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A B S T R A C T

Context: Microservice architecture is an architectural style in modern software systems, characterized by small, 
independent services called microservices. This architecture is ideal to facilitate rapid feature deployment. 
However, it presents a challenge for software engineers, who often lack a comprehensive architectural view due 
to the distributed nature and complex interdependencies of microservices.
Objective: This paper presents a Model Driven Architecture approach for MicroService Architecture Recovery 
called MiSAR. Building on previous work that defined a Platform Independent Metamodel, this study seeks to 
extend this metamodel, introduce a Platform Specific Metamodel, and establish mapping rules. The goal is to 
enable the semi-automatic recovery of architectural models for microservice systems.
Methods: An empirical study was conducted on nine microservice systems to define MiSAR’s artefacts and support 
semiautomatic recovery of architectural models. These artefacts are then implemented and used to semi- 
automatically recover the architectures of three systems. The effectiveness of MiSAR is evaluated based on 
metrics such as recall, precision, and F-measure, to assess the recovered models against actual architectures. We 
also compared the recovered architectural models with the ones documented by the developers.
Results: The study identified key requirements for the Platform Independent Metamodel to support compre-
hensive microservice architecture recovery, leading to an incremental extension of the MiSAR Platform Inde-
pendent Metamodel. Mapping rules were established to effectively transform Platform Specific Models into 
Platform Independent ones. Furthermore, MiSAR was successfully implemented to recover architecture models. 
An evaluation using three systems demonstrated that MiSAR could recover architectural models with a high 
degree of completeness and correctness when compared with the actual architecture.
Conclusion: The MiSAR artefacts, including the extended Platform Independent Metamodel and mapping rules, 
effectively produce expressive architectural models of microservice systems. Systems confirmed MiSAR’s ability 
to semi-automatically recover accurate architectural models, providing a holistic view often missing in current 
software engineering practices.

1. Introduction

As software applications evolve, their conceptual architectures often 
no longer represent their implementations. As software engineers lack 
an accurate and holistic understanding of their applications, it is hard to 
successfully refactor, migrate and upgrade them [1]. To overcome these 
issues, software architecture recovery (or reconstruction) [2], has 
recently received considerable attention [3,4] to obtain the actual 
(as-implemented) architectural structure and description from system 
artefacts such as source code. Architecture Recovery is an important 
asset for many software engineering activities, enabling software 

engineers to have control and understand improvements in software 
systems.

Software companies today emphasize continuous delivery to 
enhance customer value. MicroService Architecture (MSA) is a popular 
strategy for achieving this [5]. MSA is a type of service-oriented archi-
tectural style which is technology agnostic, and involves designing 
software as a set of independent services, each with a single business 
responsibility and independently running in isolation to other micro-
services [6]. While no precise definition pertaining to MSA exists, its key 
characteristics include: independent deployability of microservices, 
microservices should own their own state and they should communicate 
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via lightweight mechanisms and smart endpoints [7].
The MSA approach provides significant benefits including reliability, 

scalability, separation of concerns and ease of deployment [6,8,9]. 
However, the challenge of not fully understanding the implemented 
software architecture is emphasized in its nature: an evolutionary ar-
chitecture composed of numerous, dynamic, small and distributed 
microservices with several inter- and intra-dependencies. Microservices 
architectures are inherently complex due to their reliance on other 
microservices and infrastructural components such as API gateways and 
monitoring components. This complexity increases with a high number 
of dependencies and the use of multiple technologies [7].

Architecture recovery [10] is a promising approach to aid in com-
prehending MSAs’complexity as it allows software engineers (devel-
opers/architects) to obtain an architectural model of the implemented 
system and its structure. Microservice architecture recovery supports 
software engineers in obtaining an up-to-date architecture of the 
implemented system and this has many benefits to software engineers in 
many cases which include: 1) comprehending the complexities of 
distributed microservice systems and identifying inter-service commu-
nication; 2) obtaining an up-to-date architecture for documentation; 3) 
inter-team communication and architecture awareness among different 
microservice teams because microservices of the same system are 
developed by different autonomous teams with different technologies; 
4) identifying architecture inconsistencies between the implementation 
and an architecture and identifying architecture smells.

However, specific challenges for microservice architecture recovery 
include: microservices not being first-class software elements, micro-
service systems use different languages and technologies, and micro-
services are highly interdependent, complicating analysis and 
architecture abstraction. Therefore, there is a dearth of available ar-
chitecture recovery approaches within the area of microservices [8]. 
Available approaches partially recover the architecture of microservice 
systems as they lack support for key architectural concepts related to 
asynchronous communication, e.g., [11] and microservice infrastruc-
ture, e.g., [12] and they haven’t been evaluated for effectiveness. To 
address these issues, we propose the MicroService Architecture Recov-
ery (MiSAR) approach, which follows the Model Driven Engineering 
(MDE) paradigm [13] to support the recovery of architectural models of 
microservice systems.

Our previous work conducted an empirical study where we manually 
extracted and clustered architectural concepts from microservice sys-
tems [10]. The latter, produced a Platform-Independent metamodel 
from analysing the source of the systems. However, an architecture re-
covery approach was not defined which is capable of semi-automatically 
recover architectural models. MiSAR was initially developed using 8 
systems [10], and in this work, we expanded it by incorporating an 
additional 9 systems, leading to a total of 19 systems informing the 
design.

Therefore, in this paper, we define the holistic microservice archi-
tectural approach for MiSAR by defining the Model Driven Architecture 
(MDA) aretfacts: Platform Independent Metamodel, Platform Specific 
Metamodel and transformation rules that are able to generate archi-
tectural models of implemented microservice systems in a semi-
automatic way. To achieve this, we have designed an empirical study 
where we identify a set of architectural requirements and apply them to 
extend the Platform-Independent Metamodel and define mapping rules, 
which automatise the architecture recovery process. Then, we imple-
ment the artefacts and use MiSAR to semi-automatically recover archi-
tectural models of 3 microservice systems. Finally, we evaluate the 
MiSAR recovered models and measure their completeness and correct-
ness by comparing them to the actual architectures of the implemented 
systems. We also compare MiSAR models to the documentation written 
by the developers.

The main contribution of this paper is the introduction of a Model- 
Driven Architecture (MDA) approach for microservice architecture re-
covery, which semi-automatically generates expressive architectural 

models of microservice systems. The expressiveness of these architec-
tural models encompasses elements such as support for asynchronous 
communication and infrastructure patterns, which are vital components 
of a microservice architecture [6]. This achievement is facilitated 
through the following sub-contributions: (i) Introduction of the MiSAR 
Platform-Specific Metamodel; (ii) Inclusion of mapping rules that are 
well defined and structured to support the automatic transformation 
from Platform Specific Models to Platform Independent Models; (iii) 
Implementation of MiSAR artefacts, including: 1) mapping rules in 
QVTo [14], 2) Platform-Specific and Platform-Independent metamodels 
in Ecore [15], and 3) parser to support the semi-automatic generation of 
architectural models; (v) Definition of MiSAR’s recovery process; (vi) 
Application of MiSAR’s recovery process to three systems and the 
evaluation of their semi-automatically generated architectural models.

This paper is organised as follows. Section 2 presents background 
information on model-driven engineering. Section 3 introduces MiSAR. 
Section 4 presents the study design used to define and formalize the 
MiSAR artefacts. Section 5 and Section 6 present our results leading to 
MiSAR artefacts and their implementation. Section 7 explains MiSAR’s 
recovery process. Then, in Section 8, we evaluated MiSAR through three 
systems. Section 9 discusses our approach. Section 10 describes related 
work. Lastly, we conclude the paper and envision future research.

2. Model-driven engineering

This section provides a brief background on Model-Driven Engi-
neering (MDE) [13]. MDE depends on three key characteristics: (a) a 
model that requires languages for its description, (b) model trans-
formations which define rules and their specification for the purpose of 
describing the way in which a particular model can be transformed into 
other models, and (c) metamodels which are models of languages used 
to describe other models. A model is considered to” conform to” or ”is an 
instance of” a metamodel. A metamodel identifies each concept that is 
used in defining a specific model, and the models use the concepts ac-
cording to the relationships and rules specified by the metamodel [16,
13].

MDE has started to be recognised in the research community for 
addressing reverse engineering problems in the last few years [17]. The 
MDE approach brings various benefits. The main one is that it considers 
models as first class citizens, which abstract the complexities of the 
systems and support their comprehension. MDE approach raises the 
abstraction level of the development lifecycle because it shifts the 
emphasis from code to models [18].

Another benefit is the separation of concerns as models can be 
reusable and independent of their graphical notation. Also, an archi-
tectural model can be manipulated in other contexts and transformed 
into other forms. MDE is also supported with languages and plugins that 
aid the semi-automatic generation and manipulation of models.

Model-Driven Architecture (MDA) is a set of guidelines for imple-
menting MDE from the Object Management Group (OMG). In MDA, 
models can be Platform-Specific Models (PSMs) and Platform- 
Independent Models (PIMs) [19]. A PSM contains a set of technical 
concepts linked to technology-specific platforms, open or proprietary, 
such as Web Services, .NET, CORBA, J2EE and others. A PIM abstracts 
away technical details and is independent of platforms and technologies.

Previously, MDA has been used to generate code of service-oriented 
architecture [20]. In this work, we focus on the MDA’s PIM and PSM 
abstraction levels in relation to the modeling of MSA. These models are 
critical for architecture recovery, where a PIM supports the architectural 
model recovered and a PSM supports the technology of implemented 
microservice systems.

3. Overview of the microservice architectural recovery (MiSAR) 
approach

This section presents an overview of MiSAR and how it supports the 
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architecture recovery of microservice systems. MiSAR follows MDE [13] 
to recover semi-automatically architectural models of existing micro-
service systems, by developing bottom-up, model-driven trans-
formations for obtaining architectural models from the implementation 
level. MiSAR can unveil the architectural aspects and aims to abstract 
the complexities of MSA by allowing software engineers to understand 
an architecture’s implemented structure.

MiSAR considers elements at three different abstraction levels (see 
Fig. 1). Level M0 includes the microservice software system as a set of 
physical artefacts. It currently considers source code, configuration, 
Docker, Docker compose, build files (POM) at the microservice level and 
project build files at system level, which contain information used by 
Maven to build a project. The M1 level, is the PSM which represents the 
software artefacts of M0 in different models, which conform to their 
Platform-Specific Metamodel, and supports the technology of the 
implemented microservice system. The M2 level represents the PIM, 
which abstracts the concepts of MSA in a technology-independent way.

Mapping rules are needed to map an implemented microservice- 
based system into an architectural model by instantiating the 
Platform-Independent Metamodel. The current mapping rules only 
support reverse engineering (as in Fig. 1) which involves transforming 
from lower abstraction levels to higher ones and not forward engi-
neering. Future extensions of MiSAR could explore mechanisms for 
maintaining consistency/conformance between different abstraction 
levels.

In our previous work [10], we identified an initial 
Platform-Independent Metamodel by studying eight microservice sys-
tems. This paper extends that metamodel, introduces the 
Platform-Specific Metamodel, and defines the mapping rules between 
them by incorporating nine additional systems, bringing the total to 19 
systems that inform the design of MiSAR. Furthermore, this work im-
plements these rules to automatically generate architecture models for 
microservice systems.

3.1. Platform-Independent metamodel

The Platform Independent Metamodel defines the microservice 
architectural elements that describe a microservice architecture in a 
technology independent way. In the following, we explain the Platform- 
Independent Metamodel (as presented in [10]), which will be refined in 
Section 5.1. As shown in Fig. 2, Microservice is the central and main 
building block of our metamodel, and it is generally a software appli-
cation that offers a completely independent service. Microservices are 
broadly classified into Functional Microservice types, which realize the 
system’s business capabilities, and Infrastructure Microservice types, 
which implement an infrastructure pattern/component addressing a 
particular concern of a MSA, such as API Gateway, Configuration, Dis-
covery and Registry and Tracing. The deployment concern of a MSA 
model is represented by the concept of Ambient as in [21] and Container 
elements. A container is an execution environment used to isolate each 
microservice, leveraging the host’s hardware and operating system ca-
pabilities while enabling each microservice to appear as a completely 
stand-alone software artefact. The Service Dependency element de-
scribes the communication between one consumer microservice and one 
provider microservice. The Service Interface element aggregates all 
Service Operations as well as exposes Endpoints of a microservice. An 
Endpoint is the service URI that can be called by remote consumers; it is 
defined by the path and HTTP method, e.g., GET/POST/PUT. A Service 
Operation reflects the main procedure/function that is directly executed 
by calling a corresponding endpoint.

3.2. Platform-specific metamodel

The MiSAR Platform-Specific Metamodel supports several platforms: 
the Java Language, Docker, Spring boot framework and technologies 
which include Consul, Eureka, MongoDB, MySQL, Neo4j Graph data-
base, OAuth2 and RabbitMQ. Fig. 3 presents the parts of the MiSAR 
Platform-Specific Metamodel that include the Distributed Application 
Project as root element. It is described by application name and its root 
repository URI. Distributed Application Project captures the 

Fig. 1. MiSAR abstraction levels.
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architecture’s development artefacts (multi-module project and module 
projects) as well as the runtime artefacts (Docker containers). The run-
time artefacts are the collection of Docker Container Definition elements 
involved in the architecture and are defined in the Docker Compose as 
well as the Docker files. Each Docker Container Definition is described 
by a container name, build path, image name, and whether it generates 
logs or not. The build path denotes the path of the module project if the 
artefacts are locally available; otherwise, the image name denotes the 
artefacts at the remote Docker Hub. The Docker Container Port and 
Docker Container Link runtime information is also captured for each 
Docker container.

The development artefacts are generally represented by the Appli-
cation Project element, which is equivalent to a multi-module project 
along with its module projects, each represented by a Micro-
serviceProject element. The Microservice Project element generalises a 
wide range of project artefacts implemented in any framework or lan-
guage, including Java Spring Boot/Cloud. Each Microservice Project 
defines a collection of Dependency Library elements that can be found in 
project build artefacts such as Maven POM.XML or Gradle BUILD. 
GRADLE. It also defines a collection of settings in YAML or PROPERTIES 
artefacts. These settings are represented with the Configuration Property 
element, which defines important functionality and execution infor-
mation. The Java Spring Web Application Project element is a subtype of 
the Microservice Project element which reflects the specific character-
istics of Spring Boot/Cloud framework applications.

4. Empirical study design

This section presents the aim and research questions of our study, 
followed by the research design and the protocol used to select systems 
for addressing two of our research questions.

4.1. Study aims and research questions

This study aims to incrementally formalize the Model Driven Ar-
chitecture (MDA) artefacts of MiSAR using microservice-based systems. 
To achieve this, we defined three research questions: 

RQ1: What are the architectural elements that are required for an 
existing microservice architectural model?
RQ2: What are the mapping rules between the Platform Specific 
Model and the Platform Independent model needed to automatize 
the model transformation of MiSAR?
RQ3: How does MiSAR perform in recovering semi-automatically 
microservice architectural models?

RQ1 focuses on including new architectural elements into the PIM 
metamodel [10] and RQ2 focuses on defining mapping rules between 
the PSM and the PIM by analyzing manually microservice systems. RQ3 
focuses on applying all MiSAR implemented artefacts and obtaining 
semi-automatically architectural models at PIM level of microservice 

Fig. 2. Initial design of the MiSAR platform independent metamodel (version 1), as presented in [10].
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systems. To evaluate the recovered architectural models, we will: 1) 
compare them with the actual architectures of the implemented systems, 
2) we will compare them with the documented architectures and 3) we 
will evaluate the efficiency of the automatic recovery.

4.2. Research design

We follow the guidelines of [22]. To answer RQ1 and RQ2, our 
research design adopts an example-driven approach, where we have 
derived MiSAR from example microservice systems. This approach has 
been used in software engineering such as in metamodelling [23] and 
architecture reconstruction [24].

The example microservice systems used were searched on the github 
repository. We followed the guidelines in [25] to report the data source 
selection and threats to validity. We mainly analysed the source code, 
configuration files and documentation of the microservice systems.

In the following, we describe the design of our study, as depicted in 
Fig. 4:

Manual Architecture Recovery: This phase is divided into Activities 
A1 and A2. Both include manual recovery and are always performed in 
parallel to enhance and refine MiSAR in increments.

Activity A1. Application to metamodel: In this activity, we create 
increments to the PIM metamodel by applying the systems in Table 1
and identifying new architectural requirements. The objective of this 
activity is to validate the existing metamodel concepts against real 
systems and evolve the PIM metamodel accordingly. For each system, 
we analyze its source code and configuration files, abstract relevant 
elements, and identify corresponding architectural concepts. We then 
instantiate the metamodel using elements from its latest increment to 
create instances of the identified architectural concepts. Details of this 
process are provided in Section 5.1. If instantiation is successful, the 
current metamodel is considered sufficient for the given system. If not, 
we refine the metamodel incrementally by: 1) Defining new architec-
tural concepts, 2) Updating or re-evaluating relationships (e.g., associ-
ations), and 3) Grouping related concepts for better integration. This 
iterative process results in new requirements that guide the metamodel’s 
evolution, as discussed in Section 5.1.

Activity A2. Application to mapping rules: We manually analysed the 
implementation of the nine systems to define MiSAR’s mapping rules 
between the PSM and the PIM repository. In the previous study [10], we 
defined mapping rules between source code and PIM, which are not 
applicable in the MiSAR approach. The objective of Activity 2 involves 

Fig. 3. Artefacts defined in the MiSAR platform-specific metamodel, supporting Java Spring and Docker containers.
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defining structured mapping rules between the PSM and PIM to enable 
the automatic model transformation for generating architectural 
models.

Evaluation of MiSAR: To answer RQ3, we implemented the MiSAR 
artefacts and used them to semi-automatically recover the architectures 
of systems. We have evaluated the MiSAR approach through systems. 
The details of the evaluation are described in Section 8.

4.3. Selecting the systems for RQ1 and RQ2

Based on the guidelines in [25], we designed a selection protocol, 
consisting of the steps as illustrated in Fig. 5, which also shows the 
number of systems filtered at each step. The steps for the selection and 

filtering of the 9 best systems can be found on GitHub.1 We also defined, 
following the guidelines of [22], a list of inclusion and exclusion criteria 
to select the systems. We implemented the criteria in 4 steps as presented 
in Table 1. The list of selected systems in this empirical study is shown in 
Table 2.

Step 1. Basic search: We designed our search string to be a 
conjunction of two corresponding populations: Microservice population 
AND Frameworks technology population. Concerning the Microservice 
population, we have considered that Microservice itself should be a 
recurrent keyword, just to make sure, we have widened the search by 
including a more open keyword with the prefix service:

Microservice population = (microservice* OR “micro-service”* OR 
“micro service”* OR “microservice architecture”*).

As for the Frameworks technology population, we included the 
frameworks and technologies which currently MiSAR is designed to 
support. As a result, the string is:

Frameworks technology population = (spring* AND java* AND 
(docker-compose OR docker) * OR netflix* OR asynchronous* OR 
reactive*).

We applied the search string over the GitHub repository and the 
outcome resulted with 121 items.

Step 2. Initial scan for system documentation: The title, description, 
architectural diagram and documentation of the projects were reviewed 
by one of the authors. Projects were discarded for not having a clear 
description (or written in other languages than English, e.g., Chinese 
and Spanish), any documentation, paper or tutorial pages. The outcome 
result set of this step turned out to have a length of 78 items.

Step 3. System functionality considered: Two authors were appoin-
ted to every remaining project to examine the functionality of the sys-
tems. We included projects which implement at least two business 
functionalities (e.g.,

“Stock Price Viewer” system was excluded since it implements only 
one business service named “stock-service”) and excluded projects that 
only implement infrastructure services, (e.g., “Microservice Monitoring” 
system was excluded since it only implements monitoring infrastructure 
services). The outcome result set of this step turned out to have a length 
of 55 items.

Step 4. Source artefact analysis: All three authors were involved in an 

Fig. 4. Research design methodology.

Table 1 
The selection criteria for the systems studied.

Criteria

Inclusions Step 
num

• Have architectural diagram and documentation. 2
• Implement business functionality. 3
• Implemented with Spring Boot/Spring Cloud framework in Java. 4
• Include one or more infrastructure Netflix OSS libraries (e.g., Zuul, 

Eureka, Hystrix, Sidecar).
• Each module runs in a single process (Docker technology).
• Implement lightweight synchronous/asynchronous interaction style 

and smart endpoints.
• Consist of independent individual services.
• Have Maven POM or Gradle build file(s).

Exclusions Stem 
num

• Do not use Spring Boot/Spring Cloud framework. 4
• Do not have Docker Compose file(s).
• Do not revolve around an accumulation of independent individual 

services.
• Do not have any data processing libraries (MongoDB, MySQL, or 

Graph).
• Do not have Maven POM or Gradle build file(s).
• Do not have Java source files (e.g., “java” resulted in JavaScript).
• Do not have a clear description, documentation, paper, or tutorial 

pages.
2

• Use fewer than two functional microservices. 3
• Only include infrastructure microservices (e.g., development tools, 

operation frameworks).

1 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/ 
EmpiricalStudyReplication/SelectedSyst emsUsedToDefineMiSARartefacts
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analysis which checks the files of the artefacts in full and searches 
through source files to classify the systems as included or excluded based 
on existence of essential framework artefacts as pointed in the inclusion/ 
exclusion criteria in Table 1. Each researcher is responsible for analyzing 
the artifacts of their assigned systems to identify specific patterns or 
technologies. The division of the responsibilities for each researcher and 
how the 9 systems were selected can be found on GitHub.2

5. Results of RQ1 and RQ2

In this section, we present our analysis and results according to our 
research questions: RQ1 and RQ2. As stated in Section 4.2, activities 1 
and 2 are performed in parallel, but we have separated them for pre-
sentation purposes.

5.1. MiSAR platform-independent metamodel (RQ1)

In this section, we present our analysis of the architectural concepts 
empirically derived from the nine systems in a number of increments. 
Each increment identified/ elicited a set of requirements that enhance 
architectural support and expressiveness within a microservice archi-
tectural metamodel. The Req column in Table 2 indicates which re-
quirements emerged from the analysis of each system. For each elicited 
requirement, we explain how we have fulfilled it by modifying the 
Platform Independent Metamodel to create an updated Platform Inde-
pendent Metamodel version (see Fig. 6), enabling the recovery of more 
expressive architectural models for microservice systems. We represent 
these modifications in labelled boxes, where Requirement- denotes the 
elicited requirement, and Application of requirement- describes how the 
requirement was fulfilled within the metamodel.

5.1.1. Increment–1: supporting components of microservice patterns
Context-1: Many microservice patterns are supported in 

microservice-based implementations by the usage of frameworks. For 
example, service operations are not defined in the source. For illustra-
tion, the edge-service microservice in system 7 (mentioned in Table 2) 
uses API Gateway and Circuit Breaker patterns via Spring Boot/Cloud 

framework, without explicitly implementing any Service Operations in 
its source artefacts. This discussion leads to the following requirements:

Context-2: An infrastructure microservice can have multiple infra-
structure patterns. For illustration, the bookstoreconsul-discovery 
microservice from system 9 provides multiple infrastructure patterns 
simultaneously, including Configuration and Registry and Discovery.

We drew inspiration for the microservice pattern categories from the 
groupings presented in [35] and [36]. For each system we analysed, we 
checked the presence of these groupings and patterns. Therefore, we 
added a new enumeration type, Infrastructure Pattern Category, to the 
metamodel (see Fig. 6).

Context-3: An Infrastructure microservice can use a pattern compo-
nent as a client or provider. To illustrate, the edge-service microservice 
in system 7 uses both infrastructure patterns: Registry and Discovery, 
and Configuration. The discovery-service provides Registry and Dis-
covery to edge-service, since the edge-service uses this pattern to reg-
ister its address. The config-server is considered a Configuration 
provider since edge-service needs this pattern to pull its centralized 
configuration properties.

5.1.2. Increment–2: supporting synchronous communication through 
endpoints

Context-1: Request-response synchronous inter-service communica-
tion is usually represented by Service Dependencies. However, it is also 
important to know which Service Operations invoke remote provider 
operations. This is often unclear in the source code due to frameworks 
abstracting Service Operation implementations.

In addition, information about the format of the request and response 
data messages at the provider’s endpoint is important to be represented. 
Also, the response/output message should be specified by the data type 
of the object returned, if any.

In response to the requirements of Increment 2, Fig. 6 illustrates how 
the Endpoint, Service Message and ServiceOperations are defined.

5.1.3. Increment–3: supporting asynchronous communication
Context-1: Unlike synchronous request-response, in asynchronous 

message-driven communication, the consumer does not directly invoke 
a remote Service Operation nor an Endpoint of the provider; instead, 
they send an event/message to an intermediary Infrastructure 
Microservice.

To illustrate, we examine the message-driven inter-service commu-
nication implemented in System 2. In this system, there are three 
queues- weathersimple:queue, weatherbackend:queue and weath-
erservice:queue, which are bound to the message exchanges. We observe 
that when a microservice’s outbound queue corresponds to another 
microservice’s inbound queue, a Dependency exists between them, as 
the former sends messages to the latter. In this context, inbound queues 
act as asynchronous alternatives to traditional service endpoints.

The metamodel now has now a QueueListener and Message Desti-
nation concepts as shown in Fig. 6.

Fig. 5. Step by Step filtering process for selecting the systems in our study.

Table 2 
Selected microservice systems from GitHub for analysis.

Microservice

ID Project Name URL Count Req

1 Spring-Netflix-OSS-microservices [26] 9 2.1,2.2
2 Spring-RabbitMQ-microservices [27] 7 3.1
3 Cloud-enabled-microservice [28] 7 1.3
4 Event-sourcing-microservices [29] 10 1.3
5 Spring-cloud-sidecar-polygot [30] 7 1.1,1.2,1.3
6 Microservices-basics-spring-boot [31] 10 2.1,2.2
7 Spring-cloud-event-sourcing [32] 15 1.1, 1.3
8 Spring-Boot-Graph-Processing [33] 9 1.3, 3.1
9 BookStoreApp-Distributed-Application [34] 14 1.2, 3.1

2 https://github.com/MicroServiceArchitectureRecovery/misar/blob/main/ 
EmpiricalStudyReplication/SelectedSyst emsUsedToDefineMiSARartefacts/Ste 
psforSelectionOfSystems.pdf
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Fig. 6. Final PIM metamodel (version 4).

Requirement-1.1 → Infrastructure components such as Circuit Breaker, Data Store, Cash Store and asynchronous Message Bus concepts need to 
be directly associated with Microservices.

Application of requirement-1.1 → Reposition the association of the Data Store, Cash Store, Circuit Breaker and asynchronous Message Bus 
concepts from Service Operation to Microservice instead.

Requirement-1.2 → One Infrastructure Microservice can have multiple-infrastructure patterns.

Application of requirement-1.2 → A new Infrastructure Pattern Component concept is introduced. A microservice can aggregate zero to many 
Infrastructure Pattern Components. Each component represents an architectural element supporting a pattern’s functionality and is classified 
into a specific Infrastructure Pattern Category. All subtypes of Infrastructure Microservice from metamodel version 1 are now instances of this 
enumeration.

Requirement-1.3 → The metamodel should distinguish infrastructure pattern components that microservices use. Infrastructure pattern com-
ponents should be divided into two types: those that provide services to microservices and those that request them.

Application of requirement-1.3 → Infrastructure pattern component has two subtypes: Infrastructure Pattern Server Component and Infra-
structure Pattern Client Component. The first represents infrastructure patterns provided by a microservice, i.e., subtypes of infrastructure 
microservice, while the second represents infrastructure patterns that are used/requested by a microservice, i.e., consumers of remote infra-
structure microservices.
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5.2. MiSAR mapping rules (RQ2)

We analysed the nine systems using Activity 2. A sample of the 
defined mapping rules are shown in Table 3. MiSAR’s mapping rules are 
in a structured tree that maps PSM element(s) into target PIM element 
(s). Mapping rules are represented with a Left-Hand Side (L-H-S) and a 
Right-Hand Side (R-H-S). At the L-H-S, PSM elements are specified by 
their attributes’ values and the references between them. Mapping rules 
check that the L-H-S or PSM elements exist. If they exist, then PSM 

elements are transformed into a group of target PIM elements specified 
at R-H-S, with specific attribute values and references between them. L- 
H-S elements’ are identified before the word ’indicates’ and R-H-S ele-
ments’ are identified after ’indicates’. The aim of this structure is to 
formalize the transformation, facilitate the implementation and even-
tually make the recovery process more automatic. Using the structured 
format, one can facilitate storage, filtering and grouping of rules, query 
all the mapping rules that transform a particular target (PIM element), 
and then group them by each source (PSM element).

Requirement-2.1 → Service Operations should be linked to their exposed Endpoints.

Application of requirement-2.1 → The association of Service Operation is re-positioned from Service Interface to Endpoint. This association is an 
optional association that goes from Endpoint to Service Operation.

Requirement-2.2 → An Endpoint of a microservice should define the format and type of its data messages, if any.

Application of requirement-2.2 → A Service Message concept is introduced. Service Message is associated with Endpoint and it is defined by 
MessageType, i.e., request/response/error, Schema and Schema Format, i.e.,

XML/JSON.

Requirement-3.1 → A message-based asynchronous mechanism of inter-service communication using asynchronous inbound queues and 
messages should be represented.

Application of requirement-3.1 → The concept Queue Listener is introduced, defined by its Name and, Endpoint is associated with Service 
Interface. Queue Listener and Endpoint are all generalized in a supertype concept called Message Destination, because they all represent the 
destination at which a remote message is received.

Table 3 
Specification of 6 out of 275 MiSAR mapping rules.

Systems from Table 2where the rule applies

1 2 3 4 5 6 7 8 9

R1: Mapping Docker Container Definition to Infrastructure Server Component: [L-H-S] One Docker Hub Image Container with Image 
Field value which contains: “consul”, indicates [R-H-S] one Infrastructure Server Component with Category value: “Service Routing 
Pattern - Registry and Discovery”, another Infrastructure Server Component with Category value: “Development Pattern - Centralized 
Configuration” and a third Infrastructure Server Component with Category value: “Development Pattern - Asynchronous Messaging”.

​ ​ ​ ​ ​ ​ ​ ​ ×

R2: Mapping Annotation of a Java Method in a Java Class to Service Operation: [L-H-S] A Java Annotation with Annotation Name 
value that ends with: “Mapping” which belongs to a Java Method in a Java Class with Java Annotation value that ends with: 
“Controller”, and returns a Java Data Type with Element Identifier value: “[datatype-name]” indicates [R-H-S] a Service Operation 
with Operation Name value: “[operation-name]” and Operation Description value: “An operation with name [operation-name] that 
responds with object [datatype-name]”.

× × × × × × × × ×

R3: Variation of R2 by using reactive web application (WebFlux): [L-H-S]A Java Annotation with Annotation Name value that ends 
with: “Mapping”, which belongs to a Java Method in a Java Class with Java Annotation value that ends with: “Controller”, and 
returns a Java Data Type with Element Identifier value: “Mono” or “Flux” indicates [R-H-S] a Service Operation with Operation 
Name value: “[operation-name]” and Operation Description value: “An operation with name [operation-name] that responds with 
object [datatype-name]”.

​ ​ ​ × ​ ​ ​ ​ ​

R4: Mapping A Java Annotation and its Parameter to Queue Listener: [L-H-S] A Java Annotation with Annotation Name value: 
“RabbitListener” which has a Java Annotation Parameter with Parameter Name value: “value” or “queues” and Parameter value: 
“[queue-name]” and belongs to a Java Method with Element Profile value: “[destination-environment]” indicates [R-H-S] a Queue 
Listener with Queue Name value: “[queue-name]” and Environment value: “[destination-environment]”.

​ × ​ ​ ​ ​ ​ × ​

R5: Mapping A Java Method to Service Dependency (asynchronous communication): [L-H-S] A Java Method with Element Identifier 
value: “convertAndSend” whose parent is a Java User Defined Type with Element Identifier value: “RabbitTemplate” or 
“AmqpTemplate”, which has one Java Method Parameter with Parameter Order value: “2″ and Field value: “[routing-key]” whose 
type is a Java Class Type with Element Identifier value: “String” such that there is a Queue Listener with Queue Name value that 
contains: “[routing-key]” and belongs to a Microservice with Microservice Name value: “[provider-name]” indicates [R-H-S] a 
Service Dependency with Provider Destination value: “QueueListener[QueueName:[Queue Name]]”.

​ × ​ ​ ​ ​ ​ × ​

R6: Mapping A Dependency Library to Endpoint and Service Message: [L-H-S] A Dependency Library with Library Name 
value:“spring-boot-starter-actuator” and Library Scope value: “[destination-environment]” indicates [R-H-S] one Endpoint with 
Request URI value: “GET /actuator/health” and Environmentvalue: “[destination-environment]” which has a Service Message 
with Message Type value: “RESPONSE”, Schema Format value: “JSON” and Body Schema value: “[“type”:“object”,“properties”: 
[“status”:[“type”: “string”],“details”:[“type”:“object”]]] ”.

× ​ × × × ​ × × ×
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For example, the R1 mapping rule in Table 3, which resulted from 
Increment 1 (see Section 5.1.1) of introducing the Infrastructure Pattern 
Component, transforms a PSM Element: Docker Hub Image Container 
with Image Field: [Image Field =‘ consul’] into three target PIM ele-
ments: an Infrastructure Server Component with Category value: [Ser-
vice Routing Pattern - Registry and Discovery], an Infrastructure Server 
Component with Category value: [Development Pattern-Centralized 
Configuration] and an Infrastructure Server Component with Category 
value: [Development Pattern - Asynchronous Messaging].

An example of rule R2 is its ability to recover the Service Operation 
concept, as demonstrated in Table 3. The variation in mapping rules 
involves adding new mapping rules that recover existing PIM concepts, 
implemented using technologies not previously encountered [10]. For 
instance, rule R3 also recovers the Service Operation concept, producing 
the same output as R2. However, the input in R3 represents a reactive, 
non-blocking microservice architecture. This reactive architecture was 
introduced following the analysis of system 4.

Rules R4 and R5 are added as a result of Increment 3 (see Section 
5.1.3): R4 recovers the Queue Listener concept which is a Message 
Destination based on message-driven inter-service communication and 
R5 recovers service dependency for asynchronous communication. 
These concepts were added after analysis of systems 2 and 8.

The addition of mapping rules with hard-coded values to recover 
production endpoints that are not implemented explicitly in source code 
and are activated only at runtime, along with their message types and 
the formats of outsourced famous infrastructure technologies, an 
example is R6.

6. Implementation of MiSAR artefacts

To support the automatic recovery of the MiSAR architectural 
models, the metamodels and mapping rules have been implemented. 
Metamodels have been implemented as Ecore models using the Eclipse 
Modeling Framework (EMF) [15]. Fig. 7 presents the MiSAR PSM Ecore 
metamodel, which can be found on GitHub.3 To develop and automate 
the mapping rules, we have used the Eclipse Model-to-Model Trans-
formation (M2M) project, by incorporating the operational QVT trans-
formation language (QVTo) [14]. Fig. 8 shows the implementation of 
the R4 mapping rule of Table 3. The mapping body which includes the 
init-section (lines 5 to 7) used for initialising parameters and variables, 
and the population section (lines 9 to 18), which specifies the actual 
mapping are illustrated. In line 14 the DependencyLibrary2Endpoint() 
invokes the mapping DependencyLibrary2EndpointServiceMessage(). In 
an Eclipse QVTo implementation, mapping rules are organised in a 
top-bottom order i.e., a rule that maps a top PSM element such as 
ApplicationProject should invoke all mapping rules to recover a top PIM 
element such as Microservice Architecture and its subsequent elements.

Instances of a PSM metamodel are instantiated using the MiS-
ARParser. The MiSARParser is a python application that incorporates 
PyEcore, JavaLang, Yaml, XMLtoDict and other python libraries in order 
to parse a microservice-based application into a MiSAR PSM model that 
will be fed as input to the QVTo transformations for the final generation 
of a MiSAR PIM model. Currently, the parser analyses the following files 
of a microservice system: Docker Compose Files (.yml—.yaml), Maven 
POM (Project Object Model) files, Configuration Files (.yml—.yaml—. 
properties) and JavaSourceFiles which specifically include either the 
org.springframework.boot or the org.springframework.cloud.

7. Application of misar

Fig. 9 illustrates the different parts of the architecture recovery 
process; the thick arrows represent the steps of the recovery process; the 
boxes represent the artefacts and the thin arrows indicate the inputs and 

outputs of the transformation engine. To apply the process of MiSAR, 
download the MiSAR project and follow the manual described in 
”MiSAR Recovery Steps.pdf” found on GitHub.4 In the following, we 
explain the MiSAR architecture recovery process: 

Step 1- Artefact collection (semi-automatic): The files from GitHub 
are first downloaded locally. Then, the required artefacts are 
uploaded to the existing MiSAR parser, as illustrated in Fig. 10. The 
user has to input the Project name. Users can choose between an 
automatic uploader or a manual selection process. If users select a 
manual selection process, they have to specify: Build directory of 
each microservice (single-module) project, Path of the build file 
(POM) for the entire system (multi-module) project, Path of the build 
file (POM) for each microservice (single-module) project. Addition-
ally, users can delete or add uploaded files, allowing them to control 
which parts of the system they want to recover. Some may prefer to 
recover the entire architecture, while others may focus on specific 
microservices. Because of this user control, the process is classified as 
semi-automatic rather than fully automated.
Step 2- Automatic Instantiation of the PSM: The MiSAR parser will 
process the provided artefacts and then generate the PSM model in 
XMI format at the same path as the PSM Ecore file. This XMI file is 
instantly readable and viewable by the Eclipse QVTo project.
Step 3- Automatic Recovery of the PIM: The PIM architectural model 
is recovered by running the Eclipse QVTo project, which contains the 
Ecore implementations of both PIM and PSM metamodels, the QVTo 
implementation of all transformation mapping rules and the PSM 
model generated in step 2.

8. Evaluating misar in semi-automatically recovering 
microservice architecture (RQ3)

This evaluation follows protocols formulated by Brereton et al. [37] 
and [38] to increase validity and reliability. The design, selection of the 
systems, procedure, data collection and data analysis, are presented in 
the next sections.

8.1. Design

The objective is to evaluate the MiSAR approach in terms of recov-
ering architectural models of microservice systems. In this regard, we 
applied the recovery process and made use of the implemented MiSAR 
artefacts: Ecore metamodels, QVTo Model Transformations and Parser. 
The first evaluation is designed to obtain the architectural model 
completeness and correctness. To do this, we compared the semi- 
automatically recovered models with the architectural elements of the 
systems by analysing the source artefacts (e.g. source code, build POM, 
configuration

YAML, Docker Compose and Docker files). To perform this check, we 
first manually create an expected architectural model which is an ar-
chitecture of the implementation of the system by using the MiSAR 
Platform Independent Metamodel. Then, we manually compare the 
MiSAR (semi-automatically) recovered architectural model with the one 
we manually represented. To perform this comparison, we listed all the 
elements, attributes and their Values of the MiSAR representation of the 
actual architecture and checked them against the ones in the recovered 
architectural model. The systems were adopted to answer the following 
research questions: 

CRQ1: What degree of completeness do the recovered microservice 
architectural models have?

3 https://github.com/MicroServiceArchitectureRecovery/misar

4 https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser 
-and-Model-Transformation
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CRQ2: What degree of correctness do the recovered microservice 
architectural models have?

To answer CRQ1 and CRQ2, the total number of architectural ele-
ments recovered in the architectural model are compared to the total 

number of architectural elements of the actual (or expected) architec-
ture. Recall is used to measure the completeness of the recovered 
architectural model and precision is used to measure the correctness of 
the recovered architectural model. The F-measure measures the overall 
accuracy of the recovered model [39] as follows: 

Fig. 7. Ecore implementation (XMI tree view) of MiSAR PSM.

Fig. 8. The QVTo code for mapping rule R6 to recover the Endpoint.
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Recall =
(TP)

(TP + FN)
(1) 

Precision =
(TP)

(TP + FP)
(2) 

FMeasure = 2 ×
Recall × Precision
Recall + Precision

(3) 

Where TP is the number of True Positives which are the Correctly 
Recovered elements checking the source artefacts, FP is the number of 
False Positives which are Incorrectly Recovered elements or partially 
recovered elements and FN is the number of False Negatives which are 
the number of Missed Elements, i.e., the elements which are not 
recovered by MiSAR even though they existed in source artefacts or 
actual architecture.

The second evaluation is designed to compare the recovered archi-
tectural models with the available documentation, diagrams, textual 
description of each system provided by the developers. We call this 
comparison consistency check between the MiSAR Recovered Models 

and the Documentation. The objective of this consistency check is to 
evaluate MiSAR recovered models in comparison with the manual 
documentation of developers. To perform this check, we listed all ele-
ments and attributes of the MiSAR representation of the documentation 
and compared them against the ones in the recovered architectural 
model, which are presented in Section 8.5.

The third evaluation consists of measuring the efficiency of MiSAR in 
recovering semi-automatically architectural models in comparison with 
human manual recovery. To do this, we took the execution time in 
seconds for obtaining an architectural model with MiSAR.

The fourth evaluation involves comparing a MiSAR recovered 
architectural model with one recovered from another architecture re-
covery approach, Prophet [40]. The design and results are presented in 
Section 8.7.

8.2. Case selection

We carefully selected three microservice-based applications from 
[41] (MicroCompany, TrainTicket, and MusicStore) to evaluate MiSAR, 
ensuring diversity in programming languages, frameworks, and 

Fig. 9. Steps of the MiSAR architecture recovery process.

Fig. 10. Parser user interface to collect artefacts for MicroCompany application.

N. Alshuqayran et al.                                                                                                                                                                                                                          Information and Software Technology 186 (2025) 107808 

12 



architectural patterns. This selection allows us to assess MiSAR’s capa-
bilities and limitations across a variety of real-world microservice ar-
chitectures. The selection was guided by the following well-defined 
criteria: 

• System scale and complexity 
– TrainTicket: A large-scale benchmark system with 69 micro-

services (41 of which are business-oriented), making it signifi-
cantly larger than most existing benchmarks.

– MicroCompany (11 microservices) and MusicStore (9 micro-
services): Provide medium- and small-scale case systems, ensuring 
that MiSAR is evaluated across different system sizes.

• Diversity in microservice design and technology stack 
– The selected systems employ multiple programming languages, 

including Java, Node.js, Python, Go, and C#, ensuring MiSAR’s 
ability to handle heterogeneous environments.

– The systems are built using various microservice frameworks such 
as Spring Cloud, Express, Django, Webgo, and Steeltoe, allowing us 
to test MiSAR’s adaptability to different microservice 
architectures.

Table 4 summarises the characteristics of the systems. i. Micro-
Company application [42]: A Java Spring Boot/Spring Cloud 
microservice-based application with 11 microservices, 4 of which are 
business-oriented. It features both synchronous and asynchronous 
inter-service communication, making it a representative example of 
enterprise-level Java microservices. ii. TrainTicket application [43]: A 
large-scale microservice-based system where most microservices are 
developed using Java Spring Boot/Spring Cloud, but also includes 5 
non-JVM-based microservices implemented in Node.js, Python, and Go. 
This selection allows us to evaluate MiSAR’s handling of polyglot ar-
chitectures. iii. MusicStore application [44]: A microservice-based sys-
tem entirely implemented in C# using the Steeltoe framework. It 
consists of 9 microservices, 4 of which are business-oriented. This sys-
tem provides insights into MiSAR’s applicability beyond Java-based 

ecosystems.

8.3. The recovered architectural models of the systems

All the PIM instances for the 3 systems can be found on GitHub.5 The 
generated (recovered) MicroCompany architecture consists of 11 
microservices: 5 instances of Functional Microservices and 6 instances of 
Infrastructure Microservices. The generated (recovered) TrainTicket 
architecture consists of 69 microservices: 37 instances of Functional 
Microservices, 27 instances of Infrastructure Microservices and 5 in-
stances of the supertype Microservice. The generated (recovered) 
MusicStore architecture consists of 9 microservices: zero instances of 
Functional Microservices, 2 instances of Infrastructure Microservices 
and 7 instances of the supertype Microservice.

It can be noticed that some microservices recovered were not clas-
sified as either functional or infrastructure e.g., the 7 instances of 
MusicStore. This indicates that MiSAR has managed to capture the ex-
istence of a certain microservice, but for some reason was not able to 
precisely recognize (classify) its type mainly because the implementa-
tion language and technologies used in these microservices are unsup-
ported in MiSAR artefacts, i.e., MiSAR has no equivalent mapping rules 
for them.

MiSAR recovered models have different views, one at an architec-
tural level and at a microservice level. The architectural level reflects the 
recovered PIM instance, as shown in Fig. 11 for MicroCompany, which 
includes the high-level view of all microservices of the architecture and 
their types (Infrastructure or Functional). At a microservice level, a more 
detailed view of a microservice is provided, which includes its Service 
Interface, Messages Destinations (e.g. Endpoint and/or Queue Listener), 
Service Messages, Service Operations, the Infrastructure Pattern Com-
ponents of an individual microservice and their dependencies such as 
asynchronous/synchronous interactions between microservices. Fig. 12
shows the microservice level view for a functional microservice for 
MicroCompany “query-side-blog”. As it can be noticed, the view in-
cludes its microservice container, 9 Infrastructure Pattern Components, 
6 Infrastructure Client Components, its service interface with its end-
points and one Queue Listener and 10 service dependencies. In addition, 
the microservice view has the attributes for the microservices. Fig. 13
shows attributes for some elements of the microservice. For instance, (a) 
the “query-side-blog” microservice exposes an endpoint with request 
URI “GET /blogposts/search/findByDraftTrue” which is handled by (b) 
the service operation “findByDraftTrue()” and (c) returns a response 
service message of model “Page(BlogPost)”. As it can be noticed, one of 
the attributes is ”Generating PSM” which indicates which element from 
the PSM this element was generated from and provides traceability and 
backtracking support for the recovery.

The PIM recovered models are in XMI format and can be opened as 
tree views with Sample Reflective Ecore Model editor provided by the 
Eclipse Modeling Framework (EMF).

8.4. MiSAR’s architectural model completeness and correctness

After we recovered the MiSAR PIM instances, i.e., the recovered 
MiSAR architectural models of MicroCompany, TrainTicket and Musi-
cStore, we manually compared their MiSAR generated architectural 
models with their actual architectural elements as explained in Section 
8.1. We created an excel sheet called Metric Analysis which includes a 
tab for each system on GitHub.6

To answer research questions CRQ1 and CRQ2 set in Section 8.1, we 
calculated recall, precision and F1-score metrics to measure, 

Table 4 
The characteristics of the selected systems.

Characteristic System
MicroCompany TrainTicket MusicStore

Lines of code 127.1K 507.2K 116.6K
Date of the version 

used
October 2, 
2022

Jan 19, 2020 October 2, 
2022

Number of 
microservices

11 69 9

Functional 4 41 4
Infrastructural 7 28 5
Programming 

Languages
Java Java, Node.js., Python, 

Go
C#

Frameworks Spring Cloud Spring Cloud, Express, 
Django, Webgo

Steeltoe

Variety technologies and implementations used in projects

Supported by MiSAR:

Containerization Docker Docker Docker

​ Spring Framework Spring Framework ​
DB Mongo, MySQL, 

HSQLDB
Mongo, MySQL MySQL

Discovery ​ ​ Eureka
Circuit Breaker ​ ​ Hystrix
Tracing ​ ​ Zipkin
Communication Synchronous and 

Asynchronous
Synchronous 
Unsupported by 
MiSAR:

Synchronous

Spring Admin Sever 
CQRS & Event 
Sourcing – Spring 
Axon Spring 
Websocket

Node.js – Express 
Python – Django 
Go – Webgo 
Tracing – Jaeger

C# – ASP.Net 
Steeltoe 
Framework

5 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/ 
EmpiricalStudyReplication/EvaluationOf MiSAR

6 https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/ 
EmpiricalStudyReplication/EvaluationOf MiSAR
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respectively, the completeness, correctness and overall accuracy of the 
recovered models, as shown in Table 5. These metrics were calculated 
for every recovered PIM element and the expected elements as shown in 
Table 5.

The highest overall effectiveness of MiSAR based on the F-measure is 

94 % for the MicroCompany system. It also achieved a high precision 
score of 100 % of correct elements and a recall score which indicates that 
MiSAR has recovered 88 % of architectural elements. The recall for the 
MicroCompany was not 100 % due to MiSAR missed to recover the el-
ements of ”adminserver” and “api-gateway” as follows: 

Fig. 11. PIM model for MicroCompany architectural view recovered by MiSAR.

Fig. 12. Example of the recovered “query-side-blog” functional microservice instance in MicroCompany.
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“adminserver” was recovered as a FunctionalMicroservice instead of 
a InfrastructureMicroservice and missed the recovery of the moni-
toring InfrastructureServerComponent along with all its 42 related 
ServiceDependencies. The “adminserver” is a monitoring infra-
structure microservice that requests the health and metrics endpoints 
of all other microservices in the architecture. MiSAR was not able to 
analyze the Spring Admin Server used to implement the monitoring 
infrastructure of “adminserver”, therefore these results.

“api-gateway” microservice was recovered with 3 missed Queue-
Listeners along with their related ServiceOperations, 4 missed End-
points and 1 missed message broker 
InfrastructurePatternComponent. The “api-gateway” is a gateway 
infrastructure microservice that listens to four events published onto 
the message broker by “command-sideblog” and “command-side- 
project” functional microservices, then, it sends corresponding no-
tifications to an internal WebSocket component. MicroCompany uses 
Spring Axon to implement event-driven CQRS pattern which 

Fig. 13. Example of the attributes recovered for the “query-side-blog” microservice: a) one Endpoint, b) one Service Operation associated with a, c) one Service 
Message associated with b.

Table 5 
Evaluation metrics for MiSAR recovery of systems.

Correctly Incorrectly

Total Recovered Recovered Unrecovered

PIM Element Expected TP FP FN Recall Precision F-Measure

System: TrainTicket ​ ​ ​ ​ ​ ​ ​
Container 69 69 0 0 100 % 100 % 100 %
InfrastructureMicroservice 30 27 3 0 100 % 90 % 94 %
FunctionalMicroservice 39 36 3 0 100 % 92 % 96 %
InfrastructureServerComponent 32 27 0 5 84 % 100 % 92 %
InfrastructureClientComponent 208 131 0 77 63 % 100 % 77 %
Endpoint 550 456 0 94 83 % 100 % 91 %
QueueListener 0 0 0 0 0.0 % 0.0 % 0.0 %
ServiceDependency 792 589 0 203 74 % 100 % 85 %
Total 1720 1335 6 379 78 % 100 % 87 %
System: MicroCompany ​ ​ ​ ​ ​ ​ ​
Container 11 11 0 0 100 % 100 % 100 %
InfrastructureMicroservice 7 6 1 0 100 % 86 % 92 %
FunctionalMicroservice 4 4 0 0 100 % 100 % 100 %
InfrastructureServerComponent 7 6 0 1 86 % 100 % 92 %
InfrastructureClientComponent 90 89 0 1 99 % 100 % 99 %
Endpoint 148 144 0 4 97 % 100 % 99 %
QueueListener 7 3 0 4 44 % 100 % 60 %
ServiceDependency 282 226 0 56 80 % 100 % 89 %
Total 556 489 1 66 88 % 100 % 94 %
System: MusicStore ​ ​ ​ ​ ​ ​ ​
Container 9 9 0 0 100 % 100 % 100 %
InfrastructureMicroservice 5 2 3 0 100 % 40 % 57 %
FunctionalMicroservice 4 0 4 0 0.0 % 0.0 % 0.0 %
InfrastructureServerComponent 5 2 0 3 40 % 100 % 57 %
InfrastructureClientComponent 35 26 0 9 74 % 100 % 85 %
Endpoint 80 27 0 53 34 % 100 % 51 %
QueueListener 0 0 0 0 0.0 % 0.0 % 0.0 %
ServiceDependency 104 34 0 70 33 % 100 % 49 %
Total 242 100 7 135 43 % 94 % 59 %
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decorates the queue listener methods with @EventHandler annota-
tion. MiSAR has no previous knowledge of this pattern and annota-
tion yet. However, the high-level Axon’s queue listeners invoke one 
low-level AMQP queue listener method decorated with a @Rabbi-
tListener annotation, which MiSAR already knows. Therefore, 
MiSAR was able to correctly recover that low-level QueueListener 
and its related ServiceOperation instead of the four higher-level 
Axon’s listeners and their related ServiceOperations.

MusicStore system has the lowest overall effectiveness, based on its 
F-measure of 59 %. MiSAR also achieved a precision score of 94 % of 
correct elements. The recall score indicates that MiSAR has recovered 43 
% of architectural elements. This low recall is due to the large number of 
missed elements, which in turn, is due to having all the microservices 
implemented with Steeltoe framework and C# language which MiSAR 
does not analyze yet. This caused MiSAR to incorrectly recover four 
FunctionalMicroservices and three InfrastructureMicroservices as ab-
stract Microservices and miss most of their internal Endpoints and 
infrastructure components which rely on the transformation of methods 
written in C# instead of Java. On the other hand, Docker Compose, 
Eureka, Zipkin and Spring Config infrastructure artifacts utilized by 
Steeltoe assisted to recover the 43 % of the non-JVM MusicStore’s 
architecture.

Finally, as for the TrainTicket system, the overall effectiveness of 
MiSAR based on the F-measure is 87 %. MiSAR also achieved a precision 
score of 100 % of correct elements. The recall score indicates that MiSAR 
has recovered 78 % of architectural elements. The lower recall is due to 
the large number of missed elements which, in turn, is due to encoun-
tering microservices with artefacts that belong to non-JVM platforms or 
that were developed with unconventional implementation.

To illustrate, one of the partially recovered microservices was the 
gateway microservice, i.e., “ts-ui-dashboard”, which is supposed to have 
at least 40 Service Dependency elements (because it routes requests to 
all of the 40 business microservices) and 83 Endpoint elements (because 
it exposes the main endpoints of all the 40 business microservices). The 
“ts-ui-dashboard” microservice is built with HTML/JS artefacts plus an 
NGINX configuration artefact. Both kinds of artefacts are not yet sup-
ported by the MiSAR repository. The second partially recovered 
microservice was the monitoring microservice, i.e., “ms-monitoring- 
core”, which is supposed to have at least 42 Service Dependency ele-
ments because it requests the health and metrics endpoints of all the 42 
business microservices as well as pulling their logs for monitoring pur-
poses. Such a large count of missed elements contributed to the recorded 
drop in recall. The recall and precision score achieved 100 % for 
container elements recovered from Docker Compose and POM artefacts. 
This indicates that MiSAR can capture the existence of all microservices 
but it might miss the underlying elements of those microservices, such as 
their infrastructure components, endpoints and dependencies.

8.5. Consistency checking between the MiSAR recovered models and their 
documentation

In this section, we present the results for the consistency checks we 
performed for the MiSAR recovered architectural models and their 
documentation. The results are as follows (see Table 6 for the results of 
MicroCompany):

Consistent elements: They are the MiSAR recovered elements which 
are consistent with the documentation.

Discrepant elements: They are MiSAR recovered elements which are 
not in agreement with how they are represented in the documentation. 
For example, in the MicroCompany system, MiSAR recovered Spring 
Admin Server incorrectly as a FunctionalMicroservice instead of an 
InfrastructureMicroservice.

In addition, all FunctionalMicroservices in MusicStore system were 
incorrectly recovered as Microservices without identifying their type 
since MiSAR doesn’t learn yet the C# language. In the TrainTicket 

system, MiSAR was able to recover the correct paths for “tsorder-ser-
vice” endpoints even though they were incorrectly documented. These 
were checked manually in the source artefacts and it was discovered that 
the MiSAR recovered model had the correct representation.

Absent elements: They are elements that exist in the documentation 
but are absent in MiSAR’s recovered models. As explained in Section 8.4
this is due to that MiSAR still does not support several programming 
languages and technologies. For illustration, in MicroCompany system, 
MiSAR did not recover many of the elements of “adminserver” micro-
service. In the TrainTicket system, an example of an absent component is 
an InfrastructureClientComponent of category ’Service Routing Pattern 
Registry and Discovery’, which according to the documentation imple-
ments Kubernetes (k8s), a technology that MiSAR currently does not 
support. This also applies to the MusicStore system since it is developed 
completely in C# language which is not yet MiSAR supported.

Additional elements: MiSAR recovered more architectural elements 
compared to the documentation. In particular, MiSAR was able to 
recover service operations and service messages of the documented 
endpoints, in addition to several infrastructure pattern components, 
infrastructure client components and service dependency elements that 
are not documented. For illustration, in MicroCompany system, MiSAR 
recovered 19 service operations and 43 service messages that do not 
exist at all in the documentation (but exist in the source artifacts) along 
with 139 endpoints more than the 5 endpoints that exist in the docu-
mentation as shown in Table 6.

8.6. The efficiency of MiSAR’s semi-automation

Automated approaches for architecture recovery are valuable 
because they can handle large and complex systems more efficiently 
than manual methods, especially when they include diverse de-
pendencies and components. Automated tools save time and provide a 
more accurate understanding of the architecture, especially when soft-
ware engineers do not have previous knowledge and experience of a 
system and when dealing with large systems or systems with minimal 
documentation.

Table 7 shows the time it takes for each MiSAR toolset component, 
on an Intel Processor Core(TM) i5–7200 U CPU @ 2.50 GHz, 2701 Mhz, 
2 Core(s), 4 Logical Processor(s) to create the PSM and PIM for the three 
open-source projects. It can be noticed that for a large project, such as 

Table 6 
Results of the consistency check between the MiSAR’s recovered architectural 
model of MicroCompany and its documentation.

PIM Element (1) (2) (3) (4)

Container 11 0 0 0
InfrastructureMicroservice 6 0 0 0
FunctionalMicroservice 4 1 0 0
InfrastructureServerComponent 6 0 1 0
InfrastructureClientComponent 29 0 1 59
Endpoint 5 0 0 139
QueueListener 3 0 0 0
ServiceOperation 0 0 0 19
ServiceMessage 0 0 0 43
ServiceDependency 36 0 5 77
Total 100 1 7 337

(1) Consistent. (2) Discrepant. (3) Absent. (4) Additional.

Table 7 
Time of MiSAR toolset to obtain as-implemented architecture models.

LOC Parser to 
generate PSM 
(sec)

Model Engine to 
Transform PSM to 
PIM (sec)

Approx. 
Man Days

MicroCompany 127.1K 9 3.89 6
TrainTicket 507.2K 446 63.15 16
MusicStore 116.6K 1 1.07 4
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TrainTicket, the parser takes most of the time of the recovery process. 
The last column shows the total man days it took for the manual ar-
chitecture recovery of the projects. These man days reflect the time of 
two of the authors, who were not involved in the development of the 
projects. As it can be noticed the as-implemented architecture can be 
achieved through MiSAR in several seconds and several minutes (for 
large projects), whereas it can take several days in a manual process. 
However, the time spent on the manual recovery should be taken 
carefully considering that the effort is subjective and can depend on 
many factors which can include the knowledge and expertise of the 
team.

8.7. The comparative evaluation of MiSAR and Prophet

This section presents a comparative evaluation of MiSAR and 
Prophet [40], a software architecture recovery approach, designed for 
Java Spring microservice-based projects. The objective of this compar-
ison is to assess the effectiveness and completeness of MiSAR in recov-
ering architectural elements of a microservice system. The evaluation 
uses the MicroCompany system [42]. To measure completeness, cor-
rectness and overall accuracy of the recovered architectural models, we 
apply the metrics of recall, precision and F-measure.

8.7.1. Design
To enable a precise and structured comparison of the architecture 

recovery capabilities of MiSAR and Prophet, we developed a unified 
evaluation framework based on a curated set of Merged Architectural 
Elements. Table 8 illustrates the mapping process, showcasing how 
MiSAR and Prophet’s elements contribute to the new merged model. 
This model bridges conceptual differences between the architectural 
elements identified by MiSAR and Prophet, ensuring a consistent and 
fair evaluation process. The merged elements were created by analyzing 
the key features of both approaches, identifying commonalities, and 
integrating complementary attributes. The process involved the 
following steps: 

• Merging equivalent concepts under MiSAR’s naming conventions: 
Elements that represent the same architectural concept in both ap-
proaches but differ in naming are merged using MiSAR’s terminol-
ogy. For example, MiSAR’s MicroserviceArchitecture and Prophet’s 
SystemContext were merged into the MicroserviceArchitecture 
element in the unified model.

• Preserving MiSAR’s and Prophet’s exclusive elements: Elements 
unique to MiSAR that do not have an equivalent in Prophet were 
retained using MiSAR’s terminology and elements unique in Prophet 
were retained using Prophet’s terminology. This ensures compati-
bility with the existing expected model. For example, MiSAR’s 

QueueListener and InfrastructurePatternComponent were included 
directly, as Prophet lacks corresponding elements.

• Introducing new composite elements for complementary views: 
When MiSAR and Prophet provided distinct yet relevant perspec-
tives, new merged elements were created to capture both. For 
example, MiSAR’s ServiceMessage and Prophet’s Entity and Field 
were merged to create ServiceEntity and ServiceEntityField, 
capturing both entity definitions and their field types.

8.7.2. Results
In terms of overall performance against the merged expected model, 

MiSAR demonstrated superior results, achieving an average recall of 86 
%, precision of 99 %, and F-measure of 92 %. In contrast, Prophet 
yielded a significantly lower recall of 7 %, precision of 96 %, and F- 
measure of 13 %, as shown in Table 9. These differences highlight 
MiSAR’s effectiveness in recovering a broad range of architectural ele-
ments, while Prophet’s performance was limited to specific categories.

For structural elements (e.g., Containers, Microservices), MiSAR 
successfully recovered all Container, InfrastructureMicroservice, and 
InfrastructureClientComponent elements with 100 % recall. Prophet, 
however, failed to recover any of these deployment and infrastructure 
components (0 % recall). It was only able to recover 50 % of Functio-
nalMicroservice elements, particularly those whose Java source files 
contain classes annotated with @Entity. MiSAR’s ability to analyse 
beyond java source files enabled the comprehensive identification of 
both functional and infrastructure elements, providing greater coverage 
of deployment architectural elements.

Regarding Endpoints, MiSAR achieved a recall of 97 %, correctly 
identifying 144 out of 148 expected entries. Prophet failed to recover 
any endpoints, resulting in 0 % recall for this category. This limitation is 
due to Prophet’s reliance on detecting JAX-RS annotations, which were 
absent in the evaluated system. MiSAR, however, demonstrated the 
ability to detect endpoints defined using higher-level annotations, such 
as @RepositoryRestResource, which were prevalent in the Micro-
Company system. Furthermore, Prophet does not support the recovery 
of asynchronous endpoints or queues, further limiting its endpoint 
detection capabilities. MiSAR’s recovery of both synchronous and 
asynchronous endpoints highlights its strength in reconstructing API 
interactions.

As for Data Model Recovery, Prophet outperformed MiSAR, by 
achieving 100 % recall and precision in detecting both Entity and 
EntityField elements. MiSAR, by comparison, achieved 50 % recall for 
Entity and 60 % recall for EntityField. This disparity stems from MiSAR’s 
focus on data objects exchanged through endpoints and queues, rather 
than standalone domain/entity classes. In the MicroCompany system, 
MiSAR successfully identified the BlogPost entity as a bodyschema: 
ServiceMessage in the query-side-blog microservice, as its usage was 

Table 8 
Merged architectural element model for comparative analysis.

Merged element MiSAR’s elements Prophet’s elements

MicroserviceArchitecture MicroserviceArchitecture SystemContext
Container Container –
InfrastructureMicroservice InfrastructureMicroservice –
FunctionalMicroservice FunctionalMicroservice Module
ServiceInterface ServiceInterface –
InfrastructureServerComponent InfrastructureServerComponent –
InfrastructureClientComponent InfrastructureClientComponent –
InfrastructurePatternComponent InfrastructurePatternComponent –
Endpoint Endpoint EndpointContext:(httpMethod,arguments)
ServiceOperation ServiceOperation EndpointContext:(method)
ServiceMessage ServiceMessage EndpointContext:(returnType)
QueueListener QueueListener –
ServiceDependency ServiceDependency MsEdge, MsLabel
Entity Element’s Attribute: BodySchema of ServiceMessage Entity
EntityField Element’s Attribute: BodySchema of ServiceMessage Field
EntityAssociation – MermaidEdge
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explicitly defined in the source code. However, MiSAR failed to recover 
the Project entity because its service operation was not explicitly defined 
in the source code, limiting MiSAR’s ability to recover it.

9. Discussion

In this section, we discuss our findings. The discussion is organized as 
follows:

Architectural Expressiveness: In the three systems, MiSAR’s recov-
ered architectural model proved more expressive than the developers’ 
documentation. Moreover, the comparative evaluation between Prophet 
and MiSAR demonstrated that MiSAR is capable of representing archi-
tectural elements absent in Prophet. This enhanced expressiveness re-
sults from MiSAR’s PIM metamodel, which includes explicitly first class 
citizens for infrastructure pattern components, synchronous/asynchro-
nous service interfaces and dependencies. For illustration, MiSAR 
identified additional architectural elements not documented by the 
MicroCompany team, such as information about data persistence, se-
curity client-side load balancer, circuit-breaker, metrics generation and 
logging patterns used in the microservice. It also provided information 
about the service operation names and the schema of request/response 
data message(s) for each endpoint as shown in Fig. 13. MiSAR was also 
able to recover the correct paths for “ts-order-service” endpoints even 
though they were incorrectly documented in TrainTicket. This advan-
tage, along with its high precision, suggests MiSAR can offer compre-
hensive microservice architectural models of the implementation.

MiSAR reliability: Currently, MiSAR uses static analysis of source 
artefacts, which has proven been sufficient to recover the architectural 
concepts of the current metamodel. Unlike dynamic recovery ap-
proaches, such as using Zipkin, static analysis doesn’t require the 
application to be running, avoiding issues with resource demands or 
bugs. Dynamic recovery also necessitates designing trace requests to 
capture the application’s behavior, an effort eliminated by the static 
method, which recovers all architecture specifications as long as map-
ping rules exist. It can be noticed from Table 5 that MiSAR achieved high 
correctness (greater than 90 %) in three systems including the non-JVM 
MusicStore, supporting the reliability of MiSAR’s static approach. The 
recall score is also high but lower than precision, as MiSAR recovered 
88.1 %, 77.9 % and 42.6 % of existing architectural elements in 
MicroCompany, TrainTicket and MusicStore, respectively. These results 
are limited by the currently supported languages and technologies, 
which can be expanded in the future. Although most recovery ap-
proaches use dynamic analysis, MiSAR’s static method successfully re-
covers service interactions and data structure. It has been observed that 
the mapping of the DockerContainerLink, ConfigurationProperty and 
JavaMethod PSM concepts into ServiceDependency PIM concepts each 
attributed by ProviderName and ProviderDestination are responsible for 
the successful recovery of the Service Dependency, synchronous End-
points, asynchronous Queue Listeners and ServiceMessage PIM 
concepts.

The Ability of MiSAR to Discover the Existence of Non-JVM Appli-
cations: Although MiSAR was initially designed for Java applications 
using the Spring Boot/Spring Cloud frameworks, it demonstrated the 
capability to identify non-JVM microservices. For example, in the 
MusicStore system all functional microservices are developed with 
Steeltoe framework and C#. Similarly, in Trainticket, “ts-voucher-ser-
vice” is developed with Python language, “ts-news-service” with Go 
language, “ts-ticket-office-service” with Node.js and “ts-ui-dashboard” 
with JavaScript as NGINX proxy. MiSAR managed to capture the exis-
tence of those non-JVM microservices by recovering the elements of 
Container, Microservice and ServiceInterface from the Docker Compose 
files and/or POM build files. However, it was not able to recover the 
underlying elements. This indicates the significance of the Docker 
Compose and POM build artefacts to the static approach of architecture 
recovery. In contrast, Prophet’s capabilities are limited to Java based 
systems that use JAX-RS annotations for identifying architectural Ta
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components. As a result, Prophet failed to recover any information for 
endpoints and infrastructural elements lacking support for cross- 
language recovery or the analysis of Docker- or build-based configura-
tions. Furthermore, even in JVM-based services, Prophet’s reliance on 
specific Java annotations restricted its coverage to a narrow set of 
structural elements. In addition, more elements were recovered for non- 
JVM microservices in MusicStore, such as infrastructure pattern com-
ponents and endpoints thanks to MiSAR mapping rules and PSM 
configuration artifacts that were analyzed based on Spring Boot/Spring 
Cloud framework. These findings underscore MiSAR’s greater flexibility 
and broader applicability in heterogeneous microservice environments 
compared to Prophet.

MiSAR support for Traceability and Backtracking: MiSAR mapping 
rules are implemented with Eclipse QVTo, which accomplishes model 
traceability by means of the resolve() function. This traceabilitys can 
allow software engineers to analyze the orders in which mapping rules 
have been invoked and, at any point of the recovery process, retrieve the 
elements previously recovered in order to make updates on their values 
and/relations without re-executing the rules. In order to check the val-
idity of the recovered elements, especially in the case of generating 
undocumented elements, MiSAR includes an attribute named Gen-
eratingPSM to every concept in the PIM metamodel in order to backtrack 
the PSM source element that generated it, by checking the specific lines 
in the artefact that generated those particular PSM elements. This 
attribute records all PSM elements that are involved in the trans-
formation of one target PIM element. The more PSM elements involved 
in the transformation, the more certain the existence of a generated PIM 
element in the architecture is.

MiSAR Extendability: Microservice-based architectures are imple-
mented with a variety of emerging technologies and patterns. The 
MiSAR Platform Independent Metamodel is independent of any tech-
nology and abstracts microservice elements without implementation 
details. It also includes abstract concepts like the Message Destination 
which abstracts communication types: the Endpoint concept represent-
ing synchronous communication and the Queue representing asyn-
chronous communication. If a new communication type emerges in the 
microservice area, they can be added as subtypes, allowing easy future 
extensions. In terms of patterns, MiSAR currently supports five cate-
gories of microservice patterns. For supporting new emerging patterns, 
these can be added into the Infrastructure Pattern Category enumeration 
list in Fig. 6). To illustrate, in MicroCompany system, “api-gateway” 
implements WebSocket pattern and WebSocket endpoints which MiSAR 
does not currently support its technologies. The WebSocket pattern can 
be represented using the existing InfrastructurePatternComponent PIM 
concept with InfrastructurePatternCategory as “Development Pattern 
Asynchronous Message Brokering” or by appending a new category in 
the enumeration type InfrastructurePatternCategory. To support the 
recovery, only the Platform-Specific Metamodel, the related mapping 
rules and parser should be extended for new physical and implementa-
tion technologies. For example, the parser will need to incorporate new 
libraries for parsing the new technologies and abstract them to PSM 
elements.

Empirically deriving a MDA Recovery Approach: In the literature, 
MDA and architecture recovery approaches are often empirically eval-
uated, but few are derived empirically. The benefits for deriving 
empirically our approach include: 1) Researchers and practitioners can 
trace the rationale for our artefacts. This can aid researchers in 
extending and reusing MiSAR artefacts and practitioners in making 
decisions in the adoption of our approach and understanding the 
architectural models produced. 2) Researchers and MDA and architec-
ture recovery providers can repeat our steps and learn how to derive new 
approaches. The main pitfalls for deriving empirically such an approach 
are that it is 1) Time consuming. However, the artefacts are expressive 
and reflect real systems. 2) Empirical Derivation can be influenced by an 
existing PIM metamodel: The research design we followed chose to 
enhance an existing PIM metamodel. To make our results more generic 

and applicable to other PIM metamodels, we created the ”Re-
quirements” which researchers and providers can apply to enhance 
other microservice PIM metamodels.

Microservice Architecture Recovery Benefits to Software Engineers: 
Our evaluation demonstrates that MiSAR’s semi-automatic recovery 
generates architectural models with more architectural elements than 
the developer documentation, identifying inconsistencies and missing 
elements such as Service Dependencies in the documentation. MiSAR 
can help software engineers in obtaining an up-to-date microservice 
architecture documentation either while developing or after system 
development. In addition, MiSAR automatically recovers models in 
seconds. The only step which is semi-automatic is the selection of the 
files of a project to be parsed. This allows users to customize and control 
the scope of the recovery process. This is crucial for teams using different 
technologies and standards, as they may lack the expertise to analyze 
unfamiliar microservices. It is important to highlight a current limitation 
of MiSAR: the absence of automatic change propagation. Our approach 
does not detect changes of source level artefacts such as Docker 
Compose files or configuration files (at M0) which could provoke 
changes to architectural models. As a result, users must manually re-run 
the MiSAR toolset and initiate the recovery process whenever source- 
level changes occur in order to update the architectural model. This 
manual intervention increases the overall effort required from users, 
particularly as the system evolves over time.

9.1. Threats to validity

Internal threats of validity concern factors that impact the integrity 
of the study results. There are four major threats to the internal validity 
of the empirical study.

The absence of applicable concepts: The first one lies in the absence 
of applicable concepts. Activities 1 and 2 were conducted manually 
(extracted, compiled and analyzed), which implies that there could be 
unintentionally a few concepts that are missed out. To mitigate this 
threat, we semi-automatically recovered the architectural model of 3 
systems and compared the recovered models with their actual archi-
tecture and their documented ones.

The divergence of documentation from the actual implementation: In 
the evaluation using the three systems, we had to identify the expected 
architectural elements to be able to measure precision, recall and ac-
curacy. We initially wanted to use the architectural elements of the 
documentation. However, usually, the documentation published by the 
developers diverges from the actual implementation, to mitigate this 
threat: 1) we manually created the actual architecture of the system 
from the source implementation of the systems. Therefore, we were 
aware of cases of divergence and used the source artefacts as the ex-
pected elements; 2) for every architectural element recovered by MiSAR 
we also checked that it existed in the source artefacts.

Bias in the data extraction during the manual recovery: During the 
extraction of the elements from the source during Activities A1 and A2, 
and in the evaluation we had to perform manual recovery. This led to 
encountering different interpretations in the analysis due to authors’ 
bias. To mitigate this threat, the data extraction process was conducted 
by two authors. The first author acted as the data extractor and the 
second author as the data checker. Any disagreements among all the 
authors were resolved by the third author through discussions.

The errors in the source code: Bugs were found in the source code of 
the system. Even though the static recovery process can still run if there 
are bugs in the source code, the resultant model might represent some 
incorrect information. To mitigate this threat, we checked that these 
bugs are not affecting the architecture.

Threats to external validity are related to the generalizability of 
findings: (a) Mapping rules and architectural concepts were derived 
from a limited number of systems, which may limit their applicability to 
a broader range of architectures. If the selected systems do not fully 
represent the diversity of real-world microservice implementations, the 
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proposed approach may not generalize well. To address this threat, the 
initial artefacts were developed using eight systems, and in this study, 
they were incrementally refined with the analysis of an additional nine 
systems. The nine systems were carefully selected to represent funda-
mental and best practices in microservice-based architectures. Further-
more, these systems were chosen based on the availability of rich 
architectural documentation and illustrative diagrams, ensuring suffi-
cient detail for meaningful analysis. Conceptual saturation was achieved 
by identifying recurring microservice types, service dependencies, and 
widely adopted architectural patterns. Additionally, the MiSAR Meta-
model was designed with extensibility, enabling future adaptation to 
emerging architectural styles and technologies. The three systems used 
for evaluation were carefully chosen to cover different programming 
languages, frameworks, and architectural patterns, reducing bias to-
wards a specific technology stack. (b) The current scope of MiSAR 
effectively recovers the architecture of microservice-based applications 
that are developed using Java and Spring Boot/Spring Cloud frame-
works. However, since MiSAR currently only supports static analysis, 
projects developed with unconventional implementations or developer- 

specific logic may be missed during the recovery process. Additional 
evaluations are required to address cases with such logic and further 
improve MiSAR’s applicability.

10. Related work

Although significant software architecture recovery methods exist 
[3,4,45,46], few of the current methods have mainly focused on a sys-
tem that specifically addresses MSA.

One of the few existing works related to ours is MicroART [11] as 
shown in Table 10. MicroART is a MSA recovery approach similar to 
MiSAR, as it uses model-driven engineering principles. There are several 
differences between MiSAR and MicroART as follows:1) The PIM met-
amodel of MiSAR is more expressive as it includes explicitly more 
microservice concepts. MicroART only has 8 concepts, which includes 
Developer, Team, Product, and lightweight communication whereas 
MiSAR has 17 concepts. Having an expressive PIM metamodel allows for 
the recovery of more aspects of the microservice system such as asyn-
chronous communication and infrastructure patterns. 2) MiSAR was 

Table 10 
Comparison of microservice architecture recovery approaches.

MiSAR MicroArt MicroTOM Prophet Microlyze

Year 2020 2017 2023 2022 2018
Tool Support Yes Yes Yes Yes Yes
Analysis/ 

Transformation 
Software Analysis

Static Hybrid (Static & 
Dynamic)

Hybrid (Static & Dynamic) Static Dynamic

Method(S) – Text-To-Model (output: PSM) – 
Model-To-Model, (output: PIM)

Text-To-Model (output: 
MicroArt-DSL) Model-To- 
Model (output: Refined 
Microart-DSL)

Text-To-Model (output: 
MicroTOSCA2) Model-To- 
Model (output: Refined 
MicroTOSCA)

Text-To-Model (output: 
Context Map) Text-To-Model 
(output: Communication 
Diagram)

– Text-To-Model 
(output: 
Adjacency 
Matrix)

Automation Semi-Automated Semi-Automated Automated Automated Semi-Automated
Input Technology / 

Framework Support
– Docker / Docker Compose, 
Maven/Gradle, Spring Cloud/ 
Netflix OSS, Spring Boot/Spring 
Cloud

– Docker, TCPdump Kubernetes, Istio/Kiali – Java Spring – Eureka / 
Consul, Zipkin

Artefact(S) – Docker Compose File (YAML) / 
Dockerfile, POM File (XML) / 
Gradle Files,Configuration Files 
(YAML), Source Files (Java)

Github Repository 
Docker Compose File 
(YAML) / Dockerfile 
Tracing Logs

– Kubernetes Manifest Files 
(YAML) – Kiali Graph File 
(JSON)

– Source Files (Java) – Source Files 
(Java)

Outputs/Architecture 
Ele Artefact(S)

Ments Platform Independent 
Model (PIM) File (XMI)

Refined MicroArt-DSL MicroTOSCA Refined 
Topology Graph (YAML)

Context Map (JSON) 
Communication Diagram 
(JSON)

Refined 
Adjacency 
Matrix

Functional 
Microservices

Yes Yes Yes Yes Yes

Infrastructure 
Microservices

Yes Yes Yes No Yes

Endpoint (Synchronous 
Service Interface)

Yes Yes No Yes Yes

Queue Listener 
(Asynchronous 
Service Interface)

Yes No No No No

Service Operation Yes No No Yes Yes
Service dependency 

(Synchronous (HTTP) 
Communication)

Yes (Endpoint-Level) Yes (Endpoint-Level) Yes (microservice-level) Yes Yes

Service dependency 
(Asynchronous 
Communication)

Yes (Queue-Level) No Yes (microservice-level) No No

Container Yes No No No Yes
Infrastructure Server 

Component
Yes No No No No

Infrastructure Client 
Component

Yes No No No No

Infrastructure (API 
Gateway / Proxy)

Yes Yes Yes No Yes

Infrastructure (Message 
Brokering)

Yes Yes Yes No No

Infrastructure (Circuit 
Breaker)

Yes No Yes No No

Infrastructure (Security) Yes Yes No No No
Infrastructure (Tracing / 

Monitoring)
Yes Yes No No No
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developed empirically using an example-based approach which incre-
mentally developed its artefacts (PIM metamodel, mapping rules) by 
analysing existing microservice systems. MicroART was not developed 
in a systematic approach. It is based on the authors interpretation of the 
needs and characteristics in [7]. 3) MiSAR followed an MDA approach 
and has used the OMG standards such as automatic Model Trans-
formations implemented in QVTo and includes a PSM to represent the 
specifics of technologies, whereas MicroART uses JAVA to implement 
mapping rules. 4) MiSAR purely uses static analysis to analyse existing 
systems. MicroART uses static analysis to obtain knowledge of the sys-
tem and developers, and uses dynamic analysis to obtain knowledge to 
create the architecture. 5) The architectural model is recovered auto-
matically from the PSM in MiSAR, i.e., there is no human intervention 
whereas in MicroART a software architect needs to identify service 
discovery services. The latter can be due to the dynamic analysis nature 
or to the fact that the MicroART PIM metamodel does not have an 
explicit concept for asynchronous communication and associated map-
ping rules.

Another microservices architecture recovery approach is Microlyze, 
by Kleehaus et al. [12]. Unlike MiSAR, MicroLyze does not adopt a 
model-driven approach. Instead, it utilizes a distributed tracing 
component that dynamically monitors simulated user requests. In terms 
of synchronous service interface and synchronous service dependency, 
MicroLyze is similar to MiSAR, where MicroLyze illustrates 
intra-relationships among microservices via the adjacency matrix it 
produces as output. However, MicroLyze does not recover information 
about the queue-based service dependency nor the queue-based service 
interface of each microservice, as shown in Table 10. In MiSAR, this 
information is recovered as Queue Listener and Service Dependency 
concepts. In addition, compared to MiSAR, MicroLyze lacks recovery of 
various infrastructure features, as shown in Table 10.

The microTOM approach [47] automatically analyses 
microservice-based applications by transforming deployment artefacts 
into a model following the microTOSCA metamodel. Differently to 
MiSAR, microTOM uses both dynamic and static analysis but only is able 
to recover synchronous and asynchronous communication at micro-
servicelevel. MiSAR is able to recover both synchronous and asynchro-
nous communication at the endpoint and queue level. It also does not 
fully support deployment and infrastructure features like security and 
monitoring as shown in Table 10.

Prophet [40] mainly focuses on the architecture extraction by using 
automatic static analysis and transforming Java source and bytecode 
artefacts into two separate models: one for a communication view and 
another for a domain view. Like MiSAR, Prophet can analyze Java 
Spring microservice-based projects. However, unlike MiSAR, Prophet 
does not analyze other source artefacts such as deployment, build, and 
configuration files. In contrast, MiSAR emphasizes the recovery of 
high-level architectural elements, including both synchronous and 
asynchronous communication patterns and infrastructure components. 
While Prophet’s code-centric approach allows it to accurately identify 
domain entities, MiSAR offers a broader perspective by employing a 
Model-Driven Architecture (MDA) approach. This approach integrates 
various artefacts—such as Java classes, Spring annotations, Docker 
Compose files, and configuration descriptors—and transforms them into 
platform-independent models (PIMs). Through rule-based mod-
el-to-model transformations guided by metamodels, MiSAR abstracts 
low-level implementation details into rich architectural concepts. As a 
result, MiSAR provides significantly more comprehensive architectural 
coverage than Prophet, particularly in heterogeneous microservice 
systems where code alone may not reveal the full architectural context.

As presented in Table 10, MiSAR is the microservice architecture 
recovery approach that currently supports more technologies. In addi-
tion, it is the approach that has more architecture expressiveness as it 
recovers more architecture elements. This means that the as- 
implemented architectures it recovers are more complete than the 
other approaches. To the best of our knowledge, there is a lack of 

empirical based approaches in MDE and architecture recovery. MiSAR is 
the only microservice-oriented static SAR tool that can reveal the service 
interaction of an architecture as well as the structure of service data, the 
Body Schema attribute of the Service Message. Furthermore, in archi-
tecture recovery, Misar makes a clear distinction between functional and 
infrastructure microservices. Specifically, for infrastructure patterns, 
MiSAR also categorizes them based on whether they act as servers or 
clients. MiSAR considers them as first-class elements in the architecture 
PIM, a feature absent in other approaches. This permits infrastructure 
microservices to have many patterns.

11. Conclusion & future directions

In this work, we present an in-depth empirical investigation into 
microservice-based systems for defining requirements to include in a 
MSA recovery approach. Through this study, we formalized MiSAR with 
the aim of recovering microservice architectures. MiSAR provides semi- 
automatic architecture recovery by implementing MDA artefacts (QVTo 
transformations and ECore metamodels). At the moment, MiSAR re-
covers architectures of microservice based systems implemented in Java 
by the Spring Boot/Spring Cloud framework. The main benefit in 
adopting MiSAR is allowing software engineers to obtain an up-to-date 
architectural model which provides a view of the underlying structure 
of their microservice systems, and thus models can be later used for 
many purposes, such as documentation, obtaining system’s knowledge, 
architectural analysis, maintenance and impact analysis between the 
implemented architecture and the designed one. For future research, we 
plan to use MiSAR in an industrial setting. We have planned an empirical 
study that would allow us to obtain feedback from practitioners on the 
usefulness of the architectural models recovered and the user- 
friendliness of the tool. In addition, the Python Software Foundation 
has recently funded MiSAR to extend its parser and platform specific 
model to support python based microservice projects. We also plan to 
extend MiSAR to support architecture conformance checking and for-
ward engineering. Ensuring consistency between the Platform- 
Independent Model (M2) and the Platform-Specific Model (M1) is a 
significant concern in model-driven engineering. Future extensions of 
MiSAR could investigate mechanisms to maintain consistency across 
abstraction levels—such as automated validation techniques or bidi-
rectional model transformations in order to support system evolution. 
This could be achieved by implementing the mapping rules using QVT-R 
(QVT-Relations), which supports bidirectional transformations, instead 
of QVTo, enabling synchronization between system artefacts and 
architectural models.
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