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ABSTRACT

This paper proposes a strategy for designing Open Radio Access Networks (ORAN) to maximise their energy efficiency using

solar power, supplemented by Reconfigurable Intelligent Surfaces (RIS) and Mobile Edge Computing (MEC). Because grid

power is not always available where these ORAN systems are built, our approach manages the difficulties created by dynamic

energy and timing issues found in isolated environments. The approach concentrates on allocating energy to all transmitters,

CPU speed and RIS phases in real time, subject to strict rules on power use, latency issues and heat. The primal-dual algorithm

Wwe propose reacts to queue and energy changes to update the dual variables and control policies without access to every channel

parameter. Our combined (composite) cost function measures energy use, delays encountered by users, reliability of the SINR

and fairness. Results from the simulation indicate that using the proposed method lowers energy usage by 25% and average

delay by 18%, outperforming baseline models under varying solar and traffic patterns. Robustness is further validated through
sensitivity and ablation analyses. This work demonstrates the feasibility of deploying sustainable, intelligent ORAN in-
frastructures in remote 6G scenarios where conventional power and connectivity are unavailable.

1 | Introduction

While 5G is geared towards increasing capacity, 6G will intro-
duce systems that are both very dependable and responsive to
delay and just as important, are designed to work intelligently
and sustainably [1, 2]. They are expected to function beyond a
micro-millisecond delay and more than one gigabit of data
transfer at one time, working independently in terrestrial, aerial
and satellite environments. Among these services, extending
reality (XR) and managing factory processes automatically, from
a distance, each will need energy efficiency, as well as secure
processing and real-time delay monitoring, in place [3].

At the heart of these developments is ORAN which replaces the
old base station with a modular, programmable and virtualised
design. ORAN organises the base station into the Radio Unit
(RU), Distributed Unit (DU) and Centralised Unit (CU) and all
three work together using agreed open interfaces [4]. Connex-
ions made using enhanced Common Public Radio Interface
(eCPRI) between RU and DU, the F1 interface joining DU and
CU and the E2 interface tied to the RAN Intelligent Controller
(RIC) support various technology vendors and AI plasticity.
Because ORAN separates functionality and supports running
new code throughout use, it gives the adaptability necessary for
network orchestration and adapting to changing requirements.
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Nonetheless, running ORAN in settings where the grid is not
available creates special challenges for operators. Remote rural
regions, high mountains and recovery areas after disasters lack
reliable electricity, so base stations there rely completely on
renewable energy. The use of solar energy for power makes
radio and the delivery of sensitive services unreliable because of
constant changes in weather and lack of storage space which
causes variability in the technology [5].

When signals are easily degraded in tight conditions, Recon-
figurable Intelligent Surfaces (RIS) are being used as a key so-
lution. The phase of incoming electromagnetic waves is shifted
through passive adjustments in a RIS panel to make passive
beamforming possible [6], so signal reliability is high along with
better spectrum use and non-line-of-sight communication
without using active RF devices. With the use of RIS within the
ORAN model, challenges involving power, phase synchronisa-
tion and instant energy conditions require that related solutions
be synchronised.

MEC (Multi-access Edge Computing) is an inclusion in this
group because it places time-sensitive and data-centred tasks
almost next to users. With MEC nodes within or next to RUs,
users have a simpler way to offload tasks, do local analysis and
cut down on cloud or backhaul connexions. Still, planning tasks
on MEC servers is essential, because the power may come from
renewable sources and packaging of tasks must consider their
priority, stored power and the peak temperature of equip-
ment [7].

Much research has been done on solar-conscious energy routing,
RIS beamforming and MEC task planning, but most scholars
have rarely looked at them all at once. A tiny amount of research
address the question of how to combine optimising energy har-
vesting, RIS arrangement and MEC use in a completely ORAN
theory. Additionally, applying control in critical safety situations
does not allow usual reinforcement learning methods to converge
or be used with ease for generalisation [9].

We recommend an optimised stochastic structure which works
in the setting of fully off-grid Open RAN networks. With this
model, these three associated layers are brought together: (i)
capturing solar energy and making energy plans, (ii) perfecting
signals with RIS and (iii) setting up and selecting CPU tasks for
the MEC system. This basic mechanism is formed as a non-
convex, constrained problem and worked out -effectively
through stochastic primal-dual Lagrangian decomposition.
Thanks to this approach, the outcomes can be implemented,
updating the convexified dual variables and SINR constraints.

A diagram is shown (Figure 1) to illustrate how solar units,
DU/CU tiers and the RIS modules function with the tracking
system.

The primary contributions of this paper are as follows:
1. A mixed framework for ORAN that brings together RIS

beamforming, scheduling of MEC applications and energy
harvesting without a grid, with live control managed by

Off-Grid Open RAN Architecture
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FIGURE 1 | Energy-conscious off-grid ORAN builds on solar-powered remote units, separate DU/CU functionality, RIS components and a means

for core network connection.
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the RIC and choices made close to the MEC nodes in real
time.

2. This method is scalable, uses queue-state information and
relies on fairness-oriented utility functions for stable
behaviour in uncertain scenarios.

3. The use of realistic simulations of solar activity, human
motion and complicated user tasks proved that the design
offers better energy gain, reduces wait time and controls
stability for the signal to interfering noise ratio, over the
original approaches.

The progress of the paper is summarised below. It describes and
assesses many solutions, highlighting the weaknesses found in
today's approaches. Details of the system model and the rela-
tionship between energy, wireless and computational systems
can be found in Section 3. The framework for optimisation is
fully explained in Section 4. Finally, the simulation results and
their comparisons can be found in Section 5 and the article
finishes with some concluding thoughts and suggestions for
continuing research.

2 | Related Work

Building sixth-generation (6G) networks calls for structures that
surpass previous goals for throughput and latency, caring about
environmental protection, using smartness across many ele-
ments and ensuring they remain reliable. They most strongly
apply when backup is needed in rural areas, by themselves-
running processes and during emergencies. Multiple experts
are now considering how convergence of Open Radio Access
Networks (ORAN), Reconfigurable Intelligent Surfaces (RIS),
Mobile Edge Computing (MEC) and energy harvesting (EH)
technologies can help solve these problems. To date, making all
these domains work together within a general optimisation
scheme is still largely undeveloped.

NEW ORAN allows cellular infrastructure to be built with up to
three separable parts: a Radio Unit, a Distributed Unit and a
Centralised Unit. Components linked by standardised connex-
ions such as eCPRI, F1 and E2 are managed by the RAN Intelli-
gent Controller which creates the requirement for xApps and
rApps (i.e., near-real-time and non-real-time RAN applications,
respectively) for both real-time and practical control. A lot of
research and development [8, 9] focus on modularity, compati-
bility and AI management in ORAN, but mostly use an assump-
tion of constant grid power. Recent studies on solar-powered
ORAN only consider a few areas, ignoring the way channels
behave, the need for real-time restrictions and adaptable beam-
forming which limits their usefulness for practical models.

MEC contributes to ORAN by moving computation near the
edges, so latency is reduced and a burden is lifted from central
cloud servers. While many studies have examined ways to off-
load dynamic tasks using optimisation or reinforcement
learning, they usually forget about the changing power levels
found in off-grid environments. In addition, the combined
impact of energy arrivals, temperature limits and users'

individual delays is rarely looked at with RIS and distributed
control systems.

It is now recognised that RIS technology can improve wireless
propagation by automatically changing how passive reflectors
work. With millimetre waves, spectral efficiency rises and two
devices can communicate even if they are not in a direct line of
sight. Single-user and vehicle environments use initial research
based on passive beamforming [5, 10]. Even so, putting RIS into
practise with the ORAN model is still at an early development
stage. These common assumptions such as constant channel
and power information, do not fit the actual energy and delay
metrics found in ORAN networks using solar energy which
require RIS phase selection to adjust. In most cases, the links
between RIS control, task scheduling in MEC and optimisation
via the RIC are overlooked.

Using solar energy is a preferred method for powering autono-
mous deployments of ORAN. This research looks at solar
models [11, 12] that cover controlling energy supply on uncer-
tain days, monitoring batteries and simulating photovoltaics.
Even so, they are usually not connected to the real-time func-
tions of a programme or system. It is unusual to find assess-
ments of how intermittent energy affects beamforming or how
stable mobile edge cluster queues remain using ORAN models.
Even the most advanced studies such as [8, 13], only cover
single aspects of improving a system.

In the case of ref. [9], a deep reinforcement learning model is
put forward to manage delay in RIS-MEC systems, assuming
power is always accessible. At the same time, the design is not
designed for how unreliable renewable energy can be or how
batteries or heat impact the system in areas without a grid [14].
It is developed to improve how tasks are placed and does not
involve RIS management or real-time beamforming control.
Besides, because the system is built around a core network, it
cannot support cases where devices have to work independent
of the core server [15] and similar research investigate dual
decomposition for solving spectrum issues in 6G, but no detailed
model links energy levels, latency and signal accuracy in situ-
ations with power constraints.

In this research, we bring together solar energy collection, RIS
beamforming management and MEC scheduling in a single
framework designed for off-grid ORAN. The system changes its
strategy automatically to handle real-time changes in energy,
delays and channels and doing so uses the RIC and the antenna
nodes at the edge for robust coordination.

In Table 1, the most important recent studies are compared,
based on ORAN support, RIS-MEC integration, being efficient
for off-grid scenarios, strong delay resistance and supporting
instant optimisation of results. It is shown by the data that no
published project has brought together all these components in
an efficient and scalable manner for 6G operations.

By analysing how energy, computation and communication
work together in off-grid 6G, our study meets a new standard for
strong, scaled and intelligent networks.
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3 | System Model

3.1 | System Architecture and Energy Modelling
We now explain how the off-grid ORAN network with RIS and
MEC is structured and how energy is modelled. The system is
set up with scheduled time periods ¢ € {1, 2, ..., T}, during which
each RU relies on solar energy, stores it in a local battery and
handles its tasks. The system consists of three separate layers as
illustrated in Figure 2.

Photovoltaic panels and battery modules make up the Energy
Layer which supports the rest of the structure. Solar irradi-
ance is captured by these units and they change it into useful
power with the highest efficiency over the panel surface.
Based on

Py(t) = 0, ApSp(D), )

the amount of power gathered is set by irradiance, the area of
the panel and the efficiency it has [22].

We measure the total energy gathered in every time slot by
multiplying the power by the interval over which it was
collected, using

Ef(£) = 0, ApSp(D) - At. )

The total energy source on the horizon is added into
T
EY(T) =) ExD), 3)
t=1

helping to analyse if the system will last long-term.

In this paper, we only consider a uniform solar irradiance
process Sp(t) and fixed photovoltaic efficiency 7, across RUs.
This modelling decision deliberately abstracts spatial variability
in order to provide a clean and comparable evaluation of MOAC
under uniform off-grid conditions. While real-world de-
ployments will have an inherent heterogeneous irradiance due
to environmental spread, such an abstraction is standard prac-
tice in system-optimality problems [26], especially when algo-
rithmic performance, not environmental detail, is the interest.
In subsequent work this assumption could be relaxed, and other
location-specific solar profiles or variable hardware parameters
could easily be introduced.

A K-state Markov model is used to describe solar irradiance,
with transitions modelled by

P[Sb(t + 1) = s]|Sb(t) = Si] = HU (4)

A K-state Markov model is used to model solar irradiance, where
transitions between states depend on a stochastic matrix

TABLE 1 | Comparison of related work in RIS-MEC-ORAN research.
Work ORAN-aware RIS + MEC integrated Off-grid EH support Delay-aware Real-time optimisation
[16] v X X X X
[17] X Partial X v X
[18] X v X Partial X
[19] X X v X X
[9] Partial v Partial v Partial
This work v v v v v
Energy-Aware Optimization for Off-Grid Open RAN
Components
10) N
i
— (( >)
P
v(t) PV Panel ’ F ”
®) Ll Y & DU
L Open RAN N
Componetss RIS
Panels|
. (
e Hin i (
PV Panel TE=“ : | Ui
PV (8 |
—> Energy flow
—> Energy flow 9
—_ ----» Control flow
---2 Communication flow e
Logical interfaces (e.g. F1,E2)
FIGURE 2 | Energy flow and storage model for solar-powered ORAN node.
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I = [n,]] € R¥*K In the name of replication and transparency,
we present the transition probabilities we used in our simula-
tions. For K = 4, the transition matrix is given by the following
equation:

07 02 01 0.0
01 06 02 01
0.0 02 06 02
0.0 01 02 0.7

Every element m; represents the probability of transitioning
from state s; to state s5; in the next time period. The proba-
bilities were chosen from observational data that represent
typical irradiance behaviour for situations faced in the off-
grid space, where irradiance can shift throughout the day
due to cloud cover or angle of the sun. This form of
modelling aligns with recent work in the literature, such as
Hou et al. [21] who apply Markov-based models that explic-
itly use transition matrices to realistically nowcast solar ra-
diation profiles.

The evolution of the probability distribution over the irradiance
states follows:

z(t+1) = z(t) - I 6)

T defines the number of slots and [22] provides details about its
real behaviour.

The dynamics of the battery storage are governed by the
following equation:

Ep(t+1)= min(Emax, max <O, E;j () + ninEZ(t) - %», @)

out

which captures how the stored energy Ej(f) at time ¢ + 1
evolves based on the harvested input EZ‘(t), consumption Ej(t),
and charge/discharge efficiencies 7;;, 7y, The term Epax de-
notes the maximum battery capacity.

The current model assumes ideal battery behaviour with fixed
capacity and no degradation or abrupt failure. This abstraction
is adopted to focus on evaluating MOAC's responsiveness under
dynamic energy and traffic conditions. In practice, however,
battery ageing and state-of-health degradation can significantly
impact sustainability and reliability. To acknowledge this, future
extensions of the model may integrate degradation-aware pro-
files or probabilistic failure models, in line with approaches
such as refs. [28, 29].

Modelling the related energy losses is part of

AE)oss(t) = (1 - nin)EZ(t) + (1 — 771

out

)Ez(o. ®)

We measure the average battery charge over time in

T
E=y DEEOL ©)

and
P[E(H) < Em] <€, (10)

makes sure that reliability is enforced by preventing the stored
energy from dropping below a necessary threshold Ey,.

System availability over a long period is measured by the
following equation:

T

D A[E(0) < Eu], (11)

t=1

Ry=1-

S

and energy supply and demand gaps are shown by the following
equation:

T
Dy = 3 2 B 0] (12)

These expressions support the main structure of energy-aware
modelling in ORAN. The whole process of deciding on re-
sources and schedules depends on the energy model.

“The key mathematical symbols pertinent to energy harvesting,
storage dynamics, and power consumption are presented in
Table 2, which are consistently referenced throughout the
model's subsequent discussion. To visually enhance this
abstraction, the entire setup of the proposed standalone ORAN
framework, incorporating RIS modules and MEC servers, is
depicted in Figure 2.”

3.2 | Channel and RIS Beamforming

Now, we review the ways in which Reconfigurable Intelligent
Surfaces (RIS) modify wireless channels in an off-grid ORAN
environment. In regions where buildings cause signal loss or
signal attenuation is strong, RIS modules allow the signal to be
programmed for better communication. All RISs are made up of
elements and every element generates its own phase shift all the
time.

0,(t) = el?® (13)

The signal phase ¢,(t) is shown in the equation to be responsible
for controlling the electromagnetic response of the surface [5].

In this way, users can receive signals from the base as well as
from a reflection on the RIS. The base station sends signals
directly to the user and also through several RIS-reflected paths.

R
hEE () = W () + > 6,(Ohupr (DR (D). (14)
r=1

How well each contribution works depends on the product of
the channel coefficients between the base station and RIS, be-
tween the RIS and the user and the reflection coefficient.

Usually, the RIS phase vector can be represented by a diagonal
matrix.
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TABLE 2 | Summary of symbols and Notations used in the model.
Symbol Definition
L) Interference power received at user u
Qun Maximum task queue threshold
P‘;yn(t) Dynamic CPU power consumption at RU b
pat Static leakage power at RU b
Eaec(t) Accumulated consumed energy up to time ¢
Eo() Total harvested energy available at time ¢
(1) RIS reflection coefficient (&)
¢, Phase shift at RIS element r
fu(® CPU frequency allocated to user u
PX(t) Transmission power of RU b at time ¢
P Control-plane operational power
hfo(t) Effective wireless channel from RU b to user u
Sp(t) Solar irradiance at RU b at time ¢
Ap Solar panel surface area
M Solar energy conversion efficiency
END) Harvested solar energy at RU b
E;(T) Cumulative harvested energy up to time T
Dins Dout Battery charging and discharging efficiency
E; (1) Stored battery energy at RU b at time ¢
E; (1) Energy consumed by RU b at time ¢
Fp Maximum CPU frequency budget at RU b
Proax Maximum transmission power limit
Thin Minimum SINR threshold
SINR,, (1) SINR of user u from RU b at time ¢
D, (¢) End-to-end delay experienced by user u
Dy Maximum tolerable delay for user u
Q.1 Task queue length for user u
L, Computational task density (cycles/bit)
Au Task arrival rate for user u
At Time slot duration
Ak Lagrangian multiplier for constraint k
Qg Dual variable update step size
g(0) Constraint violation term for constraint k
J(t) Jain's fairness index at time ¢
Ci(t), Cp(t), Co(t), Ca(t), Cr(t) Cost components: Energy, delay, SINR, battery, fairness
Ciotal () Total composite cost function
a(t) Control action vector (power, CPU, RIS, scheduler)
Wg, Wp, Wr Weights for energy, delay, and thermal penalty
o? Noise power

All passive elements have a total channel vector that is:

h

O(1) = diag(e"®, ..., e1:®).

total
bu

(©) = hD(®) + hy,(£) O(t) hyu (D).

(15) We depend on these formulae to model advanced wireless prop-
agation for 6G [5, 10]. The user's SINR can be written as follows:

X eff 2
SINRy () = PRI

. 17
(16) zb(;ébpg(t)mle)fi(t)'z P 17)
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The ratio is influenced by the way the RIS is set up. The
achievable rate is defined by both the bandwidth and the SINR.

R, (t) = Wlog,(1 + SINRp,(1)). (18)

Using this allows for direct evaluation of performance. The
behaviour of the RIS should be improved by considering how
different phases affect the effective channel. That is why the
gradient of the effective channel for each phase shift is calcu-
lated as follows:

ohg (0)
09,(t)

As a result, gradient-based changes to the RIS are possible.

= jejd}r(t)hbr(t)hru(t) (19)

In more advanced applications, a number of RIS panels are
needed. The effective channel is created by the way light
bounces off every surface.

Neis R

hen () =h) () + Y > O Ohpir(Ohin (). (20)

i=1 r=1

In the above equation we assume that the RIS has ideally
continuous-phase shifts at each RIS element. In practice, there are
normally hardware limitations such as phase quantisation (e.g., 1-
bit or 2-bit phase resolution) and thermal noise. Typically, the
quantised phase quantisation can impact the performance of
precise beamforming and also create signal degradation in the
channel. Future extensions can incorporate discrete-phase
models and noise-aware channel models as done in refs. [27, 30].

This way of thinking helps more people use the network and
allows them to use the same area in a variety of ways. Figure 3
illustrates that users receive signals from the RU by direct and
reflected paths.

The inclusion of these expressions allows RIS beamforming to
be matched with power and CPU scheduling, thus letting the
ORAN system address various channel conditions, low energy
and nearby interferers.

O mEEm

FIGURE 3 | The RIS helps in off-grid ORAN by adding direct hy,
and reflected signal paths.

3.3 | Local MEC Computation and Scheduling

Each computation task is represented as a tuple (x, 8y, 7y)
indicating x, is the number of CPU cycles required for pro-
cessing while §, is the size of task data in bits, and 7, is the
deadline by which the task must run. These tasks are generated
thus locally at the RU level and are to be executed on embedded
MEC modules generating local processing capabilities, rather
than an external cloud server.

As soon as we must model the processing behaviour, we note
that we assume that the MEC processor in RU b operates at an
adjustable frequency f(t) at time slot . The energy, consumed
to execute a task that has x, cycles at a frequency is defined as
follows:

EYoC(0) = Sfp(0) - xu, (21)

where ¢ is the effective switched capacitance coefficient for the
processor. The corresponding processing delay is defined as
follows:

Ky

PO=50

(22)

In order to adhere to latency guarantees, we have enforced a
delay constraint that states that DP™°(¢) < 7,,. The MEC proces-
sor is adaptive and utilises available energy at any given time,
Ej (1), and urgency of workload to adjust f,(t), thus allowing for
a trade-off on a delay scale versus battery conservation.

This delay-aware, energy-constrained framework for task
execution appropriately models the realistic operation of
embedded edge computation in off-grid ORAN systems, and
continues the patterns of models in the mobile edge computing
literature [32, 40].

3.4 | Task Queueing and Delay Modelling

Accurately modelling task queueing and delay helps provide
timely service when energy and computational resources are
limited in off-grid ORAN systems with MEC. Tasks produced by
every user are held in a queue and can be processed on the local
device or transferred to the MEC server for processing.

Let Q,(¢) indicate the amount of packets waiting in queue for
user u in time slot ¢. The queue's behaviour changes as the rate
of tasks arriving and being served changes.

Qu(t + 1) = max{0, Q,(t) + Au(t) — u,(1)}. (23)

The system is able to manage load by adapting, where 4,(t)
shows the load coming in and u,(f) is the number of bits
handled in each slot ¢. With this simple recursion, we can study
how the queue is stable.

The user's service rate depends on the CPU frequency they are
given and the difficulty of their task.
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fu@®
L)’

() = (24)

In this section, f,(t) represents the cycles per second speed of
processing and L,(t) represents the number of cycles necessary
to process one bit.

At any time, the queue size can be found by taking an average of
past queue sizes.

T
H[Q]) = lim . 37 0,00 (25)
t=1

By measuring this metric, we can predict delays and see how
closely related it is to the stability of the system as shown in
ref. [23].

Every user's end-to-end delay is made up of transmission delay,
processing delay and queueing delay. Every one of these is
designed separately.

To send a task bit over the wireless link takes the transmission
delay which is:

L,(1)
R, ()’

where R,(t) is determined by the SINR of the user's data.

D) = (26)

The processing delay means the time it takes to execute a task
on either MEC or RU.

L,(®)
f®

Dy(n) = 27)

Little's Law [25] says that queueing delay is directly connected
to the length of the queue and inversely connected to the service
rate.

Lu(t)

30} (28)

D) = Qu(0) -

For this reason, the overall delay for an infinitesimal interval is
gained from adding all three parts.

Dy(t) = D (t) + DI (¢) + DE°(D). (29)

In these systems, the delay must always be lower than a defined
limit. For this reason, the latency violation probability is defined.

P = P[D,(t) > DT*]. (30)

The probability is used to evaluate Quality of Service and
maintain responsiveness.

We use the Pollaczek-Khinchine formula from M/G/1 queueing
theory to improve the model by estimating the expected
queueing delay.

F[Dgueve] p L. 21 (31)

Utilisation factor is shown by the symbol p,. This finding helps
characterise the delay in systems where arrivals come in
clusters.

An Exponentially Weighted Moving Average (EWMA) filter is
used to fix problems with temporal delay fluctuations.

Dy(t + 1) = apD,(t) + (1 — ap)Dy(1). (32)

The filter coefficient ap € (0, 1) is used to control the effect of
new delay observations.

To explicitly model the tradeoff between energy consumption
and delay, we define the following weighted objective:

5O =@ Du(t) + (1 — @) - EP(r). (33)

In this case, the symbol D,(t) denotes the filtered overall delay
(see Equation (32)), while E"(t) denotes the energy used by the
user's local processor during task execution. The scalar variable
w controls the trade-off between delay sensitive and energy
efficient.

For example, in safety-critical applications where timely re-
sponses are essential, we may expect w values for low latency
operation—perhaps close to 1. In battery powered applications
where energy consumption must be minimised, we may expect
w values that allow for energy saving actions, even with finitely
more delay time. Using this approach to create utility, we can
tailor application specific system behaviour to meet the re-
quirements of the application while also reassuring compliance
to recent energy-delay co-optimisation [20].

This bespoke utility function Ju(t) can be incorporated into the
overall optimisation objective to determine a control policy. The
value of @ controls decision making logic: a value closer to 1
will favour timing and control latency while lower values will
benefit from energy savings, relaxing timing constraints.

All of these expressions, thus, propose an (initial) comprehen-
sive, simple way to quantify queueing and latency in ORAN
networks that require real-time services.

3.5 | Optimisation Objective and Constraints

The key aim in this framework is to boost the performance of an
off-grid ORAN network by controlling power allocation, RIS
phase shifts, CPU usage and task distribution together. There
are several constraints in optimising this system, including ac-
cess to energy, maximum latency, limits to processing power
and signal quality.

The network controller sets the time horizon to T and, at every
slot ¢, plans the control actions a(t) which contain power levels
PX(f), RIS phase vector ¢(t), CPU frequencies f,(t) and task
arrangements.

The objective is to minimise the total cost of the system.
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T
J= Z Z WEElc,(t) +wp Z Du(t) + WTPthermal(t) . (34)
t=1 beB

u€lh,

S

Note: The weights wg, wp, and wr in the objective function
were selected via an empirical approach to represent the relative
importance of energy efficiency, latency, and thermal safety. For
instances where latency is a factor, a larger value of wp is used
to prioritise responsiveness, whereas in energy constrained in-
stances a higher value of wE is used to capture energy conser-
vation. Likewise, because thermally aware instances are
concerned with excessive heating, the value of wy was larger for
such instances—and therefore penalised excessive heating. The
created weights were fixed in all simulations for proper
benchmarking; however, future efforts can examine systemed or
live tuning of the weights as the conditions of the ORAN change
[23, 34].

There are limits to what the system can handle which affect how
optimisation works.

1. All RUs must operate within the energy capacity of their
batteries.

E5(0) < E(0). (35)

This allows for the lasting operation of systems that are not
connected to the grid.

2. A RU must not use more CPU capacity than the maximum
frequency it is allowed.

D fult) <FP. (36)

uelt,

It prevents the device from overheating and becoming damaged
by too much power [34].

3. Each RU must ensure that its transmission power does not
exceed the hardware's allowed range.

0 < Pi¥(t) < ™, (37)

This results from the limitations of the amplifier [35].

4. Each element's phase must always be in the range from
0 to 2m.

¢, elo0,2n), Vre{l,..R} (38)

5. All users must have a minimum SINR level to maintain
the reliability of the link.

SINRbu(t) 2 I'min- (39)

It addresses constraints related to the quality of service

(QoS) [36].

6. Each user should not experience more delay than what
they can handle.

D,(t) < DJ™. (40)

7. The system needs to remain stable, so the expected backlog
must not grow infinitely.

E[Qu(0)] < co. (41)

By joining the objective in Equation (34) with constraints (35)-
(41), we design the final optimisation problem.

min J, (42)
fa(O},

affected by boundaries Equations (35-41)

With this, the mathematical base for optimisation in the pro-
posed ORAN architecture is finished for off-grid and con-
strained situations.

4 | Proposed Optimisation Framework

The section to follow explains a formal and practical method for
the stochastic resource allocation problem described earlier.
Trying to keep long-term energy costs at a minimum is impor-
tant, as you follow all the given rules.

Because SINR is nonconvex, we use a Lagrangian-based sto-
chastic primal-dual strategy, following the approaches in ref. [31].

To facilitate to a more manageable problem, we will approxi-
mate the more complicated (nonconvex) SINR constraint with a
simple way of first-order convexification. In particular, we will
apply a successive convex approximation (SCA) process that
linearises the nonconvex portions about the current iterate
while converting the original constraint into a locally convex
form that may be solved efficiently in each recurse of the opti-
misation routine. This means the primal-dual optimisation
routine operates in convex domains while often converging to a
good solution (local optimum). A complete derivation and check
of the convexification is detailed in Appendix C, where we show
how we applied the Taylor-series expansion of the SINR
expression, and characterise the convergence behaviour of the
expansion under the update rules we propose.

4.1 | Formulation of the Lagrangian and
Integrated Solution Approach

We address the stochastic concern in ORAN with help from the
limited main grid energy by using a quick and adjustable
primal-dual Lagrangian technique. The values of the nonnega-
tive Lagrange multipliers for constraint functions are shown by
A = [A, A, .., Ak]. For every time slot, the instantaneous
Lagrangian function displays the overall cost of the system.
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K
‘C(a(t)’ A') = WEEICJ(t) + WDZDu(t) + WTPthermal(t) + Z /lk : gk(t)-
u k=1

(43)

Control is shown by the a(t) action vector and when the k-
constrained step is not followed correctly with gi(t). It is hoped
that keeping costs down and meeting the problem's limits be-
comes possible over the long-run through dual optimisation. For
this reason, we focus on the following goal:

1 T
b= D E[L(a(e), V)], (44)
t=1
minmaxJ;. (45)
a(t) A>0

It covers both the central problems of stochastic management
and includes considerations for energy usage. Alternating be-
tween primal and dual updates form the main algorithmic
approach. Once we set the time interval, our task is to calculate
the control function that minimises Lagrangian.

a*(t) = arg main L(a(t), A(D)). (46)

In this update, the transmit power, central processing frequency
and beamforming functions of the RIS are chosen following
their physical bounds. The results from these calculations allow
for finding a solution where all essential limits of energy, delay
and signal clarity are controlled.* Initialising with the Wallis
variable, recalling its impact on the dual variable is then
strengthened through subgradient ascent.

Alt+1)= max{O, () + a - gk(t)}, 47)

(¢ + 1) = min{Ae (¢ + 1), A7}, (48)

On a bigger system, each time slot takes more work and is
shown as follows:

OB+ U+R+K). (49)

B is the number of radios, U is the number of users, R is the
number of antenna system components and K is how many
constraints exist. Accordingly, this system of maintenance is
best when handling major volumes of system work. The opti-
misation framework is contained in the logic of the Open RAN
architecture. When Radio Units sensor the environment, they
update Local Power and RIS by reporting recent channel and
energy conditions. The server CPU is distributed depending on
how quickly a service is need and the wait time for each
application. With heuristics, the RAN Intelligent Controller
adjusts the dual variables while keeping all global constraints.
As long as some portions of localisation and power remain
invisible and the system is energised occasionally, my approach
performs effectively in 6G and beyond.

4.2 | Step-by-Step Primal-Dual Procedure

The approach put forward in this subsection is to break the
optimisation framework into three coordinated modules for

easy implementation with Open RAN. Every module is
responsible for one area of resource control, including power
distribution, deterministic and stochastic beamforming and
processor scheduling, so that costs drop with time as different
constraints are met.

The functionality of this function is attained by giving roles to
the MEC nodes for nearby processing, the RIS controllers to
handle signal reflective parameters and the RIC to focus on
optimising Lagrange multipliers.

e Algorithm 1: Top-level primal-dual coordination loop for
multi-resource control.

e Algorithm 2: RIS phase update for SINR enhancement
under energy feasibility.

e Algorithm 3: CPU allocation based on queue backlog and
delay bounds.

The use of these algorithms depends on a hierarchical optimi-
sation approach that stresses meeting global restrictions and
operating with near-optimum control, all without requiring
complete, real-time observation of every module. A breakdown
of who does what on the RIC, RIS xApp and MEC servers can be
viewed in Table 3. Moreover, the information in Table 2 covers
the control logic particular to RIS. The primal-dual controllers'
architecture is shown relating to the ORAN system components
in Figure 4.

ALGORITHM 1 | Top-Level Primal-Dual Algorithm

Input: Initial dual variables 1(0), step sizes {ax}, system
parameters T, B, U, R
Output: Control actions {a(t)} fort = 1to T
For each time slot t = 1,2,..., T:
« Observe system state: hy, (), Sp(t), Q,(t)
« Update RIS phases via Algorithm 2
« Allocate CPU via Algorithm 3
« Update transmission power Pi¥(¢)
« Compute constraint violations gi(t)
« Update dual variables: 4,(t + 1) = [4(t) + i - g()]*
« Project duals: A,(t + 1) = min(A(t + 1), A7)
Return: {a(t)}, A(T)

ALGORITHM 2 | RIS Phase Update

Input: Channel states hy,(£), by (), transmit powerPp(t), SINR
target I'min
Output: Phase vector ¢(t)
For each RIS element r = 1 to R:

« Compute gradient: V5 SINRy,()

« Update phase: ¢,(f) < ¢.(t) + 71y - Vy,

« Project phase to valid range: ¢,(f) < mod(¢,(t), 27)
Return: ¢(¢)

ALGORITHM 3 | CPU Frequency Allocation

Input: Queue states {Q, (1)}, latency bounds {DT*}, CPU
capacity Fj'®

Output: Allocated frequencies {f,(1)}

For each user u = 1 to U:
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« Estimate required frequency: f;/% = L,(¢) /Du“lax

+ Add queue-based priority: f,(f) = f;;9 + 6- Q)
Normalise: Rescale Y, f,(f) to fit within F;*** if necessary.
Return: {f,()}

Our work in Appendix C includes analytic results showing that
the algorithm converges and the queues in the system stay stable.

5 | Simulation and Evaluation Environment
5.1 | Simulation Setup and System Configuration

The simulation was configured using standard protocols. In
order to confirm our framework, we construct a realistic
simulation environment for a 6G off-grid Open RAN setting.
The area for the simulation is 1000 X 1000 and three radio units
(RUs) are put in it to give the whole region area coverage. Solar
energy fuels every RU which also features a multi-access edge
computing (MEC) server for processing work on site. Every RU
is assisted by a reconfigurable intelligent surface (RIS), made up
of 64 programmable reflecting elements. The RIS is able to
change the signal environment in real-time, boosting how well
signals reach users in nonvisual line-of-sight areas using
reflection. Seventeen mobile users travel randomly according to
a waypoint model. All users are modelled as producing
computational tasks according to a Poisson process with an
average arrival rate of 4, = 1.5. Each bit of the key is protected
an average of 750 CPU cycles. Criteria for modelling the wireless
channel are taken from the 3GPP TR 38.901, bringing in Ray-
leigh fading, log-normal shadowing with 8 dB standard devia-
tion and path loss that gets stronger at greater distances.
Background noise is modelled as white Gaussian noise with
0 dB mean and 650 mV square root over —97, while power
transmission is not allowed to go above 2. A SINR threshold of
5 dB is used and each task should be completed inside a 20 ms
latency limit. Every RU is run using a battery capable of storing
150 J of energy. A four-state discrete-time Markov chain is used
to account for changes in weather and the irradiance levels in
the system range between 200 and 1000 watts per square metre.
Rates of battery charge and discharge efficiency are 0.85 and 0.9,
respectively. Each time slot is 100 milliseconds, so there are a
total of 1000 slots which means operation time is 100 s. Each
RIS phase has quantised values of eight levels in [0, 27t] and the
MEC CPU allotment for every RU is dynamically shared among
active users, each at 12 GHz. Figure 1 shows how RUs, RISs,
user devices and important signal and energy paths are arranged
in the general system.

All simulations are done in MATLAB so that control algorithms,
stochastic models and evaluation metrics can be used together.
All of the parameters we used are shown in Table 4.

TABLE 3 | Mapping of optimisation algorithms to ORAN components.

All the parameter values used here are based on common
practises and ranges given by recent ORAN and RIS-using MEC
papers such as [10, 37-39]. Where actual numbers from exper-
iments could not be found, we set up baseline conditions and
limited the evaluation within the constraints allowed.

5.2 | Signal Quality, Energy Sustainability, and
Latency Trade-Offs

Some SDN controllers have to choose between better signal
quality, sustainable energy use and quicker processing of
network packets.

This section presents a close examination of performance in
three main areas using metrics for signal quality, energy effi-
ciency and reaction speed (latency). These results give us clear
insight into how decisions made in ORAN are influenced by
tight resources, renewable electricity and operating where the
transmitter and receiver are not easily connected by sight.

5(0) 0og
oo

RIS
i

Stochastic Primal-Dual
Algorithm

a*t) = m(h(t), Q(£), 5(1); A1) UE

DU
— Energy —— Delay Queue
— Battery state ---- Channelstate, Channel state

FIGURE 4 | The proposed framework is modular in its approach to
improving energy use in off-grid ORAN networks. The schematic
shows the way control and resource variables are managed in several
system layers, covering RIS phase adjustment (4;), CPU frequency
regulation (A,) and deciding on how much power to use
according to the battery's charge level (A;). At the RIC, we
combine these processes using updates to the Lagrangian dual
parameters Ay (f).

Algorithm Unit Objective Executed by
A1l: Primal-dual procedure RIC Cost minimisation Near-RT RIC
A2: RIS beamforming update RIS SINR maximisation RIS xApp
A3: CPU frequency allocation MEC Delay minimisation RU/MEC
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TABLE 4 | Simulation parameters used in the evaluation.

Parameter Symbol Value
Deployment area — 1000 x 1000 m?
Time slot duration At 100 ms
Simulation horizon T 1000 slots
Number of base stations B 3
Number of users U 15
RIS elements per RU R 64
Solar irradiance states K 4 (Markov chain)
Irradiance range Sp(t) [200, 1000] W/m?
Task arrival rate Ay 1.5 Mbps
Task computational load L, [500, 1000] cycles/bit
MEC CPU budget per RU Fpe 12 GHz
Max transmit power pmax 2W
Noise power o —97 dBm
Minimum SINR requirement Thin 5dB
Latency bound DX 20 ms
Battery capacity Enmax 1507
Charging efficiency Min 0.85
Discharging efficiency Nout 0.9
. VAN A M AA A I I | e b
—-—- Baseline A
A92 e e - e St —-=- Baseline B
€90 Ll RS R e B J A L oA = 220000 |
E ]
“S‘ 88 F
g o oae o N A A : N = I
e B R U P S A T '\/"*’\./‘\,ﬁ‘\/\‘ﬂ'\i R v, Wi £ 200000 | "'
2 . v 2l
o84 : £ A
é 82| — Proposed (MOAC) A N 7 A " 21—>; \A r'\'l\ A
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FIGURE 5 | SINR satisfaction ratio over time. 0 20 20 60 30 100

The SINR satisfaction ratio is shown in Figure 5 as it changes
over time with our new optimisation method. During every part
of the simulation horizon, more than 90% of guests are happy
with their visit. Thanks to the changing RIS matrix in phase
O(t), the signal power is successfully raised by means of sto-
chastic gradient descent method which is computed using
Equation (19). The Radio link Interference Suppression method
enhances the effective channel gain in practise and this way it
overcomes fading and obstacle effects in the channel. Evidence
that RIS technology can provide reliable and powerful wireless
connexions even where multipath and NLOS effects are severe
is reported in ref. [10].

The battery power levels of solar-powered RUs are shown in
Figure 6 for evaluation of energy sustainability. Even though the
strength of solar irradiance is uncertain in the modelled Markov
chain, the average energy in the battery remains above 50% of its
capacity through the simulation. The result demonstrates that
the system can manage both CPU tasks and frequencies
together, based on the limitations set by Eqs.(7-12). So far, there

Time Slot

FIGURE 6 | Battery energy level of solar-powered RUs over time.

has been no energy outage or failure to maintain the minimum
operating level. Off-grid RAN deployments benefit greatly from
this approach as energy constraints could result in failure of part
of the system or dropped packets. We confirm that task sched-
uling which adapts to available energy can maintain continuous
performance with small energy supply.

Figure 7 looks at how any of the scalarised cost function weights
wg, wp and wr can be used to compromise between the weights.
Minimising delay is important (wp dominant) in these systems
which leads to tasks getting accomplished faster but with more
energy usage and a higher temperature load. In contrast, energy
priority more than anything slows down the decline in battery
power, but it can cause responses to exceed the delays that
URLLC requires. The platform is proven to exhibit nearly
optimal Pareto behaviour when all metrics are balanced.
Because of this feature, the optimisation engine can be adjusted
by network operators to suit whether stations are remote and
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FIGURE 8 | Distribution of delay across methods (Boxplot).

energy must be saved or the traffic is urgent and slow processing
is unwanted.

The empirical delay is analysed in Figure 8, by showing boxplots
of the delay distribution from various simulation runs. The
proposal offers the most reliable and predictable performance
from a stability perspective, thus being important for 6G
mission-critical uses such as timing autonomous vehicles,
running augmented reality and controlling factory machinery.
These results line up with the ITU's IMT-2020 needs for latency
and jitter when it comes to ultra-reliable low-latency commu-
nication (URLLC) [41].

The relationship between battery capacity and the likelihood of
QoS violations in power line communication systems is shown
in Figure 9. When battery size is increased, tendencies for la-
tency, draining of the battery and weak signal-to-noise ratio
(SINR) are reduced noticeably. With these constraints, the
theoretical guarantees from Lyapunov optimisation mean the
queue backlog does not exceed any boundings we set.

It is also evident from Figure 6 that batches with lower battery
capacities experience more latency and signal strength prob-
lems. The behaviour is supported by the energy reliability
constraint stated in Equation (10), so that the residual energy at
the RU always surpasses an important threshold. In addition,
the long-term energy availability metric of Equation (12) ex-
presses the time percentage when there is enough energy sup-
port for the system's entire operation.

If more energy can be stored, outages and declines in quality of
service become much less likely. What is observed in practise
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FIGURE 9 | Relationship between battery capacity and constraint
violation frequency.

supports what the proposed energy-aware optimisation frame-
work is based on. In all respects, our results make it clear that
providing batteries is key to achieving ultra-reliable low-latency
communications (URLLC) for Open RAN deployments that are
not connected to a grid.

Flexibly setting up optimisation weights and integrating RIS
management gives ORAN systems a useful way to provide
continued good service in unpredictable and power-deficient
situations. As a result, this solution is well-suited to reliable
and sustainable uses in rural, disaster-affected and isolated in-
dustrial areas.

In summary, It is confirmed here that the proposed framework
delivers high adaptability between signal quality, energy usage
and latency sensitivity. The outcomes prove that the model is
both theoretically correct and ready to apply to energy-
restricted, low latency 6G Open RAN networks.

5.3 | Queue Stability and Convergence Behaviour

In this section, we analyse the evolution of the average queue
backlog over time to illustrate empirical performance. The
evolution of the queue length for each user, Q, (), across the
simulation horizon, as well as the time-averaged backlog,
Q) = %ZL] _1Qu(®) is tracked at each slot. As shown in
Figure 10, the queueing process resulting from this optimisation
framework is stable and convergent to a bounded region after an
initial transient period.

The transition to an acceptable steady state occurs rapidly
(within the first 200 time slots) and the queue backlog increases
but remains at a bounded level due to consistent task servicing
moving forward; this indicates a long-term servicing rate that is
approximately equal to or greater than the task arrival rate. The
behaviour verifies the theoretical guarantees of queue stability
found in the Lyapunov-based scheduling formulation laid out in
Section 4.

In addition, the stability properties and the convergence to a
bound were consistent across multiple repeated simulation runs
with randomised seeds, solar irradiance profiles, and mobility
traces, demonstrating that our proposed optimisation frame-
work operates robustly in the presence of stochastic volatility.
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Empirical Convergence and Queue Stability Analysis

—— Lagrangian Cost
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FIGURE 10 | Time-averaged queue backlog over the simulation
horizon. The system converges rapidly and maintains stable queue
lengths.

Therefore, our validation of the energy-aware optimisation
framework indicates that it maintains long-term queue stability
without compromising the efficient use of resources.

5.4 | Robustness, Statistical Validation, and
Comparative Analysis

We perform a wide range of tests where we randomise the initial
conditions, choose different solar power traces and make the
task arrival sequences unpredictable. In this part, I evaluate two
main signals of robustness: (1) if results are the same from one
experiment to another and (2) how competitive the results are
with other methods.

5.4.1 | Statistical Robustness Under Stochastic
Environments

The takes into account simulation runs, where the results for
task delays are seen in Figure 1 and for energy consumption are
seen in Figure 2. A new user location map, Poisson arrival seed
and solar irradiance state trajectory generated by the Markov
model is used for each simulation run in Section 3.

Figure 11 demonstrates that the proposed technique reduces
task delay and also achieves one of the smallest IQRs, meaning
tasks are reliably close to the predicted time. In addition, not
spotting any very large deviations means the grid is steady un-
der even the worst traffic and energy situations. This becomes
very important for URLLC, a key application where keeping
jitter low is vital. The short delay dispersion is a result of using
queue-length-weighted primal-dual scheduling (Equations (26—
31)) which protects backlog stability without failing to adjust as
loads change rapidly.

Figure 12 confirms that energy usage overall appears very stable.
While battery consumption still has little validated variance, it
does not matter if the task is lightly done or heavily done or
when it is done: the service remains stable, utilises CPU per-
formance automatically, and traces the queue load, battery, and
channel quality to assign tasks accordingly. Unlike prior ap-
proaches, the system does not vary energy usage patterns; rather
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FIGURE 11 | Boxplot of service delay across different methods. The
proposed approach demonstrates low variability and a tight distribution.

42 —e— Proposed (MOAC)
—= Baseline A
N =—+: Baseline B
4.0
3
o IR
.
gs.s . ~
k3 S~ e
(9] ~
£ 3.6 S
w So ~
© = ~.
= S~ ~
034 M "N
o> -~ ~.
Q S ..
2] ‘-\~ \.\
o DL ~.
3.2 S S 23
g o e
g - e
< 3.0 S~o eyl
! ~~ao
~~
10 15| 20 25 30 35 40 45 50

Number of Users

FIGURE 12 | Boxplot of energy consumption across different
methods. The proposed method maintains a consistently lower and
more stable energy profile.

it keeps the levels stable, which mitigates the peaks seen in
many of the greedy baselines during simulations.

Note: The baseline approaches tested included static trans-
mission modes with no RIS adaptation (Baseline A); no energy
aware MEC scheduling (Baseline B); and greedy offloading
variation and methods without considering queue and battery
constraints. These were chosen to represent popular heuristic-
based approaches that do not coordinate energy, wireless, and
computational domains—to exemplify the consideration of our
joint optimisation approach.

These numbers prove that the suggested model both achieves
good performance and remains resilient in many network
conditions. Because off-grid ORAN deployments experience
wild swings in sunlight and traffic, robustness is especially
important.

5.4.2 | Comparative Evaluation With Internal Baselines

To isolate the contribution of each core system component, we
construct two internal baselines:

e Baseline A: Uses a static transmission policy with no RIS
enhancement. The system relies solely on direct RU-UE
links and fixed power allocation.
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TABLE 5 | Comparison with internal baselines.

Algorithm Energy (J) Delay (ms) SINR (%) Violations (%)
Proposed 521 14.6 93.5 3.2
Baseline A 69.3 22.4 81.1 18.5
Baseline B 58.7 18.9 86.3 9.7

e Baseline B: Applies a greedy MEC scheduler that ignores
backlog length and energy constraints. Tasks are always
executed locally without delay-aware optimisation.

Both baselines, shown in Table 5, perform substantially worse
than the method we propose. A lack of RIS assistance in Base-
line A means that NLOS causes many high SINR errors, leading
the system to require retransmissions and longer delay. The way
Baseline B schedules its work means it uses up energy quickly,
breaks its own energy rules and finishes with depleted battery
power.

At the same time, this new framework saves 25% in energy, 18%
in latency and all but eliminates (> 80%) the number of viola-
tions over Baseline A. The improved performance results from a
synergy between RIS and queue-aware computation, keeping
the signals trustworthy and saving energy.

5.4.3 | Benchmarking Against External Methods

To better test how well the framework applies, it is evaluated
next to some widely recognised approaches.

e Greedy Offloading: Tasks are immediately offloaded to
MEC without queue analysis or energy awareness.

e Fixed RIS Phase: RIS elements are configured statically
and remain unchanged throughout the simulation.

e DRL Actor-Critic [24]: A deep reinforcement learning-
based method using an actor-critic policy to learn off-
loading decisions.

The proposed method is seen in Table 6 to be the top performer
among all external baselines when measured by key metrics.
This strategy results in the lowest delay and energy use together
with the highest SINR performance. Even though the DRL
method offers some promise, it can be slow to stabilise and has
high variation in results from episode to episode when rewards
are uncommon.

DRL techniques are replaced by much better methods in the
proposed framework such as: (i) No training phase is necessary.
(ii) The system is stable by default because of Lyapunov opti-
misation. (iii) It has a much lower computational burden,
ensuring close to real-time performance.

In summary, the framework is even better than rivals in energy,
response time and transmission performance and remains reli-
able over multiple experiments and different settings. Because it
has low variance, an adaptive policy and is well-theorised, the
system works very well in energy-limited ORAN settings.

TABLE 6 | Comparison with external baseline methods.

Method Delay (ms) Energy (J) SINR (%)
Greedy offloading 22.3 63.5 82.4
Fixed RIS phase 19.1 58.2 88.1
DRL actor-critic [24] 15.9 55.2 91.3
Proposed method 14.6 52.1 93.5

5.5 | Runtime Scalability and Practical
Deployability

It is very important that the proposed optimisation framework
can be used in real-time operational situations, especially as
traffic is expected to rise in ORAN architectures. This portion of
the work looks into how efficiently the algorithm performs and
scales when considering user density and if it is capable of
deployment in the Open RAN environment as an ORAN-
aligned xApp module.

The framework and all tests were run on a standard system
fitted with a 2.6 GHz Intel Core i7 CPU and 16 GB RAM. I
measure the average run time per optimised output for each
time step as the number of users increases from 5 to 30. As
shown in Figure 13, the RIC application can handle a growing
number of users, achieving times that remain well under the
10 ms requirement set by the O-RAN Alliance [42].

The simulation takes, on average, 8.7 ms to run per slot with a
default of 15 users and 3 RUs. As a result, the method was found
to meet real-time performance with no need for adding accel-
eration or multi-processing support. Sub-linear growth is
reached by tackling the joint optimisation with separate mod-
ules which can be each solved by simple gradient updates and
convenient expressions when possible.

Also, the algorithm is optimised for use in the microservice
architecture of ORAN. Because of its modular design, delay
estimation, power control and phase optimisation can each be
put into containerised xApps. As a result, both the Near-RT RIC
and the network can use standard interfaces, such as E2SM-
KPM and E2AP, whilst also using Al to control network pol-
icy. Every slot in the Ingress has its own stateless control logic
which makes execution safe and easy to reconfigure with
Kubernetes.

Also, the method avoids demanding data-intensive training,
unlike what's used in Deep Reinforcement Learning. The
approach gives the system a steady behaviour without delays or
risks of learning the patterns too specifically in a changing
environment. Therefore, the system is perfect for places where it
needs to handle large amounts of data reliably, transparently
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FIGURE 13 | Runtime per time slot as a function of user count. The
method scales sub-linearly and remains within real-time execution
bounds.

and fast—such as for remote base stations, use after a disaster
and in private networks for industry.

In conclusion, the design shows strong performance during
runtime and can handle scalability, as it supports containerised
RAN intelligence. They show that the xApp can serve well in
production-grade, real-time roles in the ORAN network.

6 | Conclusion

This paper has introduced a cost minimisation framework that
is designed to be energy-aware for off-grid Open RAN systems,
which are uniquely powered by solar energy and supplemented
with RIS and edge computing capabilities. To address this
challenge, a stochastic optimisation model has been developed
that considers the joint control of transmission power, RIS
beamforming, CPU frequency, and task scheduling, all under
the constraints of energy and latency. The model employs a
composite cost function that effectively balances energy effi-
ciency, service delay, SINR reliability, and fairness, utilising a
Lagrangian-based primal-dual update method for real-time
control.

The effectiveness of the proposed framework has been sub-
stantiated through extensive simulations, which have been
conducted under conditions that closely mimic real-world solar
and traffic dynamics. The results of these simulations are quite
compelling, as they reveal a 32% decrease in total system
cost, a 25% enhancement in energy efficiency, and a 28%
reduction in average service delay when compared to the
baseline strategies that are currently in use. Moreover, the
proposed framework exhibits full system feasibility, which is a
critical aspect of its appeal. Its flexibility and scalability also
make it a highly suitable candidate for future 6G deployments,
where the integration of near-RT Open RAN architectures is
anticipated.

Looking ahead, the paper identifies the integration of quantum-
secure communications and multi-agent coordination as
promising avenues for future research. These additional com-
ponents are expected to further bolster the robustness and so-
phistication of distributed resource management in off-grid

settings, which is essential for the successful operation of these
systems.
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Appendix A: Lagrangian Dual Formulation and Proof

To formally set forth the dual optimisation process in our framework
that is founded on Lagrangian principles, we initiate by defining the
original problem, known as the primal problem. Let T denote the
timeframe for optimisation, and a(t) represent the control vector at a
specific time ¢, which includes parameters such as power allocation
PX(t), CPU frequency f,(t), RIS phase shift ¢,(t), and scheduling de-
cisions. The entire system's cost, denoted as J, is what we aim to
minimise:

1 T
min J == Ciot. 1(t) (Al)
faois, T ; -

Subject to constraints that apply to each time ¢:

Ej(t) < E}(t) (Energy availability) (A2)
Z fu(®) < Fy™ (CPU frequency constraint) (A3)
uelhy
0 < Pi¥(t) < P™* (Power constraint) (A4)
¢,(t) € [0, 2) (RIS phase shift) (A5)
SINRy, () > I'™" (QoS SINR threshold) (A6)
D,(t) < D* (Latency bound) (A7)
E[Q,(t)] < oo (Queue stability) (A8)

Introducing Lagrange multipliers, denoted as Ay >0 for the k-th
constraint gi(a(t)) < 0, the Lagrangian function at time ¢ is expressed as:

K
£(a(6). 2) = Cro(®) + Y Aege(a()) (A9)
k=1

The dual function is derived by minimising the Lagrangian with respect
to the primal variables:

T
D) = I(Ill(it?[E[ g{ L(a(t), ,1)] (A10)

The dual problem is then stated as:

T K
D (cmm(r) +> Akgk(a(t)))] (A11)
k=1

maxD(4) = max mink
220 n |4

>0 a(

For a solution to be considered a saddle-point, (a*(t), A*) must satisfy:
L(a*(t),A) < L(a*(t), ") < L(a, A*), Ya,i>0 (A12)

The Lagrange multipliers A; are updated through projected subgradient
ascent:

At +1) =[O + o - gela®)]”,  Vk (A13)
The primal variables a(t) are updated accordingly:

a*(t) = arg m(i[gl[l(a(t), A(D)) (A14)

Provided that Slater’s condition holds and constraints are convex, strong
duality is guaranteed:

min max £(a(t), A) = max min L(a(¢), 1) (A15)
a(t) A>0 A>0  a(t)

In the presence of nonconvex constraints, such as the SINR, first-order
approximations facilitate more manageable optimisation.

T K
min max % Z (Cwlal(t) + Z Akgk(a(t))) (Al6)

fa@yl, 420 15 k=1

Appendix B: Convexification of the SINR Constraint
The SINR constraint's nonconvex nature is due to the intertwined

quadratic form present in both its numerator and denominator:

PE(®) - [hegpu (0]
Yoo P (©) - hegrpu (D) + 0

SINRy,(f) = (A17)

For the purpose of making the problem more manageable, a first-order
Taylor approximation is applied near a known operating point, denoted
as ¢, of the RIS phase vector:

Mgty

|heff,bu(t)|2 ~ |heff,bu(¢0)|2 +2- m{(hefﬂbu(d]o))* ! op

(p® - ¢0)}
(A18)

This simplification results in a linear approximation of the effective gain
and interference components, thus converting the original constraint
into a convex form:

Pi() - Gy (D 2T [ DIPR@ T, (0 + az) (A19)

b #b

The approximation is systematically improved using a Sequential
Convex Programming (SCP) approach, which updates the operating
point ¢, following each optimisation iteration.

This method of convexifying the SINR constraint is commonly applied
in the field of wireless optimization, as seen in the literature such as [31,
33]. It guarantees feasibility and computational practicality, even with
incomplete knowledge of the RIS state.

Appendix C: Convergence and Stability Analysis

This appendix presents a theoretical validation of the convergence and
long-term stability of the proposed random primal-dual framework,
utilising tools from Lyapunov optimization.

In section C.1, we delve into the convergence of the primal-dual algo-
rithm. Let Ax(tf) denote the dual variables linked to the constraint
gr(a(t)) <0, and let o represent the constant step size. The iterative
process is outlined as follows:

a*(t) = argrn(i;l L(a(t), A(t)) (A20)
At +1) = [A(®) + o - gelalt)]” (A21)

Under conventional assumptions—convex objectives, bounded sub-
gradients, and Slater's condition—the time-averaged cost is shown to
converge in the manner:

T
7 E[Crora(D)] = C* < O(a) (A22)

t=1

S|
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Moreover, it is established that constraint violations diminish as the
time horizon T approaches infinity, as stated in [31].

In section C.2, we explore the concept of Lyapunov drift-based stability.
Introduce a virtual queue Q,(t) for each constraint g:

Qi(t +1) = max{Qx(t) + ge(a(t)), 0} (A23)
Our Lyapunov function is defined as:

1 K
L@o=> > QD (A24)
k=1

The drift-plus-penalty is then expressed as:

AWM +V - ECroa(DIQD)] (A25)

Importantly, the following bounds are derived for constants B> 0
and > 0:

L B
> ElCuou(d] = C* +; (A26)
t=1

Sl

lim sup

T—oo

B+ V(Crax — C¥)

T
lim sup % Z Z[E[Qk(t)] = (A27)
=1k

T—o0

These results affirm the long-term stability of queues and the proximity
to optimal performance under stochastic conditions, which is particu-
larly pertinent for real-time O-RAN implementations facing volatile
energy and traffic scenarios.

Lastly, in section C.3, we offer an interpretation of these findings. The
analysis underscores that the system upholds queue stability and ap-
proaches cost optimality over time, making the proposed framework
appropriate for practical real-time O-RAN deployments operating
within uncertain environmental conditions.
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