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Protein solubility determines how well a protein dissolves in an aqueous solution, and this property is a critical
factor in the functional analysis of proteins and biotechnological applications. Accurately estimating solubility
can provide significant advantages in areas such as protein engineering and drug discovery. This study proposes a
new feature selection method, Newton-Raphson-based Optimization and Adaptive Gradient Perturbation (NRBO-
AGP) for predicting protein solubility. The research combines the accuracy and speed of the Newton-Raphson
method with the capacity of population-based optimization techniques to balance exploration and exploita-
tion. Using 3144 protein sequences from the eSOL database, descriptor features were obtained for each protein,
resulting in a dataset with 3104 features. The performance of NRBO-AGP was compared with eight different
metaheuristic algorithms and evaluated using five regression models: MLP, AdaBoost, Gradient Boosting Trees,
Random Forest, and Support Vector Regressor (SVR). The best results were obtained with the Gradient Boosting
and Random Forest. Mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination
(R*) metrics were used for performance evaluation. The results show that NRBO-AGP outperforms other meta-
heuristic algorithms in all regression models. The best results were achieved with Gradient Boosting and Random
Forest, reaching MAE:0.0001 + 0.0000, RMSE: 0.0008 + 0.0000, and R?: 0.9908 + 0.0005, and MAE: 0.0002 + 0.0000,
RMSE: 0.0025 + 0.0000, and R?: 0.9908 + 0.0005. These findings show that NRBO-AGP is an effective feature se-
lection tool for predicting protein solubility. Multiple statistical analyses based on Friedman and Nemenyi tests
show that the NBRO-AGP method exhibits statistically significant superior performance (p < .05) compared to
other metaheuristic algorithms in MAE and RMSE metrics and also achieves the highest performance in the R?
score.

Metaheuristic approach
Feature selection

1. Introduction

Proteins are vital macromolecules composed of amino acid chains
present in every cell and tissue in the human body (Yugandhar et al.,
2019). The functions of these macromolecules depend on their physic-
ochemical and structural properties, one of which is solubility (Habibi
et al., 2014). Protein solubility is a critical factor in drug production ef-
ficiency and the advancement of proteomic research. However, current
computational techniques remain inadequate for accurately predicting
protein solubility (Xiaohui et al., 2014). Various approaches, such as
computational and experimental methods, are used to evaluate protein
solubility. Escherichia coli (E. coli) bacteria are preferred for solubility
assessment in many experimental techniques. However, problems such
as inclusion bodies (protein aggregation) can be encountered during the
protein expression process (Zhang et al., 2019). It is important to distin-
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guish between soluble expression and aggregation-prone sequences. Sol-
uble expression indicates that proteins fold correctly and remain soluble
in the cytoplasm. In contrast, aggregation-prone sequences often fold in-
correctly due to intrinsic properties such as hydrophobicity, charge im-
balance, or repetitive motifs, leading to inclusion bodies. This distinction
is particularly crucial when assessing the solubility potential of recom-
binant proteins in E. coli. Although methods such as strong denaturants,
weak promoters, low temperatures, and optimized expression conditions
are used to solve this problem, these experimental protocols require a
significant amount of time and resources. Misfolding of newly synthe-
sized peptides due to errors that occur during the formation of protein
structures is the main cause of inclusion body formation (Boothroyd
et al., 2018; Davis et al., 1999; Idicula-Thomas & Balaji, 2005; Pellizza
et al., 2018). Therefore, protein sequences can be used to estimate the
solubility of proteins. This estimation process is carried out by machine
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learning algorithms, especially neural networks, random forests, and
support vector machines (Qian et al., 2020; Tang et al., 2017).In recent
years, deep learning-based models have achieved significant success in
the field of protein solubility prediction. For example, Chen et al. pro-
posed a model called HybridGCN, which combines different sequence-
based features with graph convolutional networks (GCN). This model
blends classical biophysical descriptors with the protein language model
(ESM-1v) to achieve high accuracy in solubility prediction (Chen et al.,
2023). Deep-SoluE is a model developed by Wang and Zou and uses long-
short-term memory (LSTM) networks to predict protein solubility. This
model combines physicochemical properties and distributed representa-
tions obtained from amino acid sequences to provide more balanced and
accurate predictions. DeepSoluE has demonstrated higher accuracy and
stable performance than existing tools, particularly in tests on E. coli
proteins (Kwon et al., 2024). Similarly, the GATSol model developed
by Li and Ming presented an attention-based architecture that combines
three-dimensional structural graph representations of proteins and lan-
guage model outputs. This approach provided significant performance
gains, particularly on the eSOL dataset, and showed an improvement of
up to 18 % over previous methods (Li & Ming, 2024). These algorithms
can make solubility estimates by analyzing protein sequences. However,
the fact that data sets usually contain many features can negatively af-
fect the performance of machine learning algorithms. In order to solve
this problem, feature selection can be utilized as a vital approach to fig-
uring out the critical and most relevant features in model training. By
eliminating unnecessary features, feature selection improves the over-
all learning algorithm performance by concentrating on the most useful
features (Tang et al., 2017). Feature selection algorithms can be catego-
rized into five main groups: wrapper, filtering, embedding, ensemble,
and hybrid methods (Abbasi Mesrabadi et al., 2023; Ghaderzadeh et al.,
2024; Nemati et al., 2009; Rezaee et al., 2022; Sazzed, 2021; Singh et al.,
2024; Tavasoli et al., 2021). Filtering strategies utilize statistical metrics
to assess the significance of features as opposed to the learning model it-
self. In contrast, wrapper strategies employ the learning model to assess
several feature subsets. Although this method can enhance performance,
it has drawbacks such as high computational cost and overfitting. By in-
volving feature selection in the learning process, embedded approaches
strike a balance between computing efficiency and overfitting. Ensem-
ble approaches increase the accuracy of classification tasks by combin-
ing several feature subsets to determine the best combination. Hybrid
models integrate various feature selection strategies and utilize their re-
spective advantages. An innovative hybrid feature selection method that
addresses existing limitations is presented in this paper. Our proposed
method combines wrapper-based metaheuristic algorithms with hybrid
techniques to optimize feature selection while maintaining computa-
tional efficiency. The study evaluates and validates the effectiveness of
our approach using six different regression algorithms: -multilayer per-
ceptron (MLP) regressor, AdaBoost regressor, gradient boosting trees
model, random forest regressor, support vector regressor (SVR), and
ElasticNet. The main contributions of this research are:

¢ Development of an innovative hybrid model that improves feature
selection accuracy.

e Comprehensive comparison of metaheuristic algorithms in protein
solubility prediction.

e Demonstration of superior performance over existing approaches on
the obtained dataset.

The rest of the paper is organized as follows: Section 2 presents the
theoretical basis of feature selection. Section 3 describes the dataset,
descriptor generation, and methodology. Section 4 presents experimen-
tal results and analysis. Finally, Section 5 includes concluding remarks
and recommendations for future work.

2. Related work

While drug discovery stands out as one of the most challenging pro-
cesses in the scientific world with its high costs and low success rates,
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artificial intelligence (AI) and machine learning (ML) technologies are
reshaping this process with innovative approaches in critical areas such
as molecular property prediction and the design of new molecules. These
technologies have found wide application in the health sector. They
have provided significant advances, especially in the early diagnosis of
diseases, planning of treatment processes, and preventive health ser-
vices. New developments in deep learning have demonstrated striking
results, particularly in complex medical imaging analyses such as de-
tecting and classifying brain tumors. Adapting artificial intelligence and
machine learning techniques to the medical field has increased diag-
nostic success, accelerated analysis processes, and reduced costs. How-
ever, the high dimensionality of medical data has unique challenges,
increasing the need for more efficient and accurate methods in feature
selection and classification processes. Authors in Singh et al. (2024)
have examined in detail the contributions of Al, particularly in drug
screening and design processes. This study emphasizes the impact of
Al in processes such as high-speed virtual screening (HTVS), pharma-
cophore modeling, and de novo drug design. It also includes examples
of applications in areas such as toxicity prediction and pharmacokinetic
profiling. The success of Al in predicting drug-target interactions, opti-
mizing molecular structures, and drug repositioning processes has been
examined, and it has been stated that success rates of up to 97 % in
drug screening accuracy have been achieved with the use of deep learn-
ing (DL) algorithms. However, these high accuracy rates usually come
with increased computational complexity and the risk of getting stuck
in local optima. Our proposed NRBO-AGP method specifically addresses
these challenges through its adaptive gradient perturbation mechanism.
Molecular screenings, particularly for COVID-19 treatment, show the
importance of Al-supported approaches in increasing clinical efficacy
and speed. Similarly, another study on the contributions of Al in the
fight against antimicrobial resistance (AMR) emphasizes that traditional
drug development processes are insufficient due to high cost, long time,
and frequent failure rates. In this context, the potential of Al technolo-
gies, particularly language models and DL methods, in processes such as
identifying new antimicrobial agents, optimizing drug design, and pre-
dicting resistance mechanisms was examined. The findings show that Al
integrated with genomic and proteomic data is effective in rapidly iden-
tifying new drug candidates, restructuring existing drugs, and estimat-
ing resistance models. For example, ML algorithms can rank molecules
that may have antimicrobial activity by analyzing large-scale datasets,
while DL models optimize drug design processes by predicting target-
protein interactions (Ghaderzadeh et al., 2024). In parallel with these
studies, an innovative computational framework for predicting drug-
target interactions (DTI) has been presented. This framework comprises
three main stages: feature extraction, selection, and classification. Af-
ter managing high-dimensional data with a wrapper feature selection
method called IWSSR, the selected features were passed to the Rota-
tion Forest classifier. It has been shown that the framework achieves
98.12 %, 98.07 %, 96.82 %, and 95.64 % success rates for enzymes, ion
channels, G-protein coupled receptors, and nuclear receptors, respec-
tively. This method offers a time- and cost-saving mechanism compared
to experimental methods (Abbasi Mesrabadi et al., 2023). The use of hy-
brid architectures based on CNN and LSTM in HAR has increased in re-
cent years. DeepConvLSTM, developed by Ordénez and Roggen (2016),
is one of the pioneering works that combines CNN and LSTM layers
to process sensor data, and this architecture achieved 93.7 % accuracy.
Similarly, Hammerla et al. (2016) comprehensively compared the per-
formance of RNN and CNN in HAR problems in their proposed deep
learning architectures and showed that hybrid models provide more
consistent results. The deepSense framework presented by Yao et al.
(2017) recognized complex movements with 94.5% accuracy using a
hierarchical CNN-LSTM architecture that processes 6-axis sensor data
separately and then fuses them. Recently, Choi et al. (2013) achieved
97.2% accuracy by integrating the attention mechanism into the hy-
brid CNN-LSTM architecture in their proposed Attentional ConvLSTM
model. However, most of these hybrid architectures use standard con-
nection structures, and the proposed DeepHAR-Net (Ali & Abdelhafeez,



Z. Elmi et al.

2022) stands out by using peephole connections in LSTM layers and
its customized data augmentation strategy. These innovations enable
DeepHAR-Net to be more robust to sensor placement variations and
better capture complex activity patterns. In this respect, DeepHAR-Net
differs from existing hybrid architectures in its architectural structure
and performance metrics. While these drug-target interaction studies
demonstrate the potential of feature selection in molecular analysis, sim-
ilar challenges and opportunities exist in gene expression analysis. The
efficient discovery-exploitation balance of our NRBO-AGP method be-
comes particularly valuable in this field. In this context, another study
on hybrid algorithms used in the classification of microarray gene ex-
pression data proposes a new model called "Ensemble Soft Weighted
Gene Selection" (ESWGS). This model determines gene weights using
criteria such as the ROC curve, two-sample T-test, Wilcoxon test, Bhat-
tacharyya distance, and entropy. It also includes the "Modified Water
Cycle Algorithm" (mWCA) method to optimize the RBF kernel param-
eters of SVM. In experiments conducted on datasets such as leukemia,
breast cancer, and prostate cancer, it has been shown that the model
produces effective results with high accuracy and low computational
cost (Tavasoli et al., 2021). Similarly, the ANOVA-SRC-BPSO method
was developed to reduce the computational load in high-dimensional
datasets and optimize cancer classification. Genes were filtered with
ANOVA and F-tests, redundant genes were eliminated with Spearman
rank correlation coefficients, and the most appropriate gene subset was
selected with the BPSO algorithm. This method achieved 100 % classifi-
cation accuracy in some datasets and generally achieved high accuracy
using fewer genes (Sazzed, 2021). Another deep learning-based study
aimed to classify cancer types and gene selection using microarray data.
The proposed model used ROC curve, Wilcoxon test, and SNR methods
for gene selection and utilized the Stacked Autoencoder (SAE) model in
the classification phase. The study optimized gene selection with high
accuracy rates, both shortening processing times and increasing overall
performance. In this context, innovative solutions of ATl and ML methods
in drug discovery, gene selection, and classification processes provide
an important foundation for the future in biomedical research (Rezaee
et al., 2022). Our NRBO-AGP approach, which employs powerful fea-
ture selection mechanisms while maintaining computational efficiency,
was directly motivated by these issues related to missing data and high
dimensions. This study systematically examines feature selection (FS)
methods used in cancer classification of microarray gene expression
data (Alhenawi et al., 2022). FS methods have been developed to in-
crease classification accuracy and reduce computational costs in high-
dimensional datasets. They are of critical importance, particularly in
the field of microarray data analysis. In the study, 132 scientific arti-
cles published in the last seven years were examined in detail, and FS
studies were divided into five main categories: filter-based, wrapper,
embedded, hybrid, and ensemble approaches. These categories reveal
the strengths and weaknesses of the methods in terms of accuracy, com-
putational cost, and generalization capacity. It is known that microarray
gene expression data are widely used in cancer diagnosis and developing
prognostic models. However, the high dimensionality and low sample
number frequently encountered in such data reduce the generalization
capacity of the models and increase the risk of overfitting (Osama et al.,
2023). The use of dimensionality reduction algorithms, such as feature
selection and feature extraction, has gained importance to solve these
problems. In this context, FS algorithms are implemented with different
approaches such as filter, wrapper, embedded, hybrid, and ensemble
methods. Within this classification, the comparative analysis, particu-
larly between hybrid and ensemble methods, offers important practical
implications for researchers. Hybrid methods provide the ability to nar-
row down the search space more effectively by integrating the strengths
of different paradigms. For example, reducing the dimensionality of the
feature space with filtering algorithms and then applying wrapper tech-
niques can significantly increase computational efficiency. On the other
hand, this integration process increases the complexity of the method
and complicates the implementation process, as it requires multiple pa-
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rameter optimizations. In addition, combining different algorithms can
lead to inconsistencies between methods and make it difficult to verify
the results. Ensemble feature selection methods, on the other hand, pro-
vide high generalization capability by combining the outputs of multiple
models. These approaches can produce more robust and reliable predic-
tions than a single model, if there is noise in the dataset or complex
relationships between features (Darmawahyuni et al., 2024). The nat-
ural structure The natural structure of ensemble methods can be easily
integrated with cross-validation techniques, which increases the reli-
ability of the model selection process. However, ensemble approaches
generally require higher computational costs, which can be a significant
limitation, particularly in high-dimensional datasets or limited-resource
scenarios. It should also be noted that ensemble methods have disad-
vantages in interpretability and carry the risk of overfitting if not care-
fully designed. In practical applications, hybrid and ensemble methods
vary depending on the problem context and operational constraints. Hy-
brid approaches may be more advantageous in very high-dimensional
datasets or where computational resources are limited. On the other
hand, ensemble methods can be preferred in applications where gen-
eralization ability is critical, or the aim is to minimize the prediction
variance. The NRBO-AGP method proposed in this study combines the
fast convergence advantage of Newton-Raphson optimization with the
discovery ability of adaptive gradient perturbation as a hybrid approach.
This integration exhibits superior computational efficiency and perfor-
mance and avoids local optima in complex bioinformatics problems
such as protein solubility estimation. Compared to other studies, hy-
brid methods offer lower computational cost and higher interpretabil-
ity, while ensemble approaches provide more robust and generalizable
results. Researchers should consider this trade-off when choosing the
most appropriate strategy for their spic applications. For example, while
ensemble methods stand out in areas requiring high accuracy, such as
clinical decision support systems, hybrid approaches may be more suit-
able in real-time systems or resource-constrained environments. As a
result, when determining the feature selection approach, the advantage-
disadvantage balance offered by hybrid and ensemble strategies should
be evaluated comprehensively, considering the dataset’s characteristics,
the application domain’s requirements, and the existing computational
infrastructure. Another significant contribution is that metaheuristic al-
gorithms have many applications in feature selection processes. These
algorithms have been investigated using various metrics and classi-
fiers on single and multiple objective functions (Barrera-Garcia et al.,
2023). Specifically, physics-based adaptations, human behavior-based,
swarm intelligence-based, and evolutionary-based algorithms have sig-
nificantly contributed to the FS area by offering remarkable accuracy
rates on large datasets (Agrawal et al.,, 2021). Furthermore, the in-
vestigation of multi-class FS problems has highlighted the necessity
for the scalability and robustness of these algorithms (Akinola et al.,
2022). The necessity of scalability and robustness in feature selection
approaches is obviously aligned with the design principles of our pro-
posed NRBO-AGP approach, which covers these restrictions with an
innovative combination of Newton-Raphson optimization and adap-
tive gradient techniques. Therefore, FS methods play a critical role
in improving classification accuracy and reducing the computational
costs in high-dimensional datasets. The studies mentioned show the
effective utilization of artificial intelligence, machine learning, and
metaheuristic algorithms in FS processes, which is critical to en-
hancing generalization capacity and maximizing model performance.
In this direction, more comprehensive research and the develop-
ment of innovative approaches will help progress in the FS field.
The DDcCNN model (Wang et al., 2021) is an innovative solu-
tion that uses computational techniques and sequence data to pre-
dict protein solubility. The model combines the advantages of lo-
cal and global feature extraction with one-layer 1D convolutional
networks and three-layer 2D convolutional networks. The extracted
features for solubility prediction are processed in a four-layer fully
connected network. The model’s performance is evaluated with a dataset
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of 129,643 protein sequences, consisting of 58,689 soluble and 70,954
insoluble proteins. The results reveal that the DDcCNN model has supe-
rior performance in terms of sensitivity (76.13 %), specificity (79.32 %),
Matthew correlation coefficient (MCC, 0.57), and accuracy (77.82 %).
Moreover, the MCC and accuracy values of the model are better than
those of other models, such as PaRSnIP and DeepSol. Comparison of
training times shows that the DDcCNN model can be used to predict
protein solubility in real-world applications. Another study (Manzoor
et al., 2023) presented a new method for amino acid residue selection
by combining unsupervised feature extraction with autoencoders, with
three different feature selection strategies. The model was tested on five
benchmark datasets, namely CB6133, CB6133-filtered, CB513, CASP10,
and CASP11, using random forest, decision tree, and multilayer per-
ceptron classifiers. The findings showed that Q8 accuracy ranged from
82% to 74% and Q3 accuracy ranged from 92% to 74 %. The model
achieved an average improvement of 3.5% in Q8 accuracy. While the
random forest classifier performed best in general metrics, the decision
tree achieved better results in specific areas. The model also improved
the performance in prediction tasks by eliminating noisy and unneces-
sary data. In another study on protein function classification (De Santis
etal., 2018), feature selection methods and dissimilarity space represen-
tations were used. The authors presented methods that convert protein
structures into real-valued vectors that can be used with standard clas-
sification techniques. The study achieved success in classifying protein
activities and showed promising results in tests on a subset of the E. coli
proteome. Newton-Raphson Based Optimizer (NRBO) (Sowmya et al.,
2024) improves the traditional Newton-Raphson approach by introduc-
ing two basic operators, namely the Trap Avoidance Operator (TAO)
and the Newton-Raphson Search Rule (NRSR). These operators increase
the algorithm’s exploitation capacity, convergence rate, and ability to
avoid local optima. NRBO has been evaluated on standard benchmark
problems such as CEC2020 and CEC2017 and outperforms seven other
advanced optimization algorithms. It has also been successfully applied
to training deep reinforcement learning agents and optimizing IoV rout-
ing problems. It is stated that NRBO further improves the performance
by combining population-based and gradient features. These limita-
tions in feature selection methods motivated the development of our
NRBO-AGP approach, which combines the fast convergence property
of Newton-Raphson with the ability of gradient-based optimization to
avoid local optima. NRBO-AGP provides a more effective exploration-
exploitation balance in the search space thanks to NRBO-AGP oper-
ators. It makes a unique contribution to the literature with its high
accuracy rates and consistent results, particularly in large-sized data
sets.

3. The dataset, descriptor generation, and preliminary
3.1. eSol dataset

The data for protein solubility employed in the study comes from the
eSol database (Niwa et al., 2009), which is an extensive repository of
quantitative protein solubility values for ensemble E. coli proteins. It is
derived from the eSOL platform, where protein solubility is assessed us-
ing experimental investigation of their physicochemical properties in
a PURE system. This dataset consists of protein solubility values ex-
perimentally measured in the PURE (Protein Synthesis Using Recom-
binant Elements) system by Niwa et al. The dataset used in our study
contains a total of 3144 E. coli proteins after eliminating those with
missing sequence information. The solubility value for each protein was
determined by producing recombinant proteins using cell-free protein
expression technology and separating them into soluble and insoluble
components by centrifugation. Solubility was calculated by dividing the
protein ratio in the supernatant by the total protein content and takes
continuous values in the range of [0,1]. The solubility values in the
eSOL dataset show a continuous distribution and are generally used for
regression problems. However, it is possible to divide the dataset into
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soluble and insoluble for classification studies. Based on the threshold
value of 0.5, which is widely used in the literature, the class distri-
bution in our data set is as follows: soluble proteins (resolution > 0.5),
1837 samples (58.4 %), and insoluble proteins (resolution < 0.5), 1307
samples (41.6 %). When the statistical distribution of the solubility val-
ues is examined, the mean solubility is 0.57, the median solubility is
0.62, the standard deviation is 0.29, the minimum value is 0.0, the
maximum value is 1.0, and the interquartile range (IQR) is 0.48. The
distribution of solubility values shows a slight bimodal characteristic;
there are two separate concentration points in the ranges of 0.2 — 0.3
and 0.7 — 0.8. This distribution reflects the dual effect of the physico-
chemical properties of the proteins on solubility. Following the exclu-
sion of entries lacking sequence information, 3144 proteins from the
eSol database were included in our study. The original study that gen-
erated this dataset assessed protein solubility values by producing re-
combinant proteins using cell-free protein expression technology. The
expressed proteins were subsequently fractionated into soluble and in-
soluble components through centrifugation. Solubility is the supernatant
protein ratio to total protein content, which was computed by SDS-PAGE
(Shimizu et al., 2005).

3.2. Preprocessing

TTo generate our research database, we apply several steps to the
protein sequences of eSOL (Osorio et al., 2015). We use the Peptides
package in the R language to achieve the protein sequence descriptors.
We first install and load it to enable us to utilize the functionality of
the package. We then use the "aaDescriptors" function to assess the se-
quences of the eSOL proteins and generate 66 descriptors for each amino
acid. The several descriptors of amino acids are the aliphatic index,
Boman index, net charge, hydrophobicity, instability index, isoelectric
point, and molecular weight. To facilitate interpretation, we gather the
obtained descriptor values into a structured data framework. Generat-
ing a structured data framework with multiple protein sequences is the
first step of our research; each sequence contains multiple properties
for each amino acid. Using a loop mechanism, we iteratively perform
the “aaDescriptors” function on each sequence. Finally, these distinct
data obtained are gathered into a single matrix frame that includes all
generated descriptors for the sequences of the proteins. The resulting
dataset contains 3144 instances and 3104 features. Although the dataset
was relatively balanced, a stratified sampling technique was applied to
prevent potential biases during the model training and evaluation pro-
cesses. For sampling, solubility values were divided into five equal in-
tervals (0 — 0.2,0.2 — 0.4,0.4 — 0.6,0.6 — 0.8,0.8 — 1.), and a proportional
number of samples were selected from each interval. This approach en-
sured that each training/validation/test set represented the solubility
distribution in the original dataset. The dataset was divided into 70 %
training (n =2201),10% validation (n = 314), and 20% test (n = 629).
The soluble and insoluble protein ratios in each divided set were con-
sistent with the original dataset’s ratio (58 % — 42 % balance was main-
tained). Sixty-six descriptive features were extracted for each protein
sequence using the "aaDescriptors" function in the Peptides package.
These features include parameters such as aliphatic index, Boman in-
dex, net charge, hydrophobicity, instability index, isoelectric point, and
molecular weight. The average values divided by the number of amino
acids of each sequence were used to standardize the length differences
between the sequences. As a result of this process, a data matrix contain-
ing a total of 3104 features for 3144 proteins was created. All features
were normalized to the range [0, 1] with the min-max scaling method
to ensure comparability between models and to prevent potential mis-
conceptions due to the different scales of the features. In bioinformatics
and computational biology research, this method efficiently utilizes the
Peptides package and the R language’s flexibility to perform profound
analysis of the attributes of proteins. After that, the min-max scaler was
used to normalize the data.
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3.3. Preliminary

3.3.1. Newton-Raphson-based optimization

Optimization problems are categorized into two different classes: al-
gorithms based on gradient, such as Newton’s Method (NM) (Amrein
& Wihler, 2014), Gradient-Descent Algorithm (GDA) (Madgwick et al.,
2011), Levenberg Marquardt Algorithm (LMA) (Moré, 2006), Quasi-
Newton’s Method (QNM) (Weerakoon & Fernando, 2000), and algo-
rithms based on non-gradient-based methods, such as MAs, such as GA,
GWO, WOA, ACO, and PSO, etc. To find the optimal solutions, gradient-
based algorithms (GB) are based on discovering the points where the
gradient is zero; algorithms like NM and conjugate direction approaches
follow this principle. The gradient algorithms have disadvantages, such
as slow convergence speed and no guarantee of the best solution. Meta-
heuristic algorithms are flexible mechanisms for solving problems that
perform specified procedures to accomplish optimization without de-
pending on the domain of a specific problem. They are inspired by natu-
ral phenomena and utilize heuristic approaches that can be designed for
various optimization aims. Metaheuristic approaches such as GA, GWO,
WOA, ACO, and PSO present powerful and effective methods for opti-
mization in a comparatively short time, contrasting with the exact op-
timization methods that obtain the optimal solutions after considerable
computation. Metaheuristic algorithms have an advantage when utiliz-
ing complex models and large datasets; they produce high-quality an-
swers with low errors quickly. In addition, the flexibility of metaheuris-
tic methods enables them to adapt easily to real-world scenarios and
distinguishes them from more rigid, accurate optimization approaches.
While MAs offer excellent robustness in searching for the optimal so-
lution, GB gets stuck with local optimal solutions. On the other hand,
MAs require more CPU cores, which is particularly important for prob-
lems with large search spaces. Therefore, we suggest a novel method
that combines the advantages of gradient-based and metaheuristic algo-
rithms and uses them for feature selection. The Newton-Raphson ap-
proach is a method that uses the Taylor series to find the root of a
function. Initially, a point (x;) is chosen, and the Taylor series of the
function is calculated around this point (so that we consider only up to
second-order terms) (Sowmya et al., 2024):

(f"(x) - (&)

fxo+e)m fl(xg)- e+ 2 ) (@]
If f(xy + ¢) = 0 and solving Eq. 1 for ¢ = ¢, we will have,
1'(xp)
=- , (&)
0= T )

This determines the next position of the root, and the process is repeated
until the root is found:

f'(x)

x("+1):xn_m,”=1,2,3,... 3)

Newton-Raphson-Based Optimization (NRBO) (Sowmya et al., 2024) ex-
plores the search region using the Newton-Raphson Method and defines
the search path using various operators. Consider that optimization is
performed on an unconstrained single-objective problem as follows:

Minimize :

f(x1,%,,...,x,)subject tolb < x; <ub,j=12,...dim ()]

where f(x) is the objective function minimizing x;, which is the deci-
sion vector, dim is the dimension of the problem, /b and ub are lower
and upper bounds, respectively. NRBO, similar to other metaheuristic
algorithms, starts investigating optimal solutions by generating initial
random populations. The random population is generated by the fol-
lowing equation:

xj =1Ib+rand X ub—1b),n=1,2,... ,N,;j=1,2,....dim, 5)

Where x} is the position of the n" population in the j** dimension, rand
is a random number in the interval (0, 1), and N, is the total number of
the population. The Newton-Raphson Search Rule (NRSR) is presented

Expert Systems With Applications 296 (2026) 129194

as an effective solution method for variation problems. This allows vec-
tors to explore the feasible region more accurately and obtain better
positions. It is based on the idea of the Newton-Raphson Method (NRM)
to increase the exploration tendency and speed up convergence and is
an adaptation of the NRM and adopts a permanent approach so that it
can be used for non-differentiable functions. NRM starts with an initial
solution and progresses to the next position in a specified direction. Us-
ing the Taylor series of second-order derivatives to obtain NRAK from
Eq. 3, the derivatives of f(x) are determined as follows:

(f(x+ Ax) = f(x = AX)

fx) = N (6)
() = f(X+AX)+f(X—2AX)—2'f(X)’ %)
A\x

By substituting these derivatives into Eq. 3, the updated root position
is written as follows:

((f G, + AX) = f(x, = AX)) X AX)
2% (f(x, + AX) + f(x, = Ax) = 2% f(x,)
This equation is adjusted for NRSR to manage population-based search.

By determining the best and worst positions, NRSR is expressed as fol-
lows:

(€))

xn+1)=x,—

X — Xp) X Ax

NRSR =randn x s
20 (X, + Xy —2Xx,)

)]

Here, randn is a random number with a normal distribution, X, and X,
represent the worst and best positions, respectively. /A x is determined
as follows:

Ax=rand(1,dim)><|Xb—X;|, (10)

where ¢ is the current iteration. To improve the performance of the al-
gorithm, an adaptive coefficient § is used, which provides a balance
between exploration and exploitation.

2%\
o=(1-(5))- an
Using Eq. 8 and NRSR, the position is updated:
X@ut1) =%, = NRSR, 12)

To improve exploitation, NRBO uses the parameter p to determine the
direction of the population:

p=ax(X,-X})+p(X - X)), as)

Where a and f are random numbers in intervals (0, 1), i and j are differ-
ent integers that are randomly chosen from the population. The current
position is updated as follows:

X, — Xp) X Ax
2X (X, + Xy —2X%Xx,

Xl =x! - (randn X

a9
+ (ax (x5 - xp) +8(X - X7)).
Egs. 15 and 16 present local and global search strategies:
= Vp) X
X1 = x — (,and,,x M)
2X Y+ ¥y —2Xx, 15)
+ (ax (x5 - xp) +p(X = X7)).
—yp) X
X2 =X, - (randn % M)
2X Yy +yy —2Xx, 16)

# (ax (- 2) +p(x1 - X7)),

where y,, and y, are the positions of the two vectors formed using x,
and x,, respectively. NRBO uses the above two equations to develop
both the diversification and intensification phases. The new position
vector is determined by Eqs. 17 and 18:

XD =y x (rx X1+ A -p)xX2) + (1 -y)x X3, a7)



Z. Elmi et al.

X3l =X —5x (X2, - X1'), (18)

where y is the random number in intervals (0, 1). For clarity, a com-
plete list of hyperparameters used in Equations 6-12, along with their
descriptions and values, is presented in Appendix A.

3.3.2. Adaptive gradient perturbation

The adaptive gradient perturbation (AGP) (Minervini et al., 2023)
method is based on the adaptive perturbation of the gradient to im-
prove optimization processes in machine learning and deep learning.
This method was developed to prevent getting trapped in local mini-
mum and to speed up the convergence time, particularly in complex and
high-dimensional problems. The main aim of this method is to provide
a more effective learning process by dynamically adjusting the gradi-
ents during the model training. The AGP method basically modifies the
gradient descent algorithm as follows:

Oprry =0, —n(Vf(0) + &), 19)

where 6, represents the current model parameters, 7 is the learning rate,
V f(6,) is the gradient of the loss function, and ¢, is the adaptive pertur-
bation term. ¢, is usually calculated by the formula:

e =axo(Vf(0,))xNQO,I), (20)

where « is a hyperparameter controlling the perturbation strength,
o(V f(6,)) is the standard deviation of the gradients, and N (0, 1) is a ran-
dom vector drawn from the standard normal distribution. The adaptive
nature of AGP is achieved by dynamically adjusting a during training:

V£,
Qy1) = & X €xp <A>< <p— %)) @D

where 4 determines the adaptation speed and p determines the target
gradient rate. These formulas show how AGP improves the optimization
process by dynamically perturbing the gradients so that the model can
explore a larger solution space and avoid local minima.

3.3.3. Hybrid of Newton-Raphson optimizer and adaptive gradient
perturbation

Feature selection plays a critical role in improving the performance
and interpretability of machine learning models. In this paper, an inno-
vative feature selection algorithm is presented that combines Newton-
Raphson optimization and AGP techniques. This approach aims to
provide a more effective and robust feature selection process by going
beyond traditional methods. The proposed approach consists of eight
important steps described below:

1. Problem Formulation: The feature selection problem is formulated
as a continuous optimization problem. A selection degree is defined
for each feature, s; € [0, 1]. Here s; = 1 indicates that the feature is
completely selected, while s; = 0 shows that the feature is completely
eliminated. This continuous formulation allows the use of gradient-
based optimization techniques.

2. Data Preparation and Starting Point: The algorithm converts the
dataset to PyTorch tensors, enabling fast computations on the GPU.
The starting point is sampled from a uniform distribution in the range
[0, 1] to increase the probability of selecting features:

5o =0xN(0,1), (22)

where N (0, 1) represents the uniform distribution in the range [0, 1].
3. Define Objective Function: The objective function, which forms the
core of the algorithm, consists of three main components:

f(s)=CVMSE(s)+ a(s,r)L{(s) + p(s,r)Ly(s), (23)

where CV M S E(s) is the mean square error calculated by K-fold
cross-validation, L, (s) represent L, norm (Lasso regularization), and
L,(s) is L, norm (Ridge regularization). a(s,r) and f(s, r) are L, and
L, regularization coefficients, respectively. Population-based train-
ing is used for («, f, and 5), which has an O(N * T) time complexity,
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where N is the population size and T is the number of CatBoost
iterations. a(s,r) and B(s, r) are as follows:

als.r) = ag + (1 + %) x D(s). (24)
Bls.ry = o+ (1+ %) x D(s), (25)
D(s) = exp(—y X diversitygcore(s)), (26)

where r is the model performance ranking in the population, and N is
the population size. D(s) presents an adaptive term based on popula-
tion diversity, y is Diversity weight parameter, and diversity core(s)
is the feature subset’s uniqueness score in the population. «, f, are
initial regularization coefficients. This formulation allows feature se-
lection to adapt to population diversity, applies stronger regulariza-
tion for low-performing models, provides a better exploration of the
parameter space during the optimization process, and automatically
adapts according to cross-validation performance. CVMSE is calcu-
lated using CatBoost regression at each fold:

K
CVMSE(s) = (%) x Y MSE(s.k)+a(s,r)Ly(s)
(k=1)

+ (s, r)Ly(s), 27)

. Utilize Newton-Raphson Optimization: The Newton-Raphson

method rapidly approaches the optimal solution using the gra-
dient of the objective function and the Hessian matrix. The
Newton-Raphson formula is as follows:

Susny =8 —nLHTD x V£ (s), (28)

Here H represents the Hessian matrix and V f(s,) is the gradient.
However, since direct Hessian computation can be computationally
expensive, the AdamW optimizer is used in this implementation.

. Apply Adaptive Gradient Perturbation: AGP helps avoid local min-

ima by adding a stochastic element to the optimization process.
Small, random perturbations are added to the gradient:

vfperrurbed(s) =Vf(s)+ex N(O,1), (29)

Here ¢ is the perturbation magnitude and N (0, /) represents the
multidimensional standard normal distribution.

. Optimization process: The optimization process is performed using

AdamW optimizer and learning rate planning. At each iteration #:

¢ - The objective function is calculated: f, = f(s,)

- The gradient is calculated by automatic differentiation:
Vfi=Vfis)

- AGP is applied:

vfperrurbed(x) =Vf(©)+exNQO,I)

- The AdamW optimizer updates the parameters using the gradient:

m; = By Xmg_yy+ (L= B) XV ferurpeacs) 0

U = Pp Xy + (1= fp) X Vfierrurbed(S)’ ey

Sgaty = 8 — i X ——t, (32)
\/fu,) +e

Where g, and g, are the momentum parameters of AdamW , and
n, is the learning rate at step 7.

. Learning Rate Scheduling: The step size is decreased over time:

nt+1) =n, +y", (33)

where 7, is the initial learning rate, y is the decay factor, and T is
the step size period.

. Termination and Feature Selection: The optimization is terminated

when a predetermined number of iterations is reached or when the
convergence criterion is met. Final feature selection is performed by
applying a threshold value to the continuous values obtained from
the optimization result: selected — features = (s* > 0) where s* is the
optimized feature vector and § demonstrates the selection threshold
value that is obtained by a quantile-based dynamic threshold and
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Fig. 1. flowchart of the NRBO-AGP approach.

has an O(n * log(n)) time complexity. The pseudocode and flowchart
Fig. 1 of the proposed approach are as follows:

This new algorithm combines the fast convergence property of
Newton-Raphson optimization, the exploratory ability of AGP, and the
flexibility of modern optimization techniques to provide an effective fea-
ture selection method. The continuous optimization approach leverages
the power of gradient-based methods, while the AGP extension helps
avoid local minima. This approach has the potential to show strong
performance, in particular on high-dimensional datasets and complex
model structures. The time complexity of this method is based on the
combination of several main components. Newton-Raphson optimiza-
tion is iterated for a certain number of iterations with the objective func-
tion called in each iteration. The CatBoost model is trained and predicted
using K-fold cross-validation in this function. In addition, adaptive gra-
dient perturbation is applied in each iteration. The main factors affecting
the time complexity include the number of instances, the number of fea-
tures, the number of Newton-Raphson iterations, the number of K-folds,
and the number of iterations of the CatBoost model. Roughly, the time
complexity can be expressed as O(t K * (n * d = T + n * log(n))), where
t represents the total number of iterations, K demonstrates the number
of folds, n is the number of samples, d shows the number of features,
and T is the number of CatBoost iterations. Although the use of GPU
can reduce the computational time.

4. Result and discussion

This study proposes an approach based on a novel population for fea-
ture selection called the Newton-Raphson-Based Optimizer and Adap-
tive Gradient Perturbation, which combines Newton-Raphson optimiza-
tion and adaptive gradient perturbation. The integration of these two

methods offers the combined benefits of fast convergence and the avoid-
ance of local optima in the feature selection process. The Newton-
Raphson method is a powerful iterative method used to find the roots
of functions. In the context of feature selection, this method can help
quickly find the optimal feature subset. The method continuously im-
proves the current solution, converging to a better feature combina-
tion in each iteration. On the other hand, Adaptive Gradient Perturba-
tion is a variant of gradient-based optimization techniques. This method
adds small random perturbations to the gradient to explore the search
space more effectively. In the feature selection process, this approach
can reduce the risk of getting stuck in local optima and explore a larger
solution space. Combining these two methods can provide a more ro-
bust and effective feature selection process by combining the fast con-
vergence property of Newton-Raphson with the exploration capability
of Adaptive Gradient Perturbation. This combination can be helpful in
complex and high-dimensional datasets. Model development and exper-
imental analyses were performed on the Python platform. We explicitly
stated the exact split ratios (70 %/10 %/20 %) of the training/test/vali-
dation datasets used in the experimental setup and the detailed cross-
validation strategy (5-fold CV). These experiments are carried out on
a 3.70 GHz Intel Core i5 PC with 16 GB of RAM and a GeForce RTX
4070 with 12 GB. We also utilized eight metaheuristic algorithms that
are population-based, such as the Whale Optimization Algorithm (WOA)
(Mirjalili & Lewis, 2016), Grey Wolf Optimizer (GWO) (Mirjalili et al.,
2014), Ant Lion Optimizer (ALO) (Mirjalili, 2015a), Moth Flame Op-
timizer (MFO) (Mirjalili, 2015b), Dragonfly Algorithm (DA) (Mirjalili,
2016), Grasshopper Optimization Algorithm (GOA) (Mirjalili et al.,
2018), Multi-Verse Optimizer (MVO) (Mirjalili et al., 2016), and Salp
Swarm Algorithm (SSA) (Abualigah et al., 2020), for feature selection in
our generated dataset to demonstrate that the proposed method outper-
forms the above-mentioned methods in protein solu- bility prediction.



Z. Elmi et al.

Algorithm 1 Feature selection optimization using AGP and Newton-
Raphson.

1: Load and preprocess data:

2: X eR™ yeR"

3: Initialize feature subset randomly:

4 5o € R™ 59 ~ N'(6,1)

5: Define objective function f(s):

6: function F(s)

7: a. Select features:

8 Xselected = X[:,s> 9]

9: b. Perform k-fold cross-validation:
10: for each fold do
11: Train CatBoost model
12: Predict: § = CatBoost(X )
13: Calculate MSE:
14: MSEfold = i Z(ytest - j})z
15: end for
16: c. Calculate mean MSE:
17: MSE = + ¥ MSE,4
18: d. Add regularization term:
19: f(s) = MSE + a|[L()[| + Bl Ly(s)]|?
20: e. Return J(0)
21: end function
22: Define Adaptive Gradient Perturbation (AGP) function:
23: function AGP(V f(s),€)
24: return V£ (s) + ¢ - N'(0,1)
25: end function
26: Define Newton-Raphson optimizer with AGP:
27: function OPTIMIZE(s,, J, T, #,, €)
28: Initialize AdamW optimizer with learning rate
29: Initialize learning rate scheduler
30: Sip1 =8,
31: fort=1toT do
32: Calculate J(0) and VJ(0)
33: Apply AGP:
34: VJ'(0) = AGP(VJ(0),¢)
35: Update 6 using AdamW:
36: m, = ﬁl m_y+ (1- ﬂl) ' prerturbed(s)
37 U = ﬁZ Ut (1- ﬁ2) : (prerturbed(s))z
38: i, = —

a-p)
N vy

39: 0, = T
40: Sip1 =8 —H, - (\gﬁ
41: Update learning rate: n = scheduler()
42: end for
43: return s

1+1
44: end function

45: Optimize feature subset:

46: s* = optimize(s,, J, T, #,, €)
47: Apply threshold to select final features:
48: selected_features = s* > 6

49: Save and output results

Each metaheuristic technique in this study used a population size of 100
agents and was run for 70 iterations. Root mean squared error, mean ab-
solute error, and R? error measurement in the five-fold cross-validation
method were applied to evaluate the performance of the proposed tech-
niques (Algorithm 1).

RMSE = |1 3 -2 34
=1
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MAE = 2| 3= ), (35)
=1)

ZL](J’: - pz)z
S (- Z)’
where y;, p;, and n denote the actual, predicted values and number of
observations, respectively. Fig. 2(a) shows the correlation coefficients
of selected features using the proposed method with the target variable,
which is the solubility of the protein. The Y-axis shows the correlation
coefficients between 0 and 1, and the X-axis represents the different
selected variables. This correlation analysis graph shows the relation-
ships between feature selection and the target variable, providing im-
portant insights into machine learning modeling. The descriptors deter-
mined by the NRBO-AGP hybrid feature selection algorithm and shown
in Fig. 2(a) provide a comprehensive profile of various biochemical and
physicochemical parameters affecting protein solubility. When the se-
lected features are examined, it is seen that the hydrophobicity/hy-
drophilicity properties of amino acids at positions 44-47 (VHSE1.44,
VHSE2.44, 71.44, 7Z1.47, PP2.45, PP3.44), steric and volumetric charac-
teristics (VHSE3.44, VHSE4.46, Z2.46, Z4.44), electronic and charge dis-
tributions (VHSE6.44, VHSE7.44, VHSE7.46, VHSES.45), and structural
conformation tendencies (F1.45, F2.44, F2.45, F3.47, ST3.47, ST5.44,
ST6.44) are prominent. These properties’ significantly high correlation
coefficients prove that these biochemical parameters play a decisive role
in protein solubility. Hydrophobic-hydrophilic balance directly affects
the solvent interactions of the protein and emerges as the primary deter-
minant of the solubility profile. While the optimum distribution of hy-
drophilic amino acids on the protein surface increases the solubility by
providing appropriate interactions with water molecules, incorrect po-
sitioning of hydrophobic regions can trigger aggregation tendency. Se-
lecting descriptors related to structural stability (ST5.44, ST6.44, T1.44,
T3.44) emphasizes the critical effect of correct protein folding on sol-
ubility. Thermodynamically stable conformations contribute positively
to solubility by reducing the tendency for misfolding and the associated
aggregation risk. Charge distribution properties (VHSE6.44, VHSE7.44)
modulate intermolecular interactions by shaping the electrostatic profile
of the protein. A balanced and optimum surface charge distribution pre-
vents aggregation by increasing protein-protein repulsion forces while
increasing solubility by strengthening protein-solvent interactions. The
critical positions selected by the model (44-47) are probably located in
the surface areas of the protein structure that are open to solvent in-
teraction, suggesting that these regions constitute a "hot spot" in terms
of solubility. The unique combinations of amino acids in these posi-
tions shape the interaction surface in a way that determines the solubil-
ity profile of the protein. Notably, the prominent presence of BLOSUM
identifiers (BLOSUM4.44, BLOSUM6.44, BLOSUMS8.44), which are in-
dicators of evolutionary conservation, indicates that the selected posi-
tions are under evolutionary pressure not only for solubility but also
for the preservation of protein function. The selection of protein fin-
gerprint identifiers (ProtFP1.44, ProtFP4.44, ProtFP7.44) points to the
effect of specific amino acid sequences on solubility. Holistic analysis
of these descriptors reveals molecular determinants of protein solubil-
ity and provides a rational framework for potential protein engineer-
ing applications. As seen in the figure, correlation coefficients vary be-
tween 0 and 0.09. The highest correlation value is observed as a distinct
peak in the middle part of the graph, at approximately 0.09. This vari-
able substantially affects the target variable more than the others. Most
variables show correlation values of 0.02 — 0.06, indicating a medium-
level relationship. It is observed that the variables on the left side of the
graph generally have higher correlation values, and these values grad-
ually decrease as we move to the right. This shows that the effects of
the variables in the data set on the target variable are at different levels.
The relatively low correlation values may indicate the existence of non-
linear relationships between the variables. This situation indicates that
more complex modeling techniques and feature engineering approaches

R=1- (36)
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Correlation Coefficients of Selected Features with Target Variable
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Mutual Information Scores of Selected Features with Target Variable
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Fig. 2. Linear and non-linear Correlation Coefficients of selected features with target variable.
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should be evaluated. In the model development process, it will be essen-
tial to prioritize variables with high correlation and evaluate other vari-
ables in different combinations and transformations. This correlation
analysis is a critical guide for the feature selection process. Including
highly correlated features in the model can increase the predictive per-
formance. As a result of the mutual information analysis we conducted
to detect nonlinear relationships in Fig. 2(b), it was observed that some
features had low correlation coefficients compared to the classical Pear-
son correlation. However, they carried significant information about the
target variable. Although the Pearson correlation of the feature named
"hydrophobicity index" was only 0.045, the mutual information value
was calculated as 0.31. Similarly, while the Pearson correlation for the
feature named "net charge" was 0.028, the mutual information value
was at the level of 0.26. These findings show that our model can effec-
tively capture linear but also complex and nonlinear dependencies. In
addition, the Kendall Tau correlation coefficient is shown in Fig. 2(c)
to take the sequential structure into account. According to the results,
for example, the Pearson correlation between the feature named "iso-
electric point" and the target variable (resolution) was at 0.021. At the
same time, the Kendall tau coefficient was found to be 0.173. For the
"instability index" feature, this value was measured as 0.165. This situ-
ation reveals that classical correlation analyses can ignore the sequen-
tial relationship of some features with resolution and that sequential
correlation analyses increase the model’s explanatory power. In this di-
rection, the proposed NRBO-AGP method creates more powerful and
generalizable models, especially in high-dimensional and complex data
structures, with its capacity to detect features sensitive to non-linear and
sequential relationships.

To evaluate the quality of the selected features in the prediction,
we utilize the MLP regressor, AdaBoost regressor, Gradient Boost Tree,
Random Forest regressor, Support Vector Regressor, and ElasticNet.

To evaluate the quality of the selected features in the prediction, we
utilize the MLP regressor, AdaBoost regressor, Gradient Boost Tree, Ran-
dom Forest regressor, Support Vector Regressor, and ElasticNet. Fig. 3(a)
is a model prediction comparison. Scatter plots are presented showing
the relationship between the actual values and the predicted values for
six different models (MLP, AdaBoost, GradientBoosting, RandomForest,
SVR, and ElasticNet). It is seen that the GradientBoosting and Random-
Forest models exhibit excellent performance (R> = 0.999). The MLP
and AdaBoost models also yielded successful results (R?> > 0.995). The
ElasticNet model showed a lower R? score compared to other regression
models. In order to interpret this performance difference, the error dis-
tribution of the model was examined. The model’s predictions were ob-
served to be higher than the true value at low solubility values, while the
model’s predictions were systematically lower at high solubility values.
This situation indicates a deviation pattern resulting from the excessive
shrinkage of the regression coefficients, resulting from the combined
use of ElasticNet’s L1 (Lasso) and L2 (Ridge) regularizations. Therefore,
the model made more conservative and closer-to-average predictions by
pulling the extreme values towards the center, which caused the errors
to grow at the extreme values. The effect of this systematic deviation
decreased the model’s overall performance and caused it to lag behind
in accuracy metrics. The relevant error distribution graph and deviation
directions are shown and discussed in the article content. Our study’s
ensemble models, GradientBoosting and RandomForest, achieved very
high-performance values. However, various precautions were taken to
evaluate whether this was due to a possible overfitting situation. First,
all models were evaluated with the 5-fold cross-validation method (5-
fold CV), and the average of the R?, MAE, and RMSE values obtained
in each layer and their standard deviations were calculated. For exam-
ple, the test R? score for the RandomForest model was 0.9908 + 0.0005,
and for the GradientBoosting model it was 0.9908 + 0.0005. These low
standard deviation values indicate that the models performed similarly
in different data splits and that their generalization capacity was high.
In addition, regularizing constraints were applied to parameters such
as n-estimators, max-depth, min-samples-split, and learning-rate using

10
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the Bayesian Optimization method in the hyperparameter optimization
process. In this way, the models were prevented from overfitting the
training data, and a more balanced learning process was achieved. With
these measures, it is thought that the high success rates are not only
due to overfitting the training but also to the learned structural rela-
tionships, and that the models can give successful results on new data.
However, the performance of the SVR and ElasticNet models remained
lower than the others. It was observed that the deviations in the test set
were more pronounced in the ElasticNet model. Fig. 3(b) shows resid-
ual analyses. Histograms showing the distribution of residual values for
each model are presented. The residual values of the GradientBoosting
model are concentrated in a very narrow range around zero, indicating
that the model’s predictions are pretty accurate. It is seen that the Ran-
domForest model has a similarly minimal error distribution. While the
residual distributions of the MLP and AdaBoost models exhibit a close
appearance to a normal distribution, it was observed that the SVR and
ElasticNet models have a wider error distribution. Fig. 3(c) evaluates the
conformity of the residual values of the models to a normal distribution.
The Q-Q plot of the MLP model shows deviations from the theoretical
regular distribution line at the extreme points, indicating that the resid-
ual values are not perfectly normally distributed. The AdaBoost model
better fits the normality in the middle quantiles, while it exhibits sys-
tematic deviations at both ends of the distribution. A distinct S-shaped
pattern indicates that the residuals are heavier-tailed than the normal
distribution. The Q-Q plot of the GradientBoosting model shows signif-
icant deviations from normality, with a distinct stepped pattern. This
indicates that the residuals are not continuously distributed as in the
normal distribution but exhibit a discrete or clustered distribution. The
Q-Q plot of the RandomForest model shows extreme deviations from
normality, with an almost horizontal line pattern for most of the dis-
tribution. This pattern indicates that the RandomForest model produces
many identical or similar residual values (possibly close to zero). The Q-
Q plot of the SVR model shows a more linear relationship in the middle
quantiles, while it exhibits significant deviations in the tails. The Q-Q
plot of the ElasticNet model shows significant deviations from the the-
oretical normal line, with significant separations observed in both tails.
Comparison of error metrics is demonstrated in Fig. 3(d). In this figure,
the performance comparison of the models is made on three different
metrics (MAE, RMSE, and R2). It is seen that the MAE and RMSE val-
ues are at the minimum level in the GradientBoosting and RandomForest
models. In the R? metric, it is observed that all models except ElasticNet
show high performance, but ElasticNet experiences a significant perfor-
mance decrease in the test set (R? ~ 0.6). Notably, the SVR model shows
moderate performance in error metrics but consistent behavior. It is seen
that ensemble learning methods (GradientBoosting and RandomForest)
show the best performance in this problem. These models have shown
superior performance in terms of both prediction accuracy and error
distribution. Deep learning (MLP) and boosting (AdaBoost) approaches
also gave satisfactory results. However, it was observed that classical re-
gression methods, SVR and ElasticNet, showed relatively weaker perfor-
mance, and ElasticNet experienced a significant performance decrease
in the test set. These results show that ensemble methods can better
model the nonlinear and complex structure of the problem space. In
addition, the superiority of ensemble methods in terms of the general-
ization capabilities of the models is also remarkable. Fig. 3(e) shows the
decrease of the loss function during the training iterations of the model.
The graph contains two curves, the blue line representing the training
loss and the red line representing the validation loss. Both curves show
a rapid decrease in the loss value during the initial training phase (ap-
proximately the first 25-50 iterations). The validation loss (red line)
starts at a higher value (approximately 0.45) and decreases rapidly dur-
ing the first 25 iterations. This shows that the model learns most of the
patterns in the data very quickly. After approximately 50 iterations, the
training and validation losses stabilize and flatten to zero. This shows
that the model is converging to a stable solution. An important observa-
tion is that there is no divergence between the training and validation
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Model Evaluation Results - NBRO AGP

MLP AdaBoost GradientBoosting
Val R* = 0.998, Test R? = 0.998 Val R? = 0.996, Test R? = 0.996 Val R? = 1.000, Test R* = 1.000

ElasticNet
Val R? = 0.925, Test R = 0.933

RandomForest

SVR
Val R? = 1.000, Test R* = 1.000 Val R? = 0.954, Test R? = 0.961
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Fig. 3. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO-AGP. (d) The performance comparison of the models for NBRO-AGP.

(e) The convergence curve for the proposed model.

loss curves as the training progresses. The validation loss decreases with
the training loss, indicating that the model generalizes well to unseen
data and does not overfit. At approximately iteration 75, both losses
have reached their minimum values and remain constant for the remain-
der of the training process (up to iteration 200). This plateau suggests
that additional training beyond this point provides minimal benefit. The
smooth and consistent decrease in both curves indicates that the chosen
learning rate and optimization algorithm are appropriate for this prob-
lem, allowing efficient convergence without oscillations or instability.
This convergence pattern supports the strong performance metrics of
ensemble methods, particularly GradientBoosting and RandomForest,
which effectively learn the underlying patterns in the data and gener-
alize well to the test data. The performances of the regression models
obtained using the selected features with the NRBO-AGP method are
reported with the mean MAE, RMSE, and R? values, as well as the stan-
dard deviation (std) values obtained during the five-fold cross-validation
period. Thus, the model’s average success and consistency against dif-
ferent data splits are evaluated. The mean + std values given in Table 1
on the test set show that the proposed method gives stable and reliable
results.

11

The scatter plots in Fig. 4(a) show the relationship between six
models’ actual and predicted values (MLP, AdaBoost, GradientBoost-
ing, RandomForest, SVR, and ElasticNet). It is observed that the MLP
(R? = 0.966) and RandomForest (R? = 0.953) models exhibit the highest
performance under NBRO optimization, followed by the GradientBoost-
ing (R? = 0.936) model. While the performance of the AdaBoost model
(R? = 0.852) remains at a moderate level, it is observed that the SVR
(R? = 0.756) and ElasticNet (R?> = 0.378) models have significantly lower
coefficients of determination compared to the other models. In partic-
ular, the predicted values grouped as vertical bands in the scatter plot
of the AdaBoost model are noteworthy, indicating that the model pro-
duces discrete predictions at specific intervals. The residual histograms
in Fig. 4(b) show the error distribution of each model in detail. The
residual values of the MLP model are concentrated in a narrow range
around zero and exhibit a bell-shaped symmetric distribution. The resid-
ual histograms of the GradientBoosting and RandomForest models are
concentrated almost at a single value (zero), indicating that the models
produce many exact or very close predictions under NBRO optimiza-
tion. The residual distribution of the AdaBoost model exhibits a het-
erogeneous and asymmetric structure with multiple peaks. While the
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Performance comparison of regression models on the test set (mean + standard deviation, 5-fold cross-validation).

GradientBoosting

RandomForest

SVR

ElasticNet

0.9908 + 0.0005
0.0008 + 0.0000
0.0001 + 0.0000

0.9908 + 0.0005
0.0025 + 0.0000
0.0002 + 0.0000

0.9609 + 0.0027
0.1033 + 0.0003
0.0806 + 0.0002

0.9331 + 0.0065
0.1351 + 0.0009
0.1080 + 0.0007

0.9904 + 0.0009
0.0907 + 0.0001
0.0062 + 0.0000

0.9833 + 0.0009
0.1192 + 0.0001
0.0077 + 0.0000

0.7676 + 0.0199
0.4452 + 0.0089
0.2841 + 0.0057

0.5781 + 0.0329
0.5999 + 0.0197
0.4512 + 0.0149

0.9961 + 0.0001
0.0263 + 0.0000
0.0015 + 0.0000

0.9977 + 0.0001
0.0203 + 0.0000
0.0013 + 0.0000

0.9508 + 0.0030
0.0929 + 0.0003
0.0882 + 0.0003

0.8201 + 0.0152
0.1775 + 0.0027
0.1300 + 0.0020

0.9993 + 0.0003
0.0203 + 0.0000
0.0015 + 0.0000

0.9997 + 0.0006
0.0126 + 0.0000
0.0006 + 0.0000

0.9539 + 0.0048
0.1687 + 0.0008
0.1100 + 0.0005

0.9331 + 0.0074
0.2032 + 0.0015
0.1387 + 0.0010

0.9957 + 0.0020
0.0370 + 0.0001
0.0039 + 0.0000

0.9894 + 0.0042
0.0583 + 0.0002
0.0027 + 0.0000

0.8652 + 0.0241
0.2075 + 0.0050
0.1359 + 0.0033

0.1684 + 0.0300
0.5153 + 0.0154
0.3185 + 0.0095

0.9933 + 0.0023
0.0462 + 0.0001
0.0024 + 0.0000

0.9929 + 0.0051
0.0475 + 0.0002
0.0024 + 0.0000

0.9152 + 0.0110
0.1646 + 0.0018
0.1069 + 0.0012

0.5800 + 0.0572
0.3662 + 0.0209
0.2225 + 0.0127

0.9984 + 0.0002
0.0197 + 0.0000
0.0018 + 0.0000

0.9980 + 0.0001
0.0219 + 0.0000
0.0011 + 0.0000

0.9162 + 0.0071
0.1415 + 0.0010
0.1058 + 0.0007

0.6370 + 0.0093
0.2945 + 0.0027
0.2451 + 0.0023

0.9987 + 0.0006
0.0206 + 0.0000
0.0017 + 0.0000

0.9989 + 0.0014
0.0191 + 0.0000
0.0014 + 0.0000

0.8341 + 0.0262
0.2302 + 0.0060
0.1620 + 0.0042

0.6976 + 0.0373
0.3108 + 0.0116
0.2480 + 0.0093

0.9966 + 0.0001
0.0243 + 0.0000
0.0014 + 0.0000

0.9981 + 0.0002
0.0182 + 0.0000
0.0010 + 0.0000

0.9145 + 0.0059
0.1224 + 0.0007
0.1037 + 0.0006

0.7189 + 0.0410
0.2219 + 0.0091
0.1379 + 0.0056

0.9932 + 0.0021
0.0465 + 0.0001
0.0038 + 0.0000

0.9933 + 0.0053
0.0464 + 0.0002
0.0030 + 0.0000

0.6726 + 0.0270
0.3233 + 0.0087
0.2237 + 0.0060

0.1574 + 0.0334
0.5187 + 0.0173
0.3205 + 0.0107

Z. Elmi et al.
Table 1
Metaheuristic Metric MLP AdaBoost
R? Score  0.9980 + 0.0011 0.9965 + 0.0004
NBRO_AGP RMSE 0.0234 + 0.0000  0.0310 + 0.0000
MAE 0.0148 + 0.0000  0.0260 + 0.0000
R? Score  0.9655 + 0.0068  0.8824 + 0.0195
NBRO RMSE 0.1714 + 0.0012 0.3166 + 0.0062
MAE 0.0893 + 0.0006  0.1543 + 0.0030
R? Score  0.9683 + 0.0008  0.9711 + 0.0052
AGP RMSE 0.0746 + 0.0001 0.0712 + 0.0004
MAE 0.0524 + 0.0000  0.0554 + 0.0003
R? Score  0.9969 + 0.0006  0.9931 + 0.0064
ALO RMSE 0.0435 + 0.0000 0.0654 + 0.0004
MAE 0.0175 + 0.0000  0.0401 + 0.0003
R? Score  0.9838 + 0.0034  0.9599 + 0.0074
WOA RMSE 0.0720 + 0.0002 0.1132 + 0.0008
MAE 0.0367 + 0.0001 0.0862 + 0.0006
R? Score  0.9817 + 0.0036  0.9685 + 0.0078
GWO RMSE 0.0765 + 0.0003  0.1002 + 0.0008
MAE 0.0454 + 0.0002  0.0821 + 0.0006
R? Score 0.9831 + 0.0048 0.9726 + 0.0048
MFO RMSE 0.0635 + 0.0003  0.0810 + 0.0004
MAE 0.0422 + 0.0002  0.0622 + 0.0003
R? Score 0.9152 + 0.0083 0.9472 + 0.0076
DA RMSE 0.1646 + 0.0014  0.1299 + 0.0010
MAE 0.1082 + 0.0009  0.1079 + 0.0008
R? Score 0.9805 + 0.0022 0.9838 + 0.0042
GOA RMSE 0.0585 + 0.0001 0.0533 + 0.0002
MAE 0.0368 + 0.0001 0.0372 + 0.0002
R? Score 0.9756 + 0.0033 0.9367 + 0.0100
MVO RMSE 0.0883 + 0.0003  0.1422 + 0.0014
MAE 0.0516 + 0.0002  0.0998 + 0.0010
R? Score  0.9897 + 0.0034  0.9590 + 0.0104
SSA RMSE 0.0975 + 0.0003  0.1942 + 0.0020
MAE 0.0405 + 0.0001 0.1267 + 0.0013

0.9933 + 0.0022
0.0788 + 0.0002
0.0064 + 0.0000

0.9908 + 0.0034
0.0918 + 0.0003
0.0060 + 0.0000

0.6379 + 0.0154
0.5771 + 0.0089
0.3603 + 0.0055

0.3463 + 0.0328
0.7754 + 0.0254
0.5694 + 0.0187

residual distribution of the SVR model has a relatively more symmetric,
unimodal structure, the residual distribution of the ElasticNet model is
multimodal, spreads over a wide range, and exhibits a heterogeneous
structure. The Q-Q plots presented in Fig. 4(c) evaluate the compliance
of the models’ residuals with the normal distribution. The Q-Q plot of
the MLP model shows significant deviations from the theoretical reg-
ular distribution line (red line) at the upper end. The Q-Q plot of the
AdaBoost model exhibits a stepped structure and shows significant de-
viations from normality. The Q-Q plot of the GradientBoosting model
exhibits a characteristic structure with horizontal segments, indicating
that the residuals are concentrated at specific values. The Q-Q plot of
the RandomForest model is almost completely horizontal, confirming
that the residuals mostly have a single value. The SVR model’s Q-Q plot
exhibits an S-shaped curve, revealing that the residuals exhibit system-
atic deviations from the normal distribution. Conversely, the ElasticNet
model’s Q-Q plot exhibits a stepped structure and significant deviations
from the theoretical line. The performance metric comparisons seen in
Fig. 4(d) allow us to evaluate the quantitative performance of the mod-
els. The MAE and RMSE comparison plots confirm that the Gradient-
Boosting and RandomForest models have the lowest error values. While
the MLP model also exhibits low error values, the AdaBoost and SVR
models have moderate errors, and the ElasticNet model has high error
values. In the R? comparison graph, it is seen that GradientBoosting,
RandomForest, MLP, and AdaBoost models have high coefficients of de-
termination, the SVR model has a moderate performance (R? ~ 0.8), and
the ElasticNet model has a low performance (R? ~ 0.5). In particular, the
ElasticNet model has similar R? values in training, test, and validation
sets, which shows that the model has a consistent performance despite
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its weak generalization ability. The convergence curve in Fig. 4(e) shows
the model’s training process under NBRO optimization. Training loss
(blue line) and validation loss (red line) show a rapid decrease starting
from approximately 0.8 at the beginning and flatten significantly after
approximately 50 iterations. After the 50th iteration, the training loss
decreases to approximately 0.02, while the validation loss stabilizes at
approximately 0.05. This slight difference between the two curves in-
dicates that the model is showing a slight over-training tendency, but
this is within acceptable limits. After the 75th iteration, both losses ap-
proach their minimum values and remain steadily low throughout the
rest of the training process.

The scatter plots in Fig. 5(a) show the relationship between six
models’ actual and predicted values (MLP, AdaBoost, GradientBoost-
ing, RandomForest, SVR, and ElasticNet). It is observed that the MLP
(R? = 0.948) and RandomForest (R> = 0.996) models exhibit the high-
est performance under AGP optimization, followed by GradientBoost-
ing (R? = 0.905) and AdaBoost (R*> = 0.871). It is observed that the SVR
(R? = 0.751) and ElasticNet (R? = 0.820) models have lower coefficients
of determination compared to the other models. Remarkably, it can be
said that the ElasticNet model reaches a higher R* value under AGP
optimization than the previous algorithms, indicating that AGP can be
more effective in optimizing linear models. The residual histograms in
Fig. 5(b) show the error distribution of each model in detail. The residual
values of the MLP model exhibit a bell-shaped symmetric distribution
concentrated around zero. The residual histogram of the GradientBoost-
ing model is concentrated at a very high frequency at zero. The resid-
ual histogram of the RandomForest model is almost completely concen-
trated at a single value (zero), indicating that the model produces a large
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Model Evaluation Results - NBRO

MLP AdaBoost GradientBoosting
Val R* = 0.977, Test R* = 0.970 Val R? = 0.895, Test R* = 0.882 Val R? = 0.999, Test R? = 0.990

ElasticNet
Val R? = 0.574, Test R? = 0.578

RandomForest

SVR
Val R = 0.997, Test R? = 0.983 Val R? = 0.776, Test R* = 0.768
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Fig. 4. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for NBRO. (d) The performance comparison of the models for NBRO. (e) The

convergence curve for the NBRO model.

number of exact predictions. While the residual distribution of the Ad-
aBoost model exhibits an asymmetric structure with multiple peaks, the
residual distribution of the SVR model also exhibits a discrete structure
with multiple modes. The residual distribution of the ElasticNet model
exhibits a multimodal structure but a narrower range than previous al-
gorithms. The Q-Q plots presented in Fig. 5(c) evaluate the conformity of
the residuals of the models to a normal distribution. The Q-Q plot of the
MLP model shows a relatively good fit to the theoretical regular distribu-
tion line (red line) but exhibits some deviations at extreme values. The
Q-Q plot of the AdaBoost model exhibits a stepped structure, indicating
that the residuals take discrete values. The Q-Q plot of the Gradient-
Boosting model exhibits a characteristic structure containing horizon-
tal segments, indicating that the residuals are concentrated at specific
values. The Q-Q plot of the RandomForest model is almost completely
horizontal, confirming that the residuals mostly have a single value. The
Q-Q plot of the SVR model has a stepped structure, indicating that the
residuals show significant deviations from the normal distribution. Con-
versely, the ElasticNet model’s Q-Q plot exhibits a stepped structure but
follows a course closer to the theoretical line in the middle quantiles.
The performance metric comparisons seen in Fig. 5(d) allow us to eval-
uate the quantitative performance of the models. The MAE and RMSE
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comparison plots confirm that the GradientBoosting and RandomFor-
est models have the lowest error values. While the MLP and AdaBoost
models show moderate error values, the SVR and ElasticNet models have
higher error values. In the R? comparison plot, it is seen that all models
except ElasticNet have similar and high coefficients of determination in
training, test, and validation sets. The test set performance of the Elas-
ticNet model (R? = 0.8) shows a slight decrease compared to the train-
ing and validation sets, but this decrease is less pronounced compared
to the previous algorithms. The convergence curve in Fig. 5(e) shows
the model’s training process under AGP optimization. The training loss
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.42 at the beginning and diverge significantly
after approximately 50 iterations. After the 75th iteration, the training
loss decreases to approximately 0.01, while the validation loss stabilizes
at approximately 0.03. This slight difference between the two curves
indicates that the model shows a slight over-training tendency, but this
situation is within acceptable limits. After 100 iterations, both losses ap-
proach their minimum values and remain steadily low throughout the
rest of the training process.

Prediction-actual value relationship analysis is presented in Fig. 6(a).
The models’ prediction capabilities are shown through scatter plots
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Model Evaluation Results - AGP

MLP AdaBoost GradientBoosting
Val R? = 0.992, Test R* = 0.996 Val R? = 0.969, Test R* = 0.971 Val R? = 0.996, Test R* = 0.996

El:

RandomForest asticNet
Val R? = 0.836, Test R* = 0.820

SVR
Val R? = 0.989, Test R* = 0.997 Val R? = 0.957, Test R* = 0.951
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Fig. 5. (a) Model prediction comparison. (b) Residual analyses. (c) The Q-Q plots for AGP. (d) The performance comparison of the models for AGP. (e) AGP’s

convergence curve.

showing the intervals between the actual values and the predicted val-
ues. It is seen that the GradientBoosting model shows a proximity to
the ideal line (dashed line) and reaches optimum performance with the
Val-R? = 1.000 value. The MLP model also exhibited successful perfor-
mance with the Val-R? = 0.996 value. While deviations are observed at
high values in the SVR model, it draws attention to systematic devia-
tions in the predictions of the ElasticNet model. Fig. 6(b) is the residual
analysis of ALO. The histograms showing the status of the residual val-
ues (residuals) show that the models reveal the characteristics of their
predicted errors. The GradientBoosting model draws attention with the
concentration of the residual values in a very narrow range (0.0 — 0.1)
around zero. The RandomForest model is also located in a similarly con-
centrated error center. Although the residual distributions of the MLP
and AdaBoost models are transferred to a broader range, they exhibit a
close appearance to a normal distribution. The residual distributions of
the SVR and ElasticNet models are spread over a broader range (between
—0.5 and 1.25), indicating lower predictive robustness. In Fig. 6(c), the
Q-Q plot of the MLP model shows deviations from the theoretical normal
distribution (red line) at the extreme values. The plot of the AdaBoost
model shows a distinct S-shaped pattern, indicating that the residuals
have heavier tails than the normal distribution. The Q-Q plot of the

GradientBoosting model shows a stepped structure, indicating that the
residuals have a more discrete or clustered distribution rather than a
continuous distribution. The plot of the RandomForest model consists
almost entirely of horizontal segments, indicating that the model pro-
duces a large number of similar (possibly close to zero) residual val-
ues. The SVR model shows a more linear relationship in the middle
quantiles, while the ElasticNet model exhibits significant deviations at
both extremes. Model performance metrics analysis for ALO is shown
in Fig. 6(d). A comparative analysis of six machine learning models is
presented in terms of MAE, RMSE, and R*> metrics. GradientBoosting
and RandomForest models showed the lowest error rates in all datasets
(training, validation, and testing). It is seen that the MAE values of these
two models are below 0.01, the average absolute error values. ElasticNet
and SVR models exhibited higher error rates; the MAE value of Elastic-
Net is around 0.12. In the R? metric, excellent performance (R? = 1.000)
was shown in ensemble models (GradientBoosting and RandomForest),
but a significant drop (R? ~ 0.6) was experienced in the test set of Elas-
ticNet. The ALO approach showed superior performance with ensemble
feeding methods (GradientBoosting and RandomForest). These models
have significant superiority over other solutions in terms of both pre-
dictability and model. The satisfactory results of the deep learning-based
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Model Evaluation Results - ALO

MLP AdaBoost GradientBoosting
Val R* = 0.997, Test R* = 0.995 Val R? = 0.993, Test R* = 0.993 Val R? = 1.000, Test R* = 0.999

ElasticNet
Val R? = 0.935, Test R* = 0.933

RandomForest

SVR
Val R? = 1.000, Test R* = 1.000 Val R? = 0.959, Test R* = 0.954
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Fig. 6. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for ALO. (d) The performance comparison of the models for ALO. (e) ALO’s

convergence curve.

MLP model also show that ALO can work harmoniously with different
learning paradigms. However, the performance of classical regression
approaches (SVR and ElasticNet) remains limited due to the complexity
of the problem width. The convergence curve shows the model’s behav-
ior during the training process in Fig. 6(e). The training loss (blue line)
and validation loss (red line) show a rapid decrease at the beginning
(starting from about 0.7) and flatten significantly after about 50 itera-
tions. The validation loss follows a parallel course with the training loss,
indicating that the model does not overtrain and generalizes well to un-
seen data. At about the 75th iteration, both losses reach their minimum
values and remain steadily low for the rest of the training process (up
to 200 iterations).

Fig. 7(a) is a relationship analysis of the prediction-actual value. The
models’ prediction capabilities were examined for values in the range
of [-2.0,1.0]. GradientBoosting and RandomForest models showed the
closest distribution to the ideal prediction line (dashed line). While de-
viations were observed at extreme values (around —2.0 and 1.0) in the
MLP model, high variance was noted in the entire value range in the SVR
model. Systematic deviations and a low accuracy rate (R*> = 0.698) were
observed in the predictions of the ElasticNet model. The AdaBoost model
showed a moderate performance, but it was observed that the deviations
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increased at positive values. Fig. 7(b) shows residual analysis of the DA
approach. The distribution of residual values reveals the characteris-
tics of the prediction errors of the models. The GradientBoosting model
showed the best performance with its residual values concentrated in a
very narrow range around zero. The RandomForest model also exhibits a
similarly concentrated error distribution. While the residual distribution
of the MLP model is close to a normal distribution, the error distribution
of the AdaBoost model is broader and more irregular. The residual dis-
tributions of the SVR and ElasticNet models are spread in the range of
[-1.0,1.0], indicating high uncertainty in the estimates. The Q-Q plots in
Fig. 7(c) evaluate the fit of the models’ residuals to the normal distribu-
tion. The Q-Q plot of the MLP model shows significant deviations at the
extreme values, at the lower end, departing from the theoretical normal
distribution (red line). The Q-Q plot of the AdaBoost model exhibits
a stepped structure, indicating that the residuals take discrete values.
The Q-Q plots of the GradientBoosting and RandomForest models show
unique features. The GradientBoosting model plot deviates from the cen-
tral region’s theoretical line. In contrast, the plot of the RandomForest
model is almost a completely horizontal line, indicating that the resid-
uals have mostly constant values. The SVR model better fits the normal
distribution in the middle quantiles. In contrast, the ElasticNet model
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Model Evaluation Results - DA

MLP AdaBoost GradientBoosting
Val R = 0.986, Test R* = 0.987 Val R? = 0.936, Test R? = 0.947 Val R? = 0.999, Test R? = 0.999

ElasticNet
Val R? = 0.635, Test R? = 0.698

RandomForest

SVR
Val R = 1.000, Test R? = 0.999 Val R? = 0.843, Test R* = 0.834
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Fig. 7. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for DA. (d) The performance comparison of the models for DA. (e) DA’s

convergence curve.

exhibits a significant nonlinear structure and shows significant devia-
tions from the normal distribution. Model performance metrics analy-
sis is demonstrated in Fig. 7(d). The performance of six different ma-
chine learning models in the DA approach was evaluated on three basic
metrics. GradientBoosting and RandomForest models showed the low-
est error rates in the MAE and RMSE metrics (approximately 0.01). The
ElasticNet model exhibited the highest error rates, with an MAE value of
around 0.25 and an RMSE value of around 0.30. While the GradientBoost-
ing and RandomForest models showed excellent performance (R? ~ 1.0)
in the R? metric, the performance of the SVR and ElasticNet models re-
mained significantly lower (R? < 0.85). The MLP model showed mod-
erate success, reaching R> = 0.977 on the test set. The DA optimization
approach gave the best results with ensemble learning methods (Gradi-
entBoosting and RandomForest). These models showed superiority over
other approaches in terms of both prediction accuracy and model stabil-
ity. The moderate success of MLP shows that deep learning approaches
can work in harmony with DA. However, the performance of classical
regression approaches (SVR and ElasticNet) was limited due to the com-
plexity of the problem space. These results show that DA optimization
is effective with ensemble methods. The convergence curve in Fig. 7(e)
shows the training behavior of the model under DA optimization. The
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training loss (blue line) and validation loss (red line) show a rapid de-
crease starting from approximately 0.5 at the beginning and become
significantly flat after approximately 60 iterations. The almost complete
overlap of the two curves proves that the model does not over-train and
performs similarly on the training and validation sets. Compared to the
ALO optimization, the convergence curve of DA optimization shows that
the difference between the training and validation losses is smaller, in-
dicating that DA provides a more stable optimization process.
Relationship analysis of prediction-actual value is given in Fig. 8(a).
The models’ prediction capabilities were examined in the value range
[-1.0,1.0]. GradientBoosting and RandomForest models showed the
closest distribution to the ideal prediction line (dashed line). The MLP
model generally showed good performance (R* = 0.988), but small de-
viations were observed at extreme values. While the AdaBoost model
showed satisfactory performance (R> = 0.984), high variance was no-
ticeable in the SVR model, particularly at positive values. Significant de-
viations and low accuracy rates were observed in the predictions of the
ElasticNet model. Residual Analysis for GOA is shown in Fig. 8(b). The
distribution of residual values reveals the characteristics of the predic-
tion errors of the models in detail. The residual values of the Gradient-
Boosting model were concentrated in the range of 0.0 — 0.1, exhibiting



Z. Elmi et al.

Expert Systems With Applications 296 (2026) 129194

Model Evaluation Results - GOA
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Fig. 8. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GOA. (d) The performance comparison of the models for GOA. (e) The

convergence curve for GOA approach.

optimum performance. The RandomForest model also showed a similar
error distribution, which was concentrated around zero. The residual
distribution of the MLP model is close to a normal distribution in the
range of [—0.2,0.3], while the error distribution of the AdaBoost model
is wider in the range of [—0.1,0.3]. The residual distribution of the SVR
model is wide in the range of [—1.5,0.0]. In contrast, the residual values
of the ElasticNet model are distributed in the range of [-0.6,0.8], indi-
cating that the model’s predictive reliability is low. Fig. 8(c) evaluates
the conformity of the residuals of the models to the normal distribution.
The Q-Q plot of the MLP model shows moderate deviations from the the-
oretical normal distribution line (red line), indicating that the residuals
have a slightly asymmetric distribution. The Q-Q plot of the AdaBoost
model shows a stepped structure, indicating that the residuals have dis-
crete values. The Q-Q plot of the GradientBoosting model shows signifi-
cant deviations at the lower end. The points forming an almost horizon-
tal line in the lower section indicate that the residuals are concentrated
at a specific value. The Q-Q plot of the RandomForest model similarly
consists of horizontal segments, indicating that the residuals have many
of the same values. The Q-Q plot of the SVR model shows a nonlinear
trend, indicating that the residuals deviate significantly from the normal
distribution. The Q-Q plot of the ElasticNet model, on the other hand,
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shows a stepped structure with significant deviations at the extreme val-
ues. Fig. 8(d) shows the model performance metrics analysis. The perfor-
mance evaluation of the six machine learning models tested under the
GOA approach was performed using the MAE, RMSE, and R? metrics.
GradientBoosting and RandomForest models stood out with the lowest
error rates. MAE values were below 0.01 for both models. The Elastic-
Net model showed the highest error rates, with the MAE value around
0.14 and the RMSE value around 0.23. GradientBoosting (0.997) and Ran-
domForest (0.998) models showed almost perfect performance in the R?
metric, while ElasticNet’s performance on the test set was relatively low
(R? = 0.719). The GOA optimization approach showed superior perfor-
mance, particularly with ensemble learning methods (GradientBoosting
and RandomForest). These models showed significant superiority over
other approaches in terms of both prediction accuracy and model sta-
bility. The high performance of the MLP model (R> = 0.988) shows that
deep learning approaches can work effectively with GOA. The AdaBoost
model also gave satisfactory results. However, the performance of clas-
sical regression approaches (SVR and ElasticNet) was limited due to the
complexity of the problem space. These results show that GOA optimiza-
tion gives effective results, particularly with ensemble methods, and can
be a successful alternative in complex optimization problems. Fig. 8(e)



Z. Elmi et al.

Expert Systems With Applications 296 (2026) 129194
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Fig. 9. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for GWO. (d) The performance comparison of the models for GWO. (e)

The convergence curve for GWO approach.

shows the model’s training process under GOA optimization. The train-
ing loss (blue line) and validation loss (red line) show a rapid decrease
starting from about 0.43 at the beginning and become distinctly differ-
ent after about 50 iterations. The validation loss flattens out at about
0.05, while the training loss approaches almost zero. This divergence
indicates that the model shows a certain degree of overfitting tendency
under GOA optimization. The divergence becomes stable after about 50
iterations, and the increase in validation loss is stopped. This shows that
GOA optimization cannot further improve the model’s generalization
ability after a certain point. The prediction-actual value relationship
analysis for Grey Wolf Optimizer is shown in Fig. 9(a). The models’ pre-
diction capabilities were evaluated in the value range [-2.0, 1.0]. Gradi-
entBoosting and RandomForest models showed the closest distribution
to the ideal prediction line (dashed line). The MLP model successfully
performed with the value of Val-R? = 0.991, but small deviations were
observed at extreme values. While the AdaBoost model (Val R? = 0.962)
showed a satisfactory performance, high variance and deviations are
noticeable in the SVR model at positive values. Systematic deviations
and a low accuracy rate (Val R?> = (0.589) are noticeable in the predic-
tions of the ElasticNet model. Fig. 9(b) represents the residual analysis
of GWO. The distribution of residual values reveals the characteristics of

the prediction errors of the models in detail. The residual values of the
GradientBoosting model showed optimum performance by concentrat-
ing in a very narrow range around zero. The RandomForest model also
showed a similarly concentrated error distribution. The residual distri-
bution of the MLP model is close to a normal distribution in the range of
[-0.4,0.2], while the error distribution of the AdaBoost model is wider
in the range of [-0.1,0.4]. The residual distribution of the SVR model
is in the range of [—1.5, 1.0], while the residual values of the ElasticNet
model are in the range of [—1.5,1.2]. Fig. 9(c) evaluates the conformity
of the residuals of the models to the normal distribution. The Q-Q plot
of the MLP model shows a good overall fit to the theoretical normal
distribution line (red line), although it shows slight deviations at the
extreme values. The Q-Q plot of the AdaBoost model shows a distinct
stepped structure and deviates from normality at the extreme values.
The Q-Q plot of the GradientBoosting model shows extreme deviation
at the upper end and contains horizontal segments. The Q-Q plot of the
RandomForest model consists almost entirely of horizontal segments,
indicating that the residuals have many identical values. The Q-Q plot
of the SVR model shows a better fit to the normal distribution in the
middle quantiles. In contrast, the Q-Q plot of the ElasticNet model ex-
hibits a distinct S-shaped pattern and shows significant deviations from
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Model Evaluation Results - MFO
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Fig. 10. (a) Model prediction comparison. (b) Residual analyses. (c) MFO’s Q-Q Residual analyses. (d) The performance comparison of the models for MFO. (e) The

convergence curve for MFO approach.

normality. Also, the analysis of model performance metrics is indicated
in Fig. 9(d). The performance of the machine learning models tested
under the GWO approach was evaluated on three basic metrics. Gra-
dientBoosting and RandomForest models showed superior performance
compared to other models. When the MAE values are examined, it is
seen that the error rates of these two models are below 0.01. The Elas-
ticNet model showed the highest error rates, with an MAE value of
approximately 0.20 and an RMSE value of 0.35. GradientBoosting and
RandomForest models showed almost perfect performance in R? met-
ric (0.993 and 0.993, respectively), while the ElasticNet model’s perfor-
mance on the test set was relatively low (R? = 0.580). GWO optimiza-
tion approach showed superior performance, particularly with ensemble
learning methods (GradientBoosting and RandomForest). These models
showed significant superiority over other approaches in terms of both
prediction accuracy and model stability. The high performance of the
MLP model (R? = 0.988) shows that deep learning approaches can work
effectively with GWO. However, the performance of classical regression
approaches (SVR and ElasticNet) was limited due to the complexity of
the problem space. These results show that GWO optimization gives ef-
fective results with ensemble methods and can be a reliable alternative
in complex optimization problems. Fig. 9(e) shows the model’s train-
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ing process under GWO optimization. The training loss (blue line) and
validation loss (red line) show a rapid decrease starting from approxi-
mately 0.5 at the beginning and become significantly flat after approx-
imately 75 iterations. The two curves are very close, proving that the
model does not over-train and performs similarly on the training and
validation sets. After approximately 100 iterations, both the training
and validation losses reach their minimum values and remain steadily
low throughout the rest of the training process (up to 200 iterations).
The prediction-actual value relationship analysis is shown in
Fig. 10(a). The models’ prediction capabilities were examined in the
[-1.0,1.0] value range. GradientBoosting and RandomForest models al-
most perfectly fit the ideal prediction line (dashed line). While the MLP
model made successful predictions, particularly in the middle value
range, it showed small deviations in extreme values. The AdaBoost
model (Test R? = 0.973) showed satisfactory performance, but it was ob-
served that the deviations increased at high values. While high variance
and deviations were noticeable in positive values in the SVR model,
systematic deviations and a low accuracy rate were noticeable in the
predictions of the ElasticNet model. Fig. 10(b) represents the resid-
ual analysis of MFO. The distribution of residual values reveals the
characteristics of the prediction errors of the models in detail. The
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residual values of the GradientBoosting model were concentrated in a
very narrow range around zero and exhibited optimum performance
with a frequency value close to 600. The RandomForest model also
showed a similarly sharp error distribution. The residual distribution
of the MLP model is close to a normal distribution in the range of
[-0.2,0.2], while the error distribution of the AdaBoost model is wider in
the range of [-0.4,0.2]. The residual distribution of the SVR model is in
the range of [—0.4, 0.6], while the residual values of the ElasticNet model
are in the range of [-0.6, 1.0]. Fig. 10(c) evaluates the conformity of the
residuals of the models to a normal distribution. The Q-Q plot of the MLP
model shows significant deviations from the theoretical normal distribu-
tion line (red line) at the upper end. The Q-Q plot of the AdaBoost model
shows a stepped structure, indicating that the residuals have discrete
values. The Q-Q plot of the GradientBoosting model has a very char-
acteristic structure, consisting mostly of horizontal segments. This situ-
ation shows that the residuals are concentrated at specific values. The
Q-Q plot of the RandomForest model is almost completely horizontal,
indicating that the residuals mostly have the same value. The Q-Q plot
of the SVR model shows a radial structure, indicating that the residuals
show significant deviations from the normal distribution. The Q-Q plot
of the ElasticNet model shows a stepped and S-shaped structure, indicat-
ing significant deviations from the theoretical line. Model performance
metrics analysis is given in Fig. 10(d). The performance of six different
machine learning models was evaluated under the MFO approach. Gra-
dientBoosting and RandomForest models showed superior performance
compared to other models. When the MAE values are examined, it is
seen that the error rates of these two models are at a minimum level (ap-
proximately 0.001). The ElasticNet model showed the highest error rates,
with an MAE value of 0.25 and an RMSE value of 0.30. GradientBoost-
ing (Val R* = 1.000) and RandomForest (Val R?> = 1.000) models showed
excellent performance in R? metrics, while the performance of the Elas-
ticNet model on the test set was quite low (R? = 0.637). The MLP model
showed a medium-high success (Test R> = 0.987) and consistently per-
formed. The MFO optimization approach showed superior performance
with ensemble learning methods (GradientBoosting and RandomForest).
These models showed significant superiority over other approaches in
terms of both prediction accuracy and model stability. The high per-
formance of the MLP model (Test R?> = 0.987) shows that deep learning
approaches can work effectively with MFO. However, the performance
of classical regression approaches (SVR and ElasticNet) was limited due
to the complexity of the problem space. These results show that MFO
optimization is effective when used with ensemble methods and can be a
reliable alternative in complex optimization problems. Fig. 10(e) shows
the model’s training process under MFO optimization. The training loss
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.45 at the beginning and become significantly
flat after approximately 40 iterations. The two curves are quite close
to each other, proving that the model does not over-train and performs
similarly on the training and validation sets. After approximately 60 it-
erations, both the training and validation losses reach their minimum
values and remain steadily low for the rest of the training process (up
to 100 iterations).

Prediction-Actual Value Relationship Analysis is indicated in
Fig. 11(a). In the analysis performed in the [-2.0, 1.0] range, Gradient-
Boosting and RandomForest models showed the closest performance to
the ideal prediction line (Test R? = 0.993). Although the overall per-
formance of the MLP model was well explained, deviations were ob-
served at extreme values. While high variances (Test R? = 0.673) were
observed in the SVR model, serious deviations were observed in the
predictions of the ElasticNet model (Test R? =0.157). The AdaBoost
model showed moderate performance (Test R> = 0.937). Fig. 11(b) is
the residual analysis for the MVO metaheuristic. The residual values of
the GradientBoosting model are concentrated in a very narrow range
around zero (around 600 frequencies). The RandomForest model ex-
hibits a similarly sharp error. The residual state of the MLP model is
close to a normal distribution along [—0.75,0.25]. The residual values
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of the SVR and ElasticNet models are spread over a wide range (be-
tween —2.0 and 1.5), indicating low prediction reliability. The Q-Q plots
presented in Fig. 11(c) evaluate the conformity of the residuals of the
models to the normal distribution. The Q-Q plot of the MLP model shows
deviations from the theoretical normal distribution line (red line) at the
upper end, indicating that the distribution of the residuals has a positive
tail. The Q-Q plot of the AdaBoost model exhibits a stepped structure,
indicating that the residuals have discrete values. The Q-Q plots of the
GradientBoosting and RandomForest models exhibit a very character-
istic structure consisting of horizontal segments. This structure shows
that the residuals mostly have the same value, thus significantly de-
viating from the normal distribution. The Q-Q plot of the SVR model
forms an S-shaped curve, indicating that the residuals systematically
deviate from the normal distribution. The Q-Q plot of the ElasticNet
model shows the largest deviations from the theoretical line, indicating
that the residuals have a distribution far from the normal distribu-
tion. Model performance metrics analysis is in Fig. 11(d). Gradient-
Boosting and RandomForest models performed better than other mod-
els (MAE < 0.01). ElasticNet model has high error rates (M AE ~ 0.30,
RM SE ~ 0.50). While GradientBoosting and RandomForest models ex-
hibit high performance (R* > 0.99) in R? metrics, the test performance of
the ElasticNet model is quite low (R? = 0.157). The MLP model showed
a medium-high level of success (Test R?> = 0.979). MVO grouping, ob-
taining the best results with ensemble learning methods (GradientBoost-
ing and RandomForest). The high performance of MLP shows that deep
learning treatments can work in harmony with MVO. The poor perfor-
mance of classical regression treatments (SVR and ElasticNet) reveals
that they are inadequately monitored to manage the complexity of the
problem. The convergence curve in Fig. 11(e) shows the model’s training
process under MVO optimization. The training loss (blue line) and vali-
dation loss (red line) show a rapid decrease starting from approximately
0.5 at the beginning and become significantly flat after approximately 75
iterations. The two curves are very close to each other, proving that the
model does not overtrain and performs similarly on the training and val-
idation sets. After approximately 100 iterations, both losses reach their
minimum values and remain steadily low for the rest of the training
process (up to 200 iterations).

Fig. 12(a) represents the analysis of the prediction-actual value. In
the analysis performed in the [—1.5, 1.5] value range, GradientBoosting
(Test R? = 0.993) and RandomForest (Test R2 = 0.991) models showed
the closest performance to the ideal prediction line. Although the over-
all performance of the MLP model was good, deviations were observed
at extreme values. While high variance (Test R? = 0.638) was observed
in the SVR model; there were serious deviations in the estimates of
the ElasticNet model (Test R? = 0.346). The AdaBoost model exhibited
satisfactory performance (Test R? = 0.959). A residual analysis of this
approach is shown in Fig. 12(b). The residual values of the Gradient-
Boosting and RandomForest models are concentrated in a very narrow
range around zero (frequency close to 600). The residual distribution
of the MLP model is close to a normal distribution in the [-1.0,0.5]
range. The residual distribution of the SVR model is in the range of
[-2.0,2.0], while the residual values of the ElasticNet model are in the
range of [—1.5,2.0]. The Q-Q plots presented in Fig. 12(c) evaluate the
conformity of the residuals of the models to the normal distribution.
The Q-Q plot of the MLP model shows deviations from the theoreti-
cal normal distribution line (red line) at the extreme values. The Q-Q
plot of the AdaBoost model exhibits a stepped structure and shows sig-
nificant deviations, particularly at the upper end. The Q-Q plot of the
GradientBoosting model shows a characteristic structure consisting of
horizontal segments, indicating that the residuals are concentrated at
certain values (particularly around zero). The Q-Q plot of the Random-
Forest model is almost completely horizontal, indicating that the resid-
uals mostly have a single value. The Q-Q plots of the SVR and ElasticNet
models exhibit S-shaped curves, indicating that the residuals have sys-
tematic deviations from the normal distribution. Significant deviations
are observed at the extreme values, particularly in the SVR model. In



Z. Elmi et al.

Expert Systems With Applications 296 (2026) 129194

Model Evaluation Results - MVO

MLP AdaBoost GradientBoosting RandomForest SVR ElasticNet
Val R* = 0.990, Test R* = 0.989 Val R? = 0.927, Test R* = 0.937 Val R? = 0.999, Test R* = 0.993 Val R? = 0.998, Test R* = 0.993 Val R? = 0.671, Test R* = 0.673 Val R? = 0.150, Test R* = 0.157
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Fig. 11. (a) Model prediction comparison. (b) Residual analyses. (c) Q-Q Residual analyses for MVO. (d) The performance comparison of the models for MVO. (e)

The convergence curve for MVO approach.

addition, Fig. 12(d) shows an analysis of model performance metrics.
GradientBoosting and RandomForest models stand out with the lowest
error rates (MAE < 0.01). The ElasticNet model has the highest error val-
ues (M AE =~ 0.55, RM SE ~ 0.80). While ensemble models show almost
perfect performance in the R?> metric (R > 0.99), the test performance
of ElasticNet is very low (R? = 0.346). The MLP model exhibited con-
sistent performance (Test R? = 0.989). SSA optimization gave the best
results with ensemble learning methods. The high performance of MLP
shows that deep learning approaches can work in harmony with SSA.
The low performance of classical regression approaches (SVR and Elas-
ticNet) reveals inadequate management of space complexity. These re-
sults show that SSA provides effective results when used with ensem-
ble methods and can be a reliable alternative in complex optimization
problems. The convergence curve on the right side of Fig. 12(e) shows
the model’s training process under SSA optimization. The training loss
(blue line) and validation loss (red line) show a rapid decrease start-
ing from about 0.9 at the beginning and slow down after about 50 it-
erations. After about 100 iterations, the training loss approaches zero,
while the validation loss flattens out at about 0.08. This divergence re-
veals that the model shows a certain degree of overfitting tendency un-
der SSA optimization. The divergence becomes stable after 100 itera-
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tions, and the difference between training and validation losses remains
constant.

Finally, the analysis of prediction-actual values is in Fig. 13(a). In the
analysis performed in the [-2.0, 1.0] value range, GradientBoosting (Test
R? =0.996) and Random Forest (Test R? = 0.989) models showed the
closest performance to the ideal prediction line. While the MLP model
made successful predictions, remarkably in the middle value range, it
showed deviations in the extreme values. While high variance (Test
R? = 0.865) was observed in the SVR model, there were serious devi-
ations in the predictions of the ElasticNet model (Test R? = 0.168). The
AdaBoost model showed satisfactory performance (R?> = 0.960). Also,
residual analysis is offered in Fig. 13(b). The residual values of the Gra-
dientBoosting model were concentrated in a very narrow range around
zero (frequency close to 600). The RandomForest model showed a simi-
larly sharp error distribution. The residual distribution of the MLP model
is close to a normal distribution in the range of [-0.2,0.2]. The residual
distribution of the SVR model is in the range of [—-1.5,1.0], while the
residual values of the ElasticNet model are in the range of [-2.0,1.0].
The Q-Q plots presented in Fig. 13(c) evaluate the conformity of the
residuals of the models to the normal distribution. The Q-Q plot of the
MLP model shows significant deviations from the theoretical normal
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Model Evaluation Results - SSA
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Fig. 12. (a) Model prediction comparison. (b) Residual analyses. (c) SSA’s Q-Q Residual analyses (d) The performance comparison of the models for SSA. (e) SSA’s

convergence curve.

distribution line (red line) at the upper end. This shows that the distri-
bution of the residuals exhibits positive skewness. The Q-Q plot of the
AdaBoost model exhibits a stepped structure and shows significant de-
viations from normality. The Q-Q plot of the GradientBoosting model
exhibits a very characteristic structure with horizontal segments, indi-
cating that the residuals are concentrated at certain values (particularly
around zero). The Q-Q plot of the RandomForest model is almost com-
pletely horizontal, confirming that the residuals mostly have a single
value. The Q-Q plot of the SVR model exhibits an S-shaped curve, indi-
cating that the residuals exhibit systematic deviations from the normal
distribution. The Q-Q plot of the ElasticNet model shows the largest
deviations from the theoretical line, exhibiting a stepped and irregular
structure. Fig. 13(d) is the analysis of the model performance metric.
GradientBoosting (MAE < 0.01) and RandomForest (MAE < 0.01) mod-
els show the lowest error rates, while ElasticNet has the highest error
values (M AE ~0.30, RM S E ~0.50). GradientBoosting (ValR? = 1.000)
and RandomForest (Test R = 0.989) models showed superior perfor-
mance in the four metrics. The test performance of ElasticNet is very low
(R? = 0.168). The MLP model showed a consistent performance (Test
4). WOA optimization yielded the best results with ensemble learning
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methods (GradientBoosting and RandomForest). The high performance
of MLP shows that deep learning approaches can work in harmony with
WOA. The low performance of classical regression approaches (SVR and
ElasticNet) shows that they are inadequate in handling the space com-
plexity of the problem. These results show that WOA provides effective
results, particularly when used with ensemble methods, and can be a
reliable alternative in complex optimization problems. Fig. 13(e) shows
the model’s training process under WOA optimization. The training loss
(blue line) and validation loss (red line) show a rapid decrease start-
ing from approximately 0.5 at the beginning and become significantly
flat after approximately 75 iterations. The two curves are very close to
each other, proving that the model does not over-train and performs
similarly on the training and validation sets. After approximately 100
iterations, both the training and validation losses reach their minimum
values and remain steadily low throughout the rest of the training pro-
cess (up to 200 iterations). In order to compare model performances not
only visually but also statistically, correlation coefficients between the
actual values and the predicted values were calculated for each model
and metaheuristic combination. In this paper, the Pearson correlation
coefficient, which evaluates the linear relationship, the Spearman cor-
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Model Evaluation Results - WOA
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Fig. 13. (a) Model prediction comparison. (b) Residual analyses. (c) WOA’s Q-Q Residual analyses (d) The performance comparison of the models for WOA. (e)

WOA'’s convergence curve.

relation, which measures the sequential relationship, and the Kendall
Tau correlation coefficient, which provides more robust results based on
ranking, were used. According to the results obtained, Gradient Boost-
ing and Random Forest models attracted attention with high correlation
values under almost all metaheuristic algorithms (for example, Pearson
= 0.999988, Spearman 0.999981, and Kendall Tau 0.999563 for
Random Forest under NBRO-AGP). This shows that these models ex-
hibit strong performance not only in terms of accuracy but also in terms
of statistical consistency. On the other hand, the ElasticNet model was
insufficient with low correlation values under many metaheuristics in
complex nonlinear patterns (for example, Pearson = 0.418 under WOA).
This finding provides a statistical justification for the low visual accu-
racy of ElasticNet. The corresponding correlation values are presented
in Table 2 and numerically support the observations in all figures.

We see the performance comparison of metaheuristic algorithms on
machine learning models in Fig. 14. In Fig. 14(a), the distributions of test
performance metrics (R?, RMSE, and MAE) are shown as box plots. In
terms of R? scores, most metaheuristic algorithms performed above 0.9.
NBRO-AGP and ALO exhibited particularly consistent and high R? val-
ues. A wider variability was observed in the SSA algorithm. In RMSE and
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MAE values, NBRO-AGP had the lowest error rates. Among the meta-
heuristic algorithms, SSA showed relatively higher error values. GWO
exhibited a moderate performance. Fig. 14(b) shows the R? scores at the
intersection of different metaheuristic algorithms and machine learning
models with a heat map. GradientBoosting and RandomForest models
achieved R? scores above 0.99 with all metaheuristic algorithms. The
ElasticNet model performed poorly overall, with R* values below 0.2,
particularly with MVO and SSA. The NBRO-AGP algorithm showed con-
sistently high performance across all models. ALO produced similarly
strong results. The GWO algorithm achieved R? scores above 0.95 in all
models except ElasticNet. Our comprehensive analysis of protein sol-
ubility prediction has yielded remarkable results in machine-learning
models using NBRO-AGP features. Random Forest and GradientBoosting
models showed exceptional performance with a Test R? value of 0.999.
These findings have the potential to radically transform the develop-
ment of protein-based drugs in the biopharmaceutical industry. High-
accuracy prediction of protein solubility allows optimization at many
stages from the formulation of therapeutic proteins to manufacturing
processes. In particular, these predictions play a critical role in prevent-
ing the formation of protein aggregates and increasing bioavailability.
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Fig. 14. (a) Test Metric Distributions, (b) Model-Algorithm Performance Matrix.

The high accuracy of our models allows for predicting potential failures
at early stages of drug development, contributing to more efficient use
of research and development resources and reducing overall costs. It is
widely stated in the literature that the properties such as hydrophobic-
ity, net charge, isoelectric point, aliphatic index, and surface accessi-
bility, which are frequently selected by NRBO-AGP, are directly related
to protein solubility. For example, while high hydrophobicity increases
the tendency of the protein to aggregate and decreases the solubility,
increasing surface accessibility stands out as a factor supporting solubil-
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ity. It is known that these properties are determinant not only in protein
solubility but also in many biotechnological applications such as recom-
binant protein production, antibody engineering, and biopharmaceuti-
cal formulation. In this respect, the properties obtained by the NRBO-
AGP method are statistically and biologically significant and provide a
strong basis for future interdisciplinary applications. It also provides a
powerful tool for designing amino acid changes that increase solubil-
ity in protein engineering studies. The fact that the features selected
with the NBRO-AGP method produce such successful results demon-
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Table 2

Correlation coefficients between model predictions and actual values (Pear-

son, Spearman, Kendall Tau).

Metaheuristic =~ Model Pearson Spearman  Kendall Tau
AdaBoost 0.998303 0.987990 0.963152
ElasticNet 0.967947  0.929723 0.800877
GradientBoosting ~ 0.999999  0.992735 0.954862
NBRO_AGP MLP 0.999027 0.988412 0.935237
RandomForest 0.999988 0.999981 0.999563
SVR 0.982522  0.960146 0.861872
AdaBoost 0.945878 0.955462 0.888327
ElasticNet 0.765027  0.654718 0.461049
NBRO GradientBoosting ~ 0.999391 0.992114 0.949788
MLP 0.985855  0.974065 0.895431
RandomForest 0.998530 0.996911 0.993200
SVR 0.882879  0.859950 0.711308
AdaBoost 0.986542 0.992458 0.964238
ElasticNet 0.942713  0.872213 0.721369
AGP GradientBoosting ~ 0.998222  0.994353 0.957177
MLP 0.987724  0.976116 0.898054
RandomForest 0.993777 0.999709 0.998003
SVR 0.978231 0.956830 0.853470
AdaBoost 0.996559 0.982114 0.932482
ElasticNet 0.970845  0.927506 0.791865
ALO GradientBoosting ~ 0.999669  0.991664 0.949924
MLP 0.998512  0.985959 0.929794
RandomForest 0.999873 0.999988 0.999779
SVR 0.979805  0.957635 0.850070
AdaBoost 0.976700  0.877000 0.774800
ElasticNet 0.846300 0.497100 0.402100
DA GradientBoosting ~ 0.999300  0.996800 0.988200
MLP 0.957300  0.840500 0.701100
RandomForest 0.999400 0.999200 0.996600
SVR 0.917500  0.708400 0.560900
AdaBoost 0.985974  0.879771 0.769910
ElasticNet 0.782648 0.591697 0.503966
GWO GradientBoosting ~ 0.996662  0.993088 0.970633
MLP 0.991184  0.954466 0.856240
RandomForest 0.996458 0.997209 0.993983
SVR 0.960963  0.891086 0.764830
AdaBoost 0.986632  0.981457 0.929575
ElasticNet 0.811422 0.711784 0.558258
MFO GradientBoosting 0.999191 0.996772 0.985423
MLP 0.991661 0.972416 0.889565
RandomForest 0.998998 0.997962 0.995940
SVR 0.961442  0.935409 0.814831
AdaBoost 0.982818  0.836589 0.704419
ElasticNet 0.418802 0.441545 0.333612
WOA GradientBoosting 0.997866 0.991143 0.959606
MLP 0.992088  0.964743 0.886124
RandomForest 0.994488 0.992273 0.990448
SVR 0.933038  0.832773 0.688672
AdaBoost 0.992502  0.987290 0.955051
ElasticNet 0.862391 0.760841 0.623845
GOA GradientBoosting ~ 0.998313  0.992360 0.973621
MLP 0.990534  0.967153 0.886029
RandomForest 0.999070 0.998730 0.996059
SVR 0.961703  0.922348 0.784832
AdaBoost 0.969091 0.748847 0.633105
ElasticNet 0.404669 0.372518 0.280063
MVO GradientBoosting 0.996612 0.990915 0.958677
MLP 0.988211 0.953214 0.854097
RandomForest 0.996626 0.992292 0.985404
SVR 0.821646  0.591715 0.452282
AdaBoost 0.983486  0.985413 0.931633
ElasticNet 0.608959 0.594531 0.465587
SSA GradientBoosting 0.996629 0.990883 0.947452
MLP 0.994901 0.982922 0.921859
RandomForest 0.995365  0.995875 0.992719
SVR 0.799956 0.780021 0.625279
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strates that the physicochemical properties affecting protein solubility
are effectively captured. In order to further strengthen the validity of
the proposed NRBO-AGP method, some robust FS approaches that have
been widely tested in the biomedical field are also referred to. In par-
ticular, ReliefF, Minimum Redundancy Maximum Relevance (mRMR),
and Boruta have been widely applied to high-dimensional datasets such
as gene expression profiles and consistently provide high predictive
performance. For example, Gulande and Awale (2025) achieved over
92 % accuracy on microarray data with a hybrid FS approach combin-
ing mRMR and RSA methods. Similarly, Phan et al. (2025) proposed
the BOLIMES method, which integrates Boruta and LIME algorithms
for gene expression classification. Furthermore, Hamidi et al. (2023)
successfully identified significant miRNA biomarkers using the Boruta
method in ovarian cancer diagnosis. These studies highlight the impor-
tance of robust FS strategies in biomedical applications and support the
potential applicability of the proposed NRBO-AGP method in these areas
(Table A.1).

5. Conclusion

The results of this study show that the Newton-Raphson-based opti-
mization algorithm is an effective method for continuous optimization
problems. The results revealed that NRBO-AGP performed better than
other metaheuristic algorithms in all regression models. The best results
were obtained with Gradient Boosting, reaching MAE: 0.0001 + 0.0000,
RMSE: 0.0008 + 0.0000, and R?: 0.9908 + 0.0005 values. Similar high
performance (MAE: 0.0002 + 0.0000, RMSE: 0.0025 + 0.0000, and R2:
0.9908 + 0.0005) was observed with Random Forest Regressor. The mul-
tiple comparison Friedman test and subsequent Nemenyi post-hoc anal-
ysis confirm that NRBO-AGP is significantly more effective (p < .05), in
terms of RMSE and MAE error values, and reaches the best ranking com-
pared to competing algorithms in the R? accuracy metric. These findings
show that NRBO-AGP is an effective feature selection tool in predicting
protein solubility. The high performance of the proposed method in-
dicates that it can be a useful tool in the field of bioinformatics and
particularly in the analysis of protein properties. In future studies, the
application of this method for other biological datasets and future work
may explore combining it with alternative machine learning models to
assess the generalizability and applicability across a broader perspec-
tive.
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Appendix A. Hyperparameter settings

Table A.1
Hyperparameters, their descriptions, and values for the proposed
method.
Hyperparameter ~ Description Value / Range
a Initial L1 regularization 0.001
coefficient
Bo Initial L2 regularization 0.001
coefficient
a Perturbation power 0.01-0.1 (adaptive)
coefficient for AGP
(dynamically adjusted)
A Adaptation speed 0.1
P Target gradient rate 0.9
y Diversity weight 0.5
n Learning rate 0.01
T Termination condition 100-500
N Population size 30-100
0 Threshold 0.5 or quantile-based
b b Momentum parameters 0.9 / 0.999
3 Perturbation noise 1078
magnitude in AGP
K K-fold cross validation 5
Ax Range size for NRSR Randomly selected

(adaptive)
Random number U(0,1) / N(0,1)
generators are from the
distribution (0,1) or

N(0,1)

rand,, rand,
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