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NRBO-AGP: A Novel Feature Selection Approach for Accurate Protein Solubility Prediction

Zahra Elmi, Soheila Elmi, Sebelan Danishvar

o Current methods are inadequate for protein solubility prediction.
e Existing approaches suffer from high-dimensional datasets and are computationally inefficient.

NRBO-AGP combines the Newton-Raphson structure with Adaptive Gradient Perturbation for protein solubility.

This method integrates gradient-based and metaheuristic approaches for feature selection.

Achieved superior metrics (MAE: 0.0001 + 0.0000, RMSE: 0.0008 + 0.0000, and R?: 0.9908 + 0.0005) in protein
solubility prediction.
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ARTICLE INFO ABSTRACT

Protein solubility determines how well a protein dissolves in an aqueous solution, and this property
is a critical factor in the functional analysis of proteins and biotechnological applications. Accurately
estimating solubility can provide significant advantages in areas such as protein engineering and drug
discovery. This study proposes a new feature selection method, Newton-Raphson-based Optimization
and Adaptive Gradient Perturbation (NRBO-AGP) for predicting protein solubility. The research
combines the accuracy and speed of the Newton-Raphson method with the capacity of population-
based optimization techniques to balance exploration and exploitation. Using 3144 protein sequences
from the eSOL database, descriptor features were obtained for each protein, resulting in a dataset
with 3104 features. The performance of NRBO-AGP was compared with eight different metaheuristic
algorithms and evaluated using five regression models: MLP, AdaBoost, Gradient Boosting Trees,
Random Forest, and Support Vector Regressor (SVR). The best results were obtained with the
Gradient Boosting and Random Forest. Mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R?) metrics were used for performance evaluation. The results show
that NRBO-AGP outperforms other metaheuristic algorithms in all regression models. The best results
were achieved with Gradient Boosting and Random Forest, reaching MAE:0.0001 + 0.0000, RMSE:
0.0008 + 0.0000, and R?: 0.9908 -+ 0.0005, and MAE: 0.0002 =+ 0.0000, RMSE: 0.0025 + 0.0000,
and R%: 0.9908 + 0.0005. These findings show that NRBO-AGP is an effective feature selection tool
for predicting protein solubility. Multiple statistical analyses based on Friedman and Nemenyi tests
show that the NBRO-AGP method exhibits statistically significant superior performance (p < 0.05)
compared to other metaheuristic algorithms in MAE and RMSE metrics and also achieves the highest
performance in the R? score.
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E. coli. Although methods such as strong denaturants, weak
promoters, low temperatures, and optimized expression con-
ditions are used to solve this problem, these experimental
protocols require a significant amount of time and resources.
Misfolding of newly synthesized peptides due to errors that
occur during the formation of protein structures is the main
cause of inclusion body formation [5, 6, 7, 8]. Therefore,
protein sequences can be used to estimate the solubility of
proteins. This estimation process is carried out by machine
learning algorithms, especially neural networks, random
forests, and support vector machines [9, 10].In recent years,
deep learning-based models have achieved significant suc-
cess in the field of protein solubility prediction. For example,
Chen et al. proposed a model called HybridGCN, which
combines different sequence-based features with graph con-
volutional networks (GCN). This model blends classical
biophysical descriptors with the protein language model
(ESM-1v) to achieve high accuracy in solubility predic-
tion [11]. Deep-SoluE is a model developed by Wang and
Zou and uses long-short-term memory (LSTM) networks
to predict protein solubility. This model combines physico-
chemical properties and distributed representations obtained
from amino acid sequences to provide more balanced and
accurate predictions. DeepSoluE has demonstrated higher

*Corresponding author: sebelan.danishvar@brunel.ac.uk (S. Danish- accuracy and stable performance than existing tools, partic-
var) ularly in tests on E. coli proteins [12]. Similarly, the GATSol

1. Introduction

Proteins are vital macromolecules composed of amino
acid chains present in every cell and tissue in the human body
[1]. The functions of these macromolecules depend on their
physicochemical and structural properties, one of which is
solubility [2]. Protein solubility is a critical factor in drug
production efficiency and the advancement of proteomic
research. However, current computational techniques remain
inadequate for accurately predicting protein solubility [3].
Various approaches, such as computational and experimen-
tal methods, are used to evaluate protein solubility. Es-
cherichia coli (E. coli) bacteria are preferred for solubil-
ity assessment in many experimental techniques. However,
problems such as inclusion bodies (protein aggregation) can
be encountered during the protein expression process [4]. It
is important to distinguish between soluble expression and
aggregation-prone sequences. Soluble expression indicates
that proteins fold correctly and remain soluble in the cyto-
plasm. In contrast, aggregation-prone sequences often fold
incorrectly due to intrinsic properties such as hydrophobic-
ity, charge imbalance, or repetitive motifs, leading to in-
clusion bodies. This distinction is particularly crucial when
assessing the solubility potential of recombinant proteins in
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ORCID(S): 0000-0003-1487-8570 (Z. Elmi); 0000-0003-1434-6494 (S.
Elmi); 0000-0002-8258-0437 (S. Danishvar)

model developed by Li and Ming presented an attention-
based architecture that combines three-dimensional struc-
tural graph representations of proteins and language model
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outputs. This approach provided significant performance
gains, particularly on the eSOL dataset, and showed an
improvement of up to 18% over previous methods [13].
These algorithms can make solubility estimates by analyzing
protein sequences. However, the fact that data sets usually
contain many features can negatively affect the performance
of machine learning algorithms. In order to solve this prob-
lem, feature selection can be utilized as a vital approach
to figuring out the critical and most relevant features in
model training. By eliminating unnecessary features, feature
selection improves the overall learning algorithm perfor-
mance by concentrating on the most useful features [10].
Feature selection algorithms can be categorized into five
main groups: wrapper, filtering, embedding, ensemble, and
hybrid methods [14, 15, 16, 17, 18, 19, 20]. Filtering strate-
gies utilize statistical metrics to assess the significance of
features as opposed to the learning model itself. In contrast,
wrapper strategies employ the learning model to assess sev-
eral feature subsets. Although this method can enhance per-
formance, it has drawbacks such as high computational cost
and overfitting. By involving feature selection in the learning
process, embedded approaches strike a balance between
computing efficiency and overfitting. Ensemble approaches
increase the accuracy of classification tasks by combining
several feature subsets to determine the best combination.
Hybrid models integrate various feature selection strategies
and utilize their respective advantages. An innovative hybrid
feature selection method that addresses existing limitations
is presented in this paper. Our proposed method combines
wrapper-based metaheuristic algorithms with hybrid tech-
niques to optimize feature selection while maintaining com-
putational efficiency. The study evaluates and validates the
effectiveness of our approach using six different regres-
sion algorithms: -multilayer perceptron (MLP) regressor,
AdaBoost regressor, gradient boosting trees model, random
forest regressor, support vector regressor (SVR), and Elas-
ticNet. The main contributions of this research are:

e Development of an innovative hybrid model that im-
proves feature selection accuracy.

e Comprehensive comparison of metaheuristic algo-
rithms in protein solubility prediction.

e Demonstration of superior performance over existing
approaches on the obtained dataset.

The rest of the paper is organized as follows: Section 2
presents the theoretical basis of feature selection. Section
3 describes the dataset, descriptor generation, and method-
ology. Section 4 presents experimental results and analysis.
Finally, Section 5 includes concluding remarks and recom-
mendations for future work.

2. Related Work

While drug discovery stands out as one of the most chal-
lenging processes in the scientific world with its high costs
and low success rates, artificial intelligence (AI) and ma-
chine learning (ML) technologies are reshaping this process

with innovative approaches in critical areas such as molec-
ular property prediction and the design of new molecules.
These technologies have found wide application in the health
sector. They have provided significant advances, especially
in the early diagnosis of diseases, planning of treatment pro-
cesses, and preventive health services. New developments
in deep learning have demonstrated striking results, particu-
larly in complex medical imaging analyses such as detecting
and classifying brain tumors. Adapting artificial intelligence
and machine learning techniques to the medical field has
increased diagnostic success, accelerated analysis processes,
and reduced costs. However, the high dimensionality of
medical data has unique challenges, increasing the need for
more efficient and accurate methods in feature selection and
classification processes. Authors in [15] have examined in
detail the contributions of Al, particularly in drug screening
and design processes. This study emphasizes the impact
of Al in processes such as high-speed virtual screening
(HTVS), pharmacophore modeling, and de novo drug de-
sign. It also includes examples of applications in areas such
as toxicity prediction and pharmacokinetic profiling. The
success of Al in predicting drug-target interactions, optimiz-
ing molecular structures, and drug repositioning processes
has been examined, and it has been stated that success rates
of up to 97% in drug screening accuracy have been achieved
with the use of deep learning (DL) algorithms. However,
these high accuracy rates usually come with increased com-
putational complexity and the risk of getting stuck in local
optima. Our proposed NRBO-AGP method specifically ad-
dresses these challenges through its adaptive gradient per-
turbation mechanism. Molecular screenings, particularly for
COVID-19 treatment, show the importance of Al-supported
approaches in increasing clinical efficacy and speed. Simi-
larly, another study on the contributions of Al in the fight
against antimicrobial resistance (AMR) emphasizes that tra-
ditional drug development processes are insufficient due to
high cost, long time, and frequent failure rates. In this con-
text, the potential of Al technologies, particularly language
models and DL methods, in processes such as identifying
new antimicrobial agents, optimizing drug design, and pre-
dicting resistance mechanisms was examined. The findings
show that Al integrated with genomic and proteomic data
is effective in rapidly identifying new drug candidates, re-
structuring existing drugs, and estimating resistance mod-
els. For example, ML algorithms can rank molecules that
may have antimicrobial activity by analyzing large-scale
datasets, while DL models optimize drug design processes
by predicting target-protein interactions [ 16]. In parallel with
these studies, an innovative computational framework for
predicting drug-target interactions (DTI) has been presented.
This framework comprises three main stages: feature ex-
traction, selection, and classification. After managing high-
dimensional data with a wrapper feature selection method
called IWSSR, the selected features were passed to the Ro-
tation Forest classifier. It has been shown that the framework
achieves 98.12%, 98.07%, 96.82%, and 95.64% success rates
for enzymes, ion channels, G-protein coupled receptors,
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and nuclear receptors, respectively. This method offers a
time- and cost-saving mechanism compared to experimental
methods [17]. The use of hybrid architectures based on
CNN and LSTM in HAR has increased in recent years.
DeepConvLSTM, developed by Ordonez and Roggen [21],
is one of the pioneering works that combines CNN and
LSTM layers to process sensor data, and this architecture
achieved 93.7% accuracy. Similarly, Hammerla et al. [22]
comprehensively compared the performance of RNN and
CNN in HAR problems in their proposed deep learning
architectures and showed that hybrid models provide more
consistent results. The deepSense framework presented by
Yao et al. [23] recognized complex movements with 94.5%
accuracy using a hierarchical CNN-LSTM architecture that
processes 6-axis sensor data separately and then fuses them.
Recently, Choi et al. [24] achieved 97.2% accuracy by in-
tegrating the attention mechanism into the hybrid CNN-
LSTM architecture in their proposed Attentional ConvL-
STM model. However, most of these hybrid architectures use
standard connection structures, and the proposed DeepHAR-
Net [25] stands out by using peephole connections in LSTM
layers and its customized data augmentation strategy. These
innovations enable DeepHAR-Net to be more robust to sen-
sor placement variations and better capture complex activity
patterns. In this respect, DeepHAR-Net differs from existing
hybrid architectures in its architectural structure and perfor-
mance metrics. While these drug-target interaction studies
demonstrate the potential of feature selection in molecular
analysis, similar challenges and opportunities exist in gene
expression analysis. The efficient discovery-exploitation bal-
ance of our NRBO-AGP method becomes particularly valu-
able in this field. In this context, another study on hybrid
algorithms used in the classification of microarray gene
expression data proposes a new model called “Ensemble
Soft Weighted Gene Selection” (ESWGS). This model de-
termines gene weights using criteria such as the ROC curve,
two-sample T-test, Wilcoxon test, Bhattacharyya distance,
and entropy. It also includes the “Modified Water Cycle
Algorithm” (mWCA) method to optimize the RBF kernel
parameters of SVM. In experiments conducted on datasets
such as leukemia, breast cancer, and prostate cancer, it
has been shown that the model produces effective results
with high accuracy and low computational cost [18]. Sim-
ilarly, the ANOVA-SRC-BPSO method was developed to
reduce the computational load in high-dimensional datasets
and optimize cancer classification. Genes were filtered with
ANOVA and F-tests, redundant genes were eliminated with
Spearman rank correlation coefficients, and the most appro-
priate gene subset was selected with the BPSO algorithm.
This method achieved 100% classification accuracy in some
datasets and generally achieved high accuracy using fewer
genes [19]. Another deep learning-based study aimed to
classify cancer types and gene selection using microarray
data. The proposed model used ROC curve, Wilcoxon test,
and SNR methods for gene selection and utilized the Stacked
Autoencoder (SAE) model in the classification phase. The
study optimized gene selection with high accuracy rates,

both shortening processing times and increasing overall per-
formance. In this context, innovative solutions of AI and ML
methods in drug discovery, gene selection, and classification
processes provide an important foundation for the future in
biomedical research [20]. Our NRBO-AGP approach, which
employs powerful feature selection mechanisms while main-
taining computational efficiency, was directly motivated by
these issues related to missing data and high dimensions.
This study systematically examines feature selection (FS)
methods used in cancer classification of microarray gene
expression data [26]. FS methods have been developed to
increase classification accuracy and reduce computational
costs in high-dimensional datasets. They are of critical im-
portance, particularly in the field of microarray data analysis.
In the study, 132 scientific articles published in the last seven
years were examined in detail, and FS studies were divided
into five main categories: filter-based, wrapper, embedded,
hybrid, and ensemble approaches. These categories reveal
the strengths and weaknesses of the methods in terms of ac-
curacy, computational cost, and generalization capacity. It is
known that microarray gene expression data are widely used
in cancer diagnosis and developing prognostic models. How-
ever, the high dimensionality and low sample number fre-
quently encountered in such data reduce the generalization
capacity of the models and increase the risk of overfitting
[27]. The use of dimensionality reduction algorithms, such
as feature selection and feature extraction, has gained impor-
tance to solve these problems. In this context, FS algorithms
are implemented with different approaches such as filter,
wrapper, embedded, hybrid, and ensemble methods. Within
this classification, the comparative analysis, particularly be-
tween hybrid and ensemble methods, offers important prac-
tical implications for researchers. Hybrid methods provide
the ability to narrow down the search space more effectively
by integrating the strengths of different paradigms. For ex-
ample, reducing the dimensionality of the feature space with
filtering algorithms and then applying wrapper techniques
can significantly increase computational efficiency. On the
other hand, this integration process increases the complexity
of the method and complicates the implementation process,
as it requires multiple parameter optimizations. In addition,
combining different algorithms can lead to inconsistencies
between methods and make it difficult to verify the results.
Ensemble feature selection methods, on the other hand,
provide high generalization capability by combining the
outputs of multiple models. These approaches can produce
more robust and reliable predictions than a single model, if
there is noise in the dataset or complex relationships between
features [28]. The natural structure The natural structure
of ensemble methods can be easily integrated with cross-
validation techniques, which increases the reliability of the
model selection process. However, ensemble approaches
generally require higher computational costs, which can
be a significant limitation, particularly in high-dimensional
datasets or limited-resource scenarios. It should also be
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noted that ensemble methods have disadvantages in inter-
pretability and carry the risk of overfitting if not carefully de-
signed. In practical applications, hybrid and ensemble meth-
ods vary depending on the problem context and operational
constraints. Hybrid approaches may be more advantageous
in very high-dimensional datasets or where computational
resources are limited. On the other hand, ensemble meth-
ods can be preferred in applications where generalization
ability is critical, or the aim is to minimize the predic-
tion variance. The NRBO-AGP method proposed in this
study combines the fast convergence advantage of Newton-
Raphson optimization with the discovery ability of adaptive
gradient perturbation as a hybrid approach. This integration
exhibits superior computational efficiency and performance
and avoids local optima in complex bioinformatics problems
such as protein solubility estimation. Compared to other
studies, hybrid methods offer lower computational cost and
higher interpretability, while ensemble approaches provide
more robust and generalizable results. Researchers should
consider this trade-off when choosing the most appropriate
strategy for their spic applications. For example, while en-
semble methods stand out in areas requiring high accuracy,
such as clinical decision support systems, hybrid approaches
may be more suitable in real-time systems or resource-
constrained environments. As a result, when determining
the feature selection approach, the advantage-disadvantage
balance offered by hybrid and ensemble strategies should be
evaluated comprehensively, considering the dataset’s char-
acteristics, the application domain’s requirements, and the
existing computational infrastructure. Another significant
contribution is that metaheuristic algorithms have many
applications in feature selection processes. These algorithms
have been investigated using various metrics and classifiers
on single and multiple objective functions [29]. Specifically,
physics-based adaptations, human behavior-based, swarm
intelligence-based, and evolutionary-based algorithms have
significantly contributed to the FS area by offering remark-
able accuracy rates on large datasets [30]. Furthermore, the
investigation of multi-class FS problems has highlighted
the necessity for the scalability and robustness of these
algorithms [31]. The necessity of scalability and robustness
in feature selection approaches is obviously aligned with the
design principles of our proposed NRBO-AGP approach,
which covers these restrictions with an innovative combina-
tion of Newton-Raphson optimization and adaptive gradient
techniques. Therefore, FS methods play a critical role in
improving classification accuracy and reducing the compu-
tational costs in high-dimensional datasets. The studies men-
tioned show the effective utilization of artificial intelligence,
machine learning, and metaheuristic algorithms in FS pro-
cesses, which is critical to enhancing generalization capacity
and maximizing model performance. In this direction, more
comprehensive research and the development of innovative
approaches will help progress in the FS field. The DDcCNN
model [32] is an innovative solution that uses computational
techniques and sequence data to predict protein solubility.
The model combines the advantages of local and global

feature extraction with one-layer 1D convolutional networks
and three-layer 2D convolutional networks. The extracted
features for solubility prediction are processed in a four-
layer fully connected network. The model’s performance
is evaluated with a dataset of 129,643 protein sequences,
consisting of 58, 689 soluble and 70, 954 insoluble proteins.
The results reveal that the DDcCNN model has superior
performance in terms of sensitivity (76.13%), specificity
(79.32%), Matthew correlation coefficient (MCC, 0.57), and
accuracy (77.82%). Moreover, the MCC and accuracy values
of the model are better than those of other models, such
as PaRSnIP and DeepSol. Comparison of training times
shows that the DDcCNN model can be used to predict
protein solubility in real-world applications. Another study
[33] presented a new method for amino acid residue selec-
tion by combining unsupervised feature extraction with au-
toencoders, with three different feature selection strategies.
The model was tested on five benchmark datasets, namely
CB6133, CB6133-filtered, CB513, CASP10, and CASP11,
using random forest, decision tree, and multilayer perceptron
classifiers. The findings showed that Q8 accuracy ranged
from 82% to 74% and Q3 accuracy ranged from 92% to 74%.
The model achieved an average improvement of 3.5% in Q8
accuracy. While the random forest classifier performed best
in general metrics, the decision tree achieved better results
in specific areas. The model also improved the performance
in prediction tasks by eliminating noisy and unnecessary
data. In another study on protein function classification
[34], feature selection methods and dissimilarity space rep-
resentations were used. The authors presented methods that
convert protein structures into real-valued vectors that can
be used with standard classification techniques. The study
achieved success in classifying protein activities and showed
promising results in tests on a subset of the Escherichia
coli proteome. Newton-Raphson Based Optimizer (NRBO)
[35] improves the traditional Newton-Raphson approach by
introducing two basic operators, namely the Trap Avoid-
ance Operator (TAO) and the Newton-Raphson Search Rule
(NRSR). These operators increase the algorithm’s exploita-
tion capacity, convergence rate, and ability to avoid local
optima. NRBO has been evaluated on standard benchmark
problems such as CEC2020 and CEC2017 and outperforms
seven other advanced optimization algorithms. It has also
been successfully applied to training deep reinforcement
learning agents and optimizing IoV routing problems. It
is stated that NRBO further improves the performance by
combining population-based and gradient features. These
limitations in feature selection methods motivated the de-
velopment of our NRBO-AGP approach, which combines
the fast convergence property of Newton-Raphson with the
ability of gradient-based optimization to avoid local op-
tima. NRBO-AGP provides a more effective exploration-
exploitation balance in the search space thanks to NRBO-
AGP operators. It makes a unique contribution to the lit-
erature with its high accuracy rates and consistent results,
particularly in large-sized data sets.
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3. The dataset, descriptor generation, and
preliminary

3.1. eSOL Dataset

The data for protein solubility employed in the study
comes from the eSol database [36], which is an extensive
repository of quantitative protein solubility values for en-
semble E. coli proteins. It is derived from the eSOL platform,
where protein solubility is assessed using experimental in-
vestigation of their physicochemical properties in a PURE
system. This dataset consists of protein solubility values
experimentally measured in the PURE (Protein Synthesis
Using Recombinant Elements) system by Niwa et al. The
dataset used in our study contains a total of 3144 E. coli
proteins after eliminating those with missing sequence infor-
mation. The solubility value for each protein was determined
by producing recombinant proteins using cell-free protein
expression technology and separating them into soluble and
insoluble components by centrifugation. Solubility was cal-
culated by dividing the protein ratio in the supernatant by
the total protein content and takes continuous values in the
range of [0,1]. The solubility values in the eSOL dataset
show a continuous distribution and are generally used for
regression problems. However, it is possible to divide the
dataset into soluble and insoluble for classification studies.
Based on the threshold value of 0.5, which is widely used
in the literature, the class distribution in our data set is as
follows: soluble proteins (resolution > 0.5), 1,837 samples
(58.4%), and insoluble proteins (resolution < 0.5), 1,307
samples (41.6%). When the statistical distribution of the
solubility values is examined, the mean solubility is 0.57,
the median solubility is 0.62, the standard deviation is 0.29,
the minimum value is 0.0, the maximum value is 1.0, and
the interquartile range (IQR) is 0.48. The distribution of
solubility values shows a slight bimodal characteristic; there
are two separate concentration points in the ranges of 0.2 —
0.3 and 0.7 — 0.8. This distribution reflects the dual effect of
the physicochemical properties of the proteins on solubility.
Following the exclusion of entries lacking sequence infor-
mation, 3144 proteins from the eSol database were included
in our study. The original study that generated this dataset
assessed protein solubility values by producing recombi-
nant proteins using cell-free protein expression technology.
The expressed proteins were subsequently fractionated into
soluble and insoluble components through centrifugation.
Solubility is the supernatant protein ratio to total protein
content, which was computed by SDS-PAGE [37].

3.2. Preprocessing

TTo generate our research database, we apply several
steps to the protein sequences of eSOL [38]. We use the
Peptides package in the R language to achieve the protein
sequence descriptors. We first install and load it to enable
us to utilize the functionality of the package. We then use
the "aaDescriptors” function to assess the sequences of the
eSOL proteins and generate 66 descriptors for each amino
acid. The several descriptors of amino acids are the aliphatic
index, Boman index, net charge, hydrophobicity, instability

index, isoelectric point, and molecular weight. To facilitate
interpretation, we gather the obtained descriptor values into
a structured data framework. Generating a structured data
framework with multiple protein sequences is the first step
of our research; each sequence contains multiple properties
for each amino acid. Using a loop mechanism, we iteratively
perform the "aaDescriptors" function on each sequence.
Finally, these distinct data obtained are gathered into a single
matrix frame that includes all generated descriptors for the
sequences of the proteins. The resulting dataset contains
3144 instances and 3104 features. Although the dataset
was relatively balanced, a stratified sampling technique was
applied to prevent potential biases during the model training
and evaluation processes. For sampling, solubility values
were divided into five equal intervals (0—0.2,0.2—-0.4,0.4—
0.6,0.6—0.8,0.8—1.), and a proportional number of samples
were selected from each interval. This approach ensured that
each training/validation/test set represented the solubility
distribution in the original dataset. The dataset was divided
into 70% training (n = 2201),10% validation (n = 314), and
20% test (n = 629). The soluble and insoluble protein ratios
in each divided set were consistent with the original dataset’s
ratio (58% — 42% balance was maintained). Sixty-six de-
scriptive features were extracted for each protein sequence
using the "aaDescriptors" function in the Peptides package.
These features include parameters such as aliphatic index,
Boman index, net charge, hydrophobicity, instability index,
isoelectric point, and molecular weight. The average values
divided by the number of amino acids of each sequence
were used to standardize the length differences between
the sequences. As a result of this process, a data matrix
containing a total of 3104 features for 3144 proteins was
created. All features were normalized to the range [0, 1]
with the min-max scaling method to ensure comparability
between models and to prevent potential misconceptions
due to the different scales of the features. In bioinformatics
and computational biology research, this method efficiently
utilizes the Peptides package and the R language’s flexibility
to perform profound analysis of the attributes of proteins.
After that, the min-max scaler was used to normalize the
data.

3.3. Preliminary
3.3.1. Newton-Raphson-Based Optimization
Optimization problems are categorized into two different
classes: algorithms based on gradient, such as Newton’s
Method (NM) [39], Gradient-Descent Algorithm (GDA)
[40], Levenberg Marquardt Algorithm (LMA) [41], Quasi-
Newton’s Method (QNM) [42], and algorithms based on
non-gradient-based methods, such as MAs, such as GA,
GWO, WOA, ACO, and PSO, etc. To find the optimal
solutions, gradient-based algorithms (GB) are based on dis-
covering the points where the gradient is zero; algorithms
like NM and conjugate direction approaches follow this
principle. The gradient algorithms have disadvantages, such
as slow convergence speed and no guarantee of the best
solution. Metaheuristic algorithms are flexible mechanisms
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for solving problems that perform specified procedures to
accomplish optimization without depending on the domain
of a specific problem. They are inspired by natural phenom-
ena and utilize heuristic approaches that can be designed for
various optimization aims. Metaheuristic approaches such
as GA, GWO, WOA, ACO, and PSO present powerful and
effective methods for optimization in a comparatively short
time, contrasting with the exact optimization methods that
obtain the optimal solutions after considerable computation.
Metaheuristic algorithms have an advantage when utilizing
complex models and large datasets; they produce high-
quality answers with low errors quickly. In addition, the flex-
ibility of metaheuristic methods enables them to adapt easily
to real-world scenarios and distinguishes them from more
rigid, accurate optimization approaches. While MAs offer
excellent robustness in searching for the optimal solution,
GB gets stuck with local optimal solutions. On the other
hand, MAs require more CPU cores, which is particularly
important for problems with large search spaces. Therefore,
we suggest a novel method that combines the advantages
of gradient-based and metaheuristic algorithms and uses
them for feature selection. The Newton-Raphson approach
is a method that uses the Taylor series to find the root of
a function. Initially, a point (x;) is chosen, and the Taylor
series of the function is calculated around this point (so that
we consider only up to second-order terms) [35]:

(f" (x0) - (6)*)

> (1)

f(xg+e)= f'(xo) c€+
If f(xy + €) = 0 and solving Eq. 1 for € = ¢, we will have,

e = — 1 (xp)
07 fr(xg)’

This determines the next position of the root, and the process
is repeated until the root is found:
/
X
EASOG P 3
1)

Newton-Raphson-Based Optimization (NRBO) [35] ex-
plores the search region using the Newton-Raphson Method
and defines the search path using various operators. Consider
that optimization is performed on an unconstrained single-
objective problem as follows:

2

xn+1)=x,

Minimize : f(x{,X,,...

“)

where f(x) is the objective function minimizing x;, which
is the decision vector, dim is the dimension of the problem,
b and ub are lower and upper bounds, respectively. NRBO,
similar to other metaheuristic algorithms, starts investigating
optimal solutions by generating initial random populations.
The random population is generated by the following equa-
tion:

x;.’ = lb+randX(ub—1b),n = 1,2,...,N,;j =1,2,... . dim,

, X, )subject tolb < x; < ub,j =1,2,..

&)

Where x"! is the position of the n™ population in the j®
dimension, rand is a random number in the interval (0, 1),
and N, is the total number of the population. The Newton-
Raphson Search Rule (NRSR) is presented as an effective
solution method for variation problems. This allows vectors
to explore the feasible region more accurately and obtain bet-
ter positions. It is based on the idea of the Newton-Raphson
Method (NRM) to increase the exploration tendency and
speed up convergence and is an adaptation of the NRM and
adopts a permanent approach so that it can be used for non-
differentiable functions. NRM starts with an initial solution
and progresses to the next position in a specified direction.
Using the Taylor series of second-order derivatives to obtain
NRAK from Eq. 3, the derivatives of f(x) are determined as
follows:

(fG+ AX) = f(x = Ax))

f(x)= YN

(6)

s F&+ A+ f(x— Ax) —2ef(x)
Ax? '

By substituting these derivatives into Eq.3, the updated
root position is written as follows:

FANEY @)

((f (x, + Ax) = f(x, = Ax) X Ax)
xmn+l) = x,

C2X(fO+ AN+ f(x, = AX) =2 X f(x,)]
®)

This equation is adjusted for NRSR to manage population-
based search. By determining the best and worst positions,
NRSR is expressed as follows:

(X, —Xb)xAx

NRSR = randn X s
2e(X,, + X, —2Xx,)

(€]

Here, randn is a random number with a normal distribution,
X, and X, represent the worst and best positions, respec-
tively. /\x is determined as follows:

Ax = rand(1,dim) X | X, — X!, (10)

where ¢ is the current iteration. To improve the performance
of the algorithm, an adaptive coefficient 6 is used, which
prgﬂ'aes a balance between exploration and exploitation.

2X1t.5
6=>1-(=)), 11
A= (=) an
Using Eq. 8 and NRSR, the position is updated:
xn+ 1) =x,— NRSR, (12)

To improve exploitation, NRBO uses the parameter p to
determine the direction of the population:

p=ax(X,— X))+ pX] - X}, 13)

Z. Elmi et al.: Preprint submitted to Elsevier

Page 6 of 38



Journal Pre-proof

NRBO-AGP for Protein Solubility Prediction

Where a and f are random numbers in intervals (0, 1), i and
Jj are different integers that are randomly chosen from the
population. The current position is updated as follows:

X, — Xp) X Ax
2X (X, + X, —2%xx," (14)
Ha X (X, — x)) + X — X)),

X1 =x! — (randn x

Equations 15 and 16 present local and global search strate-
gies:

Y = ¥p) X Ax
2X D+ yp=2%xx," (15)
+Ha X (X, —x")+ pX] — XJ’.)),

X1 =x) — (randn x

Y = Vp) X AA\x
22Xty —2xx," (16)
+Ha X (X, —x")+ pX] - X)),

X2 = X, — (randn x

where y,, and y, are the positions of the two vectors formed
using x4y and x,,, respectively. NRBO uses the above two
equations to develop both the diversification and intensi-
fication phases. The new position vector is determined by
Equations 17 and 18:

XU = yx(yx X1 +(1-p)x X2)+(1-y)x X3!, (17)

— vyt
X3 =X —sx (X2 - X1), (18)
where ¥ is the random number in intervals (0, 1). For clarity,
a complete list of hyperparameters used in Equations 6-12,
along with their descriptions and values, is presented in
Appendix A.

3.3.2. Adaptive Gradient Perturbation

The adaptive gradient perturbation (AGP) [43] method is
based on the adaptive perturbation of the gradient to improve
optimization processes in machine learning and deep learn-
ing. This method was developed to prevent getting trapped
in local minimum and to speed up the convergence time,
particularly in complex and high-dimensional problems. The
main aim of this method is to provide a more effective learn-
ing process by dynamically adjusting the gradients during
the model training. The AGP method basically modifies the
gradient descent algorithm as follows:

Ous1y = 0, —n(V f(0)) +¢€), (19)

where 6, represents the current model parameters, # is the
learning rate, V f(6,) is the gradient of the loss function, and
€, is the adaptive perturbation term. ¢, is usually calculated
by the formula:

e, =axo(Vf(6,)x NO,I), (20)

where a is a hyperparameter controlling the perturbation
strength, o(V f(6,)) is the standard deviation of the gradi-
ents, and N (0, I)is arandom vector drawn from the standard

normal distribution. The adaptive nature of AGP is achieved
by dynamically adjusting a during training:
V@I
a =, XeXxpUAX(p— —"7—), 21
e IVS 61y

where A determines the adaptation speed and p determines
the target gradient rate. These formulas show how AGP im-
proves the optimization process by dynamically perturbing
the gradients so that the model can explore a larger solution
space and avoid local minima.

3.3.3. Hybrid of Newton-Raphson optimizer and
Adaptive Gradient Perturbation

Feature selection plays a critical role in improving the
performance and interpretability of machine learning mod-
els. In this paper, an innovative feature selection algorithm is
presented that combines Newton-Raphson optimization and
AGP techniques. This approach aims to provide a more ef-
fective and robust feature selection process by going beyond
traditional methods. The proposed approach consists of eight
important steps described below:
1. Problem Formulation: The feature selection problem is
formulated as a continuous optimization problem. A selec-
tion degree is defined for each feature, s; € [0, 1]. Here
s; = lindicates that the feature is completely selected, while
s; = 0 shows that the feature is completely eliminated. This
continuous formulation allows the use of gradient-based
optimization techniques.
2. Data Preparation and Starting Point: The algorithm con-
verts the dataset to PyTorch tensors, enabling fast compu-
tations on the GPU. The starting point is sampled from
a uniform distribution in the range [6, 1] to increase the
probability of selecting features:

so=0x N(0,1), (22)

where N (0, 1) represents the uniform distribution in the
range [0, 1].
3. Define Objective Function: The objective function, which
forms the core of the algorithm, consists of three main
components:

f()=CVMSE(s)+a(s,r)Li(s)+ (s, r)L,y(s), (23)

where CV M S E(s) is the mean square error calculated
by K-fold cross-validation, L;(s) represent L; norm (Lasso
regularization), and L,(s) is L, norm (Ridge regularization).
a(s,r) and f(s,r) are L; and L, regularization coefficients,
respectively. Population-based training is used for (a, f#, and
1), which has an O(N * T') time complexity, where N is the
population size and T is the number of CatBoost iterations.
a(s,r) and f(s,r) are as follows:

als,r) =ag+ (1 + %) x D(s), (24)

B(s,r) = o+ (1 + %) X D(s), (25)
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D(s) = exp(—y X diversitycore(s)), (26)

where r is the model performance ranking in the population,
and N is the population size. D(s) presents an adaptive term
based on population diversity, y is Diversity weight parame-
ter, and diversity core(s) is the feature subset’s uniqueness
score in the population. a,, f, are initial regularization
coefficients. This formulation allows feature selection to
adapt to population diversity, applies stronger regularization
for low-performing models, provides a better exploration of
the parameter space during the optimization process, and
automatically adapts according to cross-validation perfor-
mance. CVMSE is calculated using CatBoost regression at
each fold:

Where f; and f, are the momentum parameters of
AdamW , and #, is the learning rate at step ?.
7. Learning Rate Scheduling: The step size is decreased over
time:

it +1)=n""", (33)

where 7, is the initial learning rate, y is the decay factor, and
T is the step size period.

8. Termination and Feature Selection: The optimization is
terminated when a predetermined number of iterations is
reached or when the convergence criterion is met. Final
feature selection is performed by applying a threshold value
to the continuous values obtained from the optimization
result: selected — features = (s* > 6) where s* is the
optimized feature vector and 6 demonstrates the selection

CVMSE(s) = ( )X Z M S E(s, k)+a(s, r)L{(s)+B(s, r) L,(sthreshold value that is obtained by a quantile-based dynamic

(k=1)
27

4. Utilize Newton-Raphson Optimization: The Newton-
Raphson method rapidly approaches the optimal solution
using the gradient of the objective function and the Hessian
matrix. The Newton-Raphson formula is as follows:

—nH Y X V1 (s)), (28)

S(t+1) = St

Here H represents the Hessian matrix and V f(s,) is the

gradient. However, since direct Hessian computation can be
computationally expensive, the AdamW optimizer is used
in this implementation.
5. Apply Adaptive Gradient Perturbation: AGP helps avoid
local minima by adding a stochastic element to the optimiza-
tion process. Small, random perturbations are added to the
gradient:

prerturbed(s) = Vf(s) +eXx N(O’ I)’ (29)

Here € is the perturbation magnitude and N (0, I') repre-
sents the multidimensional standard normal distribution.
6. Optimization process: The optimization process is per-
formed using AdamW optimizer and learning rate planning.
At each iteration ¢:

- The objective function is calculated: f; = f(s,)

- The gradient is calculated by automatic differentiation:
VS, =V/Gs)
- AGP is applied:
vfpertwbed(s) =Vf(s)+eX N(O’ I
- The AdamW optimizer updates the parameters using the
gradient:

m; = ﬂl X m(t -D+0- ﬂl) X prerturbed(s)’ (30)

o= Py xot =D+ =pIXVIL s, BD)

threshold and has an O(n * log(n)) time complexity. The
pseudocode and flowchart 1 of the proposed approach are as
follows:

This new algorithm combines the fast convergence
property of Newton-Raphson optimization, the exploratory
ability of AGP, and the flexibility of modern optimization
techniques to provide an effective feature selection method.
The continuous optimization approach leverages the power
of gradient-based methods, while the AGP extension helps
avoid local minima. This approach has the potential to
show strong performance, in particular on high-dimensional
datasets and complex model structures. The time complexity
of this method is based on the combination of several main
components. Newton-Raphson optimization is iterated for
a certain number of iterations with the objective function
called in each iteration. The CatBoost model is trained and
predicted using K-fold cross-validation in this function. In
addition, adaptive gradient perturbation is applied in each
iteration. The main factors affecting the time complexity
include the number of instances, the number of features,
the number of Newton-Raphson iterations, the number of K-
folds, and the number of iterations of the CatBoost model.
Roughly, the time complexity can be expressed as O(t
K s« (n*d*T+nx*log(n))), where t represents the total
number of iterations, K demonstrates the number of folds, n
is the number of samples, d shows the number of features,
and T is the number of CatBoost iterations. Although the
use of GPU can reduce the computational time.

4. Result and Discussion

This study proposes an approach based on a novel pop-
ulation for feature selection called the Newton-Raphson-
Based Optimizer and Adaptive Gradient Perturbation, which
combines Newton-Raphson optimization and adaptive gra-
dient perturbation. The integration of these two methods
offers the combined benefits of fast convergence and the
avoidance of local optima in the feature selection process.

_ m; 30 The Newton-Raphson method is a powerful iterative method

See) =S¢ — M X ———, (32) .
V) +e used to find the roots of functions. In the context of feature
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Figure 1: flowchart of the NRBO-AGP approach.

selection, this method can help quickly find the optimal fea-
ture subset. The method continuously improves the current
solution, converging to a better feature combination in each
iteration. On the other hand, Adaptive Gradient Perturbation
is a variant of gradient-based optimization techniques. This
method adds small random perturbations to the gradient
to explore the search space more effectively. In the fea-
ture selection process, this approach can reduce the risk of
getting stuck in local optima and explore a larger solution
space. Combining these two methods can provide a more
robust and effective feature selection process by combining
the fast convergence property of Newton-Raphson with the
exploration capability of Adaptive Gradient Perturbation.
This combination can be helpful in complex and high-
dimensional datasets. Model development and experimen-
tal analyses were performed on the Python platform. We
explicitly stated the exact split ratios (70%/10%/20%) of
the training/test/validation datasets used in the experimental
setup and the detailed cross-validation strategy (5-fold CV).
These experiments are carried out on a 3.70 GHz Intel Core
i5 PC with 16 GB of RAM and a GeForce RTX 4070
with 12 GB. We also utilized eight metaheuristic algorithms
that are population-based, such as the Whale Optimization
Algorithm (WOA) [44], Grey Wolf Optimizer (GWO) [45],
Ant Lion Optimizer (ALO) [46], Moth Flame Optimizer
(MFO) [47], Dragonfly Algorithm (DA) [48], Grasshopper
Optimization Algorithm (GOA) [49], Multi-Verse Optimizer

(MVO) [50], and Salp Swarm Algorithm (SSA) [51], for
feature selection in our generated dataset to demonstrate
that the proposed method outperforms the above-mentioned
methods in protein solu- bility prediction. Each metaheuris-
tic technique in this study used a population size of 100
agents and was run for 70 iterations. Root mean squared
error, mean absolute error, and R? error measurement in the
five-fold cross-validation method were applied to evaluate
the performance of the proposed techniques.

RMSE= | Ly - (34)
t=1
l n
MAE = — (= po)s (35)
n\ t=21) t t
R2 _ Z:lzl(yt _pt)2 (36)

1- 5
ZL](J’t - Z?:] J’t)2

where y;, p;, and n denote the actual, predicted values
and number of observations, respectively. Figure 2(a) shows
the correlation coefficients of selected features using the pro-
posed method with the target variable, which is the solubility
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Algorithm 1 Feature Selection Optimization using AGP and
Newton-Raphson

1: Load and preprocess data:

2: X € R™m y e R”

3: Initialize feature subset randomly:

4: 50 €ER™, 59 ~ N(0,1)

5: Define objective function f(s):

6: function F(s)

7: a. Select features:

8 Xselecled=X[:’s> 0]

9: b. Perform k-fold cross-validation:
10: for each fold do

11: Train CatBoost model

12: Predict: = CatBoost(X )

13: Calculate MSE:

14: MSEfold = t Z(ytest - )/})2

15: end for

16: c. Calculate mean MSE:

17: MSE = ; ¥ MSE

18: d. Add regularization term:

19: £(5) = MSE + a[[L,(5)]] + Al| Ly(s)I]
20: e. Return J(0)

21: end function

22: Define Adaptive Gradient Perturbation (AGP) function:
23: function AGP(V f(s), €)

24: return Vf(s) 4+ e - N0, I)

25: end function

26: Define Newton-Raphson optimizer with AGP:

27: function OPTIMIZE(s,, J, T, #,, €)

28: Initialize AdamW optimizer with learning rate #,
29: Initialize learning rate scheduler
30: Sip1 =8,
31: fort=1toT do
32: Calculate J(0) and VJ(0)
33: Apply AGP:
34: VJ'(0) = AGP(VJ(0),¢)
35: Update 6 using AdamW:
36: m, = ﬂl sm_ + 1= ﬁl) : prerturbed(s)
37 v, = ﬁz Ut - ﬂZ) 4 (prerlurbed(s))2
38: i, = —L
A <1;ﬂl)
39: v, = m
40: S =8, —n - (\/%’H)
41: Update learning rate: n = scheduler(s)
42: end for
43: return s,

44: end function
45: Optimize feature subset:

46: s* = optimize(s,, J, T, n,, €)
47: Apply threshold to select final features:
43: selected_features = s* > 6

49: Save and output results

of the protein. The Y-axis shows the correlation coefficients
between O and 1, and the X-axis represents the different
selected variables. This correlation analysis graph shows
the relationships between feature selection and the target
variable, providing important insights into machine learning
modeling. The descriptors determined by the NRBO-AGP
hybrid feature selection algorithm and shown in Figure 2(a)

provide a comprehensive profile of various biochemical
and physicochemical parameters affecting protein solubil-
ity. When the selected features are examined, it is seen
that the hydrophobicity/hydrophilicity properties of amino
acids at positions 44-47 (VHSE1.44, VHSE2.44, Z1.44,
71.47, PP2.45, PP3.44), steric and volumetric characteris-
tics (VHSE3.44, VHSE4.46, Z2.46, Z4.44), electronic and
charge distributions (VHSE6.44, VHSE7.44, VHSE7.46,
VHSES.45), and structural conformation tendencies (F1.45,
F2.44, F2.45, F3.47, ST3.47, ST5.44, ST6.44) are promi-
nent. These properties’ significantly high correlation co-
efficients prove that these biochemical parameters play a
decisive role in protein solubility. Hydrophobic-hydrophilic
balance directly affects the solvent interactions of the protein
and emerges as the primary determinant of the solubility pro-
file. While the optimum distribution of hydrophilic amino
acids on the protein surface increases the solubility by pro-
viding appropriate interactions with water molecules, incor-
rect positioning of hydrophobic regions can trigger aggre-
gation tendency. Selecting descriptors related to structural
stability (ST5.44, ST6.44, T1.44, T3.44) emphasizes the
critical effect of correct protein folding on solubility. Ther-
modynamically stable conformations contribute positively
to solubility by reducing the tendency for misfolding and the
associated aggregation risk. Charge distribution properties
(VHSES6.44, VHSE7.44) modulate intermolecular interac-
tions by shaping the electrostatic profile of the protein. A
balanced and optimum surface charge distribution prevents
aggregation by increasing protein-protein repulsion forces
while increasing solubility by strengthening protein-solvent
interactions. The critical positions selected by the model (44-
47) are probably located in the surface areas of the protein
structure that are open to solvent interaction, suggesting that
these regions constitute a "hot spot" in terms of solubility.
The unique combinations of amino acids in these positions
shape the interaction surface in a way that determines the
solubility profile of the protein. Notably, the prominent
presence of BLOSUM identifiers (BLOSUM4.44, BLO-
SUMG6.44, BLOSUMS.44), which are indicators of evolu-
tionary conservation, indicates that the selected positions
are under evolutionary pressure not only for solubility but
also for the preservation of protein function. The selection
of protein fingerprint identifiers (ProtFP1.44, ProtFP4.44,
ProtFP7.44) points to the effect of specific amino acid se-
quences on solubility. Holistic analysis of these descriptors
reveals molecular determinants of protein solubility and pro-
vides a rational framework for potential protein engineering
applications. As seen in the figure, correlation coefficients
vary between 0 and 0.09. The highest correlation value is
observed as a distinct peak in the middle part of the graph,
at approximately 0.09. This variable substantially affects the
target variable more than the others. Most variables show
correlation values of 0.02 — 0.06, indicating a medium-level
relationship. It is observed that the variables on the left side
of the graph generally have higher correlation values, and
these values gradually decrease as we move to the right.
This shows that the effects of the variables in the data set on
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the target variable are at different levels. The relatively low
correlation values may indicate the existence of non-linear
relationships between the variables. This situation indicates
that more complex modeling techniques and feature engi-
neering approaches should be evaluated. In the model de-
velopment process, it will be essential to prioritize variables
with high correlation and evaluate other variables in different
combinations and transformations. This correlation analysis
is a critical guide for the feature selection process. Including
highly correlated features in the model can increase the pre-
dictive performance. As a result of the mutual information
analysis we conducted to detect nonlinear relationships in
Figure 2(b), it was observed that some features had low
correlation coefficients compared to the classical Pearson
correlation. However, they carried significant information
about the target variable. Although the Pearson correlation
of the feature named “hydrophobicity index” was only 0.045,
the mutual information value was calculated as 0.31. Sim-
ilarly, while the Pearson correlation for the feature named
“net charge” was 0.028, the mutual information value was
at the level of 0.26. These findings show that our model
can effectively capture linear but also complex and nonlinear
dependencies. In addition, the Kendall Tau correlation coef-
ficient is shown in Figure 2(c) to take the sequential structure
into account. According to the results, for example, the
Pearson correlation between the feature named “isoelectric
point” and the target variable (resolution) was at 0.021.
At the same time, the Kendall tau coefficient was found
to be 0.173. For the “instability index” feature, this value
was measured as 0.165. This situation reveals that classical
correlation analyses can ignore the sequential relationship
of some features with resolution and that sequential cor-
relation analyses increase the model’s explanatory power.
In this direction, the proposed NRBO-AGP method creates
more powerful and generalizable models, especially in high-
dimensional and complex data structures, with its capacity
to detect features sensitive to non-linear and sequential re-
lationships. To evaluate the quality of the selected features
in the prediction, we utilize the MLP regressor, AdaBoost
regressor, Gradient Boost Tree, Random Forest regressor,
Support Vector Regressor, and ElasticNet.

To evaluate the quality of the selected features in the
prediction, we utilize the MLP regressor, AdaBoost re-
gressor, Gradient Boost Tree, Random Forest regressor,
Support Vector Regressor, and ElasticNet. Figure 3(a) is a
model prediction comparison. Scatter plots are presented
showing the relationship between the actual values and the
predicted values for six different models (MLP, AdaBoost,
GradientBoosting, RandomForest, SVR, and ElasticNet).
It is seen that the GradientBoosting and RandomForest
models exhibit excellent performance (R?> = 0.999). The
MLP and AdaBoost models also yielded successful results
(R? > 0.995). The ElasticNet model showed a lower R2
score compared to other regression models. In order to
interpret this performance difference, the error distribution
of the model was examined. The model’s predictions were
observed to be higher than the true value at low solubility

values, while the model’s predictions were systematically
lower at high solubility values. This situation indicates a
deviation pattern resulting from the excessive shrinkage of
the regression coefficients, resulting from the combined use
of ElasticNet’s L1 (Lasso) and L2 (Ridge) regularizations.
Therefore, the model made more conservative and closer-to-
average predictions by pulling the extreme values towards
the center, which caused the errors to grow at the extreme
values. The effect of this systematic deviation decreased the
model’s overall performance and caused it to lag behind in
accuracy metrics. The relevant error distribution graph and
deviation directions are shown and discussed in the article
content. Our study’s ensemble models, GradientBoosting
and RandomForest, achieved very high-performance val-
ues. However, various precautions were taken to evaluate
whether this was due to a possible overfitting situation. First,
all models were evaluated with the 5-fold cross-validation
method (5-fold CV), and the average of the R?, MAE, and
RMSE values obtained in each layer and their standard
deviations were calculated. For example, the test R? score
for the RandomForest model was 0.9908 + 0.0005, and
for the GradientBoosting model it was 0.9908 + 0.0005.
These low standard deviation values indicate that the models
performed similarly in different data splits and that their
generalization capacity was high. In addition, regularizing
constraints were applied to parameters such as n-estimators,
max-depth, min-samples-split, and learning-rate using the
Bayesian Optimization method in the hyperparameter op-
timization process. In this way, the models were prevented
from overfitting the training data, and a more balanced learn-
ing process was achieved. With these measures, it is thought
that the high success rates are not only due to overfitting
the training but also to the learned structural relationships,
and that the models can give successful results on new
data. However, the performance of the SVR and ElasticNet
models remained lower than the others. It was observed
that the deviations in the test set were more pronounced
in the ElasticNet model. Figure 3(b) shows residual analy-
ses. Histograms showing the distribution of residual values
for each model are presented. The residual values of the
GradientBoosting model are concentrated in a very narrow
range around zero, indicating that the model’s predictions
are pretty accurate. It is seen that the RandomForest model
has a similarly minimal error distribution. While the residual
distributions of the MLP and AdaBoost models exhibit a
close appearance to a normal distribution, it was observed
that the SVR and ElasticNet models have a wider error
distribution. Figure 3(c) evaluates the conformity of the
residual values of the models to a normal distribution. The
Q-Q plot of the MLP model shows deviations from the
theoretical regular distribution line at the extreme points,
indicating that the residual values are not perfectly normally
distributed. The AdaBoost model better fits the normality
in the middle quantiles, while it exhibits systematic devia-
tions at both ends of the distribution. A distinct S-shaped
pattern indicates that the residuals are heavier-tailed than the
normal distribution. The Q-Q plot of the GradientBoosting
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model shows significant deviations from normality, with a
distinct stepped pattern. This indicates that the residuals are
not continuously distributed as in the normal distribution
but exhibit a discrete or clustered distribution. The Q-Q
plot of the RandomForest model shows extreme deviations
from normality, with an almost horizontal line pattern for
most of the distribution. This pattern indicates that the
RandomForest model produces many identical or similar
residual values (possibly close to zero). The Q-Q plot of the
SVR model shows a more linear relationship in the middle
quantiles, while it exhibits significant deviations in the tails.
The Q-Q plot of the ElasticNet model shows significant
deviations from the theoretical normal line, with significant
separations observed in both tails. Comparison of error
metrics is demonstrated in Figure 3(d). In this figure, the
performance comparison of the models is made on three
different metrics (MAE, RMSE, and R2?). It is seen that
the MAE and RMSE values are at the minimum level in
the GradientBoosting and RandomForest models. In the R?
metric, it is observed that all models except ElasticNet show
high performance, but ElasticNet experiences a significant
performance decrease in the test set (R = 0.6). Notably, the
SVR model shows moderate performance in error metrics
but consistent behavior. It is seen that ensemble learning
methods (GradientBoosting and RandomForest) show the
best performance in this problem. These models have shown
superior performance in terms of both prediction accuracy
and error distribution. Deep learning (MLP) and boosting
(AdaBoost) approaches also gave satisfactory results. How-
ever, it was observed that classical regression methods, SVR
and ElasticNet, showed relatively weaker performance, and
ElasticNet experienced a significant performance decrease
in the test set. These results show that ensemble methods
can better model the nonlinear and complex structure of
the problem space. In addition, the superiority of ensemble
methods in terms of the generalization capabilities of the
models is also remarkable. Figure 3(e) shows the decrease of
the loss function during the training iterations of the model.
The graph contains two curves, the blue line representing
the training loss and the red line representing the validation
loss. Both curves show a rapid decrease in the loss value
during the initial training phase (approximately the first 25-
50 iterations). The validation loss (red line) starts at a higher
value (approximately 0.45) and decreases rapidly during the
first 25 iterations. This shows that the model learns most of
the patterns in the data very quickly. After approximately
50 iterations, the training and validation losses stabilize and
flatten to zero. This shows that the model is converging to a
stable solution. An important observation is that there is no
divergence between the training and validation loss curves
as the training progresses. The validation loss decreases
with the training loss, indicating that the model generalizes
well to unseen data and does not overfit. At approximately
iteration 75, both losses have reached their minimum values
and remain constant for the remainder of the training process
(up to iteration 200). This plateau suggests that additional
training beyond this point provides minimal benefit. The

smooth and consistent decrease in both curves indicates
that the chosen learning rate and optimization algorithm
are appropriate for this problem, allowing efficient conver-
gence without oscillations or instability. This convergence
pattern supports the strong performance metrics of ensemble
methods, particularly GradientBoosting and RandomForest,
which effectively learn the underlying patterns in the data
and generalize well to the test data. The performances of the
regression models obtained using the selected features with
the NRBO-AGP method are reported with the mean MAE,
RMSE, and R? values, as well as the standard deviation
(std) values obtained during the five-fold cross-validation
period. Thus, the model’s average success and consistency
against different data splits are evaluated. The mean =+ std
values given in Table 1 on the test set show that the proposed
method gives stable and reliable results.

The scatter plots in Figure 4(a) show the relationship
between six models’ actual and predicted values (MLP, Ad-
aBoost, GradientBoosting, RandomForest, SVR, and Elas-
ticNet). It is observed that the MLP (R%? = 0.966) and
RandomForest (R> = 0.953) models exhibit the highest
performance under NBRO optimization, followed by the
GradientBoosting (R?> = 0.936) model. While the perfor-
mance of the AdaBoost model (R = 0.852) remains at a
moderate level, it is observed that the SVR (R? = 0.756)
and ElasticNet (R? = 0.378) models have significantly lower
coefficients of determination compared to the other models.
In particular, the predicted values grouped as vertical bands
in the scatter plot of the AdaBoost model are noteworthy,
indicating that the model produces discrete predictions at
specific intervals. The residual histograms in Figure 4(b)
show the error distribution of each model in detail. The
residual values of the MLP model are concentrated in a nar-
row range around zero and exhibit a bell-shaped symmetric
distribution. The residual histograms of the GradientBoost-
ing and RandomForest models are concentrated almost at a
single value (zero), indicating that the models produce many
exact or very close predictions under NBRO optimization.
The residual distribution of the AdaBoost model exhibits
a heterogeneous and asymmetric structure with multiple
peaks. While the residual distribution of the SVR model has
arelatively more symmetric, unimodal structure, the residual
distribution of the ElasticNet model is multimodal, spreads
over a wide range, and exhibits a heterogeneous structure.
The Q-Q plots presented in Figure 4(c) evaluate the compli-
ance of the models’ residuals with the normal distribution.
The Q-Q plot of the MLP model shows significant deviations
from the theoretical regular distribution line (red line) at the
upper end. The Q-Q plot of the AdaBoost model exhibits
a stepped structure and shows significant deviations from
normality. The Q-Q plot of the GradientBoosting model
exhibits a characteristic structure with horizontal segments,
indicating that the residuals are concentrated at specific
values. The Q-Q plot of the RandomForest model is almost
completely horizontal, confirming that the residuals mostly
have a single value. The SVR model’s Q-Q plot exhibits
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Table 1

Performance comparison of regression models on the test set (mean + standard deviation, 5-fold cross-validation).

GradientBoosting

RandomForest

SVR

ElasticNet

0.9908 + 0.0005
0.0008 + 0.0000
0.0001 + 0.0000

0.9908 + 0.0005
0.0025 + 0.0000
0.0002 + 0.0000

0.9609 + 0.0027
0.1033 + 0.0003
0.0806 + 0.0002

0.9331 + 0.0065
0.1351 + 0.0009
0.1080 + 0.0007

0.9904 + 0.0009
0.0907 + 0.0001
0.0062 + 0.0000

0.9833 + 0.0009
0.1192 + 0.0001
0.0077 + 0.0000

0.7676 + 0.0199
0.4452 + 0.0089
0.2841 + 0.0057

0.5781 + 0.0329
0.5999 + 0.0197
0.4512 + 0.0149

0.9961 + 0.0001
0.0263 + 0.0000
0.0015 + 0.0000

0.9977 + 0.0001
0.0203 + 0.0000
0.0013 + 0.0000

0.9508 + 0.0030
0.0929 + 0.0003
0.0882 + 0.0003

0.8201 + 0.0152
0.1775 + 0.0027
0.1300 + 0.0020

0.9993 + 0.0003
0.0203 + 0.0000
0.0015 + 0.0000

0.9997 + 0.0006
0.0126 + 0.0000
0.0006 + 0.0000

0.9539 + 0.0048
0.1687 + 0.0008
0.1100 + 0.0005

0.9331 + 0.0074
0.2032 + 0.0015
0.1387 + 0.0010

0.9957 + 0.0020
0.0370 + 0.0001
0.0039 + 0.0000

0.9894 + 0.0042
0.0583 + 0.0002
0.0027 + 0.0000

0.8652 + 0.0241
0.2075 + 0.0050
0.1359 + 0.0033

0.1684 + 0.0300
0.5153 + 0.0154
0.3185 + 0.0095

0.9933 + 0.0023
0.0462 + 0.0001
0.0024 + 0.0000

0.9929 + 0.0051
0.0475 + 0.0002
0.0024 + 0.0000

0.9152 + 0.0110
0.1646 + 0.0018
0.1069 + 0.0012

0.5800 + 0.0572
0.3662 + 0.0209
0.2225 + 0.0127

0.9984 + 0.0002
0.0197 + 0.0000
0.0018 + 0.0000

0.9980 + 0.0001
0.0219 + 0.0000
0.0011 + 0.0000

0.9162 + 0.0071
0.1415 + 0.0010
0.1058 + 0.0007

0.6370 + 0.0093
0.2945 + 0.0027
0.2451 + 0.0023

0.9987 +0.0006
0.0206 + 0.0000
0.0017 -+ 0.0000

0.9989 + 0.0014
0.0191 + 0.0000
0.0014 + 0.0000

0.8341 + 0.0262
0.2302 + 0.0060
0.1620 + 0.0042

0.6976 + 0.0373
0.3108 + 0.0116
0.2480 + 0.0093

0.9966 + 0.0001
0.0243 + 0.0000
0.0014 + 0.0000

0.9981 + 0.0002
0.0182 + 0.0000
0.0010 + 0.0000

0.9145 + 0.0059
0.1224 + 0.0007
0.1037 + 0.0006

0.7189 + 0.0410
0.2219 + 0.0091
0.1379 + 0.0056

0.9932 + 0.0021
0.0465 + 0.0001
0.0038 + 0.0000

0.9933 + 0.0053
0.0464 + 0.0002
0.0030 + 0.0000

0.6726 + 0.0270
0.3233 + 0.0087
0.2237 + 0.0060

0.1574 + 0.0334
0.5187 + 0.0173
0.3205 + 0.0107

Metaheuristic  Metric MLP AdaBoost
R? Score  0.9980 + 0.0011 0.9965 + 0.0004
NBRO AGP  RMSE 0.0234 + 0.0000 0.0310 + 0.0000
MAE 0.0148 + 0.0000 0.0260 + 0.0000
R? Score  0.9655 + 0.0068 0.8824 + 0.0195
NBRO RMSE 0.1714 + 0.0012 0.3166 + 0.0062
MAE 0.0893 + 0.0006 0.1543 + 0.0030
R? Score  0.9683 + 0.0008 0.9711 + 0.0052
AGP RMSE 0.0746 + 0.0001 0.0712 + 0.0004
MAE 0.0524 + 0.0000 0.0554 + 0.0003
R? Score  0.9969 + 0.0006 0.9931 + 0.0064
ALO RMSE 0.0435 + 0.0000 0.0654 + 0.0004
MAE 0.0175 + 0.0000 0.0401 + 0.0003
R? Score  0.9838 + 0.0034 0.9599 + 0.0074
WOA RMSE 0.0720 + 0.0002 0.1132 + 0.0008
MAE 0.0367 + 0.0001 0.0862 + 0.0006
R? Score  0.9817 + 0.0036 0.9685 + 0.0078
GWO RMSE 0.0765 + 0.0003  0.1002 + 0.0008
MAE 0.0454 + 0.0002 0.0821 + 0.0006
R? Score  0.9831 + 0.0048 0.9726 + 0.0048
MFO RMSE 0.0635 + 0.0003 0.0810 + 0.0004
MAE 0.0422 + 0.0002 0.0622 + 0.0003
R? Score  0.9152 + 0.0083 0.9472 + 0.0076
DA RMSE 0.1646 + 0.0014 0.1299 + 0.0010
MAE 0.1082 + 0.0009 0.1079 + 0.0008
R? Score  0.9805 + 0.0022  0.9838 + 0.0042
GOA RMSE 0.0585 + 0.0001 0.0533 + 0.0002
MAE 0.0368 + 0.0001  0.0372 + 0.0002
R? Score  0.9756 + 0.0033  0.9367 + 0.0100
MVO RMSE 0.0883 + 0.0003 0.1422 + 0.0014
MAE 0.0516 + 0.0002 0.0998 + 0.0010
R? Score  0.9897 + 0.0034 0.9590 + 0.0104
SSA RMSE 0.0975 + 0.0003 0.1942 + 0.0020
MAE 0.0405 + 0.0001 0.1267 + 0.0013

0.9933 + 0.0022
0.0788 + 0.0002
0.0064 + 0.0000

0.9908 + 0.0034
0.0918 + 0.0003
0.0060 + 0.0000

0.6379 + 0.0154
0.5771 + 0.0089
0.3603 + 0.0055

0.3463 + 0.0328
0.7754 + 0.0254
0.5694 + 0.0187

an S-shaped curve, revealing that the residuals exhibit sys-
tematic deviations from the normal distribution. Conversely,
the ElasticNet model’s Q-Q plot exhibits a stepped structure
and significant deviations from the theoretical line. The
performance metric comparisons seen in Figure 4(d) allow
us to evaluate the quantitative performance of the models.
The MAE and RMSE comparison plots confirm that the
GradientBoosting and RandomForest models have the low-
est error values. While the MLP model also exhibits low
error values, the AdaBoost and SVR models have moderate
errors, and the ElasticNet model has high error values. In
the R? comparison graph, it is seen that GradientBoosting,
RandomForest, MLP, and AdaBoost models have high co-
efficients of determination, the SVR model has a moderate
performance (R? = 0.8), and the ElasticNet model has a low
performance (R? = 0.5). In particular, the ElasticNet model
has similar R? values in training, test, and validation sets,
which shows that the model has a consistent performance
despite its weak generalization ability. The convergence
curve in Figure 4(e) shows the model’s training process
under NBRO optimization. Training loss (blue line) and

validation loss (red line) show a rapid decrease starting from
approximately 0.8 at the beginning and flatten significantly
after approximately 50 iterations. After the 50th iteration,
the training loss decreases to approximately 0.02, while
the validation loss stabilizes at approximately 0.05. This
slight difference between the two curves indicates that the
model is showing a slight over-training tendency, but this
is within acceptable limits. After the 75th iteration, both
losses approach their minimum values and remain steadily
low throughout the rest of the training process.

The scatter plots in Figure 5(a) show the relationship
between six models’ actual and predicted values (MLP, Ad-
aBoost, GradientBoosting, RandomForest, SVR, and Elas-
ticNet). It is observed that the MLP (R%Z = 0.948) and
RandomForest (R> = 0.996) models exhibit the highest
performance under AGP optimization, followed by Gradi-
entBoosting (R = 0.905) and AdaBoost (R? = 0.871). It
is observed that the SVR (R? = 0.751) and ElasticNet (R2
= 0.820) models have lower coefficients of determination
compared to the other models. Remarkably, it can be said
that the ElasticNet model reaches a higher R? value under
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AGP optimization than the previous algorithms, indicating
that AGP can be more effective in optimizing linear mod-
els. The residual histograms in Figure 5(b) show the error
distribution of each model in detail. The residual values of
the MLP model exhibit a bell-shaped symmetric distribu-
tion concentrated around zero. The residual histogram of
the GradientBoosting model is concentrated at a very high
frequency at zero. The residual histogram of the Random-
Forest model is almost completely concentrated at a single
value (zero), indicating that the model produces a large
number of exact predictions. While the residual distribution
of the AdaBoost model exhibits an asymmetric structure
with multiple peaks, the residual distribution of the SVR
model also exhibits a discrete structure with multiple modes.
The residual distribution of the ElasticNet model exhibits
a multimodal structure but a narrower range than previous
algorithms. The Q-Q plots presented in Figure 5(c) evaluate
the conformity of the residuals of the models to a normal
distribution. The Q-Q plot of the MLP model shows a rela-
tively good fit to the theoretical regular distribution line (red
line) but exhibits some deviations at extreme values. The Q-
Q plot of the AdaBoost model exhibits a stepped structure,
indicating that the residuals take discrete values. The Q-Q
plot of the GradientBoosting model exhibits a characteristic
structure containing horizontal segments, indicating that the
residuals are concentrated at specific values. The Q-Q plot
of the RandomForest model is almost completely horizontal,
confirming that the residuals mostly have a single value. The
Q-Q plot of the SVR model has a stepped structure, indicat-
ing that the residuals show significant deviations from the
normal distribution. Conversely, the ElasticNet model’s Q-Q
plot exhibits a stepped structure but follows a course closer to
the theoretical line in the middle quantiles. The performance
metric comparisons seen in Figure 5(d) allow us to evaluate
the quantitative performance of the models. The MAE and
RMSE comparison plots confirm that the GradientBoosting
and RandomForest models have the lowest error values.
While the MLP and AdaBoost models show moderate error
values, the SVR and ElasticNet models have higher error
values. In the R? comparison plot, it is seen that all mod-
els except ElasticNet have similar and high coefficients of
determination in training, test, and validation sets. The test
set performance of the ElasticNet model (R? ~ 0.8) shows a
slight decrease compared to the training and validation sets,
but this decrease is less pronounced compared to the previ-
ous algorithms. The convergence curve in Figure 5(e) shows
the model’s training process under AGP optimization. The
training loss (blue line) and validation loss (red line) show
a rapid decrease starting from approximately 0.42 at the
beginning and diverge significantly after approximately 50
iterations. After the 75th iteration, the training loss decreases
to approximately 0.01, while the validation loss stabilizes at
approximately 0.03. This slight difference between the two
curves indicates that the model shows a slight over-training
tendency, but this situation is within acceptable limits. After
100 iterations, both losses approach their minimum values

and remain steadily low throughout the rest of the training
process.

Prediction-actual value relationship analysis is presented
in Figure 6(a). The models’ prediction capabilities are shown
through scatter plots showing the intervals between the
actual values and the predicted values. It is seen that the
GradientBoosting model shows a proximity to the ideal line
(dashed line) and reaches optimum performance with the
Val R? = 1.000 value. The MLP model also exhibited
successful performance with the Val R> = 0.996 value.
While deviations are observed at high values in the SVR
model, it draws attention to systematic deviations in the
predictions of the ElasticNet model. Figure 6(b) is the resid-
ual analysis of ALO. The histograms showing the status of
the residual values (residuals) show that the models reveal
the characteristics of their predicted errors. The Gradient-
Boosting model draws attention with the concentration of
the residual values in a very narrow range (0.0 — 0.1)
around zero. The RandomForest model is also located in
a similarly concentrated error center. Although the residual
distributions of the MLP and AdaBoost models are trans-
ferred to a broader range, they exhibit a close appearance
to a normal distribution. The residual distributions of the
SVR and ElasticNet models are spread over a broader range
(between —0.5 and 1.25), indicating lower predictive ro-
bustness. In Figure 6(c), the Q-Q plot of the MLP model
shows deviations from the theoretical normal distribution
(red line) at the extreme values. The plot of the AdaBoost
model shows a distinct S-shaped pattern, indicating that the
residuals have heavier tails than the normal distribution. The
Q-Q plot of the GradientBoosting model shows a stepped
structure, indicating that the residuals have a more discrete or
clustered distribution rather than a continuous distribution.
The plot of the RandomForest model consists almost entirely
of horizontal segments, indicating that the model produces
a large number of similar (possibly close to zero) residual
values. The SVR model shows a more linear relationship
in the middle quantiles, while the ElasticNet model exhibits
significant deviations at both extremes. Model performance
metrics analysis for ALO is shown in Figure 6(d). A compar-
ative analysis of six machine learning models is presented in
terms of MAE, RMSE, and R? metrics. GradientBoosting
and RandomForest models showed the lowest error rates in
all datasets (training, validation, and testing). It is seen that
the MAE values of these two models are below 0.01, the
average absolute error values. ElasticNet and SVR models
exhibited higher error rates; the MAE value of ElasticNet is
around 0.12. In the R? metric, excellent performance (R* =
1.000) was shown in ensemble models (GradientBoosting
and RandomForest), but a significant drop (R*> = 0.6) was
experienced in the test set of ElasticNet. The ALO approach
showed superior performance with ensemble feeding meth-
ods (GradientBoosting and RandomForest). These models
have significant superiority over other solutions in terms of
both predictability and model. The satisfactory results of the
deep learning-based MLP model also show that ALO can
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work harmoniously with different learning paradigms. How-
ever, the performance of classical regression approaches
(SVR and ElasticNet) remains limited due to the complexity
of the problem width. The convergence curve shows the
model’s behavior during the training process in Figure 6(e).
The training loss (blue line) and validation loss (red line)
show a rapid decrease at the beginning (starting from about
0.7) and flatten significantly after about 50 iterations. The
validation loss follows a parallel course with the training
loss, indicating that the model does not overtrain and gener-
alizes well to unseen data. At about the 75th iteration, both
losses reach their minimum values and remain steadily low
for the rest of the training process (up to 200 iterations).
Figure 7(a) is a relationship analysis of the prediction-
actual value. The models’ prediction capabilities were exam-
ined for values in the range of [-2.0, 1.0]. GradientBoosting
and RandomForest models showed the closest distribution
to the ideal prediction line (dashed line). While deviations
were observed at extreme values (around —2.0 and 1.0)
in the MLP model, high variance was noted in the entire
value range in the SVR model. Systematic deviations and
a low accuracy rate (R> = 0.698) were observed in the
predictions of the ElasticNet model. The AdaBoost model
showed a moderate performance, but it was observed that the
deviations increased at positive values. Figure 7(b) shows
residual analysis of the DA approach. The distribution of
residual values reveals the characteristics of the prediction
errors of the models. The GradientBoosting model showed
the best performance with its residual values concentrated
in a very narrow range around zero. The RandomForest
model also exhibits a similarly concentrated error distribu-
tion. While the residual distribution of the MLP model is
close to a normal distribution, the error distribution of the
AdaBoost model is broader and more irregular. The residual
distributions of the SVR and ElasticNet models are spread
in the range of [—1.0, 1.0], indicating high uncertainty in
the estimates. The Q-Q plots in Figure 7(c) evaluate the fit
of the models’ residuals to the normal distribution. The Q-
Q plot of the MLP model shows significant deviations at
the extreme values, at the lower end, departing from the
theoretical normal distribution (red line). The Q-Q plot of
the AdaBoost model exhibits a stepped structure, indicat-
ing that the residuals take discrete values. The Q-Q plots
of the GradientBoosting and RandomForest models show
unique features. The GradientBoosting model plot deviates
from the central region’s theoretical line. In contrast, the
plot of the RandomForest model is almost a completely
horizontal line, indicating that the residuals have mostly
constant values. The SVR model better fits the normal dis-
tribution in the middle quantiles. In contrast, the ElasticNet
model exhibits a significant nonlinear structure and shows
significant deviations from the normal distribution. Model
performance metrics analysis is demonstrated in Figure 7(d).
The performance of six different machine learning models
in the DA approach was evaluated on three basic metrics.
GradientBoosting and RandomForest models showed the

lowest error rates in the MAE and RMSE metrics (approx-
imately 0.01). The ElasticNet model exhibited the highest
error rates, with an MAE value of around 0.25 and an
RMSE value of around 0.30. While the GradientBoosting
and RandomForest models showed excellent performance
(R? = 1.0) in the R? metric, the performance of the SVR
and ElasticNet models remained significantly lower (R? <
0.85). The MLP model showed moderate success, reaching
R? = 0.977 on the test set. The DA optimization approach
gave the best results with ensemble learning methods (Gra-
dientBoosting and RandomForest). These models showed
superiority over other approaches in terms of both predic-
tion accuracy and model stability. The moderate success
of MLP shows that deep learning approaches can work in
harmony with DA. However, the performance of classical
regression approaches (SVR and ElasticNet) was limited due
to the complexity of the problem space. These results show
that DA optimization is effective with ensemble methods.
The convergence curve in Figure 7(e) shows the training
behavior of the model under DA optimization. The training
loss (blue line) and validation loss (red line) show a rapid
decrease starting from approximately 0.5 at the beginning
and become significantly flat after approximately 60 itera-
tions. The almost complete overlap of the two curves proves
that the model does not over-train and performs similarly
on the training and validation sets. Compared to the ALO
optimization, the convergence curve of DA optimization
shows that the difference between the training and validation
losses is smaller, indicating that DA provides a more stable
optimization process.

Relationship analysis of prediction-actual value is given
in Figure 8(a). The models’ prediction capabilities were
examined in the value range [—1.0, 1.0]. GradientBoosting
and RandomForest models showed the closest distribution
to the ideal prediction line (dashed line). The MLP model
generally showed good performance (R> = 0.988), but
small deviations were observed at extreme values. While the
AdaBoost model showed satisfactory performance (R> =
0.984), high variance was noticeable in the SVR model,
particularly at positive values. Significant deviations and
low accuracy rates were observed in the predictions of the
ElasticNet model. Residual Analysis for GOA is shown in
Figure 8(b). The distribution of residual values reveals the
characteristics of the prediction errors of the models in
detail. The residual values of the GradientBoosting model
were concentrated in the range of 0.0 — 0.1, exhibiting op-
timum performance. The RandomForest model also showed
a similar error distribution, which was concentrated around
zero. The residual distribution of the MLP model is close to
anormal distribution in the range of [—0.2, 0.3], while the er-
ror distribution of the AdaBoost model is wider in the range
of [—0.1,0.3]. The residual distribution of the SVR model
is wide in the range of [—1.5,0.0]. In contrast, the residual
values of the ElasticNet model are distributed in the range of
[-0.6, 0.8], indicating that the model’s predictive reliability
is low. Figure 8(c) evaluates the conformity of the residuals
of the models to the normal distribution. The Q-Q plot of the
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MLP model shows moderate deviations from the theoretical
normal distribution line (red line), indicating that the residu-
als have a slightly asymmetric distribution. The Q-Q plot of
the AdaBoost model shows a stepped structure, indicating
that the residuals have discrete values. The Q-Q plot of the
GradientBoosting model shows significant deviations at the
lower end. The points forming an almost horizontal line in
the lower section indicate that the residuals are concentrated
at a specific value. The Q-Q plot of the RandomForest model
similarly consists of horizontal segments, indicating that the
residuals have many of the same values. The Q-Q plot of
the SVR model shows a nonlinear trend, indicating that the
residuals deviate significantly from the normal distribution.
The Q-Q plot of the ElasticNet model, on the other hand,
shows a stepped structure with significant deviations at the
extreme values. Figure 8(d) shows the model performance
metrics analysis. The performance evaluation of the six
machine learning models tested under the GOA approach
was performed using the MAE, RMSE, and R? metrics.
GradientBoosting and RandomForest models stood out with
the lowest error rates. MAE values were below 0.01 for
both models. The ElasticNet model showed the highest error
rates, with the MAE value around 0.14 and the RMSE value
around 0.23. GradientBoosting (0.997) and RandomForest
(0.998) models showed almost perfect performance in the
R? metric, while ElasticNet’s performance on the test set
was relatively low (R* = 0.719). The GOA optimization ap-
proach showed superior performance, particularly with en-
semble learning methods (GradientBoosting and Random-
Forest). These models showed significant superiority over
other approaches in terms of both prediction accuracy and
model stability. The high performance of the MLP model
(R*> = 0.988) shows that deep learning approaches can
work effectively with GOA. The AdaBoost model also gave
satisfactory results. However, the performance of classical
regression approaches (SVR and ElasticNet) was limited due
to the complexity of the problem space. These results show
that GOA optimization gives effective results, particularly
with ensemble methods, and can be a successful alterna-
tive in complex optimization problems. Figure 8(e) shows
the model’s training process under GOA optimization. The
training loss (blue line) and validation loss (red line) show
a rapid decrease starting from about 0.43 at the beginning
and become distinctly different after about 50 iterations. The
validation loss flattens out at about 0.05, while the training
loss approaches almost zero. This divergence indicates that
the model shows a certain degree of overfitting tendency
under GOA optimization. The divergence becomes stable
after about 50 iterations, and the increase in validation loss is
stopped. This shows that GOA optimization cannot further
improve the model’s generalization ability after a certain
point.

The prediction-actual value relationship analysis for
Grey Wolf Optimizer is shown in Figure 9(a). The models’
prediction capabilities were evaluated in the value range
[-2.0,1.0]. GradientBoosting and RandomForest models
showed the closest distribution to the ideal prediction line

(dashed line). The MLP model successfully performed with
the value of Val R? = 0.991, but small deviations were
observed at extreme values. While the AdaBoost model
(Val R? = 0.962) showed a satisfactory performance, high
variance and deviations are noticeable in the SVR model at
positive values. Systematic deviations and a low accuracy
rate (Val R? = 0.589) are noticeable in the predictions of
the ElasticNet model. Figure 9(b) represents the residual
analysis of GWO. The distribution of residual values reveals
the characteristics of the prediction errors of the models in
detail. The residual values of the GradientBoosting model
showed optimum performance by concentrating in a very
narrow range around zero. The RandomForest model also
showed a similarly concentrated error distribution. The
residual distribution of the MLP model is close to a normal
distribution in the range of [-0.4,0.2], while the error
distribution of the AdaBoost model is wider in the range
of [—0.1, 0.4]. The residual distribution of the SVR model is
in the range of [—1.5,1.0], while the residual values of the
ElasticNet model are in the range of [—1.5, 1.2]. Figure 9(c)
evaluates the conformity of the residuals of the models to the
normal distribution. The Q-Q plot of the MLP model shows
a good overall fit to the theoretical normal distribution line
(red line), although it shows slight deviations at the extreme
values. The Q-Q plot of the AdaBoost model shows a distinct
stepped structure and deviates from normality at the extreme
values. The Q-Q plot of the GradientBoosting model shows
extreme deviation at the upper end and contains horizontal
segments. The Q-Q plot of the RandomForest model consists
almost entirely of horizontal segments, indicating that the
residuals have many identical values. The Q-Q plot of the
SVR model shows a better fit to the normal distribution in
the middle quantiles. In contrast, the Q-Q plot of the Elas-
ticNet model exhibits a distinct S-shaped pattern and shows
significant deviations from normality. Also, the analysis of
model performance metrics is indicated in Figure 9(d). The
performance of the machine learning models tested under
the GWO approach was evaluated on three basic metrics.
GradientBoosting and RandomForest models showed supe-
rior performance compared to other models. When the MAE
values are examined, it is seen that the error rates of these
two models are below 0.01. The ElasticNet model showed
the highest error rates, with an MAE value of approximately
0.20 and an RMSE value of 0.35. GradientBoosting and
RandomForest models showed almost perfect performance
in R? metric (0.993 and 0.993, respectively), while the
ElasticNet model’s performance on the test set was relatively
low (R* = 0.580). GWO optimization approach showed
superior performance, particularly with ensemble learn-
ing methods (GradientBoosting and RandomForest). These
models showed significant superiority over other approaches
in terms of both prediction accuracy and model stability. The
high performance of the MLP model (R> = 0.988) shows
that deep learning approaches can work effectively with
GWO. However, the performance of classical regression
approaches (SVR and ElasticNet) was limited due to the
complexity of the problem space. These results show that
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GWO optimization gives effective results with ensemble
methods and can be a reliable alternative in complex opti-
mization problems. Figure 9(e) shows the model’s training
process under GWO optimization. The training loss (blue
line) and validation loss (red line) show a rapid decrease
starting from approximately 0.5 at the beginning and become
significantly flat after approximately 75 iterations. The two
curves are very close, proving that the model does not over-
train and performs similarly on the training and validation
sets. After approximately 100 iterations, both the training
and validation losses reach their minimum values and remain
steadily low throughout the rest of the training process (up
to 200 iterations).

The prediction-actual value relationship analysis is shown
in Figure 10(a). The models’ prediction capabilities were
examined in the [—1.0, 1.0] value range. GradientBoosting
and RandomForest models almost perfectly fit the ideal
prediction line (dashed line). While the MLP model made
successful predictions, particularly in the middle value
range, it showed small deviations in extreme values. The
AdaBoost model (Test R? = 0.973) showed satisfactory per-
formance, but it was observed that the deviations increased
at high values. While high variance and deviations were
noticeable in positive values in the SVR model, systematic
deviations and a low accuracy rate were noticeable in the
predictions of the ElasticNet model. Figure 10(b) represents
the residual analysis of MFO. The distribution of residual
values reveals the characteristics of the prediction errors
of the models in detail. The residual values of the Gra-
dientBoosting model were concentrated in a very narrow
range around zero and exhibited optimum performance
with a frequency value close to 600. The RandomForest
model also showed a similarly sharp error distribution.
The residual distribution of the MLP model is close to a
normal distribution in the range of [—0.2,0.2], while the
error distribution of the AdaBoost model is wider in the
range of [—0.4,0.2]. The residual distribution of the SVR
model is in the range of [—0.4, 0.6], while the residual values
of the ElasticNet model are in the range of [-0.6,1.0].
Figure 10(c) evaluates the conformity of the residuals of the
models to a normal distribution. The Q-Q plot of the MLP
model shows significant deviations from the theoretical
normal distribution line (red line) at the upper end. The Q-
Q plot of the AdaBoost model shows a stepped structure,
indicating that the residuals have discrete values. The Q-Q
plot of the GradientBoosting model has a very characteristic
structure, consisting mostly of horizontal segments. This
situation shows that the residuals are concentrated at specific
values. The Q-Q plot of the RandomForest model is almost
completely horizontal, indicating that the residuals mostly
have the same value. The Q-Q plot of the SVR model shows a
radial structure, indicating that the residuals show significant
deviations from the normal distribution. The Q-Q plot of the
ElasticNet model shows a stepped and S-shaped structure,
indicating significant deviations from the theoretical line.
Model performance metrics analysis is given in Figure 10(d).
The performance of six different machine learning models

was evaluated under the MFO approach. GradientBoosting
and RandomForest models showed superior performance
compared to other models. When the MAE values are ex-
amined, it is seen that the error rates of these two models are
at a minimum level (approximately 0.001). The ElasticNet
model showed the highest error rates, with an MAE value
of 0.25 and an RMSE value of 0.30. GradientBoosting (Val
R? = 1.000) and RandomForest (Val R? = 1.000) models
showed excellent performance in R? metrics, while the
performance of the ElasticNet model on the test set was quite
low (R? = 0.637). The MLP model showed a medium-high
success (Test R> = 0.987) and consistently performed. The
MFO optimization approach showed superior performance
with ensemble learning methods (GradientBoosting and
RandomForest). These models showed significant superi-
ority over other approaches in terms of both prediction
accuracy and model stability. The high performance of the
MLP model (Test R> = 0.987) shows that deep learning
approaches can work effectively with MFO. However, the
performance of classical regression approaches (SVR and
ElasticNet) was limited due to the complexity of the problem
space. These results show that MFO optimization is effective
when used with ensemble methods and can be a reliable
alternative in complex optimization problems. Figure 10(e)
shows the model’s training process under MFO optimiza-
tion. The training loss (blue line) and validation loss (red
line) show a rapid decrease starting from approximately
0.45 at the beginning and become significantly flat after
approximately 40 iterations. The two curves are quite close
to each other, proving that the model does not over-train and
performs similarly on the training and validation sets. After
approximately 60 iterations, both the training and validation
losses reach their minimum values and remain steadily low
for the rest of the training process (up to 100 iterations).
Prediction-Actual Value Relationship Analysis is indi-
cated in Figure 11(a). In the analysis performed in the
[-2.0, 1.0] range, GradientBoosting and RandomForest mod-
els showed the closest performance to the ideal prediction
line (Test R? = 0.993). Although the overall performance
of the MLP model was well explained, deviations were
observed at extreme values. While high variances (Test R> =
0.673) were observed in the SVR model, serious deviations
were observed in the predictions of the ElasticNet model
(Test R? = 0.157). The AdaBoost model showed moderate
performance (Test RZ = 0.937). Figure 11(b) is the residual
analysis for the MVO metaheuristic. The residual values
of the GradientBoosting model are concentrated in a very
narrow range around zero (around 600 frequencies). The
RandomForest model exhibits a similarly sharp error. The
residual state of the MLP model is close to a normal distri-
bution along [—0.75, 0.25]. The residual values of the SVR
and ElasticNet models are spread over a wide range (between
—2.0 and 1.5), indicating low prediction reliability. The Q-Q
plots presented in Figure 11(c) evaluate the conformity of
the residuals of the models to the normal distribution. The
Q-Q plot of the MLP model shows deviations from the the-
oretical normal distribution line (red line) at the upper end,
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indicating that the distribution of the residuals has a positive
tail. The Q-Q plot of the AdaBoost model exhibits a stepped
structure, indicating that the residuals have discrete values.
The Q-Q plots of the GradientBoosting and RandomForest
models exhibit a very characteristic structure consisting of
horizontal segments. This structure shows that the residuals
mostly have the same value, thus significantly deviating
from the normal distribution. The Q-Q plot of the SVR
model forms an S-shaped curve, indicating that the residuals
systematically deviate from the normal distribution. The Q-
Q plot of the ElasticNet model shows the largest deviations
from the theoretical line, indicating that the residuals have a
distribution far from the normal distribution. Model perfor-
mance metrics analysis is in Figure 11(d). GradientBoosting
and RandomForest models performed better than other
models (MAE < 0.01). ElasticNet model has high error rates
(MAE = 0.30, RM SE = 0.50). While GradientBoosting
and RandomForest models exhibit high performance (R* >
0.99) in R? metrics, the test performance of the ElasticNet
model is quite low (R?> = 0.157). The MLP model showed
a medium-high level of success (Test R> = 0.979). MVO
grouping, obtaining the best results with ensemble learning
methods (GradientBoosting and RandomForest). The high
performance of MLP shows that deep learning treatments
can work in harmony with MVO. The poor performance
of classical regression treatments (SVR and ElasticNet)
reveals that they are inadequately monitored to manage
the complexity of the problem. The convergence curve in
Figure 11(e) shows the model’s training process under MVO
optimization. The training loss (blue line) and validation loss
(red line) show a rapid decrease starting from approximately
0.5 at the beginning and become significantly flat after
approximately 75 iterations. The two curves are very close
to each other, proving that the model does not overtrain
and performs similarly on the training and validation sets.
After approximately 100 iterations, both losses reach their
minimum values and remain steadily low for the rest of the
training process (up to 200 iterations).

Figure 12(a) represents the analysis of the prediction-
actual value. In the analysis performed in the [—1.5,1.5]
value range, GradientBoosting (Test R> = 0.993) and
RandomForest (Test R2 = 0.991) models showed the clos-
est performance to the ideal prediction line. Although the
overall performance of the MLP model was good, deviations
were observed at extreme values. While high variance (Test
R? = 0.638) was observed in the SVR model; there were
serious deviations in the estimates of the ElasticNet model
(Test R2 = 0.346). The AdaBoost model exhibited satis-
factory performance (Test R> = 0.959). A residual analysis
of this approach is shown in Figure 12(b). The residual val-
ues of the GradientBoosting and RandomForest models are
concentrated in a very narrow range around zero (frequency
close to 600). The residual distribution of the MLP model is
close to a normal distribution in the [—1.0,0.5] range. The
residual distribution of the SVR model is in the range of
[—2.0, 2.0], while the residual values of the ElasticNet model
are in the range of [—1.5,2.0]. The Q-Q plots presented in

Figure 12(c) evaluate the conformity of the residuals of the
models to the normal distribution. The Q-Q plot of the MLP
model shows deviations from the theoretical normal distri-
bution line (red line) at the extreme values. The Q-Q plot of
the AdaBoost model exhibits a stepped structure and shows
significant deviations, particularly at the upper end. The Q-
Q plot of the GradientBoosting model shows a characteristic
structure consisting of horizontal segments, indicating that
the residuals are concentrated at certain values (particularly
around zero). The Q-Q plot of the RandomForest model is
almost completely horizontal, indicating that the residuals
mostly have a single value. The Q-Q plots of the SVR and
ElasticNet models exhibit S-shaped curves, indicating that
the residuals have systematic deviations from the normal dis-
tribution. Significant deviations are observed at the extreme
values, particularly in the SVR model. In addition, Figure
12(d) shows an analysis of model performance metrics. Gra-
dientBoosting and RandomForest models stand out with the
lowest error rates (MAE < 0.01). The ElasticNet model has
the highest error values (M AE =~ 0.55, RMSE =~ 0.80).
While ensemble models show almost perfect performance
in the R® metric (R> > 0.99), the test performance of
ElasticNet is very low (R> = 0.346). The MLP model
exhibited consistent performance (Test R? = 0.989). SSA
optimization gave the best results with ensemble learning
methods. The high performance of MLP shows that deep
learning approaches can work in harmony with SSA. The
low performance of classical regression approaches (SVR
and ElasticNet) reveals inadequate management of space
complexity. These results show that SSA provides effective
results when used with ensemble methods and can be a
reliable alternative in complex optimization problems. The
convergence curve on the right side of Figure 12(e) shows
the model’s training process under SSA optimization. The
training loss (blue line) and validation loss (red line) show a
rapid decrease starting from about 0.9 at the beginning and
slow down after about 50 iterations. After about 100 itera-
tions, the training loss approaches zero, while the validation
loss flattens out at about 0.08. This divergence reveals that
the model shows a certain degree of overfitting tendency
under SSA optimization. The divergence becomes stable
after 100 iterations, and the difference between training and
validation losses remains constant.

Finally, the analysis of prediction-actual values is in Fig-
ure 13(a). In the analysis performed in the [-2.0, 1.0] value
range, GradientBoosting (Test R> = 0.996) and Random
Forest (Test R = 0.989) models showed the closest per-
formance to the ideal prediction line. While the MLP model
made successful predictions, remarkably in the middle value
range, it showed deviations in the extreme values. While
high variance (Test R> = 0.865) was observed in the SVR
model, there were serious deviations in the predictions of
the ElasticNet model (Test R2 = 0.168). The AdaBoost
model showed satisfactory performance (R? = 0.960). Also,
residual analysis is offered in Figure 13(b). The residual
values of the GradientBoosting model were concentrated in
a very narrow range around zero (frequency close to 600).
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The RandomForest model showed a similarly sharp error
distribution. The residual distribution of the MLP model is
close to a normal distribution in the range of [—0.2, 0.2]. The
residual distribution of the SVR model is in the range of
[—1.5, 1.0], while the residual values of the ElasticNet model
are in the range of [-2.0,1.0]. The Q-Q plots presented
in Figure 13(c) evaluate the conformity of the residuals of
the models to the normal distribution. The Q-Q plot of the
MLP model shows significant deviations from the theoreti-
cal normal distribution line (red line) at the upper end. This
shows that the distribution of the residuals exhibits positive
skewness. The Q-Q plot of the AdaBoost model exhibits a
stepped structure and shows significant deviations from nor-
mality. The Q-Q plot of the GradientBoosting model exhibits
a very characteristic structure with horizontal segments, in-
dicating that the residuals are concentrated at certain values
(particularly around zero). The Q-Q plot of the RandomFor-
est model is almost completely horizontal, confirming that
the residuals mostly have a single value. The Q-Q plot of
the SVR model exhibits an S-shaped curve, indicating that
the residuals exhibit systematic deviations from the normal
distribution. The Q-Q plot of the ElasticNet model shows
the largest deviations from the theoretical line, exhibiting a
stepped and irregular structure. Figure 13(d) is the analysis
of the model performance metric. GradientBoosting (MAE
< 0.01) and RandomForest (MAE < 0.01) models show
the lowest error rates, while ElasticNet has the highest error
values (MAE =0.30, RMSE =0.50). GradientBoosting
(ValR? = 1.000) and RandomForest (Test RZ = 0.989)
models showed superior performance in the four metrics.
The test performance of ElasticNet is very low (R?> =
0.168). The MLP model showed a consistent performance
(Test 4). WOA optimization yielded the best results with
ensemble learning methods (GradientBoosting and Ran-
domForest). The high performance of MLP shows that deep
learning approaches can work in harmony with WOA. The
low performance of classical regression approaches (SVR
and FlasticNet) shows that they are inadequate in handling
the space complexity of the problem. These results show
that WOA provides effective results, particularly when used
with ensemble methods, and can be a reliable alternative
in complex optimization problems. Figure 13(e) shows the
model’s training process under WOA optimization. The
training loss (blue line) and validation loss (red line) show
a rapid decrease starting from approximately 0.5 at the
beginning and become significantly flat after approximately
75 iterations. The two curves are very close to each other,
proving that the model does not over-train and performs sim-
ilarly on the training and validation sets. After approximately
100 iterations, both the training and validation losses reach
their minimum values and remain steadily low throughout
the rest of the training process (up to 200 iterations). In
order to compare model performances not only visually but
also statistically, correlation coefficients between the actual
values and the predicted values were calculated for each
model and metaheuristic combination. In this paper, the
Pearson correlation coefficient, which evaluates the linear

relationship, the Spearman correlation, which measures the
sequential relationship, and the Kendall Tau correlation
coefficient, which provides more robust results based on
ranking, were used. According to the results obtained, Gradi-
ent Boosting and Random Forest models attracted attention
with high correlation values under almost all metaheuristic
algorithms (for example, Pearson = 0.999988, Spearman =
0.999981, and Kendall Tau = 0.999563 for Random Forest
under NBRO-AGP). This shows that these models exhibit
strong performance not only in terms of accuracy but also in
terms of statistical consistency. On the other hand, the Elas-
ticNet model was insufficient with low correlation values
under many metaheuristics in complex nonlinear patterns
(for example, Pearson = 0.418 under WOA). This finding
provides a statistical justification for the low visual accuracy
of ElasticNet. The corresponding correlation values are pre-
sented in Table 2 and numerically support the observations
in all figures.

We see the performance comparison of metaheuristic
algorithms on machine learning models in Figure 14. In
Figure 14(a), the distributions of test performance metrics
(Rz, RMSE, and MAE) are shown as box plots. In terms of
R? scores, most metaheuristic algorithms performed above
0.9. NBRO-AGP and ALO exhibited particularly consistent
and high R? values. A wider variability was observed in the
SSA algorithm. In RMSE and MAE values, NBRO-AGP had
the lowest error rates. Among the metaheuristic algorithms,
SSA showed relatively higher error values. GWO exhibited
a moderate performance. Figure 14(b) shows the R scores
at the intersection of different metaheuristic algorithms and
machine learning models with a heat map. GradientBoosting
and RandomForest models achieved R” scores above 0.99
with all metaheuristic algorithms. The ElasticNet model
performed poorly overall, with R* values below 0.2, par-
ticularly with MVO and SSA. The NBRO-AGP algorithm
showed consistently high performance across all models.
ALO produced similarly strong results. The GWO algorithm
achieved R? scores above 0.95 in all models except Elastic-
Net. Our comprehensive analysis of protein solubility pre-
diction has yielded remarkable results in machine-learning
models using NBRO-AGP features. Random Forest and Gra-
dientBoosting models showed exceptional performance with
a Test R? value of 0.999. These findings have the potential to
radically transform the development of protein-based drugs
in the biopharmaceutical industry. High-accuracy prediction
of protein solubility allows optimization at many stages from
the formulation of therapeutic proteins to manufacturing
processes. In particular, these predictions play a critical
role in preventing the formation of protein aggregates and
increasing bioavailability. The high accuracy of our models
allows for predicting potential failures at early stages of drug
development, contributing to more efficient use of research
and development resources and reducing overall costs. It is
widely stated in the literature that the properties such as
hydrophobicity, net charge, isoelectric point, aliphatic index,
and surface accessibility, which are frequently selected by
NRBO-AGP, are directly related to protein solubility. For
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example, while high hydrophobicity increases the tendency
of the protein to aggregate and decreases the solubility,
increasing surface accessibility stands out as a factor sup-
porting solubility. It is known that these properties are de-
terminant not only in protein solubility but also in many
biotechnological applications such as recombinant protein
production, antibody engineering, and biopharmaceutical
formulation. In this respect, the properties obtained by the
NRBO-AGP method are statistically and biologically signif-
icant and provide a strong basis for future interdisciplinary
applications. It also provides a powerful tool for designing
amino acid changes that increase solubility in protein en-
gineering studies. The fact that the features selected with
the NBRO-AGP method produce such successful results
demonstrates that the physicochemical properties affecting
protein solubility are effectively captured. In order to further
strengthen the validity of the proposed NRBO-AGP method,
some robust FS approaches that have been widely tested in
the biomedical field are also referred to. In particular, Reli-
efF, Minimum Redundancy Maximum Relevance (mRMR),
and Boruta have been widely applied to high-dimensional
datasets such as gene expression profiles and consistently
provide high predictive performance. For example, Gulande
and Awale [52] achieved over 92% accuracy on microarray
data with a hybrid FS approach combining mRMR and RSA
methods. Similarly, Phan et al. [53] proposed the BOLIMES
method, which integrates Boruta and LIME algorithms for
gene expression classification. Furthermore, Hamidi et al.
[54] successfully identified significant miRNA biomarkers
using the Boruta method in ovarian cancer diagnosis. These
studies highlight the importance of robust FS strategies in
biomedical applications and support the potential applica-
bility of the proposed NRBO-AGP method in these areas.

5. Conclusion

The results of this study show that the Newton-Raphson-
based optimization algorithm is an effective method for
continuous optimization problems. The results revealed that
NRBO-AGP performed better than other metaheuristic al-
gorithms in all regression models. The best results were
obtained with Gradient Boosting, reaching MAE: 0.0001 +
0.0000, RMSE: 0.0008 + 0.0000, and R?: 0.9908 + 0.0005
values. Similar high performance (MAE: 0.0002 + 0.0000,
RMSE: 0.0025 + 0.0000, and R?: 0.9908 + 0.0005) was
observed with Random Forest Regressor. The multiple com-
parison Friedman test and subsequent Nemenyi post-hoc
analysis confirm that NRBO-AGP is significantly more ef-
fective (p < 0.05), in terms of RMSE and MAE error
values, and reaches the best ranking compared to competing
algorithms in the R? accuracy metric. These findings show
that NRBO-AGP is an effective feature selection tool in
predicting protein solubility. The high performance of the
proposed method indicates that it can be a useful tool in
the field of bioinformatics and particularly in the analysis
of protein properties. In future studies, the application of
this method for other biological datasets and future work

may explore combining it with alternative machine learning
models to assess the generalizability and applicability across
a broader perspective.
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Figure 2: Linear and non-linear Correlation Coefficients of selected features with target variable.
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Figure 3: (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO-AGP. (d) The performance
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Figure 4: (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO. (d) The performance comparison
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Figure 5: (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for AGP. (d) The performance comparison
of the models for AGP. (e) AGP's convergence curve.
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Figure 6: (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for ALO. (d) The performance
comparison of the models for ALO. (e) ALO’s convergence curve.
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Figure 7: (a) Model prediction comparison. (b) Residual analyses. (c¢) Q-Q Residual analyses for DA. (d) The performance
comparison of the models for DA. (e) DA's convergence curve.
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Figure 8: (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GOA. (d) The performance
comparison of the models for GOA. (e) The convergence curve for GOA approach.
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Figure 9: (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GWO. (d) The performance
comparison of the models for GWO. (e) The convergence curve for GWO approach.
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Figure 10: (a) Model prediction comparison. (b) Residual analyses. (c) MFO's Q-Q Residual analyses. (d) The performance
comparison of the models for MFO. (e) The convergence curve for MFO approach.
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Figure 11: (a) Model prediction comparison. (b) Residual analyses. (c¢) Q-Q Residual analyses for MVO. (d) The performance
comparison of the models for MVO. (e) The convergence curve for MVO approach.
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Figure 12: (a) Model prediction comparison. (b) Residual analyses. (c) SSA’s Q-Q Residual analyses (d) The performance
comparison of the models for SSA. (e) SSA's convergence curve.
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Figure 13: (a) Model prediction comparison. (b) Residual analyses. (c) WOA's Q-Q Residual analyses (d) The performance
comparison of the models for WOA. (e) WOA's convergence curve.
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Table 2
Correlation coefficients between model predictions and actual values (Pearson, Spearman, Kendall Tau)
Metaheuristic  Model Pearson Spearman  Kendall Tau
AdaBoost 0.998303 0.987990 0.963152
ElasticNet 0.967947 0.929723 0.800877
GradientBoosting  0.999999 0.992735 0.954862
NBRO_AGP MLP 0.999027 0.988412 0.935237
RandomForest 0.999988 0.999981 0.999563
SVR 0.982522 0.960146 0.861872
AdaBoost 0.945878 0.955462 0.888327
ElasticNet 0.765027 0.654718 0.461049
NBRO GradientBoosting  0.999391 0.992114 0.949788
MLP 0.985855 0.974065 0.895431
RandomForest 0.998530 0.996911 0.993200
SVR 0.882879 0.859950 0.711308
AdaBoost 0.986542 0.992458 0.964238
ElasticNet 0.942713 0.872213 0.721369
AGP GradientBoosting  0.998222 0.994353 0.957177
MLP 0.987724 0.976116 0.898054
RandomForest 0.993777 0.999709 0.998003
SVR 0.978231 0.956830 0.853470
AdaBoost 0.996559 0.982114 0.932482
ElasticNet 0.970845 0.927506 0.791865
ALO GradientBoosting  0.999669 0.991664 0.949924
MLP 0.998512 0.985959 0.929794
RandomForest 0.999873 0.999988 0.999779
SVR 0.979805 0.957635 0.850070
AdaBoost 0.976700 0.877000 0.774800
ElasticNet 0.846300 0.497100 0.402100
DA GradientBoosting - 0.999300 0.996800 0.988200
MLP 0.957300 0.840500 0.701100
RandomForest 0.999400 0.999200 0.996600
SVR 0.917500 0.708400 0.560900
AdaBoost 0.985974 0.879771 0.769910
ElasticNet 0.782648 0.591697 0.503966
GWO GradientBoosting  0.996662 0.993088 0.970633
MLP 0.991184 0.954466 0.856240
RandomForest 0.996458 0.997209 0.993983
SVR 0.960963 0.891086 0.764830
AdaBoost 0.986632 0.981457 0.929575
ElasticNet 0.811422 0.711784 0.558258
MEO GradientBoosting  0.999191 0.996772 0.985423
MLP 0.991661 0.972416 0.889565
RandomForest 0.998998 0.997962 0.995940
SVR 0.961442 0.935409 0.814831
AdaBoost 0.982818 0.836589 0.704419
ElasticNet 0.418802 0.441545 0.333612
WOA GradientBoosting  0.997866 0.991143 0.959606
MLP 0.992088 0.964743 0.886124
RandomForest 0.994488 0.992273 0.990448
SVR 0.933038 0.832773 0.688672
AdaBoost 0.992502 0.987290 0.955051
ElasticNet 0.862391 0.760841 0.623845
GOA GradientBoosting  0.998313 0.992360 0.973621
MLP 0.990534 0.967153 0.886029
RandomForest 0.999070 0.998730 0.996059
SVR 0.961703 0.922348 0.784832
AdaBoost 0.969091 0.748847 0.633105
ElasticNet 0.404669 0.372518 0.280063
MVO GradientBoosting  0.996612 0.990915 0.958677
MLP 0.988211 0.953214 0.854097
RandomForest 0.996626 0.992292 0.985404
SVR 0.821646 0.591715 0.452282
AdaBoost 0.983486 0.985413 0.931633
ElasticNet 0.608959 0.594531 0.465587
SSA GradientBoosting  0.996629 0.990883 0.947452
MLP 0.994901 0.982922 0.921859
RandomForest 0.995365 0.995875 0.992719
SVR 0.799956 0.780021 0.625279
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Figure 14: (a) Test Metric Distributions, (b) Model-Algorithm Performance Matrix
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A. Hyperparameter Settings

Table 3
Hyperparameters, their descriptions, and values for the pro-
posed method

Hyperparameter | Description Value / Range
@, Initial L1 regularization | 0.001
coefficient
Bo Initial L2 regularization | 0.001
coefficient
o Perturbation power co- | 0.01-0.1 (adap-
efficient for AGP (dy- | tive)
namically adjusted)
A Adaptation speed 0.1
p Target gradient rate 0.9
y Diversity weight 0.5
n Learning rate 0.01
T Termination condition 100-500
N Population size 30-100
0 Threshold 0.5 or quantile-
based
b b Momentum parameters 0.9 / 0.999
€ Perturbation noise mag- | 1078
nitude in AGP
K K-fold cross validation 5
Ax Range size for NRSR Randomly
selected
(adaptive)

rand,, rand,

Random number gener-
ators are from the distri-
bution (0,1) or N(0,1)

u(0,1) / N(0,1)
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