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 a b s t r a c t

Protein solubility determines how well a protein dissolves in an aqueous solution, and this property is a critical 
factor in the functional analysis of proteins and biotechnological applications. Accurately estimating solubility 
can provide significant advantages in areas such as protein engineering and drug discovery. This study proposes a 
new feature selection method, Newton-Raphson-based Optimization and Adaptive Gradient Perturbation (NRBO-
AGP) for predicting protein solubility. The research combines the accuracy and speed of the Newton-Raphson 
method with the capacity of population-based optimization techniques to balance exploration and exploita-
tion. Using 3144 protein sequences from the eSOL database, descriptor features were obtained for each protein, 
resulting in a dataset with 3104 features. The performance of NRBO-AGP was compared with eight different 
metaheuristic algorithms and evaluated using five regression models: MLP, AdaBoost, Gradient Boosting Trees, 
Random Forest, and Support Vector Regressor (SVR). The best results were obtained with the Gradient Boosting 
and Random Forest. Mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination 
(𝑅2) metrics were used for performance evaluation. The results show that NRBO-AGP outperforms other meta-
heuristic algorithms in all regression models. The best results were achieved with Gradient Boosting and Random 
Forest, reaching MAE:0.0001 ± 0.0000, RMSE: 0.0008 ± 0.0000, and 𝑅2: 0.9908 ± 0.0005, and MAE: 0.0002 ± 0.0000, 
RMSE: 0.0025 ± 0.0000, and 𝑅2: 0.9908 ± 0.0005. These findings show that NRBO-AGP is an effective feature se-
lection tool for predicting protein solubility. Multiple statistical analyses based on Friedman and Nemenyi tests 
show that the NBRO-AGP method exhibits statistically significant superior performance (𝑝 < .05) compared to 
other metaheuristic algorithms in MAE and RMSE metrics and also achieves the highest performance in the 𝑅2

score.

1.  Introduction

Proteins are vital macromolecules composed of amino acid chains 
present in every cell and tissue in the human body (Yugandhar et al., 
2019). The functions of these macromolecules depend on their physic-
ochemical and structural properties, one of which is solubility (Habibi 
et al., 2014). Protein solubility is a critical factor in drug production ef-
ficiency and the advancement of proteomic research. However, current 
computational techniques remain inadequate for accurately predicting 
protein solubility (Xiaohui et al., 2014). Various approaches, such as 
computational and experimental methods, are used to evaluate protein 
solubility. Escherichia coli (E. coli) bacteria are preferred for solubility 
assessment in many experimental techniques. However, problems such 
as inclusion bodies (protein aggregation) can be encountered during the 
protein expression process (Zhang et al., 2019). It is important to distin-
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guish between soluble expression and aggregation-prone sequences. Sol-
uble expression indicates that proteins fold correctly and remain soluble 
in the cytoplasm. In contrast, aggregation-prone sequences often fold in-
correctly due to intrinsic properties such as hydrophobicity, charge im-
balance, or repetitive motifs, leading to inclusion bodies. This distinction 
is particularly crucial when assessing the solubility potential of recom-
binant proteins in E. coli. Although methods such as strong denaturants, 
weak promoters, low temperatures, and optimized expression conditions 
are used to solve this problem, these experimental protocols require a 
significant amount of time and resources. Misfolding of newly synthe-
sized peptides due to errors that occur during the formation of protein 
structures is the main cause of inclusion body formation (Boothroyd 
et al., 2018; Davis et al., 1999; Idicula-Thomas & Balaji, 2005; Pellizza 
et al., 2018). Therefore, protein sequences can be used to estimate the 
solubility of proteins. This estimation process is carried out by machine 
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learning algorithms, especially neural networks, random forests, and 
support vector machines (Qian et al., 2020; Tang et al., 2017).In recent 
years, deep learning-based models have achieved significant success in 
the field of protein solubility prediction. For example, Chen et al. pro-
posed a model called HybridGCN, which combines different sequence-
based features with graph convolutional networks (GCN). This model 
blends classical biophysical descriptors with the protein language model 
(ESM-1v) to achieve high accuracy in solubility prediction (Chen et al., 
2023). Deep-SoluE is a model developed by Wang and Zou and uses long-
short-term memory (LSTM) networks to predict protein solubility. This 
model combines physicochemical properties and distributed representa-
tions obtained from amino acid sequences to provide more balanced and 
accurate predictions. DeepSoluE has demonstrated higher accuracy and 
stable performance than existing tools, particularly in tests on E. coli 
proteins (Kwon et al., 2024). Similarly, the GATSol model developed 
by Li and Ming presented an attention-based architecture that combines 
three-dimensional structural graph representations of proteins and lan-
guage model outputs. This approach provided significant performance 
gains, particularly on the eSOL dataset, and showed an improvement of 
up to 18% over previous methods (Li & Ming, 2024). These algorithms 
can make solubility estimates by analyzing protein sequences. However, 
the fact that data sets usually contain many features can negatively af-
fect the performance of machine learning algorithms. In order to solve 
this problem, feature selection can be utilized as a vital approach to fig-
uring out the critical and most relevant features in model training. By 
eliminating unnecessary features, feature selection improves the over-
all learning algorithm performance by concentrating on the most useful 
features (Tang et al., 2017). Feature selection algorithms can be catego-
rized into five main groups: wrapper, filtering, embedding, ensemble, 
and hybrid methods (Abbasi Mesrabadi et al., 2023; Ghaderzadeh et al., 
2024; Nemati et al., 2009; Rezaee et al., 2022; Sazzed, 2021; Singh et al., 
2024; Tavasoli et al., 2021). Filtering strategies utilize statistical metrics 
to assess the significance of features as opposed to the learning model it-
self. In contrast, wrapper strategies employ the learning model to assess 
several feature subsets. Although this method can enhance performance, 
it has drawbacks such as high computational cost and overfitting. By in-
volving feature selection in the learning process, embedded approaches 
strike a balance between computing efficiency and overfitting. Ensem-
ble approaches increase the accuracy of classification tasks by combin-
ing several feature subsets to determine the best combination. Hybrid 
models integrate various feature selection strategies and utilize their re-
spective advantages. An innovative hybrid feature selection method that 
addresses existing limitations is presented in this paper. Our proposed 
method combines wrapper-based metaheuristic algorithms with hybrid 
techniques to optimize feature selection while maintaining computa-
tional efficiency. The study evaluates and validates the effectiveness of 
our approach using six different regression algorithms: -multilayer per-
ceptron (MLP) regressor, AdaBoost regressor, gradient boosting trees 
model, random forest regressor, support vector regressor (SVR), and 
ElasticNet. The main contributions of this research are: 

• Development of an innovative hybrid model that improves feature 
selection accuracy.

• Comprehensive comparison of metaheuristic algorithms in protein 
solubility prediction.

• Demonstration of superior performance over existing approaches on 
the obtained dataset.

The rest of the paper is organized as follows: Section 2 presents the 
theoretical basis of feature selection. Section 3 describes the dataset, 
descriptor generation, and methodology. Section 4 presents experimen-
tal results and analysis. Finally, Section 5 includes concluding remarks 
and recommendations for future work.

2.  Related work

While drug discovery stands out as one of the most challenging pro-
cesses in the scientific world with its high costs and low success rates, 

artificial intelligence (AI) and machine learning (ML) technologies are 
reshaping this process with innovative approaches in critical areas such 
as molecular property prediction and the design of new molecules. These 
technologies have found wide application in the health sector. They 
have provided significant advances, especially in the early diagnosis of 
diseases, planning of treatment processes, and preventive health ser-
vices. New developments in deep learning have demonstrated striking 
results, particularly in complex medical imaging analyses such as de-
tecting and classifying brain tumors. Adapting artificial intelligence and 
machine learning techniques to the medical field has increased diag-
nostic success, accelerated analysis processes, and reduced costs. How-
ever, the high dimensionality of medical data has unique challenges, 
increasing the need for more efficient and accurate methods in feature 
selection and classification processes. Authors in Singh et al. (2024) 
have examined in detail the contributions of AI, particularly in drug 
screening and design processes. This study emphasizes the impact of 
AI in processes such as high-speed virtual screening (HTVS), pharma-
cophore modeling, and de novo drug design. It also includes examples 
of applications in areas such as toxicity prediction and pharmacokinetic 
profiling. The success of AI in predicting drug-target interactions, opti-
mizing molecular structures, and drug repositioning processes has been 
examined, and it has been stated that success rates of up to 97% in 
drug screening accuracy have been achieved with the use of deep learn-
ing (DL) algorithms. However, these high accuracy rates usually come 
with increased computational complexity and the risk of getting stuck 
in local optima. Our proposed NRBO-AGP method specifically addresses 
these challenges through its adaptive gradient perturbation mechanism. 
Molecular screenings, particularly for COVID-19 treatment, show the 
importance of AI-supported approaches in increasing clinical efficacy 
and speed. Similarly, another study on the contributions of AI in the 
fight against antimicrobial resistance (AMR) emphasizes that traditional 
drug development processes are insufficient due to high cost, long time, 
and frequent failure rates. In this context, the potential of AI technolo-
gies, particularly language models and DL methods, in processes such as 
identifying new antimicrobial agents, optimizing drug design, and pre-
dicting resistance mechanisms was examined. The findings show that AI 
integrated with genomic and proteomic data is effective in rapidly iden-
tifying new drug candidates, restructuring existing drugs, and estimat-
ing resistance models. For example, ML algorithms can rank molecules 
that may have antimicrobial activity by analyzing large-scale datasets, 
while DL models optimize drug design processes by predicting target-
protein interactions (Ghaderzadeh et al., 2024). In parallel with these 
studies, an innovative computational framework for predicting drug-
target interactions (DTI) has been presented. This framework comprises 
three main stages: feature extraction, selection, and classification. Af-
ter managing high-dimensional data with a wrapper feature selection 
method called IWSSR, the selected features were passed to the Rota-
tion Forest classifier. It has been shown that the framework achieves 
98.12%, 98.07%, 96.82%, and 95.64% success rates for enzymes, ion 
channels, G-protein coupled receptors, and nuclear receptors, respec-
tively. This method offers a time- and cost-saving mechanism compared 
to experimental methods (Abbasi Mesrabadi et al., 2023). The use of hy-
brid architectures based on CNN and LSTM in HAR has increased in re-
cent years. DeepConvLSTM, developed by Ordóñez and Roggen (2016), 
is one of the pioneering works that combines CNN and LSTM layers 
to process sensor data, and this architecture achieved 93.7% accuracy. 
Similarly, Hammerla et al. (2016) comprehensively compared the per-
formance of RNN and CNN in HAR problems in their proposed deep 
learning architectures and showed that hybrid models provide more 
consistent results. The deepSense framework presented by Yao et al. 
(2017) recognized complex movements with 94.5% accuracy using a 
hierarchical CNN-LSTM architecture that processes 6-axis sensor data 
separately and then fuses them. Recently, Choi et al. (2013) achieved 
97.2% accuracy by integrating the attention mechanism into the hy-
brid CNN-LSTM architecture in their proposed Attentional ConvLSTM 
model. However, most of these hybrid architectures use standard con-
nection structures, and the proposed DeepHAR-Net (Ali & Abdelhafeez, 
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2022) stands out by using peephole connections in LSTM layers and 
its customized data augmentation strategy. These innovations enable 
DeepHAR-Net to be more robust to sensor placement variations and 
better capture complex activity patterns. In this respect, DeepHAR-Net 
differs from existing hybrid architectures in its architectural structure 
and performance metrics. While these drug-target interaction studies 
demonstrate the potential of feature selection in molecular analysis, sim-
ilar challenges and opportunities exist in gene expression analysis. The 
efficient discovery-exploitation balance of our NRBO-AGP method be-
comes particularly valuable in this field. In this context, another study 
on hybrid algorithms used in the classification of microarray gene ex-
pression data proposes a new model called "Ensemble Soft Weighted 
Gene Selection" (ESWGS). This model determines gene weights using 
criteria such as the ROC curve, two-sample T-test, Wilcoxon test, Bhat-
tacharyya distance, and entropy. It also includes the "Modified Water 
Cycle Algorithm" (mWCA) method to optimize the RBF kernel param-
eters of SVM. In experiments conducted on datasets such as leukemia, 
breast cancer, and prostate cancer, it has been shown that the model 
produces effective results with high accuracy and low computational 
cost (Tavasoli et al., 2021). Similarly, the ANOVA-SRC-BPSO method 
was developed to reduce the computational load in high-dimensional 
datasets and optimize cancer classification. Genes were filtered with 
ANOVA and F-tests, redundant genes were eliminated with Spearman 
rank correlation coefficients, and the most appropriate gene subset was 
selected with the BPSO algorithm. This method achieved 100% classifi-
cation accuracy in some datasets and generally achieved high accuracy 
using fewer genes (Sazzed, 2021). Another deep learning-based study 
aimed to classify cancer types and gene selection using microarray data. 
The proposed model used ROC curve, Wilcoxon test, and SNR methods 
for gene selection and utilized the Stacked Autoencoder (SAE) model in 
the classification phase. The study optimized gene selection with high 
accuracy rates, both shortening processing times and increasing overall 
performance. In this context, innovative solutions of AI and ML methods 
in drug discovery, gene selection, and classification processes provide 
an important foundation for the future in biomedical research (Rezaee 
et al., 2022). Our NRBO-AGP approach, which employs powerful fea-
ture selection mechanisms while maintaining computational efficiency, 
was directly motivated by these issues related to missing data and high 
dimensions. This study systematically examines feature selection (FS) 
methods used in cancer classification of microarray gene expression 
data (Alhenawi et al., 2022). FS methods have been developed to in-
crease classification accuracy and reduce computational costs in high-
dimensional datasets. They are of critical importance, particularly in 
the field of microarray data analysis. In the study, 132 scientific arti-
cles published in the last seven years were examined in detail, and FS 
studies were divided into five main categories: filter-based, wrapper, 
embedded, hybrid, and ensemble approaches. These categories reveal 
the strengths and weaknesses of the methods in terms of accuracy, com-
putational cost, and generalization capacity. It is known that microarray 
gene expression data are widely used in cancer diagnosis and developing 
prognostic models. However, the high dimensionality and low sample 
number frequently encountered in such data reduce the generalization 
capacity of the models and increase the risk of overfitting (Osama et al., 
2023). The use of dimensionality reduction algorithms, such as feature 
selection and feature extraction, has gained importance to solve these 
problems. In this context, FS algorithms are implemented with different 
approaches such as filter, wrapper, embedded, hybrid, and ensemble 
methods. Within this classification, the comparative analysis, particu-
larly between hybrid and ensemble methods, offers important practical 
implications for researchers. Hybrid methods provide the ability to nar-
row down the search space more effectively by integrating the strengths 
of different paradigms. For example, reducing the dimensionality of the 
feature space with filtering algorithms and then applying wrapper tech-
niques can significantly increase computational efficiency. On the other 
hand, this integration process increases the complexity of the method 
and complicates the implementation process, as it requires multiple pa-

rameter optimizations. In addition, combining different algorithms can 
lead to inconsistencies between methods and make it difficult to verify 
the results. Ensemble feature selection methods, on the other hand, pro-
vide high generalization capability by combining the outputs of multiple 
models. These approaches can produce more robust and reliable predic-
tions than a single model, if there is noise in the dataset or complex 
relationships between features (Darmawahyuni et al., 2024). The nat-
ural structure The natural structure of ensemble methods can be easily 
integrated with cross-validation techniques, which increases the reli-
ability of the model selection process. However, ensemble approaches 
generally require higher computational costs, which can be a significant 
limitation, particularly in high-dimensional datasets or limited-resource 
scenarios. It should also be noted that ensemble methods have disad-
vantages in interpretability and carry the risk of overfitting if not care-
fully designed. In practical applications, hybrid and ensemble methods 
vary depending on the problem context and operational constraints. Hy-
brid approaches may be more advantageous in very high-dimensional 
datasets or where computational resources are limited. On the other 
hand, ensemble methods can be preferred in applications where gen-
eralization ability is critical, or the aim is to minimize the prediction 
variance. The NRBO-AGP method proposed in this study combines the 
fast convergence advantage of Newton-Raphson optimization with the 
discovery ability of adaptive gradient perturbation as a hybrid approach. 
This integration exhibits superior computational efficiency and perfor-
mance and avoids local optima in complex bioinformatics problems 
such as protein solubility estimation. Compared to other studies, hy-
brid methods offer lower computational cost and higher interpretabil-
ity, while ensemble approaches provide more robust and generalizable 
results. Researchers should consider this trade-off when choosing the 
most appropriate strategy for their spic applications. For example, while 
ensemble methods stand out in areas requiring high accuracy, such as 
clinical decision support systems, hybrid approaches may be more suit-
able in real-time systems or resource-constrained environments. As a 
result, when determining the feature selection approach, the advantage-
disadvantage balance offered by hybrid and ensemble strategies should 
be evaluated comprehensively, considering the dataset’s characteristics, 
the application domain’s requirements, and the existing computational 
infrastructure. Another significant contribution is that metaheuristic al-
gorithms have many applications in feature selection processes. These 
algorithms have been investigated using various metrics and classi-
fiers on single and multiple objective functions (Barrera-García et al., 
2023). Specifically, physics-based adaptations, human behavior-based, 
swarm intelligence-based, and evolutionary-based algorithms have sig-
nificantly contributed to the FS area by offering remarkable accuracy 
rates on large datasets (Agrawal et al., 2021). Furthermore, the in-
vestigation of multi-class FS problems has highlighted the necessity 
for the scalability and robustness of these algorithms (Akinola et al., 
2022). The necessity of scalability and robustness in feature selection 
approaches is obviously aligned with the design principles of our pro-
posed NRBO-AGP approach, which covers these restrictions with an
innovative combination of Newton-Raphson optimization and adap-
tive gradient techniques. Therefore, FS methods play a critical role 
in improving classification accuracy and reducing the computational 
costs in high-dimensional datasets. The studies mentioned show the 
effective utilization of artificial intelligence, machine learning, and 
metaheuristic algorithms in FS processes, which is critical to en-
hancing generalization capacity and maximizing model performance. 
In this direction, more comprehensive research and the develop-
ment of innovative approaches will help progress in the FS field. 
The DDcCNN model (Wang et al., 2021) is an innovative solu-
tion that uses computational techniques and sequence data to pre-
dict protein solubility. The model combines the advantages of lo-
cal and global feature extraction with one-layer 1D convolutional 
networks and three-layer 2D convolutional networks. The extracted 
features for solubility prediction are processed in a four-layer fully
connected network. The model’s performance is evaluated with a dataset 
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of 129,643 protein sequences, consisting of 58, 689 soluble and 70, 954
insoluble proteins. The results reveal that the DDcCNN model has supe-
rior performance in terms of sensitivity (76.13%), specificity (79.32%), 
Matthew correlation coefficient (MCC, 0.57), and accuracy (77.82%). 
Moreover, the MCC and accuracy values of the model are better than 
those of other models, such as PaRSnIP and DeepSol. Comparison of 
training times shows that the DDcCNN model can be used to predict 
protein solubility in real-world applications. Another study (Manzoor 
et al., 2023) presented a new method for amino acid residue selection 
by combining unsupervised feature extraction with autoencoders, with 
three different feature selection strategies. The model was tested on five 
benchmark datasets, namely CB6133, CB6133-filtered, CB513, CASP10, 
and CASP11, using random forest, decision tree, and multilayer per-
ceptron classifiers. The findings showed that Q8 accuracy ranged from 
82% to 74% and Q3 accuracy ranged from 92% to 74%. The model 
achieved an average improvement of 3.5% in Q8 accuracy. While the 
random forest classifier performed best in general metrics, the decision 
tree achieved better results in specific areas. The model also improved 
the performance in prediction tasks by eliminating noisy and unneces-
sary data. In another study on protein function classification (De Santis 
et al., 2018), feature selection methods and dissimilarity space represen-
tations were used. The authors presented methods that convert protein 
structures into real-valued vectors that can be used with standard clas-
sification techniques. The study achieved success in classifying protein 
activities and showed promising results in tests on a subset of the E. coli 
proteome. Newton-Raphson Based Optimizer (NRBO) (Sowmya et al., 
2024) improves the traditional Newton-Raphson approach by introduc-
ing two basic operators, namely the Trap Avoidance Operator (TAO) 
and the Newton-Raphson Search Rule (NRSR). These operators increase 
the algorithm’s exploitation capacity, convergence rate, and ability to 
avoid local optima. NRBO has been evaluated on standard benchmark 
problems such as CEC2020 and CEC2017 and outperforms seven other 
advanced optimization algorithms. It has also been successfully applied 
to training deep reinforcement learning agents and optimizing IoV rout-
ing problems. It is stated that NRBO further improves the performance 
by combining population-based and gradient features. These limita-
tions in feature selection methods motivated the development of our 
NRBO-AGP approach, which combines the fast convergence property 
of Newton-Raphson with the ability of gradient-based optimization to 
avoid local optima. NRBO-AGP provides a more effective exploration-
exploitation balance in the search space thanks to NRBO-AGP oper-
ators. It makes a unique contribution to the literature with its high 
accuracy rates and consistent results, particularly in large-sized data
sets.

3.  The dataset, descriptor generation, and preliminary

3.1.  eSol dataset

The data for protein solubility employed in the study comes from the 
eSol database (Niwa et al., 2009), which is an extensive repository of 
quantitative protein solubility values for ensemble E. coli proteins. It is 
derived from the eSOL platform, where protein solubility is assessed us-
ing experimental investigation of their physicochemical properties in 
a PURE system. This dataset consists of protein solubility values ex-
perimentally measured in the PURE (Protein Synthesis Using Recom-
binant Elements) system by Niwa et al. The dataset used in our study 
contains a total of 3144 E. coli proteins after eliminating those with 
missing sequence information. The solubility value for each protein was 
determined by producing recombinant proteins using cell-free protein 
expression technology and separating them into soluble and insoluble 
components by centrifugation. Solubility was calculated by dividing the 
protein ratio in the supernatant by the total protein content and takes 
continuous values in the range of [0,1]. The solubility values in the 
eSOL dataset show a continuous distribution and are generally used for 
regression problems. However, it is possible to divide the dataset into 

soluble and insoluble for classification studies. Based on the threshold 
value of 0.5, which is widely used in the literature, the class distri-
bution in our data set is as follows: soluble proteins (𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≥ 0.5), 
1837 samples (58.4%), and insoluble proteins (𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 < 0.5), 1307 
samples (41.6%). When the statistical distribution of the solubility val-
ues is examined, the mean solubility is 0.57, the median solubility is 
0.62, the standard deviation is 0.29, the minimum value is 0.0, the 
maximum value is 1.0, and the interquartile range (IQR) is 0.48. The 
distribution of solubility values shows a slight bimodal characteristic; 
there are two separate concentration points in the ranges of 0.2 − 0.3
and 0.7 − 0.8. This distribution reflects the dual effect of the physico-
chemical properties of the proteins on solubility. Following the exclu-
sion of entries lacking sequence information, 3144 proteins from the 
eSol database were included in our study. The original study that gen-
erated this dataset assessed protein solubility values by producing re-
combinant proteins using cell-free protein expression technology. The 
expressed proteins were subsequently fractionated into soluble and in-
soluble components through centrifugation. Solubility is the supernatant 
protein ratio to total protein content, which was computed by SDS-PAGE
(Shimizu et al., 2005).

3.2.  Preprocessing

TTo generate our research database, we apply several steps to the 
protein sequences of eSOL (Osorio et al., 2015). We use the Peptides 
package in the R language to achieve the protein sequence descriptors. 
We first install and load it to enable us to utilize the functionality of 
the package. We then use the "aaDescriptors" function to assess the se-
quences of the eSOL proteins and generate 66 descriptors for each amino 
acid. The several descriptors of amino acids are the aliphatic index, 
Boman index, net charge, hydrophobicity, instability index, isoelectric 
point, and molecular weight. To facilitate interpretation, we gather the 
obtained descriptor values into a structured data framework. Generat-
ing a structured data framework with multiple protein sequences is the 
first step of our research; each sequence contains multiple properties 
for each amino acid. Using a loop mechanism, we iteratively perform 
the “aaDescriptors” function on each sequence. Finally, these distinct 
data obtained are gathered into a single matrix frame that includes all 
generated descriptors for the sequences of the proteins. The resulting 
dataset contains 3144 instances and 3104 features. Although the dataset 
was relatively balanced, a stratified sampling technique was applied to 
prevent potential biases during the model training and evaluation pro-
cesses. For sampling, solubility values were divided into five equal in-
tervals (0 − 0.2, 0.2 − 0.4, 0.4 − 0.6, 0.6 − 0.8, 0.8 − 1.), and a proportional 
number of samples were selected from each interval. This approach en-
sured that each training/validation/test set represented the solubility 
distribution in the original dataset. The dataset was divided into 70% 
training (𝑛 = 2201),10% validation (𝑛 = 314), and 20% test (𝑛 = 629). 
The soluble and insoluble protein ratios in each divided set were con-
sistent with the original dataset’s ratio (58% − 42% balance was main-
tained). Sixty-six descriptive features were extracted for each protein 
sequence using the "aaDescriptors" function in the Peptides package. 
These features include parameters such as aliphatic index, Boman in-
dex, net charge, hydrophobicity, instability index, isoelectric point, and 
molecular weight. The average values divided by the number of amino 
acids of each sequence were used to standardize the length differences 
between the sequences. As a result of this process, a data matrix contain-
ing a total of 3104 features for 3144 proteins was created. All features 
were normalized to the range [0, 1] with the min-max scaling method 
to ensure comparability between models and to prevent potential mis-
conceptions due to the different scales of the features. In bioinformatics 
and computational biology research, this method efficiently utilizes the 
Peptides package and the R language’s flexibility to perform profound 
analysis of the attributes of proteins. After that, the min-max scaler was 
used to normalize the data.
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3.3.  Preliminary

3.3.1.  Newton-Raphson-based optimization
Optimization problems are categorized into two different classes: al-

gorithms based on gradient, such as Newton’s Method (NM) (Amrein 
& Wihler, 2014), Gradient-Descent Algorithm (GDA) (Madgwick et al., 
2011), Levenberg Marquardt Algorithm (LMA) (Moré, 2006), Quasi-
Newton’s Method (QNM) (Weerakoon & Fernando, 2000), and algo-
rithms based on non-gradient-based methods, such as MAs, such as GA, 
GWO, WOA, ACO, and PSO, etc. To find the optimal solutions, gradient-
based algorithms (GB) are based on discovering the points where the 
gradient is zero; algorithms like NM and conjugate direction approaches 
follow this principle. The gradient algorithms have disadvantages, such 
as slow convergence speed and no guarantee of the best solution. Meta-
heuristic algorithms are flexible mechanisms for solving problems that 
perform specified procedures to accomplish optimization without de-
pending on the domain of a specific problem. They are inspired by natu-
ral phenomena and utilize heuristic approaches that can be designed for 
various optimization aims. Metaheuristic approaches such as GA, GWO, 
WOA, ACO, and PSO present powerful and effective methods for opti-
mization in a comparatively short time, contrasting with the exact op-
timization methods that obtain the optimal solutions after considerable 
computation. Metaheuristic algorithms have an advantage when utiliz-
ing complex models and large datasets; they produce high-quality an-
swers with low errors quickly. In addition, the flexibility of metaheuris-
tic methods enables them to adapt easily to real-world scenarios and 
distinguishes them from more rigid, accurate optimization approaches. 
While MAs offer excellent robustness in searching for the optimal so-
lution, GB gets stuck with local optimal solutions. On the other hand, 
MAs require more CPU cores, which is particularly important for prob-
lems with large search spaces. Therefore, we suggest a novel method 
that combines the advantages of gradient-based and metaheuristic algo-
rithms and uses them for feature selection. The Newton-Raphson ap-
proach is a method that uses the Taylor series to find the root of a 
function. Initially, a point (𝑥0) is chosen, and the Taylor series of the 
function is calculated around this point (so that we consider only up to 
second-order terms) (Sowmya et al., 2024):

𝑓 (𝑥0 + 𝜖) ≈ 𝑓 ′(𝑥0) ⋅ 𝜖 +
(𝑓 ′′(𝑥0) ⋅ (𝜖)2)

2
, (1)

If 𝑓 (𝑥0 + 𝜖) = 0 and solving Eq. 1 for 𝜖 ≡ 𝜖0 we will have,

𝜖0 = −
𝑓 ′(𝑥0)
𝑓 ′′(𝑥0)

, (2)

This determines the next position of the root, and the process is repeated 
until the root is found:

𝑥(𝑛+1) = 𝑥𝑛 −
𝑓 ′(𝑥𝑛)
𝑓 ′′(𝑥𝑛)

, 𝑛 = 1, 2, 3,… (3)

Newton-Raphson-Based Optimization (NRBO) (Sowmya et al., 2024) ex-
plores the search region using the Newton-Raphson Method and defines 
the search path using various operators. Consider that optimization is 
performed on an unconstrained single-objective problem as follows:
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛)subject to𝑙𝑏 ≤ 𝑥𝑗 ≤ 𝑢𝑏, 𝑗 = 1, 2,… , 𝑑𝑖𝑚 (4)

where 𝑓 (𝑥) is the objective function minimizing 𝑥𝑗 , which is the deci-
sion vector, dim is the dimension of the problem, 𝑙𝑏 and 𝑢𝑏 are lower 
and upper bounds, respectively. NRBO, similar to other metaheuristic 
algorithms, starts investigating optimal solutions by generating initial 
random populations. The random population is generated by the fol-
lowing equation:
𝑥𝑛𝑗 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏), 𝑛 = 1, 2,… , 𝑁𝑝; 𝑗 = 1, 2,… , 𝑑𝑖𝑚, (5)

Where 𝑥𝑛𝑗  is the position of the 𝑛𝑡ℎ population in the 𝑗𝑡ℎ dimension, 𝑟𝑎𝑛𝑑
is a random number in the interval (0, 1), and 𝑁𝑝 is the total number of 
the population. The Newton-Raphson Search Rule (NRSR) is presented 

as an effective solution method for variation problems. This allows vec-
tors to explore the feasible region more accurately and obtain better 
positions. It is based on the idea of the Newton-Raphson Method (NRM) 
to increase the exploration tendency and speed up convergence and is 
an adaptation of the NRM and adopts a permanent approach so that it 
can be used for non-differentiable functions. NRM starts with an initial 
solution and progresses to the next position in a specified direction. Us-
ing the Taylor series of second-order derivatives to obtain NRAK from 
Eq. 3, the derivatives of 𝑓 (𝑥) are determined as follows:

𝑓 ′(𝑥) =
(𝑓 (𝑥 +△𝑥) − 𝑓 (𝑥 −△𝑥))

2 ×△𝑥
, (6)

𝑓 ′′(𝑥) =
𝑓 (𝑥 +△𝑥) + 𝑓 (𝑥 −△𝑥) − 2 ∙ 𝑓 (𝑥)

△𝑥2
, (7)

By substituting these derivatives into Eq. 3, the updated root position 
is written as follows:

𝑥(𝑛 + 1) = 𝑥𝑛 −

((

𝑓 (𝑥𝑛 +△𝑥) − 𝑓 (𝑥𝑛 −△𝑥)
)

×△𝑥
)

2 × (𝑓 (𝑥𝑛 +△𝑥) + 𝑓 (𝑥𝑛 −△𝑥) − 2 × 𝑓 (𝑥𝑛))
, (8)

This equation is adjusted for NRSR to manage population-based search. 
By determining the best and worst positions, NRSR is expressed as fol-
lows:

𝑁𝑅𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 ×
(𝑋𝑤 −𝑋𝑏) ×△𝑥

2 ∙ (𝑋𝑤 +𝑋𝑏 − 2 × 𝑥𝑛)
, (9)

Here, 𝑟𝑎𝑛𝑑𝑛 is a random number with a normal distribution, 𝑋𝑤 and 𝑋𝑏
represent the worst and best positions, respectively. △𝑥 is determined 
as follows:
△𝑥 = 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × |𝑋𝑏 −𝑋𝑡

𝑛|, (10)

where 𝑡 is the current iteration. To improve the performance of the al-
gorithm, an adaptive coefficient 𝛿 is used, which provides a balance 
between exploration and exploitation.

𝛿 =
(

1 −
( 2 × 𝑡

𝑇

))5
, (11)

Using Eq. 8 and NRSR, the position is updated:
𝑥(𝑛+1) = 𝑥𝑛 −𝑁𝑅𝑆𝑅, (12)

To improve exploitation, NRBO uses the parameter 𝜌 to determine the 
direction of the population:

𝜌 = 𝛼 ×
(

𝑋𝑏 −𝑋𝑡
𝑛
)

+ 𝛽
(

𝑋𝑡
𝑖 −𝑋𝑡

𝑗

)

, (13)

Where 𝛼 and 𝛽 are random numbers in intervals (0, 1), 𝑖 and 𝑗 are differ-
ent integers that are randomly chosen from the population. The current 
position is updated as follows:

𝑋1𝑡𝑛 = 𝑥𝑡𝑛 −
(

𝑟𝑎𝑛𝑑𝑛 ×
𝑋𝑤 −𝑋𝑏) ×△𝑥

2 × (𝑋𝑤 +𝑋𝑏 − 2 × 𝑥𝑛

)

+
(

𝛼 ×
(

𝑋𝑏 − 𝑥𝑡𝑛
)

+ 𝛽
(

𝑋𝑡
𝑖 −𝑋𝑡

𝑗

))

,
(14)

Eqs. 15 and 16 present local and global search strategies:

𝑋1𝑡𝑛 = 𝑥𝑡𝑛 −
(

𝑟𝑎𝑛𝑑𝑛 ×
𝑦𝑤 − 𝑦𝑏) ×△𝑥

2 × (𝑦𝑤 + 𝑦𝑏 − 2 × 𝑥𝑛

)

+
(

𝛼 ×
(

𝑋𝑏 − 𝑥𝑡𝑛
)

+ 𝛽
(

𝑋𝑡
𝑖 −𝑋𝑡

𝑗

))

,
(15)

𝑋2𝑡𝑛 = 𝑋𝑏 −
(

𝑟𝑎𝑛𝑑𝑛 ×
𝑦𝑤 − 𝑦𝑏) ×△𝑥

2 × (𝑦𝑤 + 𝑦𝑏 − 2 × 𝑥𝑛

)

+
(

𝛼 ×
(

𝑋𝑏 − 𝑥𝑡𝑛
)

+ 𝛽
(

𝑋𝑡
𝑖 −𝑋𝑡

𝑗

))

,
(16)

where 𝑦𝑤 and 𝑦𝑏 are the positions of the two vectors formed using 𝑥(𝑛+1)
and 𝑥𝑛, respectively. NRBO uses the above two equations to develop 
both the diversification and intensification phases. The new position 
vector is determined by Eqs. 17 and 18:
𝑋(𝑡+1)

𝑛 = 𝛾 ×
(

𝛾 ×𝑋1𝑡𝑛 + (1 − 𝛾) ×𝑋2𝑡𝑛
)

+ (1 − 𝛾) ×𝑋3𝑡𝑛, (17)
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𝑋3𝑡𝑛 = 𝑋𝑡
𝑛 − 𝛿 × (𝑋2𝑡𝑛 −𝑋1𝑡𝑛), (18)

where 𝛾 is the random number in intervals (0, 1). For clarity, a com-
plete list of hyperparameters used in Equations 6-12, along with their 
descriptions and values, is presented in Appendix A.

3.3.2.  Adaptive gradient perturbation
The adaptive gradient perturbation (AGP) (Minervini et al., 2023) 

method is based on the adaptive perturbation of the gradient to im-
prove optimization processes in machine learning and deep learning. 
This method was developed to prevent getting trapped in local mini-
mum and to speed up the convergence time, particularly in complex and 
high-dimensional problems. The main aim of this method is to provide 
a more effective learning process by dynamically adjusting the gradi-
ents during the model training. The AGP method basically modifies the 
gradient descent algorithm as follows:
𝜃(𝑡+1) = 𝜃𝑡 − 𝜂(∇𝑓 (𝜃𝑡) + 𝜖𝑡), (19)

where 𝜃𝑡 represents the current model parameters, 𝜂 is the learning rate, 
∇𝑓 (𝜃𝑡) is the gradient of the loss function, and 𝜖𝑡 is the adaptive pertur-
bation term. 𝜖𝑡 is usually calculated by the formula:
𝜖𝑡 = 𝛼 × 𝜎(∇𝑓 (𝜃𝑡)) ×𝑁(0, 𝐼), (20)

where 𝛼 is a hyperparameter controlling the perturbation strength, 
𝜎(∇𝑓 (𝜃𝑡)) is the standard deviation of the gradients, and 𝑁(0, 𝐼) is a ran-
dom vector drawn from the standard normal distribution. The adaptive 
nature of AGP is achieved by dynamically adjusting 𝛼 during training:

𝛼(𝑡+1) = 𝛼𝑡 × exp
(

𝜆 ×
(

𝜌 −
||∇𝑓 (𝜃𝑡)||

||∇𝑓 (𝜃(𝑡−1))||

))

, (21)

where 𝜆 determines the adaptation speed and 𝜌 determines the target 
gradient rate. These formulas show how AGP improves the optimization 
process by dynamically perturbing the gradients so that the model can 
explore a larger solution space and avoid local minima.

3.3.3.  Hybrid of Newton-Raphson optimizer and adaptive gradient 
perturbation

Feature selection plays a critical role in improving the performance 
and interpretability of machine learning models. In this paper, an inno-
vative feature selection algorithm is presented that combines Newton-
Raphson optimization and AGP techniques. This approach aims to
provide a more effective and robust feature selection process by going 
beyond traditional methods. The proposed approach consists of eight 
important steps described below:

1. Problem Formulation: The feature selection problem is formulated 
as a continuous optimization problem. A selection degree is defined 
for each feature, 𝑠𝑖 ∈ [0, 1]. Here 𝑠𝑖 = 1 indicates that the feature is 
completely selected, while 𝑠𝑖 = 0 shows that the feature is completely 
eliminated. This continuous formulation allows the use of gradient-
based optimization techniques.

2. Data Preparation and Starting Point: The algorithm converts the 
dataset to PyTorch tensors, enabling fast computations on the GPU. 
The starting point is sampled from a uniform distribution in the range 
[𝜃, 1] to increase the probability of selecting features:
𝑠0 = 𝜃 ×𝑁(0, 1), (22)

where 𝑁(0, 1) represents the uniform distribution in the range [0, 1].
3. Define Objective Function: The objective function, which forms the 
core of the algorithm, consists of three main components:
𝑓 (𝑠) = 𝐶𝑉𝑀𝑆𝐸(𝑠) + 𝛼(𝑠, 𝑟)𝐿1(𝑠) + 𝛽(𝑠, 𝑟)𝐿2(𝑠), (23)

where 𝐶𝑉𝑀𝑆𝐸(𝑠) is the mean square error calculated by K-fold 
cross-validation, 𝐿1(𝑠) represent 𝐿1 norm (Lasso regularization), and 
𝐿2(𝑠) is 𝐿2 norm (Ridge regularization). 𝛼(𝑠, 𝑟) and 𝛽(𝑠, 𝑟) are 𝐿1 and 
𝐿2 regularization coefficients, respectively. Population-based train-
ing is used for (𝛼, 𝛽, and 𝜂), which has an 𝑂(𝑁 ∗ 𝑇 ) time complexity, 

where 𝑁 is the population size and 𝑇  is the number of CatBoost 
iterations. 𝛼(𝑠, 𝑟) and 𝛽(𝑠, 𝑟) are as follows:

𝛼(𝑠, 𝑟) = 𝛼0 +
(

1 + 𝑟
𝑁

)

×𝐷(𝑠), (24)

𝛽(𝑠, 𝑟) = 𝛽0 +
(

1 + 𝑟
𝑁

)

×𝐷(𝑠), (25)

𝐷(𝑠) = 𝑒𝑥𝑝 (−𝛾 × 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒(𝑠)), (26)

where 𝑟 is the model performance ranking in the population, and 𝑁 is 
the population size. 𝐷(𝑠) presents an adaptive term based on popula-
tion diversity, 𝛾 is Diversity weight parameter, and 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒(𝑠)
is the feature subset’s uniqueness score in the population. 𝛼0, 𝛽0 are 
initial regularization coefficients. This formulation allows feature se-
lection to adapt to population diversity, applies stronger regulariza-
tion for low-performing models, provides a better exploration of the 
parameter space during the optimization process, and automatically 
adapts according to cross-validation performance. CVMSE is calcu-
lated using CatBoost regression at each fold:

𝐶𝑉𝑀𝑆𝐸(𝑠) =
( 1
𝑘

)

×
𝐾
∑

(𝑘=1)
𝑀𝑆𝐸(𝑠, 𝑘) + 𝛼(𝑠, 𝑟)𝐿1(𝑠)

+ 𝛽(𝑠, 𝑟)𝐿2(𝑠), (27)

4. Utilize Newton-Raphson Optimization: The Newton-Raphson 
method rapidly approaches the optimal solution using the gra-
dient of the objective function and the Hessian matrix. The 
Newton-Raphson formula is as follows:
𝑠(𝑡+1) = 𝑠𝑡 − 𝜂[𝐻 (−1) × ∇𝑓 (𝑠𝑡), (28)

Here 𝐻 represents the Hessian matrix and ∇𝑓 (𝑠𝑡) is the gradient. 
However, since direct Hessian computation can be computationally 
expensive, the 𝐴𝑑𝑎𝑚𝑊  optimizer is used in this implementation.

5. Apply Adaptive Gradient Perturbation: AGP helps avoid local min-
ima by adding a stochastic element to the optimization process. 
Small, random perturbations are added to the gradient:
∇𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑(𝑠) = ∇𝑓 (𝑠) + 𝜖 ×𝑁(0, 𝐼), (29)

Here 𝜖 is the perturbation magnitude and 𝑁(0, 𝐼) represents the 
multidimensional standard normal distribution.

6. Optimization process: The optimization process is performed using 
AdamW optimizer and learning rate planning. At each iteration 𝑡:
‘ - The objective function is calculated: 𝑓𝑡 = 𝑓 (𝑠𝑡)
- The gradient is calculated by automatic differentiation:
∇𝑓𝑡 = ∇𝑓 (𝑠𝑡)
- AGP is applied:
∇𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑(𝑠) = ∇𝑓 (𝑠) + 𝜖 ×𝑁(0, 𝐼)
- The AdamW optimizer updates the parameters using the gradient:
𝑚𝑡 = 𝛽1 × 𝑚(𝑡−1) + (1 − 𝛽1) × ∇𝑓𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑(𝑠), (30)

𝑣𝑡 = 𝛽2 × 𝑣(𝑡−1) + (1 − 𝛽2) × ∇𝑓 2
𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑(𝑠), (31)

𝑠(𝑡+1) = 𝑠𝑡 − 𝜂𝑡 ×
𝑚𝑡

√

(𝑣𝑡) + 𝜖
, (32)

Where 𝛽1 and 𝛽2 are the momentum parameters of 𝐴𝑑𝑎𝑚𝑊 , and 
𝜂𝑡 is the learning rate at step 𝑡.

7. Learning Rate Scheduling: The step size is decreased over time:
𝜂(𝑡 + 1) = 𝜂𝑡 + 𝛾 (𝑡∕𝑇 ), (33)

where 𝜂𝑡 is the initial learning rate, 𝛾 is the decay factor, and 𝑇  is 
the step size period.

8. Termination and Feature Selection: The optimization is terminated 
when a predetermined number of iterations is reached or when the 
convergence criterion is met. Final feature selection is performed by 
applying a threshold value to the continuous values obtained from 
the optimization result: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = (𝑠∗ > 𝜃) where 𝑠∗ is the 
optimized feature vector and 𝜃 demonstrates the selection threshold 
value that is obtained by a quantile-based dynamic threshold and 
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Fig. 1. flowchart of the NRBO-AGP approach.

has an 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)) time complexity. The pseudocode and flowchart 
Fig. 1 of the proposed approach are as follows:

This new algorithm combines the fast convergence property of 
Newton-Raphson optimization, the exploratory ability of AGP, and the 
flexibility of modern optimization techniques to provide an effective fea-
ture selection method. The continuous optimization approach leverages 
the power of gradient-based methods, while the AGP extension helps 
avoid local minima. This approach has the potential to show strong 
performance, in particular on high-dimensional datasets and complex 
model structures. The time complexity of this method is based on the 
combination of several main components. Newton-Raphson optimiza-
tion is iterated for a certain number of iterations with the objective func-
tion called in each iteration. The CatBoost model is trained and predicted 
using K-fold cross-validation in this function. In addition, adaptive gra-
dient perturbation is applied in each iteration. The main factors affecting 
the time complexity include the number of instances, the number of fea-
tures, the number of Newton-Raphson iterations, the number of K-folds, 
and the number of iterations of the CatBoost model. Roughly, the time 
complexity can be expressed as 𝑂(𝑡 ∗ 𝐾 ∗ (𝑛 ∗ 𝑑 ∗ 𝑇 + 𝑛 ∗ log(𝑛))), where 
𝑡 represents the total number of iterations, 𝐾 demonstrates the number 
of folds, 𝑛 is the number of samples, 𝑑 shows the number of features, 
and 𝑇  is the number of CatBoost iterations. Although the use of GPU 
can reduce the computational time.

4.  Result and discussion

This study proposes an approach based on a novel population for fea-
ture selection called the Newton-Raphson-Based Optimizer and Adap-
tive Gradient Perturbation, which combines Newton-Raphson optimiza-
tion and adaptive gradient perturbation. The integration of these two 

methods offers the combined benefits of fast convergence and the avoid-
ance of local optima in the feature selection process. The Newton-
Raphson method is a powerful iterative method used to find the roots 
of functions. In the context of feature selection, this method can help 
quickly find the optimal feature subset. The method continuously im-
proves the current solution, converging to a better feature combina-
tion in each iteration. On the other hand, Adaptive Gradient Perturba-
tion is a variant of gradient-based optimization techniques. This method 
adds small random perturbations to the gradient to explore the search 
space more effectively. In the feature selection process, this approach 
can reduce the risk of getting stuck in local optima and explore a larger 
solution space. Combining these two methods can provide a more ro-
bust and effective feature selection process by combining the fast con-
vergence property of Newton-Raphson with the exploration capability 
of Adaptive Gradient Perturbation. This combination can be helpful in 
complex and high-dimensional datasets. Model development and exper-
imental analyses were performed on the Python platform. We explicitly 
stated the exact split ratios (70%∕10%∕20%) of the training/test/vali-
dation datasets used in the experimental setup and the detailed cross-
validation strategy (5-fold CV). These experiments are carried out on 
a 3.70GHz Intel Core i5 PC with 16 GB of RAM and a GeForce RTX 
4070 with 12 GB. We also utilized eight metaheuristic algorithms that 
are population-based, such as the Whale Optimization Algorithm (WOA) 
(Mirjalili & Lewis, 2016), Grey Wolf Optimizer (GWO) (Mirjalili et al., 
2014), Ant Lion Optimizer (ALO) (Mirjalili, 2015a), Moth Flame Op-
timizer (MFO) (Mirjalili, 2015b), Dragonfly Algorithm (DA) (Mirjalili, 
2016), Grasshopper Optimization Algorithm (GOA) (Mirjalili et al., 
2018), Multi-Verse Optimizer (MVO) (Mirjalili et al., 2016), and Salp 
Swarm Algorithm (SSA) (Abualigah et al., 2020), for feature selection in 
our generated dataset to demonstrate that the proposed method outper-
forms the above-mentioned methods in protein solu- bility prediction. 
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Algorithm 1 Feature selection optimization using AGP and Newton-
Raphson.
1: Load and preprocess data:
2: 𝑋 ∈ ℝ𝑛×𝑚, 𝑦 ∈ ℝ𝑛

3: Initialize feature subset randomly:
4: 𝑠0 ∈ ℝ𝑚, 𝑠0 ∼  (𝜃, 1)
5: Define objective function 𝑓 (𝑠):
6: function f(𝑠)
7:   a. Select features:
8:  𝑋selected = 𝑋[∶, 𝑠 > 𝜃]
9:   b. Perform k-fold cross-validation:
10:  for each fold do
11:   Train CatBoost model
12:   Predict: 𝑦̂ = CatBoost(𝑋test)
13:   Calculate MSE:
14:  MSEfold =

1
𝑛test

∑

(𝑦test − 𝑦̂)2

15:  end for
16:   c. Calculate mean MSE:
17:  MSE = 1

𝑘

∑

MSEfold
18:   d. Add regularization term:
19:  𝑓 (𝑠) = MSE + 𝛼||𝐿1(𝑠)|| + 𝛽||𝐿2(𝑠)||2
20:   e. Return 𝐽 (𝜃)
21: end function
22: Define Adaptive Gradient Perturbation (AGP) function:
23: function AGP(∇𝑓 (𝑠), 𝜖)
24:   return ∇𝑓 (𝑠) + 𝜖 ⋅ (0, 𝐼)
25: end function
26: Define Newton-Raphson optimizer with AGP:
27: function optimize(𝑠𝑡, 𝐽 , 𝑇 , 𝜂𝑡, 𝜖)
28:   Initialize AdamW optimizer with learning rate 𝜂0
29:   Initialize learning rate scheduler
30:  𝑠𝑡+1 = 𝑠𝑡
31:  for 𝑡 = 1 to 𝑇  do
32:   Calculate 𝐽 (𝜃) and ∇𝐽 (𝜃)
33:   Apply AGP:
34:  ∇𝐽 ′(𝜃) = AGP(∇𝐽 (𝜃), 𝜖)
35:   Update 𝜃 using AdamW:
36:  𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ ∇𝑓perturbed(𝑠)
37:  𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ (∇𝑓perturbed(𝑠))2
38:  𝑚̂𝑡 =

𝑚𝑡
(1−𝛽𝑡1)

39:  𝑣̂𝑡 =
𝑣𝑡

(1−𝛽𝑡2)

40:  𝑠𝑡+1 = 𝑠𝑡 − 𝜂𝑡 ⋅
𝑚̂𝑡

(
√

𝑣̂𝑡+𝜖)
41:   Update learning rate: 𝜂 = scheduler(𝜂)
42:  end for
43:   return 𝑠𝑡+1
44: end function
45: Optimize feature subset:
46: 𝑠∗ = optimize(𝑠𝑡, 𝐽 , 𝑇 , 𝜂𝑡, 𝜖)
47: Apply threshold to select final features:
48: selected_features = 𝑠∗ > 𝜃
49: Save and output results

Each metaheuristic technique in this study used a population size of 100 
agents and was run for 70 iterations. Root mean squared error, mean ab-
solute error, and 𝑅2 error measurement in the five-fold cross-validation 
method were applied to evaluate the performance of the proposed tech-
niques (Algorithm 1).

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1
(𝑦𝑡 − 𝑝𝑡)2, (34)

𝑀𝐴𝐸 = 1
𝑛

√

√

√

√

𝑛
∑

𝑡=1)
(𝑦𝑡 − 𝑝𝑡), (35)

𝑅2 = 1 −
∑𝑛

𝑡=1(𝑦𝑡 − 𝑝𝑡)2
∑𝑛

𝑡=1
(

𝑦𝑡 −
∑𝑛

𝑡=1 𝑦𝑡
)2

, (36)

where 𝑦𝑖, 𝑝𝑖, and 𝑛 denote the actual, predicted values and number of 
observations, respectively. Fig. 2(a) shows the correlation coefficients 
of selected features using the proposed method with the target variable, 
which is the solubility of the protein. The Y-axis shows the correlation 
coefficients between 0 and 1, and the X-axis represents the different 
selected variables. This correlation analysis graph shows the relation-
ships between feature selection and the target variable, providing im-
portant insights into machine learning modeling. The descriptors deter-
mined by the NRBO-AGP hybrid feature selection algorithm and shown 
in Fig. 2(a) provide a comprehensive profile of various biochemical and 
physicochemical parameters affecting protein solubility. When the se-
lected features are examined, it is seen that the hydrophobicity/hy-
drophilicity properties of amino acids at positions 44–47 (VHSE1.44, 
VHSE2.44, Z1.44, Z1.47, PP2.45, PP3.44), steric and volumetric charac-
teristics (VHSE3.44, VHSE4.46, Z2.46, Z4.44), electronic and charge dis-
tributions (VHSE6.44, VHSE7.44, VHSE7.46, VHSE8.45), and structural 
conformation tendencies (F1.45, F2.44, F2.45, F3.47, ST3.47, ST5.44, 
ST6.44) are prominent. These properties’ significantly high correlation 
coefficients prove that these biochemical parameters play a decisive role 
in protein solubility. Hydrophobic-hydrophilic balance directly affects 
the solvent interactions of the protein and emerges as the primary deter-
minant of the solubility profile. While the optimum distribution of hy-
drophilic amino acids on the protein surface increases the solubility by 
providing appropriate interactions with water molecules, incorrect po-
sitioning of hydrophobic regions can trigger aggregation tendency. Se-
lecting descriptors related to structural stability (ST5.44, ST6.44, T1.44, 
T3.44) emphasizes the critical effect of correct protein folding on sol-
ubility. Thermodynamically stable conformations contribute positively 
to solubility by reducing the tendency for misfolding and the associated 
aggregation risk. Charge distribution properties (VHSE6.44, VHSE7.44) 
modulate intermolecular interactions by shaping the electrostatic profile 
of the protein. A balanced and optimum surface charge distribution pre-
vents aggregation by increasing protein-protein repulsion forces while 
increasing solubility by strengthening protein-solvent interactions. The 
critical positions selected by the model (44–47) are probably located in 
the surface areas of the protein structure that are open to solvent in-
teraction, suggesting that these regions constitute a "hot spot" in terms 
of solubility. The unique combinations of amino acids in these posi-
tions shape the interaction surface in a way that determines the solubil-
ity profile of the protein. Notably, the prominent presence of BLOSUM 
identifiers (BLOSUM4.44, BLOSUM6.44, BLOSUM8.44), which are in-
dicators of evolutionary conservation, indicates that the selected posi-
tions are under evolutionary pressure not only for solubility but also 
for the preservation of protein function. The selection of protein fin-
gerprint identifiers (ProtFP1.44, ProtFP4.44, ProtFP7.44) points to the 
effect of specific amino acid sequences on solubility. Holistic analysis 
of these descriptors reveals molecular determinants of protein solubil-
ity and provides a rational framework for potential protein engineer-
ing applications. As seen in the figure, correlation coefficients vary be-
tween 0 and 0.09. The highest correlation value is observed as a distinct 
peak in the middle part of the graph, at approximately 0.09. This vari-
able substantially affects the target variable more than the others. Most 
variables show correlation values of 0.02 − 0.06, indicating a medium-
level relationship. It is observed that the variables on the left side of the 
graph generally have higher correlation values, and these values grad-
ually decrease as we move to the right. This shows that the effects of 
the variables in the data set on the target variable are at different levels. 
The relatively low correlation values may indicate the existence of non-
linear relationships between the variables. This situation indicates that 
more complex modeling techniques and feature engineering approaches 
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Fig. 2. Linear and non-linear Correlation Coefficients of selected features with target variable.
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should be evaluated. In the model development process, it will be essen-
tial to prioritize variables with high correlation and evaluate other vari-
ables in different combinations and transformations. This correlation 
analysis is a critical guide for the feature selection process. Including 
highly correlated features in the model can increase the predictive per-
formance. As a result of the mutual information analysis we conducted 
to detect nonlinear relationships in Fig. 2(b), it was observed that some 
features had low correlation coefficients compared to the classical Pear-
son correlation. However, they carried significant information about the 
target variable. Although the Pearson correlation of the feature named 
"hydrophobicity index" was only 0.045, the mutual information value 
was calculated as 0.31. Similarly, while the Pearson correlation for the 
feature named "net charge" was 0.028, the mutual information value 
was at the level of 0.26. These findings show that our model can effec-
tively capture linear but also complex and nonlinear dependencies. In 
addition, the Kendall Tau correlation coefficient is shown in Fig. 2(c) 
to take the sequential structure into account. According to the results, 
for example, the Pearson correlation between the feature named "iso-
electric point" and the target variable (resolution) was at 0.021. At the 
same time, the Kendall tau coefficient was found to be 0.173. For the 
"instability index" feature, this value was measured as 0.165. This situ-
ation reveals that classical correlation analyses can ignore the sequen-
tial relationship of some features with resolution and that sequential 
correlation analyses increase the model’s explanatory power. In this di-
rection, the proposed NRBO-AGP method creates more powerful and 
generalizable models, especially in high-dimensional and complex data 
structures, with its capacity to detect features sensitive to non-linear and 
sequential relationships.

To evaluate the quality of the selected features in the prediction, 
we utilize the MLP regressor, AdaBoost regressor, Gradient Boost Tree, 
Random Forest regressor, Support Vector Regressor, and ElasticNet.

To evaluate the quality of the selected features in the prediction, we 
utilize the MLP regressor, AdaBoost regressor, Gradient Boost Tree, Ran-
dom Forest regressor, Support Vector Regressor, and ElasticNet. Fig. 3(a) 
is a model prediction comparison. Scatter plots are presented showing 
the relationship between the actual values and the predicted values for 
six different models (MLP, AdaBoost, GradientBoosting, RandomForest, 
SVR, and ElasticNet). It is seen that the GradientBoosting and Random-
Forest models exhibit excellent performance (𝑅2 = 0.999). The MLP 
and AdaBoost models also yielded successful results (𝑅2 > 0.995). The 
ElasticNet model showed a lower 𝑅2 score compared to other regression 
models. In order to interpret this performance difference, the error dis-
tribution of the model was examined. The model’s predictions were ob-
served to be higher than the true value at low solubility values, while the 
model’s predictions were systematically lower at high solubility values. 
This situation indicates a deviation pattern resulting from the excessive 
shrinkage of the regression coefficients, resulting from the combined 
use of ElasticNet’s L1 (Lasso) and L2 (Ridge) regularizations. Therefore, 
the model made more conservative and closer-to-average predictions by 
pulling the extreme values towards the center, which caused the errors 
to grow at the extreme values. The effect of this systematic deviation 
decreased the model’s overall performance and caused it to lag behind 
in accuracy metrics. The relevant error distribution graph and deviation 
directions are shown and discussed in the article content. Our study’s 
ensemble models, GradientBoosting and RandomForest, achieved very 
high-performance values. However, various precautions were taken to 
evaluate whether this was due to a possible overfitting situation. First, 
all models were evaluated with the 5-fold cross-validation method (5-
fold CV), and the average of the 𝑅2, MAE, and RMSE values obtained 
in each layer and their standard deviations were calculated. For exam-
ple, the test 𝑅2 score for the RandomForest model was 0.9908 ± 0.0005, 
and for the GradientBoosting model it was 0.9908 ± 0.0005. These low 
standard deviation values indicate that the models performed similarly 
in different data splits and that their generalization capacity was high. 
In addition, regularizing constraints were applied to parameters such 
as n-estimators, max-depth, min-samples-split, and learning-rate using 

the Bayesian Optimization method in the hyperparameter optimization 
process. In this way, the models were prevented from overfitting the 
training data, and a more balanced learning process was achieved. With 
these measures, it is thought that the high success rates are not only 
due to overfitting the training but also to the learned structural rela-
tionships, and that the models can give successful results on new data. 
However, the performance of the SVR and ElasticNet models remained 
lower than the others. It was observed that the deviations in the test set 
were more pronounced in the ElasticNet model. Fig. 3(b) shows resid-
ual analyses. Histograms showing the distribution of residual values for 
each model are presented. The residual values of the GradientBoosting 
model are concentrated in a very narrow range around zero, indicating 
that the model’s predictions are pretty accurate. It is seen that the Ran-
domForest model has a similarly minimal error distribution. While the 
residual distributions of the MLP and AdaBoost models exhibit a close 
appearance to a normal distribution, it was observed that the SVR and 
ElasticNet models have a wider error distribution. Fig. 3(c) evaluates the 
conformity of the residual values of the models to a normal distribution. 
The Q-Q plot of the MLP model shows deviations from the theoretical 
regular distribution line at the extreme points, indicating that the resid-
ual values are not perfectly normally distributed. The AdaBoost model 
better fits the normality in the middle quantiles, while it exhibits sys-
tematic deviations at both ends of the distribution. A distinct S-shaped 
pattern indicates that the residuals are heavier-tailed than the normal 
distribution. The Q-Q plot of the GradientBoosting model shows signif-
icant deviations from normality, with a distinct stepped pattern. This 
indicates that the residuals are not continuously distributed as in the 
normal distribution but exhibit a discrete or clustered distribution. The 
Q-Q plot of the RandomForest model shows extreme deviations from 
normality, with an almost horizontal line pattern for most of the dis-
tribution. This pattern indicates that the RandomForest model produces 
many identical or similar residual values (possibly close to zero). The Q-
Q plot of the SVR model shows a more linear relationship in the middle 
quantiles, while it exhibits significant deviations in the tails. The Q-Q 
plot of the ElasticNet model shows significant deviations from the the-
oretical normal line, with significant separations observed in both tails. 
Comparison of error metrics is demonstrated in Fig. 3(d). In this figure, 
the performance comparison of the models is made on three different 
metrics (MAE, RMSE, and 𝑅2). It is seen that the MAE and RMSE val-
ues are at the minimum level in the GradientBoosting and RandomForest 
models. In the 𝑅2 metric, it is observed that all models except ElasticNet 
show high performance, but ElasticNet experiences a significant perfor-
mance decrease in the test set (𝑅2 ≈ 0.6). Notably, the SVR model shows 
moderate performance in error metrics but consistent behavior. It is seen 
that ensemble learning methods (GradientBoosting and RandomForest) 
show the best performance in this problem. These models have shown 
superior performance in terms of both prediction accuracy and error 
distribution. Deep learning (MLP) and boosting (AdaBoost) approaches 
also gave satisfactory results. However, it was observed that classical re-
gression methods, SVR and ElasticNet, showed relatively weaker perfor-
mance, and ElasticNet experienced a significant performance decrease 
in the test set. These results show that ensemble methods can better 
model the nonlinear and complex structure of the problem space. In 
addition, the superiority of ensemble methods in terms of the general-
ization capabilities of the models is also remarkable. Fig. 3(e) shows the 
decrease of the loss function during the training iterations of the model. 
The graph contains two curves, the blue line representing the training 
loss and the red line representing the validation loss. Both curves show 
a rapid decrease in the loss value during the initial training phase (ap-
proximately the first 25–50 iterations). The validation loss (red line) 
starts at a higher value (approximately 0.45) and decreases rapidly dur-
ing the first 25 iterations. This shows that the model learns most of the 
patterns in the data very quickly. After approximately 50 iterations, the 
training and validation losses stabilize and flatten to zero. This shows 
that the model is converging to a stable solution. An important observa-
tion is that there is no divergence between the training and validation 
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Fig. 3. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO-AGP. (d) The performance comparison of the models for NBRO-AGP. 
(e) The convergence curve for the proposed model.

loss curves as the training progresses. The validation loss decreases with 
the training loss, indicating that the model generalizes well to unseen 
data and does not overfit. At approximately iteration 75, both losses 
have reached their minimum values and remain constant for the remain-
der of the training process (up to iteration 200). This plateau suggests 
that additional training beyond this point provides minimal benefit. The 
smooth and consistent decrease in both curves indicates that the chosen 
learning rate and optimization algorithm are appropriate for this prob-
lem, allowing efficient convergence without oscillations or instability. 
This convergence pattern supports the strong performance metrics of 
ensemble methods, particularly GradientBoosting and RandomForest, 
which effectively learn the underlying patterns in the data and gener-
alize well to the test data. The performances of the regression models 
obtained using the selected features with the NRBO-AGP method are 
reported with the mean MAE, RMSE, and 𝑅2 values, as well as the stan-
dard deviation (std) values obtained during the five-fold cross-validation 
period. Thus, the model’s average success and consistency against dif-
ferent data splits are evaluated. The mean ± std values given in Table 1 
on the test set show that the proposed method gives stable and reliable
results.

The scatter plots in Fig. 4(a) show the relationship between six 
models’ actual and predicted values (MLP, AdaBoost, GradientBoost-
ing, RandomForest, SVR, and ElasticNet). It is observed that the MLP 
(𝑅2 = 0.966) and RandomForest (𝑅2 = 0.953) models exhibit the highest 
performance under NBRO optimization, followed by the GradientBoost-
ing (𝑅2 = 0.936) model. While the performance of the AdaBoost model
(𝑅2 = 0.852) remains at a moderate level, it is observed that the SVR
(𝑅2 = 0.756) and ElasticNet (𝑅2 = 0.378) models have significantly lower 
coefficients of determination compared to the other models. In partic-
ular, the predicted values grouped as vertical bands in the scatter plot 
of the AdaBoost model are noteworthy, indicating that the model pro-
duces discrete predictions at specific intervals. The residual histograms 
in Fig. 4(b) show the error distribution of each model in detail. The 
residual values of the MLP model are concentrated in a narrow range 
around zero and exhibit a bell-shaped symmetric distribution. The resid-
ual histograms of the GradientBoosting and RandomForest models are 
concentrated almost at a single value (zero), indicating that the models 
produce many exact or very close predictions under NBRO optimiza-
tion. The residual distribution of the AdaBoost model exhibits a het-
erogeneous and asymmetric structure with multiple peaks. While the 
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Table 1 
Performance comparison of regression models on the test set (mean ± standard deviation, 5-fold cross-validation).
 Metaheuristic  Metric  MLP  AdaBoost  GradientBoosting  RandomForest  SVR  ElasticNet

NBRO_AGP
 R2 Score  0.9980 ± 0.0011  0.9965 ± 0.0004  0.9908 ± 0.0005  0.9908 ± 0.0005  0.9609 ± 0.0027  0.9331 ± 0.0065
 RMSE  0.0234 ± 0.0000  0.0310 ± 0.0000  0.0008 ± 0.0000  0.0025 ± 0.0000  0.1033 ± 0.0003  0.1351 ± 0.0009
 MAE  0.0148 ± 0.0000  0.0260 ± 0.0000  0.0001 ± 0.0000  0.0002 ± 0.0000  0.0806 ± 0.0002  0.1080 ± 0.0007

NBRO
 R2 Score  0.9655 ± 0.0068  0.8824 ± 0.0195  0.9904 ± 0.0009  0.9833 ± 0.0009  0.7676 ± 0.0199  0.5781 ± 0.0329
 RMSE  0.1714 ± 0.0012  0.3166 ± 0.0062  0.0907 ± 0.0001  0.1192 ± 0.0001  0.4452 ± 0.0089  0.5999 ± 0.0197
 MAE  0.0893 ± 0.0006  0.1543 ± 0.0030  0.0062 ± 0.0000  0.0077 ± 0.0000  0.2841 ± 0.0057  0.4512 ± 0.0149

AGP
 R2 Score  0.9683 ± 0.0008  0.9711 ± 0.0052  0.9961 ± 0.0001  0.9977 ± 0.0001  0.9508 ± 0.0030  0.8201 ± 0.0152
 RMSE  0.0746 ± 0.0001  0.0712 ± 0.0004  0.0263 ± 0.0000  0.0203 ± 0.0000  0.0929 ± 0.0003  0.1775 ± 0.0027
 MAE  0.0524 ± 0.0000  0.0554 ± 0.0003  0.0015 ± 0.0000  0.0013 ± 0.0000  0.0882 ± 0.0003  0.1300 ± 0.0020

ALO
 R2 Score  0.9969 ± 0.0006  0.9931 ± 0.0064  0.9993 ± 0.0003  0.9997 ± 0.0006  0.9539 ± 0.0048  0.9331 ± 0.0074
 RMSE  0.0435 ± 0.0000  0.0654 ± 0.0004  0.0203 ± 0.0000  0.0126 ± 0.0000  0.1687 ± 0.0008  0.2032 ± 0.0015
 MAE  0.0175 ± 0.0000  0.0401 ± 0.0003  0.0015 ± 0.0000  0.0006 ± 0.0000  0.1100 ± 0.0005  0.1387 ± 0.0010

WOA
 R2 Score  0.9838 ± 0.0034  0.9599 ± 0.0074  0.9957 ± 0.0020  0.9894 ± 0.0042  0.8652 ± 0.0241  0.1684 ± 0.0300
 RMSE  0.0720 ± 0.0002  0.1132 ± 0.0008  0.0370 ± 0.0001  0.0583 ± 0.0002  0.2075 ± 0.0050  0.5153 ± 0.0154
 MAE  0.0367 ± 0.0001  0.0862 ± 0.0006  0.0039 ± 0.0000  0.0027 ± 0.0000  0.1359 ± 0.0033  0.3185 ± 0.0095

GWO
 R2 Score  0.9817 ± 0.0036  0.9685 ± 0.0078  0.9933 ± 0.0023  0.9929 ± 0.0051  0.9152 ± 0.0110  0.5800 ± 0.0572
 RMSE  0.0765 ± 0.0003  0.1002 ± 0.0008  0.0462 ± 0.0001  0.0475 ± 0.0002  0.1646 ± 0.0018  0.3662 ± 0.0209
 MAE  0.0454 ± 0.0002  0.0821 ± 0.0006  0.0024 ± 0.0000  0.0024 ± 0.0000  0.1069 ± 0.0012  0.2225 ± 0.0127

MFO
 R2 Score  0.9831 ± 0.0048  0.9726 ± 0.0048  0.9984 ± 0.0002  0.9980 ± 0.0001  0.9162 ± 0.0071  0.6370 ± 0.0093
 RMSE  0.0635 ± 0.0003  0.0810 ± 0.0004  0.0197 ± 0.0000  0.0219 ± 0.0000  0.1415 ± 0.0010  0.2945 ± 0.0027
 MAE  0.0422 ± 0.0002  0.0622 ± 0.0003  0.0018 ± 0.0000  0.0011 ± 0.0000  0.1058 ± 0.0007  0.2451 ± 0.0023

DA
 R2 Score  0.9152 ± 0.0083  0.9472 ± 0.0076  0.9987 ± 0.0006  0.9989 ± 0.0014  0.8341 ± 0.0262  0.6976 ± 0.0373
 RMSE  0.1646 ± 0.0014  0.1299 ± 0.0010  0.0206 ± 0.0000  0.0191 ± 0.0000  0.2302 ± 0.0060  0.3108 ± 0.0116
 MAE  0.1082 ± 0.0009  0.1079 ± 0.0008  0.0017 ± 0.0000  0.0014 ± 0.0000  0.1620 ± 0.0042  0.2480 ± 0.0093

GOA
 R2 Score  0.9805 ± 0.0022  0.9838 ± 0.0042  0.9966 ± 0.0001  0.9981 ± 0.0002  0.9145 ± 0.0059  0.7189 ± 0.0410
 RMSE  0.0585 ± 0.0001  0.0533 ± 0.0002  0.0243 ± 0.0000  0.0182 ± 0.0000  0.1224 ± 0.0007  0.2219 ± 0.0091
 MAE  0.0368 ± 0.0001  0.0372 ± 0.0002  0.0014 ± 0.0000  0.0010 ± 0.0000  0.1037 ± 0.0006  0.1379 ± 0.0056

MVO
 R2 Score  0.9756 ± 0.0033  0.9367 ± 0.0100  0.9932 ± 0.0021  0.9933 ± 0.0053  0.6726 ± 0.0270  0.1574 ± 0.0334
 RMSE  0.0883 ± 0.0003  0.1422 ± 0.0014  0.0465 ± 0.0001  0.0464 ± 0.0002  0.3233 ± 0.0087  0.5187 ± 0.0173
 MAE  0.0516 ± 0.0002  0.0998 ± 0.0010  0.0038 ± 0.0000  0.0030 ± 0.0000  0.2237 ± 0.0060  0.3205 ± 0.0107

SSA
 R2 Score  0.9897 ± 0.0034  0.9590 ± 0.0104  0.9933 ± 0.0022  0.9908 ± 0.0034  0.6379 ± 0.0154  0.3463 ± 0.0328
 RMSE  0.0975 ± 0.0003  0.1942 ± 0.0020  0.0788 ± 0.0002  0.0918 ± 0.0003  0.5771 ± 0.0089  0.7754 ± 0.0254
 MAE  0.0405 ± 0.0001  0.1267 ± 0.0013  0.0064 ± 0.0000  0.0060 ± 0.0000  0.3603 ± 0.0055  0.5694 ± 0.0187

residual distribution of the SVR model has a relatively more symmetric, 
unimodal structure, the residual distribution of the ElasticNet model is 
multimodal, spreads over a wide range, and exhibits a heterogeneous 
structure. The Q-Q plots presented in Fig. 4(c) evaluate the compliance 
of the models’ residuals with the normal distribution. The Q-Q plot of 
the MLP model shows significant deviations from the theoretical reg-
ular distribution line (red line) at the upper end. The Q-Q plot of the 
AdaBoost model exhibits a stepped structure and shows significant de-
viations from normality. The Q-Q plot of the GradientBoosting model 
exhibits a characteristic structure with horizontal segments, indicating 
that the residuals are concentrated at specific values. The Q-Q plot of 
the RandomForest model is almost completely horizontal, confirming 
that the residuals mostly have a single value. The SVR model’s Q-Q plot 
exhibits an S-shaped curve, revealing that the residuals exhibit system-
atic deviations from the normal distribution. Conversely, the ElasticNet 
model’s Q-Q plot exhibits a stepped structure and significant deviations 
from the theoretical line. The performance metric comparisons seen in 
Fig. 4(d) allow us to evaluate the quantitative performance of the mod-
els. The MAE and RMSE comparison plots confirm that the Gradient-
Boosting and RandomForest models have the lowest error values. While 
the MLP model also exhibits low error values, the AdaBoost and SVR 
models have moderate errors, and the ElasticNet model has high error 
values. In the 𝑅2 comparison graph, it is seen that GradientBoosting, 
RandomForest, MLP, and AdaBoost models have high coefficients of de-
termination, the SVR model has a moderate performance (𝑅2 ≈ 0.8), and 
the ElasticNet model has a low performance (𝑅2 ≈ 0.5). In particular, the 
ElasticNet model has similar 𝑅2 values in training, test, and validation 
sets, which shows that the model has a consistent performance despite 

its weak generalization ability. The convergence curve in Fig. 4(e) shows 
the model’s training process under NBRO optimization. Training loss 
(blue line) and validation loss (red line) show a rapid decrease starting 
from approximately 0.8 at the beginning and flatten significantly after 
approximately 50 iterations. After the 50th iteration, the training loss 
decreases to approximately 0.02, while the validation loss stabilizes at 
approximately 0.05. This slight difference between the two curves in-
dicates that the model is showing a slight over-training tendency, but 
this is within acceptable limits. After the 75th iteration, both losses ap-
proach their minimum values and remain steadily low throughout the 
rest of the training process.

The scatter plots in Fig. 5(a) show the relationship between six 
models’ actual and predicted values (MLP, AdaBoost, GradientBoost-
ing, RandomForest, SVR, and ElasticNet). It is observed that the MLP 
(𝑅2 = 0.948) and RandomForest (𝑅2 = 0.996) models exhibit the high-
est performance under AGP optimization, followed by GradientBoost-
ing (𝑅2 = 0.905) and AdaBoost (𝑅2 = 0.871). It is observed that the SVR 
(𝑅2 = 0.751) and ElasticNet (𝑅2 = 0.820) models have lower coefficients 
of determination compared to the other models. Remarkably, it can be 
said that the ElasticNet model reaches a higher R² value under AGP 
optimization than the previous algorithms, indicating that AGP can be 
more effective in optimizing linear models. The residual histograms in 
Fig. 5(b) show the error distribution of each model in detail. The residual 
values of the MLP model exhibit a bell-shaped symmetric distribution 
concentrated around zero. The residual histogram of the GradientBoost-
ing model is concentrated at a very high frequency at zero. The resid-
ual histogram of the RandomForest model is almost completely concen-
trated at a single value (zero), indicating that the model produces a large 
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Fig. 4. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO. (d) The performance comparison of the models for NBRO. (e) The 
convergence curve for the NBRO model.

number of exact predictions. While the residual distribution of the Ad-
aBoost model exhibits an asymmetric structure with multiple peaks, the 
residual distribution of the SVR model also exhibits a discrete structure 
with multiple modes. The residual distribution of the ElasticNet model 
exhibits a multimodal structure but a narrower range than previous al-
gorithms. The Q-Q plots presented in Fig. 5(c) evaluate the conformity of 
the residuals of the models to a normal distribution. The Q-Q plot of the 
MLP model shows a relatively good fit to the theoretical regular distribu-
tion line (red line) but exhibits some deviations at extreme values. The 
Q-Q plot of the AdaBoost model exhibits a stepped structure, indicating 
that the residuals take discrete values. The Q-Q plot of the Gradient-
Boosting model exhibits a characteristic structure containing horizon-
tal segments, indicating that the residuals are concentrated at specific 
values. The Q-Q plot of the RandomForest model is almost completely 
horizontal, confirming that the residuals mostly have a single value. The 
Q-Q plot of the SVR model has a stepped structure, indicating that the 
residuals show significant deviations from the normal distribution. Con-
versely, the ElasticNet model’s Q-Q plot exhibits a stepped structure but 
follows a course closer to the theoretical line in the middle quantiles. 
The performance metric comparisons seen in Fig. 5(d) allow us to eval-
uate the quantitative performance of the models. The MAE and RMSE 

comparison plots confirm that the GradientBoosting and RandomFor-
est models have the lowest error values. While the MLP and AdaBoost 
models show moderate error values, the SVR and ElasticNet models have 
higher error values. In the R² comparison plot, it is seen that all models 
except ElasticNet have similar and high coefficients of determination in 
training, test, and validation sets. The test set performance of the Elas-
ticNet model (𝑅2 ≈ 0.8) shows a slight decrease compared to the train-
ing and validation sets, but this decrease is less pronounced compared 
to the previous algorithms. The convergence curve in Fig. 5(e) shows 
the model’s training process under AGP optimization. The training loss 
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.42 at the beginning and diverge significantly 
after approximately 50 iterations. After the 75th iteration, the training 
loss decreases to approximately 0.01, while the validation loss stabilizes 
at approximately 0.03. This slight difference between the two curves 
indicates that the model shows a slight over-training tendency, but this 
situation is within acceptable limits. After 100 iterations, both losses ap-
proach their minimum values and remain steadily low throughout the 
rest of the training process.

Prediction-actual value relationship analysis is presented in Fig. 6(a). 
The models’ prediction capabilities are shown through scatter plots 
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Fig. 5. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for AGP. (d) The performance comparison of the models for AGP. (e) AGP’s 
convergence curve.

showing the intervals between the actual values and the predicted val-
ues. It is seen that the GradientBoosting model shows a proximity to 
the ideal line (dashed line) and reaches optimum performance with the 
Val-𝑅2 = 1.000 value. The MLP model also exhibited successful perfor-
mance with the Val-𝑅2 = 0.996 value. While deviations are observed at 
high values in the SVR model, it draws attention to systematic devia-
tions in the predictions of the ElasticNet model. Fig. 6(b) is the residual 
analysis of ALO. The histograms showing the status of the residual val-
ues (residuals) show that the models reveal the characteristics of their 
predicted errors. The GradientBoosting model draws attention with the 
concentration of the residual values in a very narrow range (0.0 − 0.1) 
around zero. The RandomForest model is also located in a similarly con-
centrated error center. Although the residual distributions of the MLP 
and AdaBoost models are transferred to a broader range, they exhibit a 
close appearance to a normal distribution. The residual distributions of 
the SVR and ElasticNet models are spread over a broader range (between 
−0.5 and 1.25), indicating lower predictive robustness. In Fig. 6(c), the 
Q-Q plot of the MLP model shows deviations from the theoretical normal 
distribution (red line) at the extreme values. The plot of the AdaBoost 
model shows a distinct S-shaped pattern, indicating that the residuals 
have heavier tails than the normal distribution. The Q-Q plot of the 

GradientBoosting model shows a stepped structure, indicating that the 
residuals have a more discrete or clustered distribution rather than a 
continuous distribution. The plot of the RandomForest model consists 
almost entirely of horizontal segments, indicating that the model pro-
duces a large number of similar (possibly close to zero) residual val-
ues. The SVR model shows a more linear relationship in the middle 
quantiles, while the ElasticNet model exhibits significant deviations at 
both extremes. Model performance metrics analysis for ALO is shown 
in Fig. 6(d). A comparative analysis of six machine learning models is 
presented in terms of MAE, RMSE, and 𝑅2 metrics. GradientBoosting 
and RandomForest models showed the lowest error rates in all datasets 
(training, validation, and testing). It is seen that the MAE values of these 
two models are below 0.01, the average absolute error values. ElasticNet 
and SVR models exhibited higher error rates; the MAE value of Elastic-
Net is around 0.12. In the 𝑅2 metric, excellent performance (𝑅2 = 1.000) 
was shown in ensemble models (GradientBoosting and RandomForest), 
but a significant drop (𝑅2 ≈ 0.6) was experienced in the test set of Elas-
ticNet. The ALO approach showed superior performance with ensemble 
feeding methods (GradientBoosting and RandomForest). These models 
have significant superiority over other solutions in terms of both pre-
dictability and model. The satisfactory results of the deep learning-based 
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Fig. 6. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for ALO. (d) The performance comparison of the models for ALO. (e) ALO’s 
convergence curve.

MLP model also show that ALO can work harmoniously with different 
learning paradigms. However, the performance of classical regression 
approaches (SVR and ElasticNet) remains limited due to the complexity 
of the problem width. The convergence curve shows the model’s behav-
ior during the training process in Fig. 6(e). The training loss (blue line) 
and validation loss (red line) show a rapid decrease at the beginning 
(starting from about 0.7) and flatten significantly after about 50 itera-
tions. The validation loss follows a parallel course with the training loss, 
indicating that the model does not overtrain and generalizes well to un-
seen data. At about the 75th iteration, both losses reach their minimum 
values and remain steadily low for the rest of the training process (up 
to 200 iterations).

Fig. 7(a) is a relationship analysis of the prediction-actual value. The 
models’ prediction capabilities were examined for values in the range 
of [−2.0, 1.0]. GradientBoosting and RandomForest models showed the 
closest distribution to the ideal prediction line (dashed line). While de-
viations were observed at extreme values (around −2.0 and 1.0) in the 
MLP model, high variance was noted in the entire value range in the SVR 
model. Systematic deviations and a low accuracy rate (𝑅2 = 0.698) were 
observed in the predictions of the ElasticNet model. The AdaBoost model 
showed a moderate performance, but it was observed that the deviations 

increased at positive values. Fig. 7(b) shows residual analysis of the DA 
approach. The distribution of residual values reveals the characteris-
tics of the prediction errors of the models. The GradientBoosting model 
showed the best performance with its residual values concentrated in a 
very narrow range around zero. The RandomForest model also exhibits a 
similarly concentrated error distribution. While the residual distribution 
of the MLP model is close to a normal distribution, the error distribution 
of the AdaBoost model is broader and more irregular. The residual dis-
tributions of the SVR and ElasticNet models are spread in the range of 
[−1.0, 1.0], indicating high uncertainty in the estimates. The Q-Q plots in 
Fig. 7(c) evaluate the fit of the models’ residuals to the normal distribu-
tion. The Q-Q plot of the MLP model shows significant deviations at the 
extreme values, at the lower end, departing from the theoretical normal 
distribution (red line). The Q-Q plot of the AdaBoost model exhibits 
a stepped structure, indicating that the residuals take discrete values. 
The Q-Q plots of the GradientBoosting and RandomForest models show 
unique features. The GradientBoosting model plot deviates from the cen-
tral region’s theoretical line. In contrast, the plot of the RandomForest 
model is almost a completely horizontal line, indicating that the resid-
uals have mostly constant values. The SVR model better fits the normal 
distribution in the middle quantiles. In contrast, the ElasticNet model 
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Fig. 7. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for DA. (d) The performance comparison of the models for DA. (e) DA’s 
convergence curve.

exhibits a significant nonlinear structure and shows significant devia-
tions from the normal distribution. Model performance metrics analy-
sis is demonstrated in Fig. 7(d). The performance of six different ma-
chine learning models in the DA approach was evaluated on three basic 
metrics. GradientBoosting and RandomForest models showed the low-
est error rates in the MAE and RMSE metrics (approximately 0.01). The 
ElasticNet model exhibited the highest error rates, with an MAE value of 
around 0.25 and an RMSE value of around 0.30. While the GradientBoost-
ing and RandomForest models showed excellent performance (𝑅2 ≈ 1.0) 
in the 𝑅2 metric, the performance of the SVR and ElasticNet models re-
mained significantly lower (𝑅2 < 0.85). The MLP model showed mod-
erate success, reaching 𝑅2 = 0.977 on the test set. The DA optimization 
approach gave the best results with ensemble learning methods (Gradi-
entBoosting and RandomForest). These models showed superiority over 
other approaches in terms of both prediction accuracy and model stabil-
ity. The moderate success of MLP shows that deep learning approaches 
can work in harmony with DA. However, the performance of classical 
regression approaches (SVR and ElasticNet) was limited due to the com-
plexity of the problem space. These results show that DA optimization 
is effective with ensemble methods. The convergence curve in Fig. 7(e) 
shows the training behavior of the model under DA optimization. The 

training loss (blue line) and validation loss (red line) show a rapid de-
crease starting from approximately 0.5 at the beginning and become 
significantly flat after approximately 60 iterations. The almost complete 
overlap of the two curves proves that the model does not over-train and 
performs similarly on the training and validation sets. Compared to the 
ALO optimization, the convergence curve of DA optimization shows that 
the difference between the training and validation losses is smaller, in-
dicating that DA provides a more stable optimization process.

Relationship analysis of prediction-actual value is given in Fig. 8(a). 
The models’ prediction capabilities were examined in the value range 
[−1.0, 1.0]. GradientBoosting and RandomForest models showed the 
closest distribution to the ideal prediction line (dashed line). The MLP 
model generally showed good performance (𝑅2 = 0.988), but small de-
viations were observed at extreme values. While the AdaBoost model 
showed satisfactory performance (𝑅2 = 0.984), high variance was no-
ticeable in the SVR model, particularly at positive values. Significant de-
viations and low accuracy rates were observed in the predictions of the 
ElasticNet model. Residual Analysis for GOA is shown in Fig. 8(b). The 
distribution of residual values reveals the characteristics of the predic-
tion errors of the models in detail. The residual values of the Gradient-
Boosting model were concentrated in the range of 0.0 − 0.1, exhibiting 
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Fig. 8. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GOA. (d) The performance comparison of the models for GOA. (e) The 
convergence curve for GOA approach.

optimum performance. The RandomForest model also showed a similar 
error distribution, which was concentrated around zero. The residual 
distribution of the MLP model is close to a normal distribution in the 
range of [−0.2, 0.3], while the error distribution of the AdaBoost model 
is wider in the range of [−0.1, 0.3]. The residual distribution of the SVR 
model is wide in the range of [−1.5, 0.0]. In contrast, the residual values 
of the ElasticNet model are distributed in the range of [−0.6, 0.8], indi-
cating that the model’s predictive reliability is low. Fig. 8(c) evaluates 
the conformity of the residuals of the models to the normal distribution. 
The Q-Q plot of the MLP model shows moderate deviations from the the-
oretical normal distribution line (red line), indicating that the residuals 
have a slightly asymmetric distribution. The Q-Q plot of the AdaBoost 
model shows a stepped structure, indicating that the residuals have dis-
crete values. The Q-Q plot of the GradientBoosting model shows signifi-
cant deviations at the lower end. The points forming an almost horizon-
tal line in the lower section indicate that the residuals are concentrated 
at a specific value. The Q-Q plot of the RandomForest model similarly 
consists of horizontal segments, indicating that the residuals have many 
of the same values. The Q-Q plot of the SVR model shows a nonlinear 
trend, indicating that the residuals deviate significantly from the normal 
distribution. The Q-Q plot of the ElasticNet model, on the other hand, 

shows a stepped structure with significant deviations at the extreme val-
ues. Fig. 8(d) shows the model performance metrics analysis. The perfor-
mance evaluation of the six machine learning models tested under the 
GOA approach was performed using the MAE, RMSE, and 𝑅2 metrics. 
GradientBoosting and RandomForest models stood out with the lowest 
error rates. MAE values were below 0.01 for both models. The Elastic-
Net model showed the highest error rates, with the MAE value around 
0.14 and the RMSE value around 0.23. GradientBoosting (0.997) and Ran-
domForest (0.998) models showed almost perfect performance in the 𝑅2

metric, while ElasticNet’s performance on the test set was relatively low 
(𝑅2 = 0.719). The GOA optimization approach showed superior perfor-
mance, particularly with ensemble learning methods (GradientBoosting 
and RandomForest). These models showed significant superiority over 
other approaches in terms of both prediction accuracy and model sta-
bility. The high performance of the MLP model (𝑅2 = 0.988) shows that 
deep learning approaches can work effectively with GOA. The AdaBoost 
model also gave satisfactory results. However, the performance of clas-
sical regression approaches (SVR and ElasticNet) was limited due to the 
complexity of the problem space. These results show that GOA optimiza-
tion gives effective results, particularly with ensemble methods, and can 
be a successful alternative in complex optimization problems. Fig. 8(e) 
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Fig. 9. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GWO. (d) The performance comparison of the models for GWO. (e) 
The convergence curve for GWO approach.

shows the model’s training process under GOA optimization. The train-
ing loss (blue line) and validation loss (red line) show a rapid decrease 
starting from about 0.43 at the beginning and become distinctly differ-
ent after about 50 iterations. The validation loss flattens out at about 
0.05, while the training loss approaches almost zero. This divergence 
indicates that the model shows a certain degree of overfitting tendency 
under GOA optimization. The divergence becomes stable after about 50 
iterations, and the increase in validation loss is stopped. This shows that 
GOA optimization cannot further improve the model’s generalization
ability after a certain point. The prediction-actual value relationship 
analysis for Grey Wolf Optimizer is shown in Fig. 9(a). The models’ pre-
diction capabilities were evaluated in the value range [−2.0, 1.0]. Gradi-
entBoosting and RandomForest models showed the closest distribution 
to the ideal prediction line (dashed line). The MLP model successfully 
performed with the value of Val-𝑅2 = 0.991, but small deviations were 
observed at extreme values. While the AdaBoost model (Val 𝑅2 = 0.962) 
showed a satisfactory performance, high variance and deviations are 
noticeable in the SVR model at positive values. Systematic deviations 
and a low accuracy rate (Val 𝑅2 = 0.589) are noticeable in the predic-
tions of the ElasticNet model. Fig. 9(b) represents the residual analysis 
of GWO. The distribution of residual values reveals the characteristics of 

the prediction errors of the models in detail. The residual values of the 
GradientBoosting model showed optimum performance by concentrat-
ing in a very narrow range around zero. The RandomForest model also 
showed a similarly concentrated error distribution. The residual distri-
bution of the MLP model is close to a normal distribution in the range of 
[−0.4, 0.2], while the error distribution of the AdaBoost model is wider 
in the range of [−0.1, 0.4]. The residual distribution of the SVR model 
is in the range of [−1.5, 1.0], while the residual values of the ElasticNet 
model are in the range of [−1.5, 1.2]. Fig. 9(c) evaluates the conformity 
of the residuals of the models to the normal distribution. The Q-Q plot 
of the MLP model shows a good overall fit to the theoretical normal 
distribution line (red line), although it shows slight deviations at the 
extreme values. The Q-Q plot of the AdaBoost model shows a distinct 
stepped structure and deviates from normality at the extreme values. 
The Q-Q plot of the GradientBoosting model shows extreme deviation 
at the upper end and contains horizontal segments. The Q-Q plot of the 
RandomForest model consists almost entirely of horizontal segments, 
indicating that the residuals have many identical values. The Q-Q plot 
of the SVR model shows a better fit to the normal distribution in the 
middle quantiles. In contrast, the Q-Q plot of the ElasticNet model ex-
hibits a distinct S-shaped pattern and shows significant deviations from
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Fig. 10. (a) Model prediction comparison. (b) Residual analyses. (c) MFO’s Q-Q Residual analyses. (d) The performance comparison of the models for MFO. (e) The 
convergence curve for MFO approach.

normality. Also, the analysis of model performance metrics is indicated 
in Fig. 9(d). The performance of the machine learning models tested 
under the GWO approach was evaluated on three basic metrics. Gra-
dientBoosting and RandomForest models showed superior performance 
compared to other models. When the MAE values are examined, it is 
seen that the error rates of these two models are below 0.01. The Elas-
ticNet model showed the highest error rates, with an MAE value of 
approximately 0.20 and an RMSE value of 0.35. GradientBoosting and 
RandomForest models showed almost perfect performance in 𝑅2 met-
ric (0.993 and 0.993, respectively), while the ElasticNet model’s perfor-
mance on the test set was relatively low (𝑅2 = 0.580). GWO optimiza-
tion approach showed superior performance, particularly with ensemble 
learning methods (GradientBoosting and RandomForest). These models 
showed significant superiority over other approaches in terms of both 
prediction accuracy and model stability. The high performance of the 
MLP model (𝑅2 = 0.988) shows that deep learning approaches can work 
effectively with GWO. However, the performance of classical regression 
approaches (SVR and ElasticNet) was limited due to the complexity of 
the problem space. These results show that GWO optimization gives ef-
fective results with ensemble methods and can be a reliable alternative 
in complex optimization problems. Fig. 9(e) shows the model’s train-

ing process under GWO optimization. The training loss (blue line) and 
validation loss (red line) show a rapid decrease starting from approxi-
mately 0.5 at the beginning and become significantly flat after approx-
imately 75 iterations. The two curves are very close, proving that the 
model does not over-train and performs similarly on the training and 
validation sets. After approximately 100 iterations, both the training 
and validation losses reach their minimum values and remain steadily 
low throughout the rest of the training process (up to 200 iterations).

The prediction-actual value relationship analysis is shown in 
Fig. 10(a). The models’ prediction capabilities were examined in the 
[−1.0, 1.0] value range. GradientBoosting and RandomForest models al-
most perfectly fit the ideal prediction line (dashed line). While the MLP 
model made successful predictions, particularly in the middle value 
range, it showed small deviations in extreme values. The AdaBoost 
model (Test 𝑅2 = 0.973) showed satisfactory performance, but it was ob-
served that the deviations increased at high values. While high variance 
and deviations were noticeable in positive values in the SVR model, 
systematic deviations and a low accuracy rate were noticeable in the 
predictions of the ElasticNet model. Fig. 10(b) represents the resid-
ual analysis of MFO. The distribution of residual values reveals the 
characteristics of the prediction errors of the models in detail. The
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residual values of the GradientBoosting model were concentrated in a 
very narrow range around zero and exhibited optimum performance 
with a frequency value close to 600. The RandomForest model also 
showed a similarly sharp error distribution. The residual distribution 
of the MLP model is close to a normal distribution in the range of 
[−0.2, 0.2], while the error distribution of the AdaBoost model is wider in 
the range of [−0.4, 0.2]. The residual distribution of the SVR model is in 
the range of [−0.4, 0.6], while the residual values of the ElasticNet model 
are in the range of [−0.6, 1.0]. Fig. 10(c) evaluates the conformity of the 
residuals of the models to a normal distribution. The Q-Q plot of the MLP 
model shows significant deviations from the theoretical normal distribu-
tion line (red line) at the upper end. The Q-Q plot of the AdaBoost model 
shows a stepped structure, indicating that the residuals have discrete 
values. The Q-Q plot of the GradientBoosting model has a very char-
acteristic structure, consisting mostly of horizontal segments. This situ-
ation shows that the residuals are concentrated at specific values. The 
Q-Q plot of the RandomForest model is almost completely horizontal, 
indicating that the residuals mostly have the same value. The Q-Q plot 
of the SVR model shows a radial structure, indicating that the residuals 
show significant deviations from the normal distribution. The Q-Q plot 
of the ElasticNet model shows a stepped and S-shaped structure, indicat-
ing significant deviations from the theoretical line. Model performance 
metrics analysis is given in Fig. 10(d). The performance of six different 
machine learning models was evaluated under the MFO approach. Gra-
dientBoosting and RandomForest models showed superior performance 
compared to other models. When the MAE values are examined, it is 
seen that the error rates of these two models are at a minimum level (ap-
proximately 0.001). The ElasticNet model showed the highest error rates, 
with an MAE value of 0.25 and an RMSE value of 0.30. GradientBoost-
ing (Val 𝑅2 = 1.000) and RandomForest (Val 𝑅2 = 1.000) models showed 
excellent performance in 𝑅2 metrics, while the performance of the Elas-
ticNet model on the test set was quite low (𝑅2 = 0.637). The MLP model 
showed a medium-high success (Test 𝑅2 = 0.987) and consistently per-
formed. The MFO optimization approach showed superior performance 
with ensemble learning methods (GradientBoosting and RandomForest). 
These models showed significant superiority over other approaches in 
terms of both prediction accuracy and model stability. The high per-
formance of the MLP model (Test 𝑅2 = 0.987) shows that deep learning 
approaches can work effectively with MFO. However, the performance 
of classical regression approaches (SVR and ElasticNet) was limited due 
to the complexity of the problem space. These results show that MFO 
optimization is effective when used with ensemble methods and can be a 
reliable alternative in complex optimization problems. Fig. 10(e) shows 
the model’s training process under MFO optimization. The training loss 
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.45 at the beginning and become significantly 
flat after approximately 40 iterations. The two curves are quite close 
to each other, proving that the model does not over-train and performs 
similarly on the training and validation sets. After approximately 60 it-
erations, both the training and validation losses reach their minimum 
values and remain steadily low for the rest of the training process (up 
to 100 iterations).

Prediction-Actual Value Relationship Analysis is indicated in 
Fig. 11(a). In the analysis performed in the [−2.0, 1.0] range, Gradient-
Boosting and RandomForest models showed the closest performance to 
the ideal prediction line (Test 𝑅2 = 0.993). Although the overall per-
formance of the MLP model was well explained, deviations were ob-
served at extreme values. While high variances (Test 𝑅2 = 0.673) were 
observed in the SVR model, serious deviations were observed in the 
predictions of the ElasticNet model (Test 𝑅2 = 0.157). The AdaBoost 
model showed moderate performance (Test 𝑅2 = 0.937). Fig. 11(b) is 
the residual analysis for the MVO metaheuristic. The residual values of 
the GradientBoosting model are concentrated in a very narrow range 
around zero (around 600 frequencies). The RandomForest model ex-
hibits a similarly sharp error. The residual state of the MLP model is 
close to a normal distribution along [−0.75, 0.25]. The residual values 

of the SVR and ElasticNet models are spread over a wide range (be-
tween −2.0 and 1.5), indicating low prediction reliability. The Q-Q plots 
presented in Fig. 11(c) evaluate the conformity of the residuals of the 
models to the normal distribution. The Q-Q plot of the MLP model shows 
deviations from the theoretical normal distribution line (red line) at the 
upper end, indicating that the distribution of the residuals has a positive 
tail. The Q-Q plot of the AdaBoost model exhibits a stepped structure, 
indicating that the residuals have discrete values. The Q-Q plots of the 
GradientBoosting and RandomForest models exhibit a very character-
istic structure consisting of horizontal segments. This structure shows 
that the residuals mostly have the same value, thus significantly de-
viating from the normal distribution. The Q-Q plot of the SVR model 
forms an S-shaped curve, indicating that the residuals systematically 
deviate from the normal distribution. The Q-Q plot of the ElasticNet 
model shows the largest deviations from the theoretical line, indicating
that the residuals have a distribution far from the normal distribu-
tion. Model performance metrics analysis is in Fig. 11(d). Gradient-
Boosting and RandomForest models performed better than other mod-
els (MAE < 0.01). ElasticNet model has high error rates (𝑀𝐴𝐸 ≈ 0.30, 
𝑅𝑀𝑆𝐸 ≈ 0.50). While GradientBoosting and RandomForest models ex-
hibit high performance (𝑅2 > 0.99) in 𝑅2 metrics, the test performance of 
the ElasticNet model is quite low (𝑅2 = 0.157). The MLP model showed 
a medium-high level of success (Test 𝑅2 = 0.979). MVO grouping, ob-
taining the best results with ensemble learning methods (GradientBoost-
ing and RandomForest). The high performance of MLP shows that deep 
learning treatments can work in harmony with MVO. The poor perfor-
mance of classical regression treatments (SVR and ElasticNet) reveals 
that they are inadequately monitored to manage the complexity of the 
problem. The convergence curve in Fig. 11(e) shows the model’s training 
process under MVO optimization. The training loss (blue line) and vali-
dation loss (red line) show a rapid decrease starting from approximately 
0.5 at the beginning and become significantly flat after approximately 75 
iterations. The two curves are very close to each other, proving that the 
model does not overtrain and performs similarly on the training and val-
idation sets. After approximately 100 iterations, both losses reach their 
minimum values and remain steadily low for the rest of the training 
process (up to 200 iterations).

Fig. 12(a) represents the analysis of the prediction-actual value. In 
the analysis performed in the [−1.5, 1.5] value range, GradientBoosting 
(Test 𝑅2 = 0.993) and RandomForest (Test 𝑅2 = 0.991) models showed 
the closest performance to the ideal prediction line. Although the over-
all performance of the MLP model was good, deviations were observed 
at extreme values. While high variance (Test 𝑅2 = 0.638) was observed 
in the SVR model; there were serious deviations in the estimates of 
the ElasticNet model (Test 𝑅2 = 0.346). The AdaBoost model exhibited 
satisfactory performance (Test 𝑅2 = 0.959). A residual analysis of this 
approach is shown in Fig. 12(b). The residual values of the Gradient-
Boosting and RandomForest models are concentrated in a very narrow 
range around zero (frequency close to 600). The residual distribution 
of the MLP model is close to a normal distribution in the [−1.0, 0.5] 
range. The residual distribution of the SVR model is in the range of 
[−2.0, 2.0], while the residual values of the ElasticNet model are in the 
range of [−1.5, 2.0]. The Q-Q plots presented in Fig. 12(c) evaluate the 
conformity of the residuals of the models to the normal distribution. 
The Q-Q plot of the MLP model shows deviations from the theoreti-
cal normal distribution line (red line) at the extreme values. The Q-Q 
plot of the AdaBoost model exhibits a stepped structure and shows sig-
nificant deviations, particularly at the upper end. The Q-Q plot of the 
GradientBoosting model shows a characteristic structure consisting of 
horizontal segments, indicating that the residuals are concentrated at 
certain values (particularly around zero). The Q-Q plot of the Random-
Forest model is almost completely horizontal, indicating that the resid-
uals mostly have a single value. The Q-Q plots of the SVR and ElasticNet 
models exhibit S-shaped curves, indicating that the residuals have sys-
tematic deviations from the normal distribution. Significant deviations 
are observed at the extreme values, particularly in the SVR model. In 
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Fig. 11. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for MVO. (d) The performance comparison of the models for MVO. (e) 
The convergence curve for MVO approach.

addition, Fig. 12(d) shows an analysis of model performance metrics. 
GradientBoosting and RandomForest models stand out with the lowest 
error rates (MAE < 0.01). The ElasticNet model has the highest error val-
ues (𝑀𝐴𝐸 ≈ 0.55, 𝑅𝑀𝑆𝐸 ≈ 0.80). While ensemble models show almost 
perfect performance in the 𝑅2 metric (𝑅2 > 0.99), the test performance 
of ElasticNet is very low (𝑅2 = 0.346). The MLP model exhibited con-
sistent performance (Test 𝑅2 = 0.989). SSA optimization gave the best 
results with ensemble learning methods. The high performance of MLP 
shows that deep learning approaches can work in harmony with SSA. 
The low performance of classical regression approaches (SVR and Elas-
ticNet) reveals inadequate management of space complexity. These re-
sults show that SSA provides effective results when used with ensem-
ble methods and can be a reliable alternative in complex optimization 
problems. The convergence curve on the right side of Fig. 12(e) shows 
the model’s training process under SSA optimization. The training loss 
(blue line) and validation loss (red line) show a rapid decrease start-
ing from about 0.9 at the beginning and slow down after about 50 it-
erations. After about 100 iterations, the training loss approaches zero, 
while the validation loss flattens out at about 0.08. This divergence re-
veals that the model shows a certain degree of overfitting tendency un-
der SSA optimization. The divergence becomes stable after 100 itera-

tions, and the difference between training and validation losses remains
constant.

Finally, the analysis of prediction-actual values is in Fig. 13(a). In the 
analysis performed in the [−2.0, 1.0] value range, GradientBoosting (Test 
𝑅2 = 0.996) and Random Forest (Test 𝑅2 = 0.989) models showed the 
closest performance to the ideal prediction line. While the MLP model 
made successful predictions, remarkably in the middle value range, it 
showed deviations in the extreme values. While high variance (Test 
𝑅2 = 0.865) was observed in the SVR model, there were serious devi-
ations in the predictions of the ElasticNet model (Test 𝑅2 = 0.168). The 
AdaBoost model showed satisfactory performance (𝑅2 = 0.960). Also, 
residual analysis is offered in Fig. 13(b). The residual values of the Gra-
dientBoosting model were concentrated in a very narrow range around 
zero (frequency close to 600). The RandomForest model showed a simi-
larly sharp error distribution. The residual distribution of the MLP model 
is close to a normal distribution in the range of [−0.2, 0.2]. The residual 
distribution of the SVR model is in the range of [−1.5, 1.0], while the 
residual values of the ElasticNet model are in the range of [−2.0, 1.0]. 
The Q-Q plots presented in Fig. 13(c) evaluate the conformity of the 
residuals of the models to the normal distribution. The Q-Q plot of the 
MLP model shows significant deviations from the theoretical normal 
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Fig. 12. (a) Model prediction comparison. (b) Residual analyses. (c) SSA’s Q-Q Residual analyses (d) The performance comparison of the models for SSA. (e) SSA’s 
convergence curve.

distribution line (red line) at the upper end. This shows that the distri-
bution of the residuals exhibits positive skewness. The Q-Q plot of the 
AdaBoost model exhibits a stepped structure and shows significant de-
viations from normality. The Q-Q plot of the GradientBoosting model 
exhibits a very characteristic structure with horizontal segments, indi-
cating that the residuals are concentrated at certain values (particularly 
around zero). The Q-Q plot of the RandomForest model is almost com-
pletely horizontal, confirming that the residuals mostly have a single 
value. The Q-Q plot of the SVR model exhibits an S-shaped curve, indi-
cating that the residuals exhibit systematic deviations from the normal 
distribution. The Q-Q plot of the ElasticNet model shows the largest 
deviations from the theoretical line, exhibiting a stepped and irregular 
structure. Fig. 13(d) is the analysis of the model performance metric. 
GradientBoosting (MAE < 0.01) and RandomForest (MAE < 0.01) mod-
els show the lowest error rates, while ElasticNet has the highest error 
values (𝑀𝐴𝐸 ≈0.30, 𝑅𝑀𝑆𝐸 ≈0.50). GradientBoosting (Val𝑅2 = 1.000) 
and RandomForest (Test 𝑅2 = 0.989) models showed superior perfor-
mance in the four metrics. The test performance of ElasticNet is very low 
(𝑅2 = 0.168). The MLP model showed a consistent performance (Test 
4). WOA optimization yielded the best results with ensemble learning 

methods (GradientBoosting and RandomForest). The high performance 
of MLP shows that deep learning approaches can work in harmony with 
WOA. The low performance of classical regression approaches (SVR and 
ElasticNet) shows that they are inadequate in handling the space com-
plexity of the problem. These results show that WOA provides effective 
results, particularly when used with ensemble methods, and can be a 
reliable alternative in complex optimization problems. Fig. 13(e) shows 
the model’s training process under WOA optimization. The training loss 
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.5 at the beginning and become significantly 
flat after approximately 75 iterations. The two curves are very close to 
each other, proving that the model does not over-train and performs 
similarly on the training and validation sets. After approximately 100 
iterations, both the training and validation losses reach their minimum 
values and remain steadily low throughout the rest of the training pro-
cess (up to 200 iterations). In order to compare model performances not 
only visually but also statistically, correlation coefficients between the 
actual values and the predicted values were calculated for each model 
and metaheuristic combination. In this paper, the Pearson correlation 
coefficient, which evaluates the linear relationship, the Spearman cor-
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Fig. 13. (a) Model prediction comparison. (b) Residual analyses. (c) WOA’s Q-Q Residual analyses (d) The performance comparison of the models for WOA. (e) 
WOA’s convergence curve.

relation, which measures the sequential relationship, and the Kendall 
Tau correlation coefficient, which provides more robust results based on 
ranking, were used. According to the results obtained, Gradient Boost-
ing and Random Forest models attracted attention with high correlation 
values under almost all metaheuristic algorithms (for example, Pearson 
= 0.999988, Spearman = 0.999981, and Kendall Tau = 0.999563 for 
Random Forest under NBRO-AGP). This shows that these models ex-
hibit strong performance not only in terms of accuracy but also in terms 
of statistical consistency. On the other hand, the ElasticNet model was 
insufficient with low correlation values under many metaheuristics in 
complex nonlinear patterns (for example, Pearson = 0.418 under WOA). 
This finding provides a statistical justification for the low visual accu-
racy of ElasticNet. The corresponding correlation values are presented 
in Table 2 and numerically support the observations in all figures.

We see the performance comparison of metaheuristic algorithms on 
machine learning models in Fig. 14. In Fig. 14(a), the distributions of test 
performance metrics (𝑅2, RMSE, and MAE) are shown as box plots. In 
terms of 𝑅2 scores, most metaheuristic algorithms performed above 0.9. 
NBRO-AGP and ALO exhibited particularly consistent and high 𝑅2 val-
ues. A wider variability was observed in the SSA algorithm. In RMSE and 

MAE values, NBRO-AGP had the lowest error rates. Among the meta-
heuristic algorithms, SSA showed relatively higher error values. GWO 
exhibited a moderate performance. Fig. 14(b) shows the 𝑅2 scores at the 
intersection of different metaheuristic algorithms and machine learning 
models with a heat map. GradientBoosting and RandomForest models 
achieved 𝑅2 scores above 0.99 with all metaheuristic algorithms. The 
ElasticNet model performed poorly overall, with 𝑅2 values below 0.2, 
particularly with MVO and SSA. The NBRO-AGP algorithm showed con-
sistently high performance across all models. ALO produced similarly 
strong results. The GWO algorithm achieved 𝑅2 scores above 0.95 in all 
models except ElasticNet. Our comprehensive analysis of protein sol-
ubility prediction has yielded remarkable results in machine-learning 
models using NBRO-AGP features. Random Forest and GradientBoosting 
models showed exceptional performance with a Test 𝑅2 value of 0.999. 
These findings have the potential to radically transform the develop-
ment of protein-based drugs in the biopharmaceutical industry. High-
accuracy prediction of protein solubility allows optimization at many 
stages from the formulation of therapeutic proteins to manufacturing 
processes. In particular, these predictions play a critical role in prevent-
ing the formation of protein aggregates and increasing bioavailability. 
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Fig. 14. (a) Test Metric Distributions, (b) Model-Algorithm Performance Matrix.

The high accuracy of our models allows for predicting potential failures 
at early stages of drug development, contributing to more efficient use 
of research and development resources and reducing overall costs. It is 
widely stated in the literature that the properties such as hydrophobic-
ity, net charge, isoelectric point, aliphatic index, and surface accessi-
bility, which are frequently selected by NRBO-AGP, are directly related 
to protein solubility. For example, while high hydrophobicity increases 
the tendency of the protein to aggregate and decreases the solubility, 
increasing surface accessibility stands out as a factor supporting solubil-

ity. It is known that these properties are determinant not only in protein 
solubility but also in many biotechnological applications such as recom-
binant protein production, antibody engineering, and biopharmaceuti-
cal formulation. In this respect, the properties obtained by the NRBO-
AGP method are statistically and biologically significant and provide a 
strong basis for future interdisciplinary applications. It also provides a 
powerful tool for designing amino acid changes that increase solubil-
ity in protein engineering studies. The fact that the features selected 
with the NBRO-AGP method produce such successful results demon-
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Table 2 
Correlation coefficients between model predictions and actual values (Pear-
son, Spearman, Kendall Tau).
 Metaheuristic  Model  Pearson  Spearman  Kendall Tau

NBRO_AGP

 AdaBoost  0.998303  0.987990  0.963152
 ElasticNet  0.967947  0.929723  0.800877
 GradientBoosting  0.999999  0.992735  0.954862
 MLP  0.999027  0.988412  0.935237
 RandomForest  0.999988  0.999981  0.999563
 SVR  0.982522  0.960146  0.861872

NBRO

 AdaBoost  0.945878  0.955462  0.888327
 ElasticNet  0.765027  0.654718  0.461049
 GradientBoosting  0.999391  0.992114  0.949788
 MLP  0.985855  0.974065  0.895431
 RandomForest  0.998530  0.996911  0.993200
 SVR  0.882879  0.859950  0.711308

AGP

 AdaBoost  0.986542  0.992458  0.964238
 ElasticNet  0.942713  0.872213  0.721369
 GradientBoosting  0.998222  0.994353  0.957177
 MLP  0.987724  0.976116  0.898054
 RandomForest  0.993777  0.999709  0.998003
 SVR  0.978231  0.956830  0.853470

ALO

 AdaBoost  0.996559  0.982114  0.932482
 ElasticNet  0.970845  0.927506  0.791865
 GradientBoosting  0.999669  0.991664  0.949924
 MLP  0.998512  0.985959  0.929794
 RandomForest  0.999873  0.999988  0.999779
 SVR  0.979805  0.957635  0.850070

DA

 AdaBoost  0.976700  0.877000  0.774800
 ElasticNet  0.846300  0.497100  0.402100
 GradientBoosting  0.999300  0.996800  0.988200
 MLP  0.957300  0.840500  0.701100
 RandomForest  0.999400  0.999200  0.996600
 SVR  0.917500  0.708400  0.560900

GWO

 AdaBoost  0.985974  0.879771  0.769910
 ElasticNet  0.782648  0.591697  0.503966
 GradientBoosting  0.996662  0.993088  0.970633
 MLP  0.991184  0.954466  0.856240
 RandomForest  0.996458  0.997209  0.993983
 SVR  0.960963  0.891086  0.764830

MFO

 AdaBoost  0.986632  0.981457  0.929575
 ElasticNet  0.811422  0.711784  0.558258
 GradientBoosting  0.999191  0.996772  0.985423
 MLP  0.991661  0.972416  0.889565
 RandomForest  0.998998  0.997962  0.995940
 SVR  0.961442  0.935409  0.814831

WOA

 AdaBoost  0.982818  0.836589  0.704419
 ElasticNet  0.418802  0.441545  0.333612
 GradientBoosting  0.997866  0.991143  0.959606
 MLP  0.992088  0.964743  0.886124
 RandomForest  0.994488  0.992273  0.990448
 SVR  0.933038  0.832773  0.688672

GOA

 AdaBoost  0.992502  0.987290  0.955051
 ElasticNet  0.862391  0.760841  0.623845
 GradientBoosting  0.998313  0.992360  0.973621
 MLP  0.990534  0.967153  0.886029
 RandomForest  0.999070  0.998730  0.996059
 SVR  0.961703  0.922348  0.784832

MVO

 AdaBoost  0.969091  0.748847  0.633105
 ElasticNet  0.404669  0.372518  0.280063
 GradientBoosting  0.996612  0.990915  0.958677
 MLP  0.988211  0.953214  0.854097
 RandomForest  0.996626  0.992292  0.985404
 SVR  0.821646  0.591715  0.452282

SSA

 AdaBoost  0.983486  0.985413  0.931633
 ElasticNet  0.608959  0.594531  0.465587
 GradientBoosting  0.996629  0.990883  0.947452
 MLP  0.994901  0.982922  0.921859
 RandomForest  0.995365  0.995875  0.992719
 SVR  0.799956  0.780021  0.625279

strates that the physicochemical properties affecting protein solubility 
are effectively captured. In order to further strengthen the validity of 
the proposed NRBO-AGP method, some robust FS approaches that have 
been widely tested in the biomedical field are also referred to. In par-
ticular, ReliefF, Minimum Redundancy Maximum Relevance (mRMR), 
and Boruta have been widely applied to high-dimensional datasets such 
as gene expression profiles and consistently provide high predictive
performance. For example, Gulande and Awale (2025) achieved over 
92% accuracy on microarray data with a hybrid FS approach combin-
ing mRMR and RSA methods. Similarly, Phan et al. (2025) proposed 
the BOLIMES method, which integrates Boruta and LIME algorithms 
for gene expression classification. Furthermore, Hamidi et al. (2023) 
successfully identified significant miRNA biomarkers using the Boruta 
method in ovarian cancer diagnosis. These studies highlight the impor-
tance of robust FS strategies in biomedical applications and support the 
potential applicability of the proposed NRBO-AGP method in these areas 
(Table A.1).

5.  Conclusion

The results of this study show that the Newton-Raphson-based opti-
mization algorithm is an effective method for continuous optimization 
problems. The results revealed that NRBO-AGP performed better than 
other metaheuristic algorithms in all regression models. The best results 
were obtained with Gradient Boosting, reaching MAE: 0.0001 ± 0.0000, 
RMSE: 0.0008 ± 0.0000, and 𝑅2: 0.9908 ± 0.0005 values. Similar high 
performance (MAE: 0.0002 ± 0.0000, RMSE: 0.0025 ± 0.0000, and 𝑅2: 
0.9908 ± 0.0005) was observed with Random Forest Regressor. The mul-
tiple comparison Friedman test and subsequent Nemenyi post-hoc anal-
ysis confirm that NRBO-AGP is significantly more effective (𝑝 < .05), in 
terms of RMSE and MAE error values, and reaches the best ranking com-
pared to competing algorithms in the 𝑅2 accuracy metric. These findings 
show that NRBO-AGP is an effective feature selection tool in predicting 
protein solubility. The high performance of the proposed method in-
dicates that it can be a useful tool in the field of bioinformatics and 
particularly in the analysis of protein properties. In future studies, the 
application of this method for other biological datasets and future work 
may explore combining it with alternative machine learning models to 
assess the generalizability and applicability across a broader perspec-
tive.
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Appendix A.  Hyperparameter settings

Table A.1 
Hyperparameters, their descriptions, and values for the proposed 
method.

 Hyperparameter Description Value / Range
𝛼0 Initial L1 regularization 

coefficient
0.001

𝛽0 Initial L2 regularization 
coefficient

0.001

𝛼 Perturbation power 
coefficient for AGP 
(dynamically adjusted)

0.01–0.1 (adaptive)

𝜆 Adaptation speed 0.1
𝜌 Target gradient rate 0.9
𝛾 Diversity weight 0.5
𝜂 Learning rate 0.01
𝑇 Termination condition 100-500
𝑁 Population size 30-100
𝜃 Threshold 0.5 or quantile-based
𝛽1, 𝛽2 Momentum parameters 0.9 / 0.999
𝜀 Perturbation noise 

magnitude in AGP
10−8

𝐾 K-fold cross validation 5
Δ𝑥 Range size for NRSR Randomly selected 

(adaptive)
 rand1, rand𝑛 Random number 

generators are from the 
distribution (0,1) or 
N(0,1)

U(0,1) / N(0,1)
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