message-based asynchronous mechanism of inter-service communication using asynchronous inbound queues and
messages should be represented.

Application of requirement-3.1 → The concept Queue Listener is introduced, defined by its Name and, Endpoint is associated with Service
Interface. Queue Listener and Endpoint are all generalized in a supertype concept called Message Destination, because they all represent the
destination at which a remote message is received.

Table 3
Specification of 6 out of 275 MiSAR mapping rules.

Systems from Table 2where the rule applies

1 2 3 4 5 6 7 8 9

R1: Mapping Docker Container Definition to Infrastructure Server Component: [L-H-S] One Docker Hub Image Container with Image
Field value which contains: “consul”, indicates [R-H-S] one Infrastructure Server Component with Category value: “Service Routing
Pattern - Registry and Discovery”, another Infrastructure Server Component with Category value: “Development Pattern - Centralized
Configuration” and a third Infrastructure Server Component with Category value: “Development Pattern - Asynchronous Messaging”.

​ ​ ​ ​ ​ ​ ​ ​ ×

R2: Mapping Annotation of a Java Method in a Java Class to Service Operation: [L-H-S] A Java Annotation with Annotation Name
value that ends with: “Mapping” which belongs to a Java Method in a Java Class with Java Annotation value that ends with:
“Controller”, and returns a Java Data Type with Element Identifier value: “[datatype-name]” indicates [R-H-S] a Service Operation
with Operation Name value: “[operation-name]” and Operation Description value: “An operation with name [operation-name] that
responds with object [datatype-name]”.

× × × × × × × × ×

R3: Variation of R2 by using reactive web application (WebFlux): [L-H-S]A Java Annotation with Annotation Name value that ends
with: “Mapping”, which belongs to a Java Method in a Java Class with Java Annotation value that ends with: “Controller”, and
returns a Java Data Type with Element Identifier value: “Mono” or “Flux” indicates [R-H-S] a Service Operation with Operation
Name value: “[operation-name]” and Operation Description value: “An operation with name [operation-name] that responds with
object [datatype-name]”.

​ ​ ​ × ​ ​ ​ ​ ​

R4: Mapping A Java Annotation and its Parameter to Queue Listener: [L-H-S] A Java Annotation with Annotation Name value:
“RabbitListener” which has a Java Annotation Parameter with Parameter Name value: “value” or “queues” and Parameter value:
“[queue-name]” and belongs to a Java Method with Element Profile value: “[destination-environment]” indicates [R-H-S] a Queue
Listener with Queue Name value: “[queue-name]” and Environment value: “[destination-environment]”.

​ × ​ ​ ​ ​ ​ × ​

R5: Mapping A Java Method to Service Dependency (asynchronous communication): [L-H-S] A Java Method with Element Identifier
value: “convertAndSend” whose parent is a Java User Defined Type with Element Identifier value: “RabbitTemplate” or
“AmqpTemplate”, which has one Java Method Parameter with Parameter Order value: “2″ and Field value: “[routing-key]” whose
type is a Java Class Type with Element Identifier value: “String” such that there is a Queue Listener with Queue Name value that
contains: “[routing-key]” and belongs to a Microservice with Microservice Name value: “[provider-name]” indicates [R-H-S] a
Service Dependency with Provider Destination value: “QueueListener[QueueName:[Queue Name]]”.

​ × ​ ​ ​ ​ ​ × ​

R6: Mapping A Dependency Library to Endpoint and Service Message: [L-H-S] A Dependency Library with Library Name
value:“spring-boot-starter-actuator” and Library Scope value: “[destination-environment]” indicates [R-H-S] one Endpoint with
Request URI value: “GET /actuator/health” and Environmentvalue: “[destination-environment]” which has a Service Message
with Message Type value: “RESPONSE”, Schema Format value: “JSON” and Body Schema value: “[“type”:“object”,“properties”:
[“status”:[“type”: “string”],“details”:[“type”:“object”]]] ”.

× ​ × × × ​ × × ×

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

9

For example, the R1 mapping rule in Table 3, which resulted from
Increment 1 (see Section 5.1.1) of introducing the Infrastructure Pattern
Component, transforms a PSM Element: Docker Hub Image Container
with Image Field: [Image Field =‘ consul’] into three target PIM ele-
ments: an Infrastructure Server Component with Category value: [Ser-
vice Routing Pattern - Registry and Discovery], an Infrastructure Server
Component with Category value: [Development Pattern-Centralized
Configuration] and an Infrastructure Server Component with Category
value: [Development Pattern - Asynchronous Messaging].

An example of rule R2 is its ability to recover the Service Operation
concept, as demonstrated in Table 3. The variation in mapping rules
involves adding new mapping rules that recover existing PIM concepts,
implemented using technologies not previously encountered [10]. For
instance, rule R3 also recovers the Service Operation concept, producing
the same output as R2. However, the input in R3 represents a reactive,
non-blocking microservice architecture. This reactive architecture was
introduced following the analysis of system 4.

Rules R4 and R5 are added as a result of Increment 3 (see Section
5.1.3): R4 recovers the Queue Listener concept which is a Message
Destination based on message-driven inter-service communication and
R5 recovers service dependency for asynchronous communication.
These concepts were added after analysis of systems 2 and 8.

The addition of mapping rules with hard-coded values to recover
production endpoints that are not implemented explicitly in source code
and are activated only at runtime, along with their message types and
the formats of outsourced famous infrastructure technologies, an
example is R6.

6. Implementation of MiSAR artefacts

To support the automatic recovery of the MiSAR architectural
models, the metamodels and mapping rules have been implemented.
Metamodels have been implemented as Ecore models using the Eclipse
Modeling Framework (EMF) [15]. Fig. 7 presents the MiSAR PSM Ecore
metamodel, which can be found on GitHub.3 To develop and automate
the mapping rules, we have used the Eclipse Model-to-Model Trans-
formation (M2M) project, by incorporating the operational QVT trans-
formation language (QVTo) [14]. Fig. 8 shows the implementation of
the R4 mapping rule of Table 3. The mapping body which includes the
init-section (lines 5 to 7) used for initialising parameters and variables,
and the population section (lines 9 to 18), which specifies the actual
mapping are illustrated. In line 14 the DependencyLibrary2Endpoint()
invokes the mapping DependencyLibrary2EndpointServiceMessage(). In
an Eclipse QVTo implementation, mapping rules are organised in a
top-bottom order i.e., a rule that maps a top PSM element such as
ApplicationProject should invoke all mapping rules to recover a top PIM
element such as Microservice Architecture and its subsequent elements.

Instances of a PSM metamodel are instantiated using the MiS-
ARParser. The MiSARParser is a python application that incorporates
PyEcore, JavaLang, Yaml, XMLtoDict and other python libraries in order
to parse a microservice-based application into a MiSAR PSM model that
will be fed as input to the QVTo transformations for the final generation
of a MiSAR PIM model. Currently, the parser analyses the following files
of a microservice system: Docker Compose Files (.yml—.yaml), Maven
POM (Project Object Model) files, Configuration Files (.yml—.yaml—.
properties) and JavaSourceFiles which specifically include either the
org.springframework.boot or the org.springframework.cloud.

7. Application of misar

Fig. 9 illustrates the different parts of the architecture recovery
process; the thick arrows represent the steps of the recovery process; the
boxes represent the artefacts and the thin arrows indicate the inputs and

outputs of the transformation engine. To apply the process of MiSAR,
download the MiSAR project and follow the manual described in
”MiSAR Recovery Steps.pdf” found on GitHub.4 In the following, we
explain the MiSAR architecture recovery process:

Step 1- Artefact collection (semi-automatic): The files from GitHub
are first downloaded locally. Then, the required artefacts are
uploaded to the existing MiSAR parser, as illustrated in Fig. 10. The
user has to input the Project name. Users can choose between an
automatic uploader or a manual selection process. If users select a
manual selection process, they have to specify: Build directory of
each microservice (single-module) project, Path of the build file
(POM) for the entire system (multi-module) project, Path of the build
file (POM) for each microservice (single-module) project. Addition-
ally, users can delete or add uploaded files, allowing them to control
which parts of the system they want to recover. Some may prefer to
recover the entire architecture, while others may focus on specific
microservices. Because of this user control, the process is classified as
semi-automatic rather than fully automated.
Step 2- Automatic Instantiation of the PSM: The MiSAR parser will
process the provided artefacts and then generate the PSM model in
XMI format at the same path as the PSM Ecore file. This XMI file is
instantly readable and viewable by the Eclipse QVTo project.
Step 3- Automatic Recovery of the PIM: The PIM architectural model
is recovered by running the Eclipse QVTo project, which contains the
Ecore implementations of both PIM and PSM metamodels, the QVTo
implementation of all transformation mapping rules and the PSM
model generated in step 2.

8. Evaluating misar in semi-automatically recovering
microservice architecture (RQ3)

This evaluation follows protocols formulated by Brereton et al. [37]
and [38] to increase validity and reliability. The design, selection of the
systems, procedure, data collection and data analysis, are presented in
the next sections.

8.1. Design

The objective is to evaluate the MiSAR approach in terms of recov-
ering architectural models of microservice systems. In this regard, we
applied the recovery process and made use of the implemented MiSAR
artefacts: Ecore metamodels, QVTo Model Transformations and Parser.
The first evaluation is designed to obtain the architectural model
completeness and correctness. To do this, we compared the semi-
automatically recovered models with the architectural elements of the
systems by analysing the source artefacts (e.g. source code, build POM,
configuration

YAML, Docker Compose and Docker files). To perform this check, we
first manually create an expected architectural model which is an ar-
chitecture of the implementation of the system by using the MiSAR
Platform Independent Metamodel. Then, we manually compare the
MiSAR (semi-automatically) recovered architectural model with the one
we manually represented. To perform this comparison, we listed all the
elements, attributes and their Values of the MiSAR representation of the
actual architecture and checked them against the ones in the recovered
architectural model. The systems were adopted to answer the following
research questions:

CRQ1: What degree of completeness do the recovered microservice
architectural models have?

3 https://github.com/MicroServiceArchitectureRecovery/misar

4 https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser
-and-Model-Transformation

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

10

https://github.com/MicroServiceArchitectureRecovery/misar
https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation
https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation

CRQ2: What degree of correctness do the recovered microservice
architectural models have?

To answer CRQ1 and CRQ2, the total number of architectural ele-
ments recovered in the architectural model are compared to the total

number of architectural elements of the actual (or expected) architec-
ture. Recall is used to measure the completeness of the recovered
architectural model and precision is used to measure the correctness of
the recovered architectural model. The F-measure measures the overall
accuracy of the recovered model [39] as follows:

Fig. 7. Ecore implementation (XMI tree view) of MiSAR PSM.

Fig. 8. The QVTo code for mapping rule R6 to recover the Endpoint.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

11

Recall =
(TP)

(TP + FN)
(1)

Precision =
(TP)

(TP + FP)
(2)

FMeasure = 2 ×
Recall × Precision
Recall + Precision

(3)

Where TP is the number of True Positives which are the Correctly
Recovered elements checking the source artefacts, FP is the number of
False Positives which are Incorrectly Recovered elements or partially
recovered elements and FN is the number of False Negatives which are
the number of Missed Elements, i.e., the elements which are not
recovered by MiSAR even though they existed in source artefacts or
actual architecture.

The second evaluation is designed to compare the recovered archi-
tectural models with the available documentation, diagrams, textual
description of each system provided by the developers. We call this
comparison consistency check between the MiSAR Recovered Models

and the Documentation. The objective of this consistency check is to
evaluate MiSAR recovered models in comparison with the manual
documentation of developers. To perform this check, we listed all ele-
ments and attributes of the MiSAR representation of the documentation
and compared them against the ones in the recovered architectural
model, which are presented in Section 8.5.

The third evaluation consists of measuring the efficiency of MiSAR in
recovering semi-automatically architectural models in comparison with
human manual recovery. To do this, we took the execution time in
seconds for obtaining an architectural model with MiSAR.

The fourth evaluation involves comparing a MiSAR recovered
architectural model with one recovered from another architecture re-
covery approach, Prophet [40]. The design and results are presented in
Section 8.7.

8.2. Case selection

We carefully selected three microservice-based applications from
[41] (MicroCompany, TrainTicket, and MusicStore) to evaluate MiSAR,
ensuring diversity in programming languages, frameworks, and

Fig. 9. Steps of the MiSAR architecture recovery process.

Fig. 10. Parser user interface to collect artefacts for MicroCompany application.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

12

architectural patterns. This selection allows us to assess MiSAR’s capa-
bilities and limitations across a variety of real-world microservice ar-
chitectures. The selection was guided by the following well-defined
criteria:

• System scale and complexity
– TrainTicket: A large-scale benchmark system with 69 micro-

services (41 of which are business-oriented), making it signifi-
cantly larger than most existing benchmarks.

– MicroCompany (11 microservices) and MusicStore (9 micro-
services): Provide medium- and small-scale case systems, ensuring
that MiSAR is evaluated across different system sizes.

• Diversity in microservice design and technology stack
– The selected systems employ multiple programming languages,

including Java, Node.js, Python, Go, and C#, ensuring MiSAR’s
ability to handle heterogeneous environments.

– The systems are built using various microservice frameworks such
as Spring Cloud, Express, Django, Webgo, and Steeltoe, allowing us
to test MiSAR’s adaptability to different microservice
architectures.

Table 4 summarises the characteristics of the systems. i. Micro-
Company application [42]: A Java Spring Boot/Spring Cloud
microservice-based application with 11 microservices, 4 of which are
business-oriented. It features both synchronous and asynchronous
inter-service communication, making it a representative example of
enterprise-level Java microservices. ii. TrainTicket application [43]: A
large-scale microservice-based system where most microservices are
developed using Java Spring Boot/Spring Cloud, but also includes 5
non-JVM-based microservices implemented in Node.js, Python, and Go.
This selection allows us to evaluate MiSAR’s handling of polyglot ar-
chitectures. iii. MusicStore application [44]: A microservice-based sys-
tem entirely implemented in C# using the Steeltoe framework. It
consists of 9 microservices, 4 of which are business-oriented. This sys-
tem provides insights into MiSAR’s applicability beyond Java-based

ecosystems.

8.3. The recovered architectural models of the systems

All the PIM instances for the 3 systems can be found on GitHub.5 The
generated (recovered) MicroCompany architecture consists of 11
microservices: 5 instances of Functional Microservices and 6 instances of
Infrastructure Microservices. The generated (recovered) TrainTicket
architecture consists of 69 microservices: 37 instances of Functional
Microservices, 27 instances of Infrastructure Microservices and 5 in-
stances of the supertype Microservice. The generated (recovered)
MusicStore architecture consists of 9 microservices: zero instances of
Functional Microservices, 2 instances of Infrastructure Microservices
and 7 instances of the supertype Microservice.

It can be noticed that some microservices recovered were not clas-
sified as either functional or infrastructure e.g., the 7 instances of
MusicStore. This indicates that MiSAR has managed to capture the ex-
istence of a certain microservice, but for some reason was not able to
precisely recognize (classify) its type mainly because the implementa-
tion language and technologies used in these microservices are unsup-
ported in MiSAR artefacts, i.e., MiSAR has no equivalent mapping rules
for them.

MiSAR recovered models have different views, one at an architec-
tural level and at a microservice level. The architectural level reflects the
recovered PIM instance, as shown in Fig. 11 for MicroCompany, which
includes the high-level view of all microservices of the architecture and
their types (Infrastructure or Functional). At a microservice level, a more
detailed view of a microservice is provided, which includes its Service
Interface, Messages Destinations (e.g. Endpoint and/or Queue Listener),
Service Messages, Service Operations, the Infrastructure Pattern Com-
ponents of an individual microservice and their dependencies such as
asynchronous/synchronous interactions between microservices. Fig. 12
shows the microservice level view for a functional microservice for
MicroCompany “query-side-blog”. As it can be noticed, the view in-
cludes its microservice container, 9 Infrastructure Pattern Components,
6 Infrastructure Client Components, its service interface with its end-
points and one Queue Listener and 10 service dependencies. In addition,
the microservice view has the attributes for the microservices. Fig. 13
shows attributes for some elements of the microservice. For instance, (a)
the “query-side-blog” microservice exposes an endpoint with request
URI “GET /blogposts/search/findByDraftTrue” which is handled by (b)
the service operation “findByDraftTrue()” and (c) returns a response
service message of model “Page(BlogPost)”. As it can be noticed, one of
the attributes is ”Generating PSM” which indicates which element from
the PSM this element was generated from and provides traceability and
backtracking support for the recovery.

The PIM recovered models are in XMI format and can be opened as
tree views with Sample Reflective Ecore Model editor provided by the
Eclipse Modeling Framework (EMF).

8.4. MiSAR’s architectural model completeness and correctness

After we recovered the MiSAR PIM instances, i.e., the recovered
MiSAR architectural models of MicroCompany, TrainTicket and Musi-
cStore, we manually compared their MiSAR generated architectural
models with their actual architectural elements as explained in Section
8.1. We created an excel sheet called Metric Analysis which includes a
tab for each system on GitHub.6

To answer research questions CRQ1 and CRQ2 set in Section 8.1, we
calculated recall, precision and F1-score metrics to measure,

Table 4
The characteristics of the selected systems.

Characteristic System
MicroCompany TrainTicket MusicStore

Lines of code 127.1K 507.2K 116.6K
Date of the version

used
October 2,
2022

Jan 19, 2020 October 2,
2022

Number of
microservices

11 69 9

Functional 4 41 4
Infrastructural 7 28 5
Programming

Languages
Java Java, Node.js., Python,

Go
C#

Frameworks Spring Cloud Spring Cloud, Express,
Django, Webgo

Steeltoe

Variety technologies and implementations used in projects

Supported by MiSAR:

Containerization Docker Docker Docker

​ Spring Framework Spring Framework ​
DB Mongo, MySQL,

HSQLDB
Mongo, MySQL MySQL

Discovery ​ ​ Eureka
Circuit Breaker ​ ​ Hystrix
Tracing ​ ​ Zipkin
Communication Synchronous and

Asynchronous
Synchronous
Unsupported by
MiSAR:

Synchronous

Spring Admin Sever
CQRS & Event
Sourcing – Spring
Axon Spring
Websocket

Node.js – Express
Python – Django
Go – Webgo
Tracing – Jaeger

C# – ASP.Net
Steeltoe
Framework

5 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/
EmpiricalStudyReplication/EvaluationOf MiSAR

6 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/
EmpiricalStudyReplication/EvaluationOf MiSAR

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

13

https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR

respectively, the completeness, correctness and overall accuracy of the
recovered models, as shown in Table 5. These metrics were calculated
for every recovered PIM element and the expected elements as shown in
Table 5.

The highest overall effectiveness of MiSAR based on the F-measure is

94 % for the MicroCompany system. It also achieved a high precision
score of 100 % of correct elements and a recall score which indicates that
MiSAR has recovered 88 % of architectural elements. The recall for the
MicroCompany was not 100 % due to MiSAR missed to recover the el-
ements of ”adminserver” and “api-gateway” as follows:

Fig. 11. PIM model for MicroCompany architectural view recovered by MiSAR.

Fig. 12. Example of the recovered “query-side-blog” functional microservice instance in MicroCompany.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

14

“adminserver” was recovered as a FunctionalMicroservice instead of
a InfrastructureMicroservice and missed the recovery of the moni-
toring InfrastructureServerComponent along with all its 42 related
ServiceDependencies. The “adminserver” is a monitoring infra-
structure microservice that requests the health and metrics endpoints
of all other microservices in the architecture. MiSAR was not able to
analyze the Spring Admin Server used to implement the monitoring
infrastructure of “adminserver”, therefore these results.

“api-gateway” microservice was recovered with 3 missed Queue-
Listeners along with their related ServiceOperations, 4 missed End-
points and 1 missed message broker
InfrastructurePatternComponent. The “api-gateway” is a gateway
infrastructure microservice that listens to four events published onto
the message broker by “command-sideblog” and “command-side-
project” functional microservices, then, it sends corresponding no-
tifications to an internal WebSocket component. MicroCompany uses
Spring Axon to implement event-driven CQRS pattern which

Fig. 13. Example of the attributes recovered for the “query-side-blog” microservice: a) one Endpoint, b) one Service Operation associated with a, c) one Service
Message associated with b.

Table 5
Evaluation metrics for MiSAR recovery of systems.

Correctly Incorrectly

Total Recovered Recovered Unrecovered

PIM Element Expected TP FP FN Recall Precision F-Measure

System: TrainTicket ​ ​ ​ ​ ​ ​ ​
Container 69 69 0 0 100 % 100 % 100 %
InfrastructureMicroservice 30 27 3 0 100 % 90 % 94 %
FunctionalMicroservice 39 36 3 0 100 % 92 % 96 %
InfrastructureServerComponent 32 27 0 5 84 % 100 % 92 %
InfrastructureClientComponent 208 131 0 77 63 % 100 % 77 %
Endpoint 550 456 0 94 83 % 100 % 91 %
QueueListener 0 0 0 0 0.0 % 0.0 % 0.0 %
ServiceDependency 792 589 0 203 74 % 100 % 85 %
Total 1720 1335 6 379 78 % 100 % 87 %
System: MicroCompany ​ ​ ​ ​ ​ ​ ​
Container 11 11 0 0 100 % 100 % 100 %
InfrastructureMicroservice 7 6 1 0 100 % 86 % 92 %
FunctionalMicroservice 4 4 0 0 100 % 100 % 100 %
InfrastructureServerComponent 7 6 0 1 86 % 100 % 92 %
InfrastructureClientComponent 90 89 0 1 99 % 100 % 99 %
Endpoint 148 144 0 4 97 % 100 % 99 %
QueueListener 7 3 0 4 44 % 100 % 60 %
ServiceDependency 282 226 0 56 80 % 100 % 89 %
Total 556 489 1 66 88 % 100 % 94 %
System: MusicStore ​ ​ ​ ​ ​ ​ ​
Container 9 9 0 0 100 % 100 % 100 %
InfrastructureMicroservice 5 2 3 0 100 % 40 % 57 %
FunctionalMicroservice 4 0 4 0 0.0 % 0.0 % 0.0 %
InfrastructureServerComponent 5 2 0 3 40 % 100 % 57 %
InfrastructureClientComponent 35 26 0 9 74 % 100 % 85 %
Endpoint 80 27 0 53 34 % 100 % 51 %
QueueListener 0 0 0 0 0.0 % 0.0 % 0.0 %
ServiceDependency 104 34 0 70 33 % 100 % 49 %
Total 242 100 7 135 43 % 94 % 59 %

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

15

decorates the queue listener methods with @EventHandler annota-
tion. MiSAR has no previous knowledge of this pattern and annota-
tion yet. However, the high-level Axon’s queue listeners invoke one
low-level AMQP queue listener method decorated with a @Rabbi-
tListener annotation, which MiSAR already knows. Therefore,
MiSAR was able to correctly recover that low-level QueueListener
and its related ServiceOperation instead of the four higher-level
Axon’s listeners and their related ServiceOperations.

MusicStore system has the lowest overall effectiveness, based on its
F-measure of 59 %. MiSAR also achieved a precision score of 94 % of
correct elements. The recall score indicates that MiSAR has recovered 43
% of architectural elements. This low recall is due to the large number of
missed elements, which in turn, is due to having all the microservices
implemented with Steeltoe framework and C# language which MiSAR
does not analyze yet. This caused MiSAR to incorrectly recover four
FunctionalMicroservices and three InfrastructureMicroservices as ab-
stract Microservices and miss most of their internal Endpoints and
infrastructure components which rely on the transformation of methods
written in C# instead of Java. On the other hand, Docker Compose,
Eureka, Zipkin and Spring Config infrastructure artifacts utilized by
Steeltoe assisted to recover the 43 % of the non-JVM MusicStore’s
architecture.

Finally, as for the TrainTicket system, the overall effectiveness of
MiSAR based on the F-measure is 87 %. MiSAR also achieved a precision
score of 100 % of correct elements. The recall score indicates that MiSAR
has recovered 78 % of architectural elements. The lower recall is due to
the large number of missed elements which, in turn, is due to encoun-
tering microservices with artefacts that belong to non-JVM platforms or
that were developed with unconventional implementation.

To illustrate, one of the partially recovered microservices was the
gateway microservice, i.e., “ts-ui-dashboard”, which is supposed to have
at least 40 Service Dependency elements (because it routes requests to
all of the 40 business microservices) and 83 Endpoint elements (because
it exposes the main endpoints of all the 40 business microservices). The
“ts-ui-dashboard” microservice is built with HTML/JS artefacts plus an
NGINX configuration artefact. Both kinds of artefacts are not yet sup-
ported by the MiSAR repository. The second partially recovered
microservice was the monitoring microservice, i.e., “ms-monitoring-
core”, which is supposed to have at least 42 Service Dependency ele-
ments because it requests the health and metrics endpoints of all the 42
business microservices as well as pulling their logs for monitoring pur-
poses. Such a large count of missed elements contributed to the recorded
drop in recall. The recall and precision score achieved 100 % for
container elements recovered from Docker Compose and POM artefacts.
This indicates that MiSAR can capture the existence of all microservices
but it might miss the underlying elements of those microservices, such as
their infrastructure components, endpoints and dependencies.

8.5. Consistency checking between the MiSAR recovered models and their
documentation

In this section, we present the results for the consistency checks we
performed for the MiSAR recovered architectural models and their
documentation. The results are as follows (see Table 6 for the results of
MicroCompany):

Consistent elements: They are the MiSAR recovered elements which
are consistent with the documentation.

Discrepant elements: They are MiSAR recovered elements which are
not in agreement with how they are represented in the documentation.
For example, in the MicroCompany system, MiSAR recovered Spring
Admin Server incorrectly as a FunctionalMicroservice instead of an
InfrastructureMicroservice.

In addition, all FunctionalMicroservices in MusicStore system were
incorrectly recovered as Microservices without identifying their type
since MiSAR doesn’t learn yet the C# language. In the TrainTicket

system, MiSAR was able to recover the correct paths for “tsorder-ser-
vice” endpoints even though they were incorrectly documented. These
were checked manually in the source artefacts and it was discovered that
the MiSAR recovered model had the correct representation.

Absent elements: They are elements that exist in the documentation
but are absent in MiSAR’s recovered models. As explained in Section 8.4
this is due to that MiSAR still does not support several programming
languages and technologies. For illustration, in MicroCompany system,
MiSAR did not recover many of the elements of “adminserver” micro-
service. In the TrainTicket system, an example of an absent component is
an InfrastructureClientComponent of category ’Service Routing Pattern
Registry and Discovery’, which according to the documentation imple-
ments Kubernetes (k8s), a technology that MiSAR currently does not
support. This also applies to the MusicStore system since it is developed
completely in C# language which is not yet MiSAR supported.

Additional elements: MiSAR recovered more architectural elements
compared to the documentation. In particular, MiSAR was able to
recover service operations and service messages of the documented
endpoints, in addition to several infrastructure pattern components,
infrastructure client components and service dependency elements that
are not documented. For illustration, in MicroCompany system, MiSAR
recovered 19 service operations and 43 service messages that do not
exist at all in the documentation (but exist in the source artifacts) along
with 139 endpoints more than the 5 endpoints that exist in the docu-
mentation as shown in Table 6.

8.6. The efficiency of MiSAR’s semi-automation

Automated approaches for architecture recovery are valuable
because they can handle large and complex systems more efficiently
than manual methods, especially when they include diverse de-
pendencies and components. Automated tools save time and provide a
more accurate understanding of the architecture, especially when soft-
ware engineers do not have previous knowledge and experience of a
system and when dealing with large systems or systems with minimal
documentation.

Table 7 shows the time it takes for each MiSAR toolset component,
on an Intel Processor Core(TM) i5–7200 U CPU @ 2.50 GHz, 2701 Mhz,
2 Core(s), 4 Logical Processor(s) to create the PSM and PIM for the three
open-source projects. It can be noticed that for a large project, such as

Table 6
Results of the consistency check between the MiSAR’s recovered architectural
model of MicroCompany and its documentation.

PIM Element (1) (2) (3) (4)

Container 11 0 0 0
InfrastructureMicroservice 6 0 0 0
FunctionalMicroservice 4 1 0 0
InfrastructureServerComponent 6 0 1 0
InfrastructureClientComponent 29 0 1 59
Endpoint 5 0 0 139
QueueListener 3 0 0 0
ServiceOperation 0 0 0 19
ServiceMessage 0 0 0 43
ServiceDependency 36 0 5 77
Total 100 1 7 337

(1) Consistent. (2) Discrepant. (3) Absent. (4) Additional.

Table 7
Time of MiSAR toolset to obtain as-implemented architecture models.

LOC Parser to
generate PSM
(sec)

Model Engine to
Transform PSM to
PIM (sec)

Approx.
Man Days

MicroCompany 127.1K 9 3.89 6
TrainTicket 507.2K 446 63.15 16
MusicStore 116.6K 1 1.07 4

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

16

TrainTicket, the parser takes most of the time of the recovery process.
The last column shows the total man days it took for the manual ar-
chitecture recovery of the projects. These man days reflect the time of
two of the authors, who were not involved in the development of the
projects. As it can be noticed the as-implemented architecture can be
achieved through MiSAR in several seconds and several minutes (for
large projects), whereas it can take several days in a manual process.
However, the time spent on the manual recovery should be taken
carefully considering that the effort is subjective and can depend on
many factors which can include the knowledge and expertise of the
team.

8.7. The comparative evaluation of MiSAR and Prophet

This section presents a comparative evaluation of MiSAR and
Prophet [40], a software architecture recovery approach, designed for
Java Spring microservice-based projects. The objective of this compar-
ison is to assess the effectiveness and completeness of MiSAR in recov-
ering architectural elements of a microservice system. The evaluation
uses the MicroCompany system [42]. To measure completeness, cor-
rectness and overall accuracy of the recovered architectural models, we
apply the metrics of recall, precision and F-measure.

8.7.1. Design
To enable a precise and structured comparison of the architecture

recovery capabilities of MiSAR and Prophet, we developed a unified
evaluation framework based on a curated set of Merged Architectural
Elements. Table 8 illustrates the mapping process, showcasing how
MiSAR and Prophet’s elements contribute to the new merged model.
This model bridges conceptual differences between the architectural
elements identified by MiSAR and Prophet, ensuring a consistent and
fair evaluation process. The merged elements were created by analyzing
the key features of both approaches, identifying commonalities, and
integrating complementary attributes. The process involved the
following steps:

• Merging equivalent concepts under MiSAR’s naming conventions:
Elements that represent the same architectural concept in both ap-
proaches but differ in naming are merged using MiSAR’s terminol-
ogy. For example, MiSAR’s MicroserviceArchitecture and Prophet’s
SystemContext were merged into the MicroserviceArchitecture
element in the unified model.

• Preserving MiSAR’s and Prophet’s exclusive elements: Elements
unique to MiSAR that do not have an equivalent in Prophet were
retained using MiSAR’s terminology and elements unique in Prophet
were retained using Prophet’s terminology. This ensures compati-
bility with the existing expected model. For example, MiSAR’s

QueueListener and InfrastructurePatternComponent were included
directly, as Prophet lacks corresponding elements.

• Introducing new composite elements for complementary views:
When MiSAR and Prophet provided distinct yet relevant perspec-
tives, new merged elements were created to capture both. For
example, MiSAR’s ServiceMessage and Prophet’s Entity and Field
were merged to create ServiceEntity and ServiceEntityField,
capturing both entity definitions and their field types.

8.7.2. Results
In terms of overall performance against the merged expected model,

MiSAR demonstrated superior results, achieving an average recall of 86
%, precision of 99 %, and F-measure of 92 %. In contrast, Prophet
yielded a significantly lower recall of 7 %, precision of 96 %, and F-
measure of 13 %, as shown in Table 9. These differences highlight
MiSAR’s effectiveness in recovering a broad range of architectural ele-
ments, while Prophet’s performance was limited to specific categories.

For structural elements (e.g., Containers, Microservices), MiSAR
successfully recovered all Container, InfrastructureMicroservice, and
InfrastructureClientComponent elements with 100 % recall. Prophet,
however, failed to recover any of these deployment and infrastructure
components (0 % recall). It was only able to recover 50 % of Functio-
nalMicroservice elements, particularly those whose Java source files
contain classes annotated with @Entity. MiSAR’s ability to analyse
beyond java source files enabled the comprehensive identification of
both functional and infrastructure elements, providing greater coverage
of deployment architectural elements.

Regarding Endpoints, MiSAR achieved a recall of 97 %, correctly
identifying 144 out of 148 expected entries. Prophet failed to recover
any endpoints, resulting in 0 % recall for this category. This limitation is
due to Prophet’s reliance on detecting JAX-RS annotations, which were
absent in the evaluated system. MiSAR, however, demonstrated the
ability to detect endpoints defined using higher-level annotations, such
as @RepositoryRestResource, which were prevalent in the Micro-
Company system. Furthermore, Prophet does not support the recovery
of asynchronous endpoints or queues, further limiting its endpoint
detection capabilities. MiSAR’s recovery of both synchronous and
asynchronous endpoints highlights its strength in reconstructing API
interactions.

As for Data Model Recovery, Prophet outperformed MiSAR, by
achieving 100 % recall and precision in detecting both Entity and
EntityField elements. MiSAR, by comparison, achieved 50 % recall for
Entity and 60 % recall for EntityField. This disparity stems from MiSAR’s
focus on data objects exchanged through endpoints and queues, rather
than standalone domain/entity classes. In the MicroCompany system,
MiSAR successfully identified the BlogPost entity as a bodyschema:
ServiceMessage in the query-side-blog microservice, as its usage was

Table 8
Merged architectural element model for comparative analysis.

Merged element MiSAR’s elements Prophet’s elements

MicroserviceArchitecture MicroserviceArchitecture SystemContext
Container Container –
InfrastructureMicroservice InfrastructureMicroservice –
FunctionalMicroservice FunctionalMicroservice Module
ServiceInterface ServiceInterface –
InfrastructureServerComponent InfrastructureServerComponent –
InfrastructureClientComponent InfrastructureClientComponent –
InfrastructurePatternComponent InfrastructurePatternComponent –
Endpoint Endpoint EndpointContext:(httpMethod,arguments)
ServiceOperation ServiceOperation EndpointContext:(method)
ServiceMessage ServiceMessage EndpointContext:(returnType)
QueueListener QueueListener –
ServiceDependency ServiceDependency MsEdge, MsLabel
Entity Element’s Attribute: BodySchema of ServiceMessage Entity
EntityField Element’s Attribute: BodySchema of ServiceMessage Field
EntityAssociation – MermaidEdge

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

17

explicitly defined in the source code. However, MiSAR failed to recover
the Project entity because its service operation was not explicitly defined
in the source code, limiting MiSAR’s ability to recover it.

9. Discussion

In this section, we discuss our findings. The discussion is organized as
follows:

Architectural Expressiveness: In the three systems, MiSAR’s recov-
ered architectural model proved more expressive than the developers’
documentation. Moreover, the comparative evaluation between Prophet
and MiSAR demonstrated that MiSAR is capable of representing archi-
tectural elements absent in Prophet. This enhanced expressiveness re-
sults from MiSAR’s PIM metamodel, which includes explicitly first class
citizens for infrastructure pattern components, synchronous/asynchro-
nous service interfaces and dependencies. For illustration, MiSAR
identified additional architectural elements not documented by the
MicroCompany team, such as information about data persistence, se-
curity client-side load balancer, circuit-breaker, metrics generation and
logging patterns used in the microservice. It also provided information
about the service operation names and the schema of request/response
data message(s) for each endpoint as shown in Fig. 13. MiSAR was also
able to recover the correct paths for “ts-order-service” endpoints even
though they were incorrectly documented in TrainTicket. This advan-
tage, along with its high precision, suggests MiSAR can offer compre-
hensive microservice architectural models of the implementation.

MiSAR reliability: Currently, MiSAR uses static analysis of source
artefacts, which has proven been sufficient to recover the architectural
concepts of the current metamodel. Unlike dynamic recovery ap-
proaches, such as using Zipkin, static analysis doesn’t require the
application to be running, avoiding issues with resource demands or
bugs. Dynamic recovery also necessitates designing trace requests to
capture the application’s behavior, an effort eliminated by the static
method, which recovers all architecture specifications as long as map-
ping rules exist. It can be noticed from Table 5 that MiSAR achieved high
correctness (greater than 90 %) in three systems including the non-JVM
MusicStore, supporting the reliability of MiSAR’s static approach. The
recall score is also high but lower than precision, as MiSAR recovered
88.1 %, 77.9 % and 42.6 % of existing architectural elements in
MicroCompany, TrainTicket and MusicStore, respectively. These results
are limited by the currently supported languages and technologies,
which can be expanded in the future. Although most recovery ap-
proaches use dynamic analysis, MiSAR’s static method successfully re-
covers service interactions and data structure. It has been observed that
the mapping of the DockerContainerLink, ConfigurationProperty and
JavaMethod PSM concepts into ServiceDependency PIM concepts each
attributed by ProviderName and ProviderDestination are responsible for
the successful recovery of the Service Dependency, synchronous End-
points, asynchronous Queue Listeners and ServiceMessage PIM
concepts.

The Ability of MiSAR to Discover the Existence of Non-JVM Appli-
cations: Although MiSAR was initially designed for Java applications
using the Spring Boot/Spring Cloud frameworks, it demonstrated the
capability to identify non-JVM microservices. For example, in the
MusicStore system all functional microservices are developed with
Steeltoe framework and C#. Similarly, in Trainticket, “ts-voucher-ser-
vice” is developed with Python language, “ts-news-service” with Go
language, “ts-ticket-office-service” with Node.js and “ts-ui-dashboard”
with JavaScript as NGINX proxy. MiSAR managed to capture the exis-
tence of those non-JVM microservices by recovering the elements of
Container, Microservice and ServiceInterface from the Docker Compose
files and/or POM build files. However, it was not able to recover the
underlying elements. This indicates the significance of the Docker
Compose and POM build artefacts to the static approach of architecture
recovery. In contrast, Prophet’s capabilities are limited to Java based
systems that use JAX-RS annotations for identifying architectural Ta

bl
e

9
Ev

al
ua

tio
n

m
et

ri
cs

 fo
r

M
iS

A
R

an
d

Pr
op

he
t r

ec
ov

er
y

of
 M

ic
ro

Co
m

pa
ny

.

Ex
pe

ct
ed

Co
rr

ec
tly

 R
ec

ov
er

ed
 T

P
N

co
rr

ec
tly

 R
ec

ov
er

ed
 F

P
U

nr
ec

ov
er

ed
 F

N
Re

ca
ll

Pr
ec

is
io

n
F-

M
ea

su
re

A
rc

hi
te

ct
ur

e
El

em
en

t
M

er
ge

d
M

iS
A

R
Pr

op
he

t
M

iS
A

R
Pr

op
he

t
M

iS
A

R
Pr

op
he

t
M

iS
A

R
Pr

op
he

t
M

iS
A

R
Pr

op
he

t
M

iS
A

R
Pr

op
he

t

Sy
st

em
: M

ic
ro

Co
m

pa
ny

 C
on

ta
in

er
11

11
0

0
0

0
11

10
0

%
0

%
10

0
%

0
%

10
0

%
0

%
In

fr
as

tr
uc

tu
re

M
ic

ro
se

rv
ic

e
7

6
0

1
0

0
7

10
0

%
0

%
86

 %
0

%
92

 %
0

%
Fu

nc
tio

na
lM

ic
ro

se
rv

ic
e

4
4

2
0

2
0

2
10

0
%

50
 %

10
0

%
50

 %
10

0
%

50
 %

Se
rv

ic
eI

nt
er

fa
ce

11
11

0
0

0
0

11
10

0
%

0
%

10
0

%
0

%
10

0
%

0
%

In
fr

as
tr

uc
tu

re
Se

rv
er

Co
m

po
ne

nt
7

6
0

0
0

1
7

86
 %

0
%

10
0

%
0

%
92

 %
0

%
In

fr
as

tr
uc

tu
re

Cl
ie

nt
Co

m
po

ne
nt

90
89

0
0

0
1

90
99

 %
0

%
10

0
%

0
%

99
 %

0
%

En
dp

oi
nt

14
8

14
4

0
0

0
4

14
8

97
 %

0
%

10
0

%
0

%
99

 %
0

%
Q

ue
ue

Li
st

en
er

7
3

0
0

0
4

7
44

 %
0

%
10

0
%

0
%

60
 %

0
%

Se
rv

ic
eD

ep
en

de
nc

y
28

2
22

6
0

0
0

56
28

2
80

 %
0

%
10

0
%

0
%

89
 %

0
%

Se
rv

ic
eO

pe
ra

tio
n

23
16

0
3

0
4

23
80

 %
0

%
84

 %
0

%
82

 %
0

%
Se

rv
ic

eM
es

sa
ge

0
0

0
0

0
0

0
0

%
0

%
0

%
0

%
0

%
0

%
En

tit
y

2
1

2
0

0
1

0
50

 %
10

0
%

10
0

%
10

0
%

67
 %

10
0

%
En

tit
yF

ie
ld

40
24

40
0

0
16

0
60

 %
10

0
%

10
0

%
10

0
%

75
 %

10
0

%
En

tit
yA

ss
oc

ia
tio

n
0

0
0

0
0

0
0

0
%

0
%

0
%

0
%

0
%

0
%

To
ta

l
63

2
54

1
44

4
2

87
58

8
86

 %
7

%
99

 %
96

 %
92

 %
13

 %

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

18

components. As a result, Prophet failed to recover any information for
endpoints and infrastructural elements lacking support for cross-
language recovery or the analysis of Docker- or build-based configura-
tions. Furthermore, even in JVM-based services, Prophet’s reliance on
specific Java annotations restricted its coverage to a narrow set of
structural elements. In addition, more elements were recovered for non-
JVM microservices in MusicStore, such as infrastructure pattern com-
ponents and endpoints thanks to MiSAR mapping rules and PSM
configuration artifacts that were analyzed based on Spring Boot/Spring
Cloud framework. These findings underscore MiSAR’s greater flexibility
and broader applicability in heterogeneous microservice environments
compared to Prophet.

MiSAR support for Traceability and Backtracking: MiSAR mapping
rules are implemented with Eclipse QVTo, which accomplishes model
traceability by means of the resolve() function. This traceabilitys can
allow software engineers to analyze the orders in which mapping rules
have been invoked and, at any point of the recovery process, retrieve the
elements previously recovered in order to make updates on their values
and/relations without re-executing the rules. In order to check the val-
idity of the recovered elements, especially in the case of generating
undocumented elements, MiSAR includes an attribute named Gen-
eratingPSM to every concept in the PIM metamodel in order to backtrack
the PSM source element that generated it, by checking the specific lines
in the artefact that generated those particular PSM elements. This
attribute records all PSM elements that are involved in the trans-
formation of one target PIM element. The more PSM elements involved
in the transformation, the more certain the existence of a generated PIM
element in the architecture is.

MiSAR Extendability: Microservice-based architectures are imple-
mented with a variety of emerging technologies and patterns. The
MiSAR Platform Independent Metamodel is independent of any tech-
nology and abstracts microservice elements without implementation
details. It also includes abstract concepts like the Message Destination
which abstracts communication types: the Endpoint concept represent-
ing synchronous communication and the Queue representing asyn-
chronous communication. If a new communication type emerges in the
microservice area, they can be added as subtypes, allowing easy future
extensions. In terms of patterns, MiSAR currently supports five cate-
gories of microservice patterns. For supporting new emerging patterns,
these can be added into the Infrastructure Pattern Category enumeration
list in Fig. 6). To illustrate, in MicroCompany system, “api-gateway”
implements WebSocket pattern and WebSocket endpoints which MiSAR
does not currently support its technologies. The WebSocket pattern can
be represented using the existing InfrastructurePatternComponent PIM
concept with InfrastructurePatternCategory as “Development Pattern
Asynchronous Message Brokering” or by appending a new category in
the enumeration type InfrastructurePatternCategory. To support the
recovery, only the Platform-Specific Metamodel, the related mapping
rules and parser should be extended for new physical and implementa-
tion technologies. For example, the parser will need to incorporate new
libraries for parsing the new technologies and abstract them to PSM
elements.

Empirically deriving a MDA Recovery Approach: In the literature,
MDA and architecture recovery approaches are often empirically eval-
uated, but few are derived empirically. The benefits for deriving
empirically our approach include: 1) Researchers and practitioners can
trace the rationale for our artefacts. This can aid researchers in
extending and reusing MiSAR artefacts and practitioners in making
decisions in the adoption of our approach and understanding the
architectural models produced. 2) Researchers and MDA and architec-
ture recovery providers can repeat our steps and learn how to derive new
approaches. The main pitfalls for deriving empirically such an approach
are that it is 1) Time consuming. However, the artefacts are expressive
and reflect real systems. 2) Empirical Derivation can be influenced by an
existing PIM metamodel: The research design we followed chose to
enhance an existing PIM metamodel. To make our results more generic

and applicable to other PIM metamodels, we created the ”Re-
quirements” which researchers and providers can apply to enhance
other microservice PIM metamodels.

Microservice Architecture Recovery Benefits to Software Engineers:
Our evaluation demonstrates that MiSAR’s semi-automatic recovery
generates architectural models with more architectural elements than
the developer documentation, identifying inconsistencies and missing
elements such as Service Dependencies in the documentation. MiSAR
can help software engineers in obtaining an up-to-date microservice
architecture documentation either while developing or after system
development. In addition, MiSAR automatically recovers models in
seconds. The only step which is semi-automatic is the selection of the
files of a project to be parsed. This allows users to customize and control
the scope of the recovery process. This is crucial for teams using different
technologies and standards, as they may lack the expertise to analyze
unfamiliar microservices. It is important to highlight a current limitation
of MiSAR: the absence of automatic change propagation. Our approach
does not detect changes of source level artefacts such as Docker
Compose files or configuration files (at M0) which could provoke
changes to architectural models. As a result, users must manually re-run
the MiSAR toolset and initiate the recovery process whenever source-
level changes occur in order to update the architectural model. This
manual intervention increases the overall effort required from users,
particularly as the system evolves over time.

9.1. Threats to validity

Internal threats of validity concern factors that impact the integrity
of the study results. There are four major threats to the internal validity
of the empirical study.

The absence of applicable concepts: The first one lies in the absence
of applicable concepts. Activities 1 and 2 were conducted manually
(extracted, compiled and analyzed), which implies that there could be
unintentionally a few concepts that are missed out. To mitigate this
threat, we semi-automatically recovered the architectural model of 3
systems and compared the recovered models with their actual archi-
tecture and their documented ones.

The divergence of documentation from the actual implementation: In
the evaluation using the three systems, we had to identify the expected
architectural elements to be able to measure precision, recall and ac-
curacy. We initially wanted to use the architectural elements of the
documentation. However, usually, the documentation published by the
developers diverges from the actual implementation, to mitigate this
threat: 1) we manually created the actual architecture of the system
from the source implementation of the systems. Therefore, we were
aware of cases of divergence and used the source artefacts as the ex-
pected elements; 2) for every architectural element recovered by MiSAR
we also checked that it existed in the source artefacts.

Bias in the data extraction during the manual recovery: During the
extraction of the elements from the source during Activities A1 and A2,
and in the evaluation we had to perform manual recovery. This led to
encountering different interpretations in the analysis due to authors’
bias. To mitigate this threat, the data extraction process was conducted
by two authors. The first author acted as the data extractor and the
second author as the data checker. Any disagreements among all the
authors were resolved by the third author through discussions.

The errors in the source code: Bugs were found in the source code of
the system. Even though the static recovery process can still run if there
are bugs in the source code, the resultant model might represent some
incorrect information. To mitigate this threat, we checked that these
bugs are not affecting the architecture.

Threats to external validity are related to the generalizability of
findings: (a) Mapping rules and architectural concepts were derived
from a limited number of systems, which may limit their applicability to
a broader range of architectures. If the selected systems do not fully
represent the diversity of real-world microservice implementations, the

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

19

proposed approach may not generalize well. To address this threat, the
initial artefacts were developed using eight systems, and in this study,
they were incrementally refined with the analysis of an additional nine
systems. The nine systems were carefully selected to represent funda-
mental and best practices in microservice-based architectures. Further-
more, these systems were chosen based on the availability of rich
architectural documentation and illustrative diagrams, ensuring suffi-
cient detail for meaningful analysis. Conceptual saturation was achieved
by identifying recurring microservice types, service dependencies, and
widely adopted architectural patterns. Additionally, the MiSAR Meta-
model was designed with extensibility, enabling future adaptation to
emerging architectural styles and technologies. The three systems used
for evaluation were carefully chosen to cover different programming
languages, frameworks, and architectural patterns, reducing bias to-
wards a specific technology stack. (b) The current scope of MiSAR
effectively recovers the architecture of microservice-based applications
that are developed using Java and Spring Boot/Spring Cloud frame-
works. However, since MiSAR currently only supports static analysis,
projects developed with unconventional implementations or developer-

specific logic may be missed during the recovery process. Additional
evaluations are required to address cases with such logic and further
improve MiSAR’s applicability.

10. Related work

Although significant software architecture recovery methods exist
[3,4,45,46], few of the current methods have mainly focused on a sys-
tem that specifically addresses MSA.

One of the few existing works related to ours is MicroART [11] as
shown in Table 10. MicroART is a MSA recovery approach similar to
MiSAR, as it uses model-driven engineering principles. There are several
differences between MiSAR and MicroART as follows:1) The PIM met-
amodel of MiSAR is more expressive as it includes explicitly more
microservice concepts. MicroART only has 8 concepts, which includes
Developer, Team, Product, and lightweight communication whereas
MiSAR has 17 concepts. Having an expressive PIM metamodel allows for
the recovery of more aspects of the microservice system such as asyn-
chronous communication and infrastructure patterns. 2) MiSAR was

Table 10
Comparison of microservice architecture recovery approaches.

MiSAR MicroArt MicroTOM Prophet Microlyze

Year 2020 2017 2023 2022 2018
Tool Support Yes Yes Yes Yes Yes
Analysis/

Transformation
Software Analysis

Static Hybrid (Static &
Dynamic)

Hybrid (Static & Dynamic) Static Dynamic

Method(S) – Text-To-Model (output: PSM) –
Model-To-Model, (output: PIM)

Text-To-Model (output:
MicroArt-DSL) Model-To-
Model (output: Refined
Microart-DSL)

Text-To-Model (output:
MicroTOSCA2) Model-To-
Model (output: Refined
MicroTOSCA)

Text-To-Model (output:
Context Map) Text-To-Model
(output: Communication
Diagram)

– Text-To-Model
(output:
Adjacency
Matrix)

Automation Semi-Automated Semi-Automated Automated Automated Semi-Automated
Input Technology /

Framework Support
– Docker / Docker Compose,
Maven/Gradle, Spring Cloud/
Netflix OSS, Spring Boot/Spring
Cloud

– Docker, TCPdump Kubernetes, Istio/Kiali – Java Spring – Eureka /
Consul, Zipkin

Artefact(S) – Docker Compose File (YAML) /
Dockerfile, POM File (XML) /
Gradle Files,Configuration Files
(YAML), Source Files (Java)

Github Repository
Docker Compose File
(YAML) / Dockerfile
Tracing Logs

– Kubernetes Manifest Files
(YAML) – Kiali Graph File
(JSON)

– Source Files (Java) – Source Files
(Java)

Outputs/Architecture
Ele Artefact(S)

Ments Platform Independent
Model (PIM) File (XMI)

Refined MicroArt-DSL MicroTOSCA Refined
Topology Graph (YAML)

Context Map (JSON)
Communication Diagram
(JSON)

Refined
Adjacency
Matrix

Functional
Microservices

Yes Yes Yes Yes Yes

Infrastructure
Microservices

Yes Yes Yes No Yes

Endpoint (Synchronous
Service Interface)

Yes Yes No Yes Yes

Queue Listener
(Asynchronous
Service Interface)

Yes No No No No

Service Operation Yes No No Yes Yes
Service dependency

(Synchronous (HTTP)
Communication)

Yes (Endpoint-Level) Yes (Endpoint-Level) Yes (microservice-level) Yes Yes

Service dependency
(Asynchronous
Communication)

Yes (Queue-Level) No Yes (microservice-level) No No

Container Yes No No No Yes
Infrastructure Server

Component
Yes No No No No

Infrastructure Client
Component

Yes No No No No

Infrastructure (API
Gateway / Proxy)

Yes Yes Yes No Yes

Infrastructure (Message
Brokering)

Yes Yes Yes No No

Infrastructure (Circuit
Breaker)

Yes No Yes No No

Infrastructure (Security) Yes Yes No No No
Infrastructure (Tracing /

Monitoring)
Yes Yes No No No

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

20

developed empirically using an example-based approach which incre-
mentally developed its artefacts (PIM metamodel, mapping rules) by
analysing existing microservice systems. MicroART was not developed
in a systematic approach. It is based on the authors interpretation of the
needs and characteristics in [7]. 3) MiSAR followed an MDA approach
and has used the OMG standards such as automatic Model Trans-
formations implemented in QVTo and includes a PSM to represent the
specifics of technologies, whereas MicroART uses JAVA to implement
mapping rules. 4) MiSAR purely uses static analysis to analyse existing
systems. MicroART uses static analysis to obtain knowledge of the sys-
tem and developers, and uses dynamic analysis to obtain knowledge to
create the architecture. 5) The architectural model is recovered auto-
matically from the PSM in MiSAR, i.e., there is no human intervention
whereas in MicroART a software architect needs to identify service
discovery services. The latter can be due to the dynamic analysis nature
or to the fact that the MicroART PIM metamodel does not have an
explicit concept for asynchronous communication and associated map-
ping rules.

Another microservices architecture recovery approach is Microlyze,
by Kleehaus et al. [12]. Unlike MiSAR, MicroLyze does not adopt a
model-driven approach. Instead, it utilizes a distributed tracing
component that dynamically monitors simulated user requests. In terms
of synchronous service interface and synchronous service dependency,
MicroLyze is similar to MiSAR, where MicroLyze illustrates
intra-relationships among microservices via the adjacency matrix it
produces as output. However, MicroLyze does not recover information
about the queue-based service dependency nor the queue-based service
interface of each microservice, as shown in Table 10. In MiSAR, this
information is recovered as Queue Listener and Service Dependency
concepts. In addition, compared to MiSAR, MicroLyze lacks recovery of
various infrastructure features, as shown in Table 10.

The microTOM approach [47] automatically analyses
microservice-based applications by transforming deployment artefacts
into a model following the microTOSCA metamodel. Differently to
MiSAR, microTOM uses both dynamic and static analysis but only is able
to recover synchronous and asynchronous communication at micro-
servicelevel. MiSAR is able to recover both synchronous and asynchro-
nous communication at the endpoint and queue level. It also does not
fully support deployment and infrastructure features like security and
monitoring as shown in Table 10.

Prophet [40] mainly focuses on the architecture extraction by using
automatic static analysis and transforming Java source and bytecode
artefacts into two separate models: one for a communication view and
another for a domain view. Like MiSAR, Prophet can analyze Java
Spring microservice-based projects. However, unlike MiSAR, Prophet
does not analyze other source artefacts such as deployment, build, and
configuration files. In contrast, MiSAR emphasizes the recovery of
high-level architectural elements, including both synchronous and
asynchronous communication patterns and infrastructure components.
While Prophet’s code-centric approach allows it to accurately identify
domain entities, MiSAR offers a broader perspective by employing a
Model-Driven Architecture (MDA) approach. This approach integrates
various artefacts—such as Java classes, Spring annotations, Docker
Compose files, and configuration descriptors—and transforms them into
platform-independent models (PIMs). Through rule-based mod-
el-to-model transformations guided by metamodels, MiSAR abstracts
low-level implementation details into rich architectural concepts. As a
result, MiSAR provides significantly more comprehensive architectural
coverage than Prophet, particularly in heterogeneous microservice
systems where code alone may not reveal the full architectural context.

As presented in Table 10, MiSAR is the microservice architecture
recovery approach that currently supports more technologies. In addi-
tion, it is the approach that has more architecture expressiveness as it
recovers more architecture elements. This means that the as-
implemented architectures it recovers are more complete than the
other approaches. To the best of our knowledge, there is a lack of

empirical based approaches in MDE and architecture recovery. MiSAR is
the only microservice-oriented static SAR tool that can reveal the service
interaction of an architecture as well as the structure of service data, the
Body Schema attribute of the Service Message. Furthermore, in archi-
tecture recovery, Misar makes a clear distinction between functional and
infrastructure microservices. Specifically, for infrastructure patterns,
MiSAR also categorizes them based on whether they act as servers or
clients. MiSAR considers them as first-class elements in the architecture
PIM, a feature absent in other approaches. This permits infrastructure
microservices to have many patterns.

11. Conclusion & future directions

In this work, we present an in-depth empirical investigation into
microservice-based systems for defining requirements to include in a
MSA recovery approach. Through this study, we formalized MiSAR with
the aim of recovering microservice architectures. MiSAR provides semi-
automatic architecture recovery by implementing MDA artefacts (QVTo
transformations and ECore metamodels). At the moment, MiSAR re-
covers architectures of microservice based systems implemented in Java
by the Spring Boot/Spring Cloud framework. The main benefit in
adopting MiSAR is allowing software engineers to obtain an up-to-date
architectural model which provides a view of the underlying structure
of their microservice systems, and thus models can be later used for
many purposes, such as documentation, obtaining system’s knowledge,
architectural analysis, maintenance and impact analysis between the
implemented architecture and the designed one. For future research, we
plan to use MiSAR in an industrial setting. We have planned an empirical
study that would allow us to obtain feedback from practitioners on the
usefulness of the architectural models recovered and the user-
friendliness of the tool. In addition, the Python Software Foundation
has recently funded MiSAR to extend its parser and platform specific
model to support python based microservice projects. We also plan to
extend MiSAR to support architecture conformance checking and for-
ward engineering. Ensuring consistency between the Platform-
Independent Model (M2) and the Platform-Specific Model (M1) is a
significant concern in model-driven engineering. Future extensions of
MiSAR could investigate mechanisms to maintain consistency across
abstraction levels—such as automated validation techniques or bidi-
rectional model transformations in order to support system evolution.
This could be achieved by implementing the mapping rules using QVT-R
(QVT-Relations), which supports bidirectional transformations, instead
of QVTo, enabling synchronization between system artefacts and
architectural models.

CRediT authorship contribution statement

Nuha Alshuqayran: Writing – review & editing, Writing – original
draft, Software, Project administration, Formal analysis, Data curation.
Nour Ali: Writing – review & editing, Writing – original draft, Super-
vision, Formal analysis, Data curation. Roger Evans: Writing – review &
editing, Writing – original draft, Supervision, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data and code available on github

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

21

References

[1] D. Garlan, Software architecture: a roadmap, in: Proceedings of the Conference on
the Future of Software Engineering, 2000, pp. 91–101.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley
Professional, 2003.

[3] N. Ali, S. Baker, R. O’Crowley, S. Herold, J. Buckley, Architecture consistency: state
of the practice, challenges and requirements, Empir. Softw. Eng. 23 (1) (2018)
224–258.

[4] S. Ducasse, D. Pollet, Software architecture reconstruction: a process-oriented
taxonomy, IEEE Trans. Softw. Eng. 35 (4) (2009) 573–591.

[5] C. Pahl, P. Jamshidi, O. Zimmermann, Architectural principles for cloud software,
ACM Trans. Internet Technol. (TOIT) 18 (2) (2018) 1–23.

[6] S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly
Media, Inc, 2021.

[7] J. Lewis, M. Fowler, “Microservices, Available: http://martinfowler.com/articles
/microservices.html, [Accessed: 10-Aug2019] (2014).

[8] Di Francesco, P., Malavolta, I. and Lago, Research on architecting microservices:
trends, focus, and potential for industrial adoption, In 2017 IEEE International
Conference on Software Architecture (ICSA), 2017, pp. 21–30.

[9] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice
architecture, in: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), IEEE, 2016, pp. 44–51.

[10] N. Alshuqayran, N. Ali, R. Evans, Towards Micro Service Architecture Recovery: An
Empirical Study, IEEE, 2018, pp. 47–4709.

[11] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, A. Di Salle,
Microart: a software architecture recovery tool for maintaining microservice-based
systems, IEEE International Conference on Software Architecture Workshops
(ICSAW), 2017, pp. 298–302.

[12] M. Kleehaus, O. Uludä g, P. Sch̆ afer, F. Matthes, MICROLYZE: a framework for
recovering the software architecture in microservice-based̈ environments.
Information Systems in the Big Data Era: CAiSE Forum 2018, Springer, Tallinn,
Estonia, 2018, pp. 148–162. June 11-15, 2018, Proceedings 30.

[13] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice, Morgan & Claypool, 2017.

[14] P.J. Barendrecht, Modeling Transformations Using QVT Operational Mappings,
Eindhoven University of Technology Department of Mechanical Engineering
Systems Engineering Group, Research project report, Eindhoven.

[15] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse modeling
framework (2008).

[16] B. Combemale, R.B. France, J.-M. Jez’ equel, B. Rumpe, J. Steel, D. Vojtisek,
Engineering Modeling Languages: Turning Domain Knowledge’ Into Tools, 1st Ed.,
CRC Press, 2016.

[17] C. Raibulet, F.A. Fontana, M. Zanoni, Model-driven reverse engineering
approaches: a systematic literature review, IEEE Access 5 (2017) 14516–14542.

[18] D. Akehurst, S. Kent, A relational approach to defining transformations in a
metamodel 5 (2002) 243–258.

[19] O.M. Group, MDA Guide revision 2.0, Available: https://www.omg.org/cgi-bin/
doc?ormsc/14-06-01, [Accessed: 01-Jan-2019] (2014).

[20] N. Ali, R. Nellipaiappan, R. Chandran, M.A. Babar, Model driven support for the
service oriented architecture modeling language, in: Proceedings of the 2nd
International Workshop on Principles of Engineering Service-Oriented Systems,
Association for Computing Machinery, 2010, pp. 8–14.

[21] N. Ali, M.A. Babar, Modeling service oriented architectures of mobile applications
by extending soaml with ambients, in: 2009 35th Euromicro Conference on
Software Engineering and Advanced Applications, IEEE, 2009, pp. 442–449.

[22] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam,
J. Rosenberg, Preliminary guidelines for empirical research in software
engineering, IEEE Trans. Softw. Eng. 28 (8) (2002) 721–734, https://doi.org/
10.1109/TSE.2002.1027796.

[23] J. Lopez-Fern andez, J. Cuadrado, E. Guerra, J. De Lara, Example-Driven Meta-
Model Development, Springer, 2015, pp. 1323–1347.

[24] O. Nierstrasz, M. Kobel, T. Girba, M. Lanza, Example-driven reconstruction of
software models, in: European Conference on Software Maintenance and
Reengineering (CSMR’07), IEEE., 2007, pp. 275–286.

[25] M. Vidoni, A systematic process for mining software repositories: results from a
systematic literature review, Inf. Softw. Technol. 144 (2022) 106791, https://doi.
org/10.1016/j.infsof.2021.106791.

[26] F.A. Barbeiro Campos, Spring-netflix-oss-microservices-master, Available:
https://github.com/fernandoabcampos/spring-netflix-oss-microservices,
[Accessed: 05-Sep-2019] (2019).

[27] J. Hecht, Spring-rabbitmq-messaging-microservices, Available: https://github.
com/jonashackt/spring-rabbitmq-messaging-microservices, [Accessed: 05-Sep-
2019] (2019).

[28] Sergeikh, Cloud-enabled-microservice, Available: https://github.com/sergeikh
/cloud-enabled-microservice, [Accessed: 05-Sep-2019] (2019).

[29] K. Bastani, Event-sourcing-microservices, Available: https://github.com/kbastani
/event-sourcing-microservices-example, [Accessed: 05-Sep-2019] (2019).

[30] B. Arivazhagan, Spring-cloud-sidecar-polygot, Available: https://github.com/Bara
thArivazhagan/spring-cloud-sidecar-polygot, [Accessed: 05-Sep-2019] (2019).

[31] A. Allewar, Microservices-basics-spring-boot, Available: https://github.com/anila
llewar/microservices-basics-spring-boot, [Accessed: 05-Sep-2019] (2019).

[32] K. Bastani, Spring-cloud-event-sourcing, Available: https://github.com/kbastan
i/spring-cloud-event-sourcing-example, [Accessed: 05-Sep-2019] (2019).

[33] K. Bastani, Spring-boot-graph-processing-example, Available: https://github.
com/kbastani/spring-boot-graph-processing-example, [Accessed: 09-Dec-2019]
(2019).

[34] D. Reddy, Bookstore-consul-discovery, Available: https://github.com/devdcor
es/BookStoreApp-Distributed-Application, [Accessed: 14-Jan-2020] (2019).

[35] J. Carnell, I. Sanchez, Spring microservices in action. Simon and Schuster, 2021,
2nd Ed., Microservices patterns: with examples in Java, Simon and Schuster,
Richardson, 2019.

[36] C. Richardson. Microservices patterns: with examples in Java, Simon and Schuster,
2019.

[37] P. Brereton, B. Kitchenham, D. Budgen, Z. Li, Using a protocol template for case
study planning, in: In 12th International Conference on Evaluation and Assessment
in Software Engineering (EASE), 2008, pp. 1–8.

[38] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, A. Wessl̈ en,
Experimentation in software engineering, Springer Science & Businesś Media,
2012.C. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval,
Cambridge University Press, Cambridge, 2008.

[39] C. Manning, P. Raghavan, H. Schutze. Introduction to information retrieval,
Cambridge University Press, Cambridge, 2008.

[40] V. Bushong, D. Das, T. Cerny, Reconstructing the holistic architecture of
microservice systems using static analysis, in: Proceedings of the 12th International
Conference on Cloud Computing and Services Science-CLOSER, 2022.

[41] D. Taibi, Microservices Project List, Available: https://github.com/davidetaibi/Mi
croservices_Project_List, [Accessed: 02-August-2022] (2021).

[42] I. Dugalic, MicroCompany, Available: https://github.com/idugalic/micr
o-company, [Accessed: 02-September-2022] (2022).

[43] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, W. Zhao, Benchmarking microservice
systems for software engineering research, in: Proceedings of the 40th
International Conference on Software Engineering Companion Proceeedings - ICSE
(2018) 323–324.

[44] S. OSS, MusicStore, Available: https://github.com/SteeltoeOSS/Samples/tree/mai
n/MusicStore, [Accessed: 02-September2022] (2022).

[45] J. Buckley, N. Ali, J. English, M.and Rosik, S. Herold, Real-Time Reflexion
Modelling in architecture reconciliation: A multi case study, Information and
Software Technology 61 (2015) 107–123.

[46] I. Pashov, M. Riebisch, Using feature modeling for program comprehension and
software architecture recovery. in: Proceedings. 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems, IEEE,
2004, pp. 406–417.

[47] J. Soldani, J. Khalili, A. Brogi, Offline Mining of Microservice-based Architectures,
SN Computer Science (2023) 63–73, https://doi.org/10.1007/S42979-023-
017214.

N. Alshuqayran et al. Information and Software Technology 186 (2025) 107808

22

http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0005
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0005
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0006
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0009
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0009
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0009
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0010
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0010
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0012
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0012
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0012
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0012
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0013
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0013
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0016
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0016
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0016
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0017
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0017
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0020
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0020
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0020
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0020
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0021
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0021
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0021
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/TSE.2002.1027796
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0023
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0023
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0024
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0024
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0024
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/10.1016/j.infsof.2021.106791
https://github.com/fernandoabcampos/spring-netflix-oss-microservices
https://github.com/jonashackt/spring-rabbitmq-messaging-microservices
https://github.com/jonashackt/spring-rabbitmq-messaging-microservices
https://github.com/sergeikh/cloud-enabled-microservice
https://github.com/sergeikh/cloud-enabled-microservice
https://github.com/kbastani/event-sourcing-microservices-example
https://github.com/kbastani/event-sourcing-microservices-example
https://github.com/BarathArivazhagan/spring-cloud-sidecar-polygot
https://github.com/BarathArivazhagan/spring-cloud-sidecar-polygot
https://github.com/anilallewar/microservices-basics-spring-boot
https://github.com/anilallewar/microservices-basics-spring-boot
https://github.com/kbastani/spring-cloud-event-sourcing-example
https://github.com/kbastani/spring-cloud-event-sourcing-example
https://github.com/kbastani/spring-boot-graph-processing-example
https://github.com/kbastani/spring-boot-graph-processing-example
https://github.com/devdcores/BookStoreApp-Distributed-Application
https://github.com/devdcores/BookStoreApp-Distributed-Application
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0035
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0035
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0035
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0036
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0036
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0039
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0039
https://github.com/davidetaibi/Microservices_Project_List
https://github.com/davidetaibi/Microservices_Project_List
https://github.com/idugalic/micro-company
https://github.com/idugalic/micro-company
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0043
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0043
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0043
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0043
https://github.com/SteeltoeOSS/Samples/tree/main/MusicStore
https://github.com/SteeltoeOSS/Samples/tree/main/MusicStore
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0045
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0045
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0045
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0046
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0046
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0046
http://refhub.elsevier.com/S0950-5849(25)00147-8/sbref0046
https://doi.org/10.1007/S42979-023-017214
https://doi.org/10.1007/S42979-023-017214

	A model-driven architecture approach for recovering microservice architectures: Defining and evaluating MiSAR
	1 Introduction
	2 Model-driven engineering
	3 Overview of the microservice architectural recovery (MiSAR) approach
	3.1 Platform-Independent metamodel
	3.2 Platform-specific metamodel

	4 Empirical study design
	4.1 Study aims and research questions
	4.2 Research design
	4.3 Selecting the systems for RQ1 and RQ2

	5 Results of RQ1 and RQ2
	5.1 MiSAR platform-independent metamodel (RQ1)
	5.1.1 Increment–1: supporting components of microservice patterns
	5.1.2 Increment–2: supporting synchronous communication through endpoints
	5.1.3 Increment–3: supporting asynchronous communication

	5.2 MiSAR mapping rules (RQ2)

	6 Implementation of MiSAR artefacts
	7 Application of misar
	8 Evaluating misar in semi-automatically recovering microservice architecture (RQ3)
	8.1 Design
	8.2 Case selection
	8.3 The recovered architectural models of the systems
	8.4 MiSAR’s architectural model completeness and correctness
	8.5 Consistency checking between the MiSAR recovered models and their documentation
	8.6 The efficiency of MiSAR’s semi-automation
	8.7 The comparative evaluation of MiSAR and Prophet
	8.7.1 Design
	8.7.2 Results

	9 Discussion
	9.1 Threats to validity

	10 Related work
	11 Conclusion & future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

