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Abstract

A linearised finite element numerical scheme for the vibration of inextensible
beams is developed. The proposed scheme is based on the methodology intro-
duced by S. Bartels [15] and satisfies a linearised form of the inextensibility
constraint. The time m arching procedure is based on repeated use of the
theta-parameter integration quadrature. Three parameters are introduced in
total and appropriately selected such that the energy conservation features
are improved compared to the Bartels algorithm while the inextensibility
constraint is satisfied as accurately as possible. Cubic Hermite polynomials
are employed for the spatial discretisation. The Bartels algorithm is retrieved
as a special case. Several numerical experiments are presented demonstrating
the theoretically predicted enhanced inextensibility mimicking and optimum
values of the method parameters are identified.
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1 Introduction

Flexural deformations and flexural vibrations of beams is a core subject
of structural mechanics with numerous applications. Models for the large
deflection of beams and columns can be used to study instabilities of struc-
tures [1, 2], buckling related phenomena [3], biomimetic motion such as
snake locomotion [4, 5] and compliant mechanisms in soft-robotics appli-
cations [6–8]. Inextensible beams form a large subcategory of this type of
systems with equally important applications, such as modelling the mechan-
ical behaviour of textiles [9], the response of flexible risers in the oil &
gas industry [10, 11] and the properties of thin filaments in composite
materials [12].

To model the large amplitude flexural vibrations of inextensible, incom-
pressible beams, the structural component displacement can be simulated as
a curve and be arc-length parameterised [13, 14]. For dynamic analysis let
T > 0, a < b and introduce the arc-length parameter s ∈ I = [a, b]
that defines the position of each point along the beam during the evolution
in a time interval t ∈ [0, T ]. For s ∈ I , the vector valued function

u(s, t) =
[
x(s, t) y(s, t) z(s, t)

]T
, defines the location in R3 of each

point along the length of the inextensible beam. The curvature at each point
s is κ(s) =

√
uss · uss = |uss|, where us = ∂su. The osculating plane of

the curve is defined by the unit vectors T = us/|us| and N = κ−1uss, while
the Frenet-Serret binormal vector, perpendicular to the osculating plane, is
B = κ−1(us × uss) = T× N (Figure 1).

The kinetic energy of the flexible beam is

EK(∂tu) =
1

2

∫
I
m|∂tu|2ds, (1)

where m is the mass distribution along the beam length. Adopting Euler-
Bernoulli assumptions for bending of slender beams, the strain energy of the
beam has the form

EP (u) =
1

2

∫
I
EI|κ|2ds, (2)

where EI denotes the flexural rigidity. The inextensibility of the component
is expressed through the no length change condition [13, 15]

|us|2 − 1 = 0. (3)

For planar problems, the position vector has two components, while both
the 2D and 3D position vector valued functions are denoted as u(s, t) : I ×
[0, T ]→ Rd, with d = 2 or d = 3.
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Figure 1 Frenet vectors and osculating plane for the large displacement vibrations of
inextensible beams.

In the following, boundary conditions which prescribe displacement,
slope, or zero bending moment and shear force at the end points of the beam
are considered. Periodic boundary conditions can be applied as well [15].
Introducing a characteristic length ` and the nondimensional quantities s̃ =
s/`, ũ = u/` and t̃ = `−2t

√
EI/m, the variational form of the beam

vibration problem is (after dropping tildes)∫
I
∂ttu · χds+

∫
I
uss · χssds+

∫
I

Λus · χsds =

∫
I
Q · χds, (4)

for all admissible weight functions χ, where Λ = λ`3/EI is the nondimen-
sional Lagrange multiplier associated with the inextensibility constrain and
Q = qL3/EI is the nondimansional expression of the externally applied
load q. The spatial domain in the nondimensional setting is I = [α, β] =
[a/`, b/`]. Variational form (4) applies for all functions u such that |us|2−1 =
0 in I . The Initial-Boundary Value problem features initial conditions on
position and velocity at time t = 0, of the form

u(s, 0) = uo(s), ut(s, 0) = v(s, 0) = vo(s), (5)

To incorporate the inextensibility constraint, the procedure proposed
in [15, 16] for the simulation of inextensible curves will be adopted. In
particular, the inextensibility constraint will be used and the inextensibility
constraint will be applied only at the mesh nodes. However, in the present
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study a variation of the approximation used in [15] will be considered.
Differentiating the inextensibility constraint |us|2 = 1 with respect to time,
results to

us · vs = 0, (6)

where vs = ∂tus. Assuming sufficient regularity, for time increments ∆t �
1 it is

(us(t) + ∆tvs(t) +O(∆t2)) · vs(t+ ∆t) = 0. (7)

Equation (7) will be the basis for the implementation of the inex-
tensibility constraint in a linearised θ scheme. The introduction of theta
parameters in the approximation of integrals for time-marching procedures
is expected typically to produce versatile methods with improved discrete
energy conservation properties and accuracy [17].

In the following, the standard notation H2(I;Rd) is used to denote the
Sobolev (Hilbert) space W 2,2(I;Rd) of functions defined in I with values in
Rd and ( , ), ‖ ‖ denote the underlying L2 space inner product and induced
norm respectively. For reasons of consistency, the presentation and notation
follows in general the one introduced in [15].

2 The Linearised θ Scheme

For a given time-step τ = tn+1 − tn > 0, integrating Equation (4) in
[tn, tn+1], results to

(vn+1, χ)− (vn, χ) +

∫ tn+1

tn

(uss, χss)dt =

∫ tn+1

tn

(Q,χ)dt, (8)

where the velocity at instant n + 1 is denoted as vn+1. Assuming that the
time step is sufficiently small, the time integral on the left hand side is now
approximated using a θ scheme as∫ tn+1

tn

(uss, χss)dt ≈ (1− θ1)τ (unss, χss) + θ1τ(un+1
ss , χss), (9)

with the parameter θ1 ∈ [0, 1]. At the same time, the update for vector u is
assumed in the form

un+1 = un + τ [(1− θ2)vn + θ2v
n+1], (10)
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where a second parameter θ2 ∈ [0, 1] is introduced. Using now the
approximation (10) for un+1

ss in Equation (9) it is

(1− θ1)τ(unss, χss)+θ1τ(un+1
ss , χss)

= τ(unss, χss) + τ2[θ1(1− θ2)(vnss, χss) + θ1θ2(v
n+1
ss , χss)].

(11)

The inextensibility constraint at step n + 1 is vn+1
s · un+1

s = 0. The key
idea at this point is that for a converging procedure, the value uns +θ3τv

n
s can

be used as a good approximation for un+1
s . Regarding parameter θ3 ∈ [0, 1],

the value θ3 = 0 will lead to the linearised approximation introduced by S.
Bartels in 2016 [15]. Selecting the value θ3 = 1 results in an expression of
the form un+1

s = uns + τvns . For smooth evolution phenomena, the velocity
derivative with respect to the arc length parameter is expected to satisfy an
expansion of the form

un+1
s = uns + τvns +

1

2
τ2ans +O(τ3), (12)

where an is the acceleration at t = tn. Therefore, if the velocity field is
sufficiently smooth, the formula

un+1
s ≈ uns + τvns , (13)

is expected to provide a higher order approximation for un+1
s with principal

error term O(τ2). Hence, the proposed linearised form of the inextensibility
constraint reads

vn+1
s · (uns + θ3τv

n
s ) = 0 in I. (14)

The forcing integral in (8) can be evaluated analytically for simple forms
of the Q function or using numerical integration. For the fully discrete
scheme, we define the function space to be used in spatial discretisation as

V d
h,0 =


vh ∈ H2(I;Rd): vh|Ki ∈ P 3(Ki), i = 1, 2, 3, . . . ,M + 1

and vh satisfies homogeneous essential boundary conditions

at x = a or x = b, where applicable

 .

(15)
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By definition it is V d
h,0 ⊂ H2(I;Rd) and Hermite cubic polynomials,

conforming to the function properties of the space defined in (15) are used as
shape and weight functions in the fully discrete scheme.

Following the analysis in [15, 16, 18], the constraint equations are applied
only at the mesh nodes. Then, the fully discrete algorithm is:

Given uh,j , vh,j ∈ V d
h,0 for j = 0, 1, 2, . . . , n τ > 0 and parameters

θ1, θ2, θ3 ∈ [0, 1], find vh,n+1 ∈ V d
h,0 such that

(vh,n+1, χh)− (vh,n, χh) + τ(uh,nss , χ
h
ss)

+ τ2[θ1(1− θ2)(vh,nss , χhss) + θ1θ2(v
h,n+1
ss , χhss)]

=

∫ tn+1

tn

(Q,χh)dt, and (16)

vh,n+1
s · (uh,ns + θ3τv

h,n
s ) = 0 in I , for all χh ∈ V d

h,0, with χhs · (u
h,n
s + θ3

τvh,ns ) = 0 in I . Update u, using uh,n+1 = uh,n+τ [(1−θ2)vh,n+θ2v
h,n+1].

The method introduced by S. Bartels (2016) is retrieved using the param-
eter values θ1 = θ2 = 1 and θ3 = 0. Analysis of the energy conservation
characteristics for the modified θ method indicates that for θ2 = 1/2 the
energy conservation properties of the method will improve as θ1 → 1/2. This
is expected to some extend due to the trapezoidal integration rule employed
and also verified by the result in the following section. Selecting the value
θ3 = 1 for the constraint equation is expected to lead to better approximation
for the un+1

s value when smooth fields are considered since for τ → 0 it
should be un+1

s = uns + τvns + O(τ2). Analysis of the error introduced due
to the inextensibility constraint is included in the following subsection. In the
following, two cases will be considered as summarised in the following table
(Table 1).

Table 1 Parameter values for the S. Bartels method (2016) and the linearised θ scheme

Parameter Values Method

θ1 = θ2 = 1, θ3 = 0 S. Bartels Method 2016

θ1 ∈ (1/2, 1), θ2 = 1/2, θ3 = 1 Linearised θ method

3 Properties of the θ Scheme

In this section the discrete energy conservation and inextensibility violation
properties of the linearized θ method will be studied.
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3.1 Energy Conservation Properties

The discrete kinetic and strain energy values at time step n are

Eh,nK =
1

2
‖vh,n‖2 and Eh,nP =

1

2
‖uh,nss ‖2. (17)

The values θ1 ∈ (1/2, 1), θ2 = 1/2 and θ3 = 1 are used for the modified
method. Setting χh = τ

2 (vh,n+vh,n+1) in Equation (16) and using the update
definition in the form vh,n+1 = 2

τ (uh,n+1 − uh,n)− vh,n the discrete energy
balance for Q = 0 is

Eh,n+1
K + Eh,n+1

P = Eh,nK + Eh,nP +
1− 2θ1

2
‖uh,n+1

ss − uh,nss ‖2. (18)

Using now again the update definition (10) it is

Eh,n+1
K + Eh,n+1

P = Eh,nK + Eh,nP +
(1− 2θ1)τ

2

8
‖vh,n+1
ss + vh,nss ‖2. (19)

Since θ1 ∈ (1/2, 1) it is 1−2θ1 = −|2θ1−1| and Equation (19) indicates
that numerical dissipation of energy occurs. Iterating Equation (19) results in

Eh,n+1
K + Eh,n+1

P = Eh,0K + Eh,0P −
|2θ1 − 1|τ2

8

n∑
j=0

‖vh,j+1
ss + vh,jss ‖2.

(20)

From Equation (20) it follows that the selection θ1 = 1/2 leads to exact
conservation of the discrete energy. This was expected due to the use of
the trapezoidal integration rule. However, extensive numerical experiments
indicate that the method is unstable for realistic selection of time step τ when
θ1 → 1/2. As the parameter increases and tends to become one, the energy
conservation attribute of the method deteriorates while at the same time the
violation in the inextensibility constraint becomes smaller. The conducted
numerical experiments indicate that a reasonable choice is θ1 ∈ (0.55, 0.95).
The method performance in terms of the inextensibility constraint violation
is examined in Subsection 3.2.

3.2 Inextensibility Constraint Violation

In this section the inextensibility constraint approximation will be analysed.
It will be shown that for sufficiently small time step the error terms are
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proportional to τ2 and that furthermore their multiplicative factors attain
small values. According to the update un+1 = un + τ

2 (vn + vn+1) it is

|un+1
s |2 = |uns + τvns +

τ

2
(vn+1
s − vns )|2. (21)

The orthogonality condition (uns + τvns ) · vk+1
s = 0, implies that

|un+1
s |2 = |uns + τvns |2 − τ(uns + τvns ) · vns +

τ2

4
|vn+1
s − vns |2, or

|un+1
s |2 = |uns |2 + τuns · vns +

τ2

4
|vn+1
s − vns |2. (22)

For n ≥ 1, using again the orthogonality condition it is

uns · vns =
(
un−1s + τvn−1s +

τ

2
(vns − vn−1s )

)
· vns =

τ

2
vns · (vns − vn−1s ),

(23)

and therefore

|un+1
s |2 = |uns |2 +

τ2

2
vns · (vns − vn−1s ) +

τ2

4
|vn+1
s − vns |2. (24)

REMARK: The terms responsible for altering the initial length of the curve
are proportional to τ2 as was also the case in the method proposed by
S. Bartels [15]. Hence, for bounded values of the velocity, the error in the
inextensibility constraint is expected to be small as τ → 0+. In addition to
that, the present formulation has an extra important feature. If the evolution
is smooth and the time step is sufficiently small, the velocity will not undergo
significant changes between successive steps. If this is indeed the case then
for n ≥ 1 vj+1

s ≈ vjs ≈ vj−1s . Noting that the terms proportional to
τ2 are multiplied by the differences vj+1

s − vjs, v
j
s − vj−1s , the error terms

in (24) will become even smaller. It is therefore expected that for smooth
vibration phenomena the proposed modified scheme will provide a very
good approximation of the inextensibility property. If the velocity changes
rapidly between successive steps or if there appear reversals in the velocity
sign, then the violation of the inextensibility constraint is expected to be
severe. However, for small time steps, the terms responsible for the constraint
violation will remain small since they are proportional to τ2.
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4 Implementation and Numerical Results

In the following, M denotes the mass matrix produced by applying the shape
functions to the inner product (χh, χh) and K the stiffness matrix produced by
applying the shape functions to the inner product (χhss, χ

h
ss). The force vector

results from the integral
∫ tn+1

tn
(Q,χh)dt, using again the shape functions as

test functions and is denoted as F hn→n+1.
The method is programmed in MATLAB§and appropriate selection of

the θ parameters is used to reproduce the two schemes in Table 1. Let
Bn be the matrix that corresponds to the nodal inextensibility constraint
conditions and appropriate boundary conditions. Denote Un, V n the vectors
of nodal unknowns and their time derivatives respectively and Λn the vector
of Laplace multipliers. Then, the general implementation form is:

Given Un, V n for j = 0, 1, 2, . . . , n, τ > 0 and parameters θ1, θ2, θ3 ∈
[0, 1] set A = M + θ1θ2τ

2K and D = M− θ1(1− θ2)τ2K. Find admissible
solution vectors V n+1 such that[

A BTn
Bn O

] [
V n+1

Λn+1

]
=

[
DV n − τKUn + Fhn→n+1

0

]
, and (25)

update Un using Un+1 = Un + τ [(1− θ2)V n + θ2V
n+1].

REMARK: The Schur complement with respect to A of the partitioned matrix
in (25) is W = −BnA−1BTn . Then, the updated solution can be represented
as

V n+1 = (I + A−1BTnW
−1Bn)A−1(DV n − τKUn + Fhn→n+1), (26a)

Λn+1 = −W−1BnA−1(DV n − τKUn + Fhn→n+1). (26b)

In (26a) the term A−1(DV n−τKUn+Fhn→n+1) represents the updated state
without accounting for the constraint equations, while I + A−1BTnW

−1Bn is
the factor related to constraint effect. In the following subsections several
numerical examples are presented and the effect of the θ parameters is
studied.

4.1 Unwinding Helix 1 (S. Bartels 2016)

In this first set of numerical experiments the unwinding helix configuration
introduced by S. Bartels [13] is reproduced as a benchmark example. The
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following parameters, boundary and initial conditions are selected:

` = 1, I = [0, 2π], u(0, t) =
[
0 1 0

]T
, us(0, t) =

[
β 0 γ

]T
.

u(0, s) =
[
sin(βs) cos(βs) γs

]T
, v(0, s) =

[
0 0 0

]T
,

β2 =
99

100
, γ2 =

1

100
,

For the first set of results the parameter values for the modified method are
set to θ1 = θ = 0.75, θ2 = 1/2, θ3 = 1. The S. Bartels method is retrieved
using θ1 = θ2 = 1, θ3 = 0. The example is reproduced using 2 different
discretization levels. First, a total of N = 40 elements with an element size
over time-step ratio of h/τ = 2π. Then, the number of elements used is
increase to N = 80 while the element time-step ratio is again h/τ = 2π.

Figure 2 shows the evolution of the discrete system for the mesh with
N = 40 elements. The linearised θ scheme corresponds to the continuous
black line in Figure 2. The S. Bartels method results are also plotted using a
dashed blue line. Small variations between the two solutions are observed as
time values increase. The discrete energy (upper row) and change in length
(lower row) due to the approximate character of the methods is depicted in
Figure 3 for the two discretization levels. The results in Figure 3 demonstrate
that the θ scheme with an appropriate selection of the parameters is more
efficient as for the same discretization level it improves the discrete energy
conservation properties of the system and leads to significantly smaller vio-
lation of the inextensibility constraint. The latter attribute is of course related
to the relatively smooth evolution dynamics of the specific example.

To demonstrate the improved behaviour of the proposed method, the
performance with the parameters N = 40, τ = 1/40, θ = 0.75 is compared
to that of the S. Bartels scheme resulting from using the same parameters
but also from using the refined mesh N = 80, τ = 1/80. The comparison is
plotted in Figure 4. It is evident from the right hand side subplot in Figure 4
that the proposed θ scheme with a less fine mesh produces results comparable
to the more refined mesh S. Bartels method output.

The performance of the linearised θ scheme for different values of the
parameter in the interval θ1 = θ ∈ (0.55, 1) is evaluated in Figure 5.
The energy conservation ability of the method deteriorates as the parameter
increases while at the same time the violation in the inextensibility constrain
decreases. Therefore, an optimum balance on the effect on these two criteria
needs to be considered. As the time step decreases and since the evolution is
relatively smooth, the proposed scheme leads to almost perfect reproduction
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Figure 2 Evolution of the unwinding helix in example 4.1 at specific time instances for SB
method (blue dashed line) and the proposed modified method with θ1 = θ = 0.75 (black
line). The total number of elements is N = 40 and the time-step τ = 1/40.

of the inextensibility (results in the right hand side column of Figure 5)
apart from the first few time steps. This can be attributed to the fact that
in this example the velocity increases faster during the first stages of the
time evolution, while at later stages the velocity between successive steps
does not feature significant differences. This result verifies the validity of
Equation (24). The method of S. Bartels outperforms the proposed scheme
for these few first time-steps. This finding suggests that both methods can be
used in conjunction in order to minimise the violation in the inextensibility
constraint depending on the magnitude of the acceleration during specific
phases of the beam dynamic response.

REMARK: To suppress the violation in the inextensibility constraint that
appears during the first time instances when the modified method is used,



132 T. K. Papathanasiou

Figure 3 Discrete energy evolution (upper row) and change in the beam length for example
4.1. S. Bartels method (blue dashed line) and the proposed modified method with θ = 0.75
are considered in a relatively coarse and a finer mesh.

Figure 4 Snapshots of the unwinding helix in example 4.1 using θ = 0.75 (continuous black
line). Evaluation of the proposed scheme using a relatively coarse mesh against the S. Bartels
method (blue dashed line) results with a coarse (left) and a finer (right) mesh.

the first time step can be performed using θ1 = θ2 = 1 and θ3 = 0, that is the
S. Bartels 2016 method. This option is explored in example 4.2.

4.2 Unwinding Helix 2

To remedy the problematic behaviour of the modified θ method during the
initial time instances, it is proposed that the method is initiated using the S.
Bartels scheme for the first step and then switch to the more general θ scheme.



A Linearised θ Numerical Scheme for the Vibrations 133

Figure 5 Discrete energy conservation (upper row) and change in total length (lower row) of
the unwinding helix in example 4.1 for different values of the parameter θ1 = θ. The number
of elements is N = 40 and the number of time-steps is doubled for the results in the right hand
side column graphs.

To demonstrate the effectiveness of this approach a second example with the
unwinding helix is considered. The geometry of the configuration and initial
conditions are the same as in example 4.1 only now the beam is not clamped
at the lower end. Both ends are considered to be traction free, i.e. the selected
conditions are

` = 1, I = [0, 2π], u(0, s) =
[
sin(βs) cos(βs) γs

]T
,

v(0, s) =
[
0 0 0

]T
, β2 =

99

100
, γ2 =

1

100
,

In this example, the response will be analysed in the time interval [0, 60].
For the modified scheme the parameters are θ1 = θ = 0.6, θ2 = 1/2, θ3 = 1.
Figure 6 displays the energy balance (left) and inextensibility constraint
violation (right) when the modified scheme is applied. It is again observed
that the S. Bartels method outperforms the modified one in the inextensibility
property during the first time steps. This is due to the rapid changes in the
velocity field that occur initially. In Figure 7, the modified method is initiated
with the S. Bartels scheme. It is now observed that the modified method
improves significantly with respect to the constraint violation, while retaining
to some extend its improved energy preserving attributes. Snapshots of the
evolution are presented in Figure 8.
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Figure 6 Discrete energy (left) and change in the beam length (right) for example 4.2.

Figure 7 Discrete energy (left) and change in the beam length (right) for example 4.2.

4.3 Faulted Ring

In this third example, a circular ring with a discontinuity is analysed. An
inextensible thin beam is initially bended in the shape of a circular ring such
that the two end points are coinciding, at the lower point of the configuration,
but are not fixed one to another. The initial velocity is zero. The ring shaped
beam is released from this position at time instant t = 0. The ring unfolds
and encapsulates repeatedly, undergoing flexural vibrations. The parameters
selected are

I = [−π/2, 3π/2], ` = 1, d = 2 and T = 110.

The boundary conditions are set to zero bending moment and shear
force, i.e.

us(−π/2, t) = us(3π/2, t) =
[
0 0

]T
,

uss(−π/2, t) = uss(3π/2, t) =
[
0 0

]T
.

and the initial conditions are

u(s, 0) =
[
cos(s) − sin(s)

]T
, v(s, 0) =

[
0 0

]T
.

The spatial domain is discretised using N = 100 elements and it therefore
is h = 2π/100. A total of 2200 time steps are used for the simulation,
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Figure 8 Snapshots of the evolution when the modified method is initiated with the S.
Bartels scheme in example 4.2.

defining a time-step of τ = 110/2200 = 0.05. Initially, the ring centre
of mass is located at point (x, y) = (0, 0). Since there are no externally
applied forces and moments to this system, the centre of mass should not
undergo translation along the x and y axes during the flexural vibrations.
However, due to the discretization errors introduced, the numerical solution
will feature such motions of the centre of mass. Its location at each time
instant, compared to point (x, y) = (0, 0) can be used as another indicator of
the method’s effectiveness for this example. The centre of mass location can
be calculated as

xh,nm =

∫ b
a x

h,n|uh,ns |ds∫ b
a |u

h,n
s |ds

, yh,nm =

∫ b
a y

h,n|uh,ns |ds∫ b
a |u

h,n
s |ds

. (27)

Figure 9 presents snapshots of the faulted ring during the first few
unfolding-refolding cycles. The black line represents the modified method
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Figure 9 Evolution of the faulted ring in example 4.3 at specific time instances during the
first stages of the phenomenon for the SB method (blue dashed line) and the proposed modified
method with θ1 = θ = 0.6 (black line). The total number of elements is N = 100 and the
time-step τ = 0.05.

with θ1 = θ = 0.6. The blue dashed line represents the S. Bartels method
result. Due to the improved energy conservation properties of the modified
method for parameter values close to 0.5, it can be seen that the folding-
unfolding sequence is more accurately simulated by the modified method.
This is more evident as the numerical simulation proceeds, where significant
amount of energy is lost due to numerical dissipation. However, the effect is
manifested even in the first cycle as indicated from the second row graphs in
Figure 10.

The change in length of the beam and the translation of the centre of mass
due to numerical errors are depicted in Figure 11. The upper row subplot
depicts the change in length. The modified method performs excellent with
respect to that, as the evolution is relatively smooth. Apart from some elonga-
tion during the first steps, the length of the beam does not change, verifying
the prediction of Equation (24). The second subplot shows the horizontal
location of the centre of mass, xh,nm . In reality this value should be equal to
zero at for time instances due to the absence of external loads. However, due
to numerical errors, the location is displaced towards the negative x axis.
This displacement manifests as an oscillation of the position with reducing
amplitude. The modified method performs better in the sense that the xh,nm
value remains closer to zero. The vertical translation of the centre of mass
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Figure 10 Evolution of the faulted ring in example 4.3 during the first unfolding – refolding
cycle for proposed modified method with θ1 = θ = 0.6 (upper row) and the S. Bartels method
(second row). The total number of elements is N = 100 and the time-step τ = 0.05.

yh,nm is depicted in the third subplot of Figure 11. In this case the position
oscillates around the zero coordinate assuming both positive and negative
values. The amplitude of the oscillation is significantly lower for the modified
method. In the case of the S. Bartels method, the amplitude of this spurious
oscillation initially increases until approximately t = 55 and then decreases
due to numerical dissipation.

The total simulation lasts for about twenty and a half cycles. Snapshots
of the unfolding ring during the last stages of the simulation are depicted
in Figure 12. The increased length in the case of the S. Bartels method,
accompanied by a significant reduction in the vibration amplitude can be seen
in the last snapshots when compared with the modified method.

Finally, the effect of parameter θ1 = θ on the inextensibility constraint
violation and the discrete energy conservation is studied in Figure 13. As
expected, the energy (left hand side graph) conservation properties of the
methods deteriorate as θ increases, and at the same time the violation in the
inextensibility constraint decreases as well. The effect on the inextensibility
constraint is much smaller though.
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Figure 11 Faulted ring. Violation in the inextensibility constraint and spurious oscillation of
the centre of mass around point (x, y) = (0, 0) for proposed modified method and S. Bartels
method. The total number of elements is N = 100 and the time-step τ = 0.05.

Figure 12 Evolution of the faulted ring in example 4.3 at specific time instances during the
last stages of the phenomenon for the SB method (blue dashed line) and the proposed modified
method with θ1 = θ = 0.6 (black line). The total number of elements is N = 100 and the
time-step τ = 0.05.
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Figure 13 Effect of parameter θ1 = θ on the inextensibility violation and discrete energy
conservation properties of the modified method. Quantities calculated at T = 110.

4.4 Swinging Rope (S. Bartels 2016)

In this last example, the model of the swinging rope presented in [15] will be
solved using the proposed linearised θ scheme. The parameters selected for
the domain are I = [0, 1], d = 3 and the total duration of the phenomenon is
T = 4. All parameters are identical to the values used for the same example
in [13] and no further nondimensional quantities are introduced. Hence, the
flexural rigidity is set to 1/20 and the gravitational force is g =

[
0 0 40

]T
.

Initial conditions for the position and velocity are

u(s, 0) =
[
0 0 −s

]T
, v(s, 0) =

[
4s2 0 0

]T
.

The upper end-point of the rope is clamped implying the boundary
conditions u(t, 0) =

[
0 0 0

]T
and us(t, 0) =

[
0 0 −1

]T
at (x, y, z) =

(0, 0, 0) for t ∈ [0, T ]. The spatial discretization involves 40elements, while
two different numbers of time steps are considered, namely Nt = 6400 (same
as in Bartels 2016) and Nt = 9600.

Figure 14 depicts the evolution of the swinging rope configuration and the
change in length when the number of time steps is Nt = 6400. The modified
method performs poorly in this case producing unacceptable violation in the
inextensibility constraint. The S. Bartels method is very robust featuring good
very small length changes. The same example is solved with Nt = 9600
and the results are depicted in Figure 15. In this case the modified method
produces a virtually no changes in the swinging rope length and outperforms
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Figure 14 Evolution of the swinging rope in example 4.4 for the SB method and the
proposed modified method with θ1 = θ = 0.75. The total number of elements is N = 40
and time-steps are Nt = 6400. The modified method produces significant violations in the
inextensibility constraint.

Figure 15 Evolution of the swinging rope in example 4.4 for the SB method and the
proposed modified method with θ1 = θ = 0.75 (black line). The total number of elements is
N = 40 and time-steps are Nt = 9600. Virtually zero change in the beam length is produced
by the modified scheme.

the S. Bartels method. This can be attributed to the very small time step
selected and the effect of result in Equation (24) since due to the fine
time discretisation the velocity profiles at successive time steps are rendered
almost identical. It is worth noting that the S. Bartels method in this example
is very robust even for less fine discretisation.
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5 Conclusions

A linearized θ scheme for the vibrations of inextensible beams is introduced.
The method is a modification of the S. Bartels technique [15] and has been
shown to feature enhanced energy conservation characteristics and improved
inextensibility attributes when the velocity evolution is relatively smooth. In
certain cases the method benefits when initiated (first time step) by the S.
Bartels algorithm. By appropriately selecting the θ parameters introduced,
the energy conservation properties or the inextensibility attributes can be
improved. The method becomes unstable for realistic selection of time steps
if the free θ1 = θ parameter approaches the value 1/2. Feasible choices of
this parameter, to achieve acceptable balance between energy conservation
and minimum inextensibility constraint violation, are in the range (0.6, 0.9).
Due to its linearized character, the method is very fast and can be used as
prediction step for fully nonlinear algorithms as well.
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