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aInstitute of Computing, Università della Svizzera italiana, Via Buffi 13, 6900 Lugano, Switzerland
bCentrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands

cDepartment of Computer Science, Brunel University London, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK

Abstract

Sensitivity analysis is an important tool used in many domains of computational science to either gain
insight into the mathematical model and interaction of its parameters or study the uncertainty propagation
through the input-output interactions. In many applications, the inputs are stochastically dependent, which
violates one of the essential assumptions in the state-of-the-art sensitivity analysis methods. Consequently,
the results obtained ignoring the correlations provide values which do not reflect the true contributions
of the input parameters. This study proposes an approach to address the parameter correlations using a
polynomial chaos expansion method and Rosenblatt and Cholesky transformations to reflect the parameter
dependencies. Treatment of the correlated variables is discussed in context of variance and derivative-based
sensitivity analysis. We demonstrate that the sensitivity of the correlated parameters can not only differ
in magnitude, but even the sign of the derivative-based index can be inverted, thus significantly altering
the model behavior compared to the prediction of the analysis disregarding the correlations. Numerous
experiments are conducted using workflow automation tools within the VECMA toolkit.

Keywords: Global sensitivity analysis, Uncertainty quantification, Parameter Correlation, Sobol index,
Polynomial Chaos Expansion

1. Nomenclature

Q A set of uncertain input parameters Qi

D A number of the input parameters
ρQi

Parameter probability density function
q A set of parameter realizations
Y Vector of the application model outputs
U An application model Y = U(t,x,Q)
P Degree of the polynomial basis
Ψ Polynomial basis
a Polynomial coefficients for the basis Ψ

(̂·) Quantities related to the polynomial
approximation of the true model
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V Variance operator
E Expectation value operator
Si Variance-based sensitivity index
SD
i Derivative-based sensitivity index

(·)∗ Denotes the correlated variables/samples
µ Mean vector of the uncertain parameters
C Covariance matrix of the parameters
C Correlation matrix of the parameters
L Cholesky factor of the correlation matrix
P Permutation vector
κ Dissipation rate of the container
Tenv Ambient temperature
T0 Initial temperature of the liquid

2. Introduction

Sensitivity analysis (SA) is a technique for un-
derstanding how changes in the input parameters
influence the uncertainty in the output of a model
or simulation. SA facilitates the understanding of
how the outputs of a model change with respect
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to variations in the input parameters. It it partic-
ularly useful for complex models, in order to de-
termine which parameters cause the greatest vari-
ation of the output, and quantify the sensitivity of
the model to changes in these parameters. Addi-
tionally, SA can be used to improve the accuracy
of a model by identifying and reducing sources of
uncertainty in the input data. Two SA methods
are studied in this manuscript, a global variance-
based method, where the sensitivity is computed
over the support of the input distributions. A lo-
cal derivative-based method is considered as well,
where the sensitivity is studied only in the vicinity
of a fixed input point.

The variance-based SA method [1] quantifies the
sensitivity of each input parameter by estimating
its contribution to the overall variance of the model
output. This is achieved by decomposing the vari-
ance of the model output by splitting it into con-
tributions which arise due to the impact of the in-
put parameters or their interaction, and the pa-
rameters are assigned a sensitivity index based on
their relative contributions. This sensitivity index
is also known as the Sobol index [2]. Variance-based
methods allow full exploration of the input space,
accounting also for the interactions and nonlinear
responses. The variance-based sensitivity is used
especially in the context of uncertainty quantifica-
tion, where the input parameters are usually char-
acterized by a probability density function, model-
ing their uncertain nature or reflecting the uncer-
tainty in the data collection method. The current
state-of-the-art of variance-based SA comprises two
main methodologies - quasi-Monte Carlo (QMC) [2]
and the methods based on model surrogates such
as polynomial chaos expansion (PCE) [3, 4]. Both
approaches are based on sampling the input pa-
rameters from the given probability distributions,
where the model is evaluated for the values of the
parameter samples. In case of the QMC approach,
this process is repeated thousands of times, and sta-
tistical metrics such as the mean and variance are
computed from the resulting series of model out-
puts. On the other hand, the general idea behind
PCE is to approximate the model input–output re-
lationship with a polynomial expression, which is
then used to directly obtain the statistical metrics
such as mean and variance, while the first and total-
order Sobol indices can also be calculated directly
from the polynomial model [5].

In case of the derivative-based analysis, the sensi-
tivity information comprise computation of the par-

tial derivative of the model output with respect to
an input parameter at some fixed point in the in-
put space. The analytical derivative is often un-
known, thus standard methods such as finite dif-
ferences (FD) are used. The domain of the FD
study is local, since such analysis can consider only
vicinity around a single parameter and its fixed op-
erating point. In order to study interactions be-
tween variables independent on the choice of a fixed
point, derivative based global sensitivity measures
(DGSM) [6] average local derivatives using QMC
sampling methods. It was shown that, in the cases
of uniformly and normally distributed input vari-
ables, there is a link between DGSM and Sobol in-
dex, namely such that DGSM can be used as an
upper bound on total sensitivity index. A general-
isation of the DGSM for variables with dependent
inputs was introduced in [7]. To reduce the num-
ber of model evaluations, which in practice can be
very large and computationally costly simulations,
surrogate models can be used. Surrogate models
can emulate complex, high-fidelity models with less
computational effort by using statistical approxi-
mations based on a limited number of model eval-
uations. Additionally, the correlation structure
between the model inputs can be directly incorpo-
rated in the surrogate models by transforming the
input parameter space during the construction of
the surrogates.

While the variance-based SA is used more during
the initial phases of model design, where the goal
is to understand the behavior of a model or simu-
lation and the sources of uncertainty in its inputs.
It can be used to guide model calibration by iden-
tifying the most important parameters, determine
the range of input values that result in acceptable
output values. Similarly, it can be used to optimize
the design of a system by identifying the inputs that
have the greatest impact on the performance of the
system, and exploring the trade-offs between dif-
ferent design options [8]. On the other hand, the
derivative-based sensitivity is particularly useful in
operational context, where it is used to understand
how changes in the input variables affect the out-
put of a system or process. This can guide design
of the robust control systems which are resilient to
variations in the system’s inputs. Alternatively, it
can be used to manage risk by understanding how
changes in input variables affect the risk of a sys-
tem or process. For example, in finance, partial
derivatives can be used to calculate the sensitivity
of the value of a portfolio to changes in the under-
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lying asset prices or guide forward hedging ratios in
commodity trading [9].

2.1. Motivation and Research Context

Correlation of the input parameters is a com-
mon phenomenon in many scientific and engineer-
ing models and there have been few studies con-
ducted on sensitivity analyses with correlated pa-
rameters. Since the standard SA methods assume
that the parameters are stochastically independent,
this can have a significant impact on the results of
the analysis. The presence of parameter correla-
tions renders several assumptions no longer valid,
e.g. the polynomials in the PCE are no longer or-
thogonal. Additionally, if two input parameters are
highly correlated, it may be erroneous to draw con-
clusions about which of the two parameters has a
greater impact on the output of the model using
standard SA methods. Similarly, the results do not
provide adequate information to determine the sen-
sitivity of the model to variations in these inputs.
Consequently, the presence of correlation between
the input parameters can lead to biased estimates
of the model sensitivity, which can lead to incorrect
conclusions about the importance of the inputs and
the input-output interactions. For example, when
considering the context of energy market models,
the input parameters such as the cost of fossil fuel
resources (liquid fuels and natural gas) account for
the majority of the variance in the total energy
system cost. However, these parameters are often
tightly correlated, and applying the state-of-the-art
SA methods ignoring the correlation may lead to an
optimistic risk assessment of voltage instability, the
cost of power generation, a line overload risk, and
a power shortage expectation [10, 11].

2.2. Literature Review and Related Work

There are two directions in the literature how to
deal with the correlations during SA; (i) decom-
position of the traditional sensitivity indicies into
correlated and uncorrelated parts [12, 13] and (ii)
introducing new sets of indices which contain all
correlations and indices which are reduced by the
contributions due to the correlation [14, 15, 16].

The definition of the first order Sobol indices
was extended to consider parameter dependencies
in [17]. The method extends the QMC framework,
such that the sampling is performed considering the
conditional probability densities of the individual
inputs. In case of dependent normal distributions,

the samples are transformed using the Cholesky de-
composition of the correlation matrix. The number
of model evaluations required to obtain both the
first and total order indices for a simple linear model
with three inputs was 216, which is prohibitive for
real-world complex models. However, this number
was selected as a conservative estimate and can be
reduced.

In [12, 13], the classical first order Sobol index is
split into various components. These components
represent uncorrelative, interactive and correlative
contributions of a given parameter to the output
variance. However, the interpretation of these con-
tributions, as well as of total order indices, remains
unclear. In this approach, the surrogate model is
set up using independent joint input distribution.
The polynomials of the PCE expansion are eval-
uated with the dependent samples, subsequently
used to compute the covariance of the components
functions. Analysis of covariance is then used to
compute the resulting indices and their decomposi-
tion into the three components.

A new set of the indices for correlated inputs
was introduced by Mara and Tarantola [14, 15, 16].
Two distinct indices represent correlated and un-
correlated contributions of a given variable. These
allow to distinguish between the mutual dependent
contribution and the independent contribution of
the parameter to the model response variance. The
dependent parameters are decorrelated using the
Gram–Schmidt procedure and Rosenblatt transfor-
mation, such that standard SA methods such as
PCE or QMC frameworks can be used. However,
since the SA is no longer performed using the orig-
inal parameters, additional attention needs to be
put to interpretation of the sensitivity indices. Ad-
ditionally, different permutations of the decorre-
lated variables can be obtained, thus resulting in
multiple set of the indices.

2.3. Contribution and Organization

SA with correlated parameters is studied in this
work. The decorrelation approach is based on
transformation of the input parameter space, such
that the SA is performed using the independent dis-
tributions, following the approach (ii) and the work
of Mara and Tarantola [14, 15, 16]. The contribu-
tions are the following:

• The correlated SA approach is studied in con-
text of both variance-based and derivative-
based sensitivities;
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• Two transformations are used in order to re-
flect the stochastic dependencies in the in-
put parameters, Cholesky decomposition of the
correlation matrix and the Rosenblatt transfor-
mation;

• The methods are implemented within
EasyVVUQ SA framework, aiming to leverage
large-scale computational resources to make
state-of-the-art uncertainty quantification
algorithms available and accessible to a wide
range of computational scientists;

• Demonstrate the importance of the parameter
correlations in the SA and provide extensive
numerical experiments accompanied by a com-
prehensive interpretation of the results.

The following Sec. 3 discusses various aspects of
the SA, introducing both variance and derivative
based indices. The treatment of the correlated vari-
ables and modifications of the SA algorithm are in-
troduced in Sec. 4. The application model used in
the numerical experiments is presented in Sec. 5.
Finally, extensive numerical experiments and their
analysis is provided in Sec. 6. The paper concludes
in Sec. 7 outlining also future research directions.

3. SA Method without Correlations

The model is usually a complex interaction be-
tween its input parameters and outputs, and is
treated in a black box fashion for the purpose of
non-intrusive SA. Consider a model U that is de-
fined over a time horizon t, space dimension x
and a set of D uncertain input parameters Q =
{Q1, Q2, . . . QD}, such that

Y = U(t,x,Q). (1)

The model includes uncertain parameters that can
be collectively described by a joint multivariate
probability density function ρQ. If the uncertain
parameters are statistically independent, the mul-
tivariate probability density function ρQ can be
defined by separate univariate probability density
functions ρQi , one for each uncertain parameter Qi,

ρQ =

D∏

i=1

ρQi , (2)

where unit normal distributions are assumed, such
that ρQi

∼ N (µ = 0, σ = 1).

The main computational pattern of the SA in
both MC and PCE consists of drawing the samples
q from the input parameter space ρQ and evaluat-
ing the model U(t,x,q) at these points. The num-
ber N of such evaluations in the PCE approach

N =

(
D + P

P

)
(3)

is a function of the polynomial degree P of the ba-
sis and the dimension D of the parameters, where
N grows fast, especially with the increasing dimen-
sion of the parameters. Based on these model eval-
uations, the true response of the model Y is fitted
onto a polynomial basis Ψ = {Ψp, p = 0, . . . , P}
with a polynomial degree up to P . The basis needs
to be orthogonal with respect to the input distribu-
tions ρQi

. The polynomial model Ŷ = Û(t,x,Q) is
build such that the true model is approximated by
the polynomial expansion, U(t,x,Q) ≈ Û(t,x,Q),

and the model outputs are similar Y ≈ Ŷ . The
surrogate model Û(t,x,Q) is built from the poly-
nomial basis Ψ as

Û(t,x,Q) =
∑

p⊂P

apΨp(Q)

= a0Ψ0 +
∑

p⊂P

D∑

i=1

aipΨ
i
p(Qi)

+
∑

p⊂P

D∑

i,j=1,j>i

aijp Ψ
ij
p (Qi, Qj)

...

+
∑

p⊂P

a12...Dp Ψ12...D
p (Q1, . . . , QD), (4)

where Ψ0 = 1 is a zero order polynomial, Ψi
p(Qi) is

a single dimensional polynomial up to degree p for a
single input Qi, Ψ

ij
p (Qi, Qj) denotes polynomial or-

der up to p of combination of two inputs Qi, Qj , etc.
The polynomial coefficients ap follow similar nota-
tion. In the non-intrusive variant of the method,
the polynomial basis Ψ is constructed using, e.g.,
the three terms recurrence or the discretized Stielt-
jes method [3, 18]. The orthogonality of the poly-
nomials holds in case the Q parameters are inde-
pendent, i.e., the joint density can be expressed as
a product of the individual marginal densities from
Eq. (2).

A set of the polynomial coefficients ap is deter-

mined such that the PCE model Û approximates

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Algorithm 1 SA Method without Correlations.

1. Generate samples q1, . . . ,qN from the inde-
pendent multivariate distribution ρQ.

2. Evaluate the true model Y 1 =
U(x, t,q1), . . . ,Y N = U(x, t,qN ) at qi ∈ ρQ.

3. Create a polynomial expansion Ψ1, . . . ,ΨP up
to the P -th degree from ρQ.

4. Solve the linear regression problem: Y n =∑
p ap Ψp(Qn) for a1, . . . , ap.

5. Construct the model approximation
U(x, t,Q) ≈ Û(x, t,Q) =

∑
p ap Ψp(Q)

6. Perform the SA using the surrogate model
Û(x, t,Q).

the true model response Y . In point collocation,
the approximation is built such that it minimizes
the error at a set of collocation nodes compared to
the true model response. Hammersley sampling [3]
from the distribution is used to choose the colloca-
tion points. This results in a set of linear equations
for the polynomial coefficients, which are solved us-
ing e.g. Tikhonov regularization. The overall al-
gorithm is summarized in Alg. 1, where the SA is
described in the following sections.

3.1. Variance-based Sensitivity

Variance-based SA [1] determines the impact of
the input parameters which can be used to asses the
role of the parameters in the model, i.e., determine
if the parameter contributes intrinsically or via the
parameter interactions, or asses the relative impor-
tance of the individual parameters. Additionally,
variance-based sensitivity quantifies the output un-
certainty and its propagation through the model
from the uncertain inputs [4, 18]. Following the
variance decomposition [2], the total output vari-
ance V (Yn) of n-th model output from Eq. (1) can
be decomposed as

V (Yn) =
∑

i

Vi +
∑

i

∑

j>i

Vij + . . .+ V12...D, (5)

where the partial variances are defined as

Vi = V(E(Yn|Qi)), (6)

Vij = V(E(Yn|Qi, Qj))− Vi − Vj , (7)

and so on, and the total variance is V (Yn) =
V(E(Yn)). The polynomial coefficients can be post-
processed to compute quantities of interest such

as mean, variance and other statistical moments
or variance-based sensitivity indices [5, 12]. The
sensitivity indices in the variance-based measures,
known as Sobol indices [2], are defined as the frac-
tion of the variance of the component functions with
respect to the total variance. The first order sen-
sitivity index Si measures the contribution of the
i-th parameter,

Si =
Vi

V (Yn)
. (8)

The total order sensitivity index ST
i includes not

only the intrinsic contribution of the parameter it-
self as is the case for the first order index, but also
interactions with other parameters are considered,

ST
i =

∑
α Va

V (Yn)
, (9)

where α is a set of all multi-indices which contain
i. It necessarily holds that 0 ≤ Si ≤ ST

i ≤ 1,
and in case the model is additive and there are no
parameter interactions, i.e. the higher order terms
are zero, then ∑

i

Si = 1. (10)

3.2. Derivative-based Sensitivity

Derivative-based sensitivity indices express how
much does the model output change if a small per-
turbation is applied to some of the inputs. The an-
alytical derivatives of the complex models are not
known, thus the usual practice is to use automatic
differentiation tools or adopt approximations tech-
niques such as finite differences to evaluate the nu-
merical derivatives. The model derivative with re-
spect to the parameter Qi at a fixed point Q0

i is
expressed as

SD
i =

∂Yn

∂Qi

∣∣∣∣
Q0

i

. (11)

The shortcoming of this approach is that the result-
ing index can be computed only in the vicinity of
the operating point of the given model configura-
tion or its applicability for the SA of a single vari-
able at a time, ignoring any possible interactions
between the parameters. The effect of interactions
between the variables can be included in the sen-
sitivity analysis using e.g. the DGSM [6] method,
which addresses this by averaging local derivatives
using Monte Carlo or Quasi Monte Carlo sampling
methods. In later work this approach was extended

5
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Figure 1: Independent normal distribution (left) of the input
space and the corresponding transformed parameter space
with ρC = 0.8 (right). The contour lines illustrate the mul-
tivariate probability density function.

to account for contributions of dependent variables
[7]. In our work, the parameter interaction is ac-
counted for by transforming the input parameter
space during construction of the surrogate model
Û . The approach is described in the following Sec
4.

4. SA Method with Correlations

When considering models with correlated param-
eters, the polynomial expansion (4) cannot be used
to accurately represent the model sensitivity since
it doesn’t distinguish whether the parameter is con-
tributing to the model directly or through a correla-
tion with another variable. This can lead to incor-
rect conclusions about the variance-based decompo-
sition, where the importance of the input parame-
ters to the model and the sensitivity of the model
to variations in these parameters no longer reflects
the true parameter interactions in the model.

In order to address the parameter dependency,
the parameters must be decorrelated prior to ap-
plying the SA. This approach is adopted in the
procedure of Mara and Tarantola [14, 15, 16]. In
their original work, the samples are drawn from
the correlated joint distribution and define a set of
new variables, which are characterized by the con-
ditional probability density functions and as such
can be treated as independent. In this work, the
collocation points are sampled using the indepen-
dent unit normal distributions ρQ = ND(µ, I),
while the model is evaluated using the transformed
samples considering also the dependencies. Fig. 1
illustrates this principle, the independent colloca-
tion nodes and their transformation to the target
correlated distribution ρ∗Q = ND(µ, C). Since the
linear relationship between the random variables is
characterized using the Pearson and Spearman cor-
relation coefficients, the correlated samples can be

obtained from the independent ones using two dif-
ferent methods; (i) Rosenblatt transformation [19]
and (ii) Cholesky decomposition of the correlation
matrix [20].

4.1. Cholesky Decomposition

Independent samples with an identity correlation
matrix are drawn from a joint multivariate distri-
bution

Q ∼ ND(µ, I). (12)

Since the components Qi are random variables with
zero mean and unit variance with zero correlation,
we have E(QiQj) = δij . Hence, E(QQT ) = I. The
joint probability of the independent variables can
be expressed as the product of the marginal distri-
butions. On the other hand, the joint distribution
of the dependent variables

Q∗ ∼ ND(µ, C). (13)

can be expressed as a product of the conditional
distributions, which are not known. An alterna-
tive approach is it to introduce a transformation
between the two spaces of the variables, such that
the independent variables Q can be transformed to
Q∗ and vice versa. The transformation is defined
via the Cholesky decomposition of the correlation
matrix. The Cholesky decomposition of the corre-
lation matrix C is computed such that L = chol(C),
and LLT = C, where

L =



c11
c21 c22
c31 c32 c33


 . (14)

The uncorrelated samples Q are then trans-
formed to samples that contain the correlations be-
tween the variables, as given by the correlation ma-
trix, such that the transformed samples behave as
drawn from the correlated distribution, i.e., Q∗ =
T (Q) = LQ, where T is the transformation opera-
tor,



Q∗

1

Q∗
2

Q∗
3


 =



c11
c21 c22
c31 c32 c33






Q1

Q2

Q3


 . (15)

The random vector Q∗ behaves such that
E(Q∗Q∗T ) = E((LQ)(LQ)T ) = E(LQQTLT ) =
LE(QQT )LT = LILT = C, since expectation is
a linear operator. Hence, the transformed random
vector Q∗ has the desired correlation matrix C and
Q∗ ∼ ND(µ, C). One of the requirements for the

6
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Algorithm 2 SA Method with Correlations.

Generation of samples and their transformation:

1. Generate samples q1, . . . ,qN from the independent multivariate distribution ρQ.

2. Transform the samples qi ∈ ρQ to q∗
i ∈ ρ∗Q, i = 1, . . . , N , using:

(a) Cholesky transformation q∗
i = T (qi) = qiL from (14).

(b) Rosenblatt transformation q∗
i = T (qi) from (18).

Construction of the surrogate model:

1. Evaluate the true model Y ∗
1 = U(x, t,q∗

1), . . . ,Y
∗
N = U(x, t,q∗

N ) at q∗
i ∈ ρ∗Q.

2. Create a polynomial expansion Ψ1, . . . ,ΨP up to the P -th degree from ρQ.

3. Solve the linear regression problem: Y ∗
n =

∑
p ap Ψp(Qn) for a1, . . . , ap.

4. Construct the model approximation U(x, t,Q∗) ≈ Û(x, t,Q) =
∑

p ap Ψp(Q).

Cholesky decomposition is that the matrix is pos-
itive definite. In practice, the sample covariance
matrix is always at least positive semi-definite [21].
In certain situations, the eigenvalues of a covariance
matrix can be zero. This can happen when the set
of parameters includes constant or perfectly corre-
lated variables, or the sample size is too small. In
this work, the covariance matrix is always assumed
to be positive definite.

4.2. Rosenblatt Transformation

The Rosenblatt transformation [19] allows for a
vector of independent random variables Q gener-
ated from the distribution ρQ to be transformed
to the target distribution ρ∗Q which contains cor-
relations between the variables. The transformed
samples Q∗ = T (Q) behave as if they were drawn
from the target density ρ∗Q.

The Rosenblatt transformation can be derived
from a probability decomposition of a bivariate ran-
dom variable Q∗ = (Q∗

1, Q
∗
2) with a correlation as

ρ∗Q = ρQ1
ρQ2|Q1

, (16)

where ρQ1
is a marginal density function, and

ρQ2|Q1
is a conditional density. In a general mul-

tivariate case, the density decomposition has the
form

ρ∗Q = ρQ1

D∏

di=2

ρ′Qdi
, (17)

where ρ′Qdi
= ρQdi

|ρQ1
, . . . , ρQdi−1

is conditioned

on all components with lower indices. A forward
Rosenblatt transformation is then defined as

T =
(
FQ′

1
, . . . , FQ′

d

)
, (18)

where FQ′
di

is the cumulative distribution function

FQ′
di

=

∫ qdi

−∞
ρQ′

di
(r | q1, . . . , qdi−1) dr. (19)

Note also that the Rosenblatt transformation is
not limited to only Gaussian distributions. In this
work, the implementation of the transformation im-
plemented in the Chaospy [3] package is used.

4.3. SA Method with Correlations

The SA algorithm introduced in Alg. 1 needs to
be modified in presence of the correlated inputs in
order to correctly represent the input-output inter-
actions and the sensitivity indices. The changes
are summarized in the modified method presented
in Alg. 2.

The modified method first needs to generate the
parameter samples including the correlations. As
before, the set of the parameter samples q is gen-
erated from the independent joint distribution ρQ
which are subsequently transformed according to
the stochastic dependency structure. The corre-
lated samples q∗ = T (q) can be obtained using
either the Cholesky or Rosenblatt transformations.

Having created the correlated samples, the mod-
ified method next evaluates the true model using
the correlated samples Y ∗ = U(x, t,q∗). The sur-
rogate model is constructed in the transformed co-
ordinate space compared to the independent model,
reflecting the correlated contributions which affect
the model outputs. This coordinate space is trans-
formed implicitly, by mapping the polynomial ex-
pansion generated from the independent distribu-
tion ρQ, to the space of the correlated model out-
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Algorithm 3 Evaluation of the Sensitivity Indices.

Variance-based analysis:
1. Compute the variance-based indices Si from the coefficients of Û(x, t,Q) according to (8) [5, 12].

Derivative-based analysis:
1. Compute the partial derivatives of the polynomial model Û(x, t,Q) with respect to Qi according to (11).

2. Evaluate the derivatives at the point of interest, e.g. the mean value of the parameters, in order to
obtain the sensitivity indices SD

i .

puts Y ∗
n. In other words, the linear regression

Y ∗
n =

∑

p

ap(t) Ψp(qn) (20)

is solved, where the left-hand side term is in the
correlated space, while the polynomial expansion
and the samples qn at the right-hand side is from
the uncorrelated space. Such surrogate model is
then used to perform the SA summarized in Alg. 3.

4.4. Interpretation of the Sensitivity Indices

The sensitivity indices computed following the
method presented in Alg. 2 and 3 need to be inter-
preted differently, compared to their counterparts
computed without any parameter dependencies (see
Sec. 3.1 and 3.2). One needs to consider the fact
that the parameter transformations effectively in-
troduce new variables, which are a combination of
the original ones in case of linear dependencies.
Consequently, the resulting indices either include
the effects of the parameter itself together with its
dependence with other inputs or it can represents
the sensitivity index without its mutual dependent
contributions with other parameters.

When applying the transformation a particular
ordering of the parameters is assumed, e.g., the
natural ordering P1 = (1, 2, . . . , D) with the pa-
rameters P1Q = (Q1, Q2, . . . QD). The transfor-
mation is then applied sequentially, where the first
parameter is kept unmodified, while the others are
transformed according to the particular correlation
structure. Considering a vector of the input param-
eters P1Q, the correlated vector is formed as

Q∗
1 = Q1,

Q∗
2 = Q2|Q1,

Q∗
3 = Q3|Q1Q2, (21)

...

Q∗
D = QD|Q1Q2 . . . QD−1.

The resulting sensitivity indices obtained by ap-
plying the SA with correlations using the trans-
formed samples Q∗ = (Q∗

1, Q
∗
2, . . . Q

∗
D) need to be

interpreted differently, since different variables have
been used compared to the original variables Q.
One needs to distinguish between the Full and Inde-
pendent indices. The Full index includes the effects
of the parameter itself together with its dependence
with all other inputs. On the other hand, the Inde-
pendent index represents the contribution of a pa-
rameter without its mutual dependent interactions
with other parameters. Using the permutation P1,
the Full index for the parameter Q1 is obtained, to-
gether with the Independent index for the param-
eter QD. The Full index is obtained for the first
parameter in the permuted vector P1Q, while the
independent index corresponds to the last parame-
ter in the permuted vector. The sensitivity indices
of the remaining variables in the vector P1Q, that
is (Q2, . . . QD−1), express the marginal contribu-
tion of Qi, i = 2, . . . , D − 1 to the output variance
without its correlative contributions with parame-
ters Qj ,∀j : j < i. Thus, under the permutation
P1 the Full index for the parameter Q1 is defined
as

S1 =
V(E(Yn|Q∗

1))

V(Yn)
, (22)

while the Independent index for the parameter QD

is defined as

SD =
V(E(Yn|Q∗

D))

V(Yn)
. (23)

Note that the Full index is computed for the pa-
rameter Q∗

1 = Q1 which is chosen from its marginal
distribution ρQ1

and that it carries mutual contri-
butions to the total variance due to the depen-
dence on other parameters Qj , j > 1. On the
other hand, the Independent index for the parame-
ter Q∗

D = QD|Q1Q2 . . . QD−1 does not contain the
mutual contributions with other parameters, since
the parameter was drawn from the conditional dis-
tribution ρQD|Q1Q2...QD−1

.
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Table 1: Sensitivity indices for different parameter permutations Pi.

Permutation Full Index Marginal Indices Independent Index
P1 = (1, 2, 3, . . . , D) Q1 Q2, . . . , QD−1 QD

P2 = (2, 3, . . . , D, 1) Q2 Q3, . . . , QD Q1

P3 = (3, . . . , D, 1, 2) Q3 Q4, . . . , QD, Q1 Q2

...
...

...
...

PD = (D, 1, 2, . . . , D − 1) QD Q1, . . . , QD−2 QD−1

In order to compute the remaining Full and In-
dependent indices, different permutations need to
be used. For example P2 = (2, . . . , D, 1), such that
P2Q = (Q2, Q3, . . . QD, Q1) from which the Full in-
dex of parameter Q2 and Independent index of Q1

can be determined. Overall, there exist D! different
permutations. However, both indices for all param-
eters can be obtained by circularly reordering the
input vector Q, i.e., performing the SA D times in
total, as summarized in Tab. 1.

5. Application Model

The coffee cup model [4] simulates a cooling pro-
cess of a liquid contained in an open container. The
model uses Newton’s law of cooling to evolve the
temperature T over the simulation time t,

dT (t)

dt
= −κ(T (t)− Tenv). (24)

The parameter κ characterizes the container con-
taining the liquid and the rate at which it dissipates
the heat to the environment. Ambient temperature
of the environment is represented by the parameter
Tenv, while the initial temperature of the liquid is
specified by the constant T0 = 95◦C.

In this study, the SA of the κ and Tenv parame-
ters is studied. Due to the measurement error, in-
sufficient knowledge of the physical model or other
reasons, the parameters κ and Tenv cannot be as-
signed an exact numerical value representing the
modeled physical system. Instead the parameters
are modeled as uncertain and they are described
with probability distributions. A normal distribu-
tion N (µ, σ) is assumed in this work, with a given
mean µ and standard deviation σ for each parame-
ter,

κ = N (0.05, 0.008),

Tenv = N (20, 1.5).
(25)

On top of the uncertainty in the individual pa-
rameters, these parameters might be correlated

with each other. The correlation captures a physi-
cal property of the container’s material and its heat
transfer rate, witch changes depending on the ambi-
ent temperature of the environment. For example,
as the ambient temperature Tenv increases, the ma-
terial dissipates the heat more efficiently, increasing
also the value of the parameter κ. The stochastic
dependency of the two parameters is described us-
ing a correlation matrix C with correlation between
the parameters specified by ρC ,

C =

(
1.0 ρC
ρC 1.0

)
. (26)

Fig. 1 illustrates the probability density function of
the parameters, both with and without the correla-
tion. The goal of the SA is to analyze the impact
of the uncertain parameters to the outcome of the
model, considering also the correlation between the
parameters.

5.1. Software Tools and Libraries

The VECMA toolkit, or VECMAtk [22], is used
to manage the simulations required for the analysis.
It enables automated verification, validation and
UQ for complex applications, irrespective of their
source domain. VECMAtk is optimized for large
scale computations, and can be deployed on emerg-
ing high-performance computing (HPC) platforms.
The toolkit has previously been used for a range
of applications, such as a COVID model [23] (with
computational complexity in order of 104 core hours
per experiment), a molecular dynamics model [24]
(experiments consumed 2 · 106 core hours), and a
range of other applications [8].

The EasyVVUQ package [18], a component of
the VECMA toolkit, has been developed to facili-
tate forward UQ for HPC applications. EasyVVUQ
supports the definition of custom UQ and SA pro-
cedures, which may include sampling and analysis,
without requiring users to modify their core appli-
cations. It has been applied successfully to a diverse
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Figure 2: Surrogate models Ûρ0 , ÛρC for the coffee cup model with independent and correlated inputs at various time instants.
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Figure 3: Difference between the surrogate models Ûρ0 and ÛρC with independent and correlated inputs at various time instants.

set of applications, and is able to cope with pro-
cedures that require thousands of simulation runs.
EasyVVUQ is open source and written in Python 3.

6. Numerical Experiments

Numerical experiments are performed using the
model introduced in Sec. 5. The initial condition
for the differential equation (24) used hereafter is
T0 = 95◦C. The simulation time covers first t = 200
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minutes of the cooling process, with the time dis-
cretized into 150 time steps of length ∆t = 80 s.
The parameter distributions used in the numerical
experiments, if not stated otherwise, are defined in
Eq. (25) and (26). The surrogate model is con-
structed using polynomials up to the third order,
unless specified otherwise.

6.1. Surrogate Models

The polynomial surrogates of the model (24) are
examined in the vicinity of the mean value of the pa-
rameters (25). The surrogate model is built for each
time instant of the discretized time horizon, depict-
ing the model output as a function of the particular
values of the input parameters. The surrogate mod-
els at various time instants t for the coffee cup are
illustrated in Fig. 2, demonstrating the effect of the
correlation in the parameters. Note that while the
difference between the two models is small near the
begging of the simulation time, the gap between
the two grows as the time progresses. The changes
in the final temperature profile are exaggerated by
the interaction of the parameters within the model
over time, thus the effect of the correlation is par-
ticularly visible at advanced simulation time, i.e.,
t > 20 − 30min. The absolute difference between
the uncorrelated and correlated surrogate models
e = ÛρC − Ûρ0 with ρC = 0.8 is illustrated in Fig. 3.

It is also important to highlight different cur-
vature of the surrogate models, since during the
derivative-based analysis a partial derivative of the
surrogate with respect to a parameter is evaluated
at the mean value of the parameters. Similarly as
before, the curvature difference between the two
models ÛρC , Ûρ0

grows with the proceeding sim-
ulation time.

6.2. SA with Uncorrelated Parameters

In case the correlation matrix C is an identity
matrix, i.e., there is no correlation between the pa-
rameters, the model evolution is shown in Fig. 4.
The model variance due to the uncertainty in the
input parameters is shown as well. Note that the
model variance at the initial point is zero, thus the
Sobol indices are not defined at this time instant.

Variance-based Indices

The corresponding sensitivity indices are shown
in Fig. 5, replicating the values of the variance-
based Sobol indices from previous works, e.g., [4].
The difference of the first and total order variance-
based indices, shown in the left panel of Fig. 5, are
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Figure 4: Statistical moments of the coffee cup model.
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Figure 5: First-order Sobol and derivative-based indices con-
sidering the independent parameters.
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Figure 6: Derivative-based indices using linear and logarith-
mic y-axis scale. Note that the absolute values of the sensi-
tivity indices are used in the latter case.

less than 10−4, indicating there are no higher order
parameter interactions. The first order Sobol index
of the κ parameter is the most influential in the first
75 minutes, while the ambient temperature param-
eter dominates in the remaining simulation time.
After reaching near equilibrium, i.e. the ambient
and the coffee cup temperature difference is less
than ≈ 0.1◦C, the ambient temperature parameter
explains nearly all of the output variance as shown
in Fig. 4. Intuitively, this is an expected behavior
or the model, since the end state of the coffee cup
after reaching the equilibrium is the environment
temperature. Since there are no higher order inter-
actions, the first order Sobol indices add up to one.
Consequently, the behavior of the indices is neces-
sarily complementary for the two parameters, i.e., if
one index is increasing, the other is proportionally
decreasing and vice versa.

Derivative-based Indices

The derivative-based indices, shown in the right
panel of Fig. 5, provide an insight into the model
around the vicinity of a fixed point, in this case the
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mean value of the model parameters. Following the
definition in Eq. (11), the values of the derivative-
based index correspond to the slope of a tangent
line to the model surface at the given spatial point
and time instant. The magnitude of the individual
derivative-based sensitivity indices differs by more
than two orders of magnitude, thus the sensitivity
indices are shown also in the logarithmic scale (con-
sidering their absolute values) in Fig. 6. Note that
the sensitivity of the parameter Tenv is near zero at
the beginning of the simulation, which reflects the
fact that it has very small contribution to the model
output as the temperature of the coffee cup is driven
mainly by the heat transfer constant. As the time
progresses, the sensitivity of Tenv increases and ap-
proaches one, meaning that a change of the ambient
temperature will have the proportional effect on the
model output. This reflects the fact that the final
temperature of the coffee cup is equal to the am-
bient temperature, thus the change in the ambient
temperature induces an equal change in the final
state of the coffee cup. On the other hand, the sen-
sitivity of the parameter κ is significantly larger but
the sensitivity of the parameter decreases over the
simulation time, since the heat transfer is driven
mainly by the temperature gradient between the
coffee cup and the surrounding environment which
is largest in the begging of the simulation. As this
temperature differential decreases, the heat trans-
fer becomes less significant. Note also the negative
value of the sensitivity index, meaning that as the
heat transfer parameter κ increases, the output of
the model, that is the coffee cup temperature, de-
creases due to a larger effect of the heat transfer.

6.3. SA with Parameter Dependency

Next, the correlation matrix C is modified, such
that the off-diagonal elements are no longer zero,
indicating parameter correlation. If not stated oth-
erwise, the numerical experiments use the value
ρC = 0.4 for the Pearson correlation coefficient. The
ordering of the indices in SA with correlations be-
comes important and the SA needs to be performed
for different permutations, as detailed in Sec. 4.4.

Variance-based Indices

The Sobol indices for the correlated parameters
and their difference relative to the baseline exper-
iment with independent parameters is shown in
Fig. 7. In order to obtain the complete set of the
Full order and Independent indices for both param-
eters, the SA needs to be executed twice, each time
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Figure 7: Variance-based indices considering correlated pa-
rameters (ρC = 0.4) and the absolute difference with the
uncorrelated indices from Fig. 5.

with different parameter permutation. First the
permutation P1 = (κ, Tenv) is used to obtain the
Full order index of the κ and the Independent index
for the parameter Tenv. Using the second permu-
tation, P2 = (Tenv, κ), the Full order index of the
Tenv and the Independent index for the parameter
κ are obtained.

The Full order and Independent indices for the
parameter κ are shown in Fig. 7a, comparing them
to the sensitivity index shown in the previous sec-
tion with uncorrelated parameters. Considering the
Full order index of the κ parameter (permutation
P1), the contribution of this parameter to the out-
put variance near the end of the simulation time is
increased compared to the independent case. Since
the parameters are positively correlated, increasing
the value of parameter κ induces growth also in
the Tenv parameter, thus increasing the end state
equilibrium temperature of the coffee cup. Previ-
ously, there was no such interaction of the param-
eters, thus the variance-based index of the κ pa-
rameter was zero at the end of the simulation time.
However, the Full index is lower around the simu-
lation time t ≈ 100min compared to the uncorre-
lated case. This is due to to the fact that increasing
κ induces growth of the Tenv parameter, which in
turn decreases the temperature gradient. Consider-
ing the dynamics of the model in (24), the induced
growth of the ambient temperature counteracts the
elevated heat transfer, thus the sensitivity of the
heat transfer parameter has decreased. When the
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Independent index is considered (permutation P2),
the effect of the correlation is removed and the in-
dex is nearly identical to the independent case in
the simulation time t > 100min. However, in the
simulation time around t ≈ 50 the sensitivity of the
κ parameters has increased, thus emphasizing the
importance of the parameter at the time instants
when the temperature gradient is large. Fig. 7a
also shows the absolute difference of the Full order
and Independent index compared to the uncorre-
lated case, in order to illustrate the magnitude of
the difference.

The behavior of the first order Sobol index for
Tenv parameter, as shown in Fig. 7b, is opposite
to that of the κ parameter. The Full order index
(permutation P2) matches the independent case at
the end of the simulation time (since it was already
at the maximum value of 1). Removal of the con-
tribution of the correlation decreases the value of
the index. The magnitude of the change is propor-
tional to the difference in the κ parameter indices
(Full vs. Independent index). This behavior of the
indices can be interpreted such that the portion of
the output variance can be explained by both pa-
rameters simultaneously since they are correlated.
It can be equally said that some output variance is
explained either by one or the other parameter. In
an extreme case of the perfect correlation, ρ12 = 1,
it is equivalent to say that the output variance is ex-
plained either by one or the other parameter, since
the value of one parameter completely determines
the value of the other.

It is also interesting to observe the complement
of the indices to one, shown in Fig. 8. Consider the
Full index of the κ parameter, as shown in Fig. 8a.
Its complement to one explains the output variance
contributed by the other parameter alone without
its correlated contribution with κ. In case of two pa-
rameters, this complement is the Independent Sobol
index of the Tenv parameter. In general case with
a set of D parameters, complement of the Full in-
dex of the parameter i explains the amount of vari-
ance contributed by the remaining D − 1 parame-
ters without their correlated contribution with i. A
similar relationship is observed between the com-
plement of the Full index of Tenv and Independent
index of κ in Fig. 8b. Note the presence of a numer-
ical error in this case, in order to eliminate it, the
indices should be computed with higher order poly-
nomials in the PCE analysis (see Sec. 6.5). Simi-
larly, Fig. 8c,d illustrate the relationship between
the complement of the Independent indices and the
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Figure 8: Complementary behaviors of the indices.
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Figure 9: Derivative-based indices considering dependent pa-
rameters with correlation ρC = 0.4 and the absolute differ-
ence with the uncorrelated indices.

Full indices of the other parameter.

Derivative-based Indices

Behavior of the derivative-based indices in the
correlated case for the parameter κ is shown in
Fig. 9a. The derivative-based indices are also re-
ferred to as Full or Independent indices. This is to
account for the permutation of the Q vector during
the input space transformation in the process of
surrogate model construction. We recall that a dif-
ferent permutation has a similar effect on the final
indices as in the case of the variance based analysis
in presence of the correlated inputs. In Sec. 6.2 it
was shown that the significance of the heat transfer
diminishes toward the end of the simulation time,
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Figure 10: Sobol indices considering dependent parameters with increasing correlation ρC and permutation (κ, Tenv), showing
also difference with respect to the uncorrelated indices.

t > 150min, and the value of the derivative-based
index approaches zero. This is due to the fact that
the final equilibrium is completely determined by
the ambient temperature parameter Tenv. However,
when we consider correlation between the parame-
ters and the Full order index (permutation P1) the
significance of the parameter κ is increased since the
Full order index includes also the interaction with
the other parameters due to the correlations. In
physical terms, it can be interpreted such as when
the parameter κ is increased, the ambient temper-
ature Tenv will be increased due to their positive
correlation ρC = 0.4. Consequently, the final tem-
perature of the coffee cup will be increased as well
and this is reflected accordingly in the Full order
index of the κ parameter which is no longer zero
as in the uncorrelated case. It is also interesting
to observe the behavior around the simulation time
t ≈ 20min. Note that the magnitude of the Full or-
der index is reduced (in absolute sense) compared to
the uncorrelated case. The reason for this is again
the correlated interaction with the Tenv parame-
ter. Studying the effect of increasing the κ incurs
also an increase in the Tenv due to their correla-
tion. This however reduces the temperature gradi-

ent when assuming constant initial temperature of
the coffee cup, thus the cooling process is reduced,
even though the heat transfer coefficient was in-
creased. This effect is represented by the reduced
magnitude of the Full order index of κ parameter
around the simulation time t ≈ 20min.
Similar logic applies when considering the Inde-

pendent index. Consider the Independent index of
the Tenv parameter (permutation P1) in Fig. 9b.
In the uncorrelated case, the equilibrium near the
end of the simulation time, t > 150min, was com-
pletely determined by the Tenv parameter. In the
correlated case, after removing the effect of the cor-
relation, the Independent index is proportionally
reduced since a part of the ambient temperature
growth was induced by the effect of the κ parame-
ter and the Independent index eliminates these pa-
rameter interactions.

6.4. Parameters with Increasing Correlation

It is important to understand the effect of the cor-
relation to the value of the indices. In this section,
the correlation ρC is gradually increasing in incre-
ments of 0.2, ranging from zero all the way to one
(i.e. from no correlation up to perfect correlation).
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Figure 11: Derivative-based indices considering dependent parameters with increasing correlation ρC and permutation (κ, Tenv),
showing also difference relative to the uncorrelated indices.

The largest value of the correlation is slightly re-
duced, ρC = 1.0− ϵ, ϵ = 10−10, in order to preserve
positive definiteness of the correlation matrix C.

6.4.1. Variance-based Sensitivity

The study of the First order Sobol indices is first
performed considering the permutation (κ, Tenv),
which is used to compute Full Sobol index for κ and
an Independent index for Tenv shown in Fig. 10. It
can be observed that as the correlation increases,
the Full index of κ at t > 125min in Fig. 10a is
gradually increasing, while at the same time the In-
dependent index of the other parameter in Fig. 10b
proportionally decreases. This reflects the fact that
due to the correlation, the Full index κ becomes
gradually more significant due to its correlation
with the Tenv parameter, not because of the pa-
rameter κ itself. On the other hand, the amount
of the variance explained by Tenv alone decreases
with increasing correlation, because of its interac-
tion with κ. In the limit situation when ρ12 = 1,
the parameters alone become insignificant and all
of the variance is explained by their correlated in-
teraction. Note that the Independent index is zero

(Fig. 10b) while the Full index is one (Fig. 10a).

Similar effect can be observed using the permuta-
tion (Tenv, κ) used to compute Independent Sobol
index for κ and the Full index for Tenv.

6.4.2. Derivative-based Sensitivity

The effect of increasing correlation for the
derivative-based sensitivity indices is shown in
Fig. 11. It shows the indices obtained from the per-
mutation (κ, Tenv), which corresponds to the per-
mutation P1 in Fig. 9. It can be seen that the in-
creasing correlation intensifies the effects described
in Sec. 6.3. Note that in the extreme case of cor-
relation ρC = 1.0 the Independent index becomes
zero across the whole simulation, as the parameter
Tenv is completely explained by the parameter κ.
Note that, as opposed to the variance-based sensi-
tivity indices, this doesn’t mean that the Full order
index is equal to one across the simulation time,
since the range of the index values is not bound to
the interval (0, 1) nor there is any property similar
to Eq. (10).
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Figure 12: Convergence of the QMC method for Sobol in-
dices using permutation (κ, Tenv) with correlation ρC =
0.417.
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Figure 13: Convergence of PCE method for variance-based
indices with increasing polynomial order (PO) using permu-
tation (κ, Tenv) with correlation ρC = 0.417.

6.5. Convergence Analysis

The convergence of the QMC method is tested,
which is later used as a reference value for the PCE
method. The QMC method is run with an increas-
ing number of samples, and the resulting first order
indices are shown in Fig. 12. The absolute differ-
ence between the indices is well below the threshold
of significance 0.05, thus the method is considered
to have converged. The rather arbitrary value of
0.05 is frequently accepted for this type of anal-
ysis for distinguishing important parameters from
the unimportant ones [25], thus similar idea can be
applied to declare a method to converge.

The PCE method is run with an increasing poly-
nomial order, ranging from 2nd to 7th order. Fig-
ure 13 illustrates that the variance-based indices
computed by the PCE method differ from the refer-
ence value of the QMC by less than 0.05 for polyno-
mial order three and higher orders. For the fourth
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Figure 14: Convergence of PCE method for derivative-based
indices using permutation (κ, Tenv) with correlation ρC =
0.417.

polynomial order, the difference is below 0.01. For
practical purposes the analysis can be run with
third of fourth order polynomials. The difference
in the initial point is attributed to the fact that the
variance in this point is zero and the variance-based
Sobol indices are not defined, thus the difference is
meaningless here. Convergence of the derivative-
based indices with the surrogate polynomial order
are shown in Figure 14.

7. Conclusions and Future Work

The SA methods introduced in this paper pro-
vides a comprehensive way to quantify the uncer-
tainty and sensitivity of a model with correlated
inputs. As demonstrated in the numerical exper-
iments, the sensitivity indices ignoring parameter
correlations significantly differ from their counter-
parts which do account for the correlation. This
can have profound implications for assessing the in-
fluence of the individual indices on the model sen-
sitivity. In case of the variance-based sensitivity,
the model uncertainty can be over/under-estimated
at the presence of the correlation. In case of the
derivative-based indices, it was demonstrated that
the sensitivity of the associated parameters can not
only differ in magnitude, but even invert the sign
of the derivative-based index, thus reversing the
model behavior compared to the prediction of the
study disregarding the correlations. In conclusion,
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it is essential to consider the parameter correlations
during the SA in order to get realistic estimation of
the sensitivity indices.

A comprehensible and easy to understand appli-
cation model in this work was intentionally chosen
in order to intuitively understand the input-output
interactions and to clearly demonstrate the impact
of the input parameter correlations on the sensitiv-
ity indices. In the follow-up work we will apply the
method to a large-scale model from the domain of
energy markets, where the input parameters such
as fossil fuel prices are often correlated. We will
evaluate the impact of the correlations on the sen-
sitivity analysis, and explore also associated high-
performance computational aspects.
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 Sensitivity analysis is a valuable tool for computational scientists used to gain insight into 
simulation models 

 Correlation of model inputs is a common phenomenon in many scientific and engineering 
applications. 

 Sensitivity analysis ignoring the parameter correlations might not reflect the true contributions
of the input parameters. 

 It is essential to consider the parameter correlations during the sensitivity analysis to get 
realistic estimation of the sensitivity indices. 
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