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Robust H∞ Control for Discrete-Time Fuzzy
Systems With Infinite-Distributed Delays

Guoliang Wei, Gang Feng, Senior Member, IEEE, and Zidong Wang, Senior Member, IEEE

Abstract—This paper is concerned with the robust H∞ control
problem for a class of discrete-time Takagi–Sugeno (T–S) fuzzy sys-
tems with time delays and uncertain parameters. The time delay
is assumed to be infinitely distributed in the discrete-time domain,
and the uncertain parameters are norm-bounded. By using the
linear matrix inequality (LMI) technique, sufficient conditions are
derived for ensuring the exponential stability as well as the H∞
performance for the closed-loop fuzzy control system. It is also
shown that the controller gain can be characterized in terms of the
solution to a set of LMIs, which can be easily solved by using stan-
dard software packages. A simulation example is exploited in order
to illustrate the effectiveness of the proposed design procedures.

Index Terms—Fuzzy systems, H∞ control, infinite-distributed
delays, linear matrix inequality (LMI), parameter uncertainties.

I. INTRODUCTION

MANY mathematical models for real-world phenomena
are inherently nonlinear, and the stability analysis and

synthesis problems for nonlinear systems are generally difficult.
To facilitate the mathematical analysis, in the literature, some
stringent assumptions have been imposed on the nonlinearities,
such as smoothness and Lipschitz continuity (see, e.g., [16] and
[25]), which have inevitably led to considerable conservatism.
As an alternative approach, in the past few decades, the fuzzy
logic theory has been demonstrated to be effective in dealing
with a variety of complex nonlinear systems, which has there-
fore received a great deal of attention in the literature (see, e.g.,
[11]–[19] and [21]). Among various fuzzy systems, one of
the most popular models is the Takagi–Sugeno (T–S) model
(see [2], [4], [10], [20], and [23] for some recent publications).
In this type of fuzzy model, a nonlinear system is represented
by a set of local linear models smoothly connected by nonlin-
ear membership functions, which has a convenient and simple
dynamic structure such that the existing results for linear sys-
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tems theory can be readily extended for this class of nonlinear
systems. A rich body of literature has appeared on the stability
analysis and synthesis problems for T–S fuzzy systems (see,
e.g., [5]–[7] and [27]).

When modeling real-time plants, the parameter uncertain-
ties are unavoidable, which would lead to perturbations of the
elements of a system matrix in a state-space model. These un-
certainties may arise from variations of the operating point,
aging of the devices, identification errors, etc. Therefore, in the
past decade, considerable attention has been devoted to differ-
ent issues for linear or nonlinear uncertain systems, and a large
number of papers have been published (see [3], [8], [9], and [24]
for some recent results). Recently, the uncertain parameters have
also been taken into account in T–S fuzzy systems. For example,
in [4] and [22], the stability issue has been considered for a class
of T–S fuzzy dynamical systems with time delays and uncertain
parameters. The robust H∞ control problem for T–S fuzzy sys-
tems with parameter uncertainties has also been addressed by
many researchers (for instance, see [4], [6], [7], [9], and [10]).

On another active research frontier, owing to the fact
that time delays commonly reside in practical systems and
constitute a main source for system performance degradation
or even instability, the past decade has witnessed significant
progress on analysis and synthesis for linear/nonlinear systems
with various types of delays, and a large amount of literature
has appeared on the general topic of time-delay systems (see,
e.g., [3], [8], [13], [16], [26], and [28]). In particular, the linear
matrix inequality (LMI) technique has been extensively used
because of its computational efficiency, and it is not surprising
that a great number of LMI-based results have been published
(see, e.g., [3], [8], and [28]). It is worth pointing out that the
distributed delay occurs very often in reality and it has been
drawning increasing attention (see, e.g., [12], [13], and [26]).
However, almost all existing works on distributed delays have fo-
cused on continuous-time systems that are described in the form
of either finite or infinite integral. It is known that the discrete-
time system is in a better position to model digitally transmitted
signals in a dynamical way than its continuous-time analogue.
Discrete-time systems have already been applied in a wide
range of areas, such as image processing, time-series analysis,
quadratic optimization problems, and system identification. On
the other hand, a large-scale system network usually has a spa-
tial nature due to the presence of an amount of parallel pathways
of a variety of subsystem sizes and lengths, which gives rise to
possible distributed delays for discrete-time systems. With the
increasing application of digitalization, distributed delays may
emerge in a discrete-time manner, and therefore, it becomes
desirable to study the discrete-time systems with distributed
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delays. Some pioneering research has been carried out [14] on
the formulation of discrete-time-distributed delays. However, to
the best of the authors’ knowledge, the research on discrete-time
fuzzy systems with distributed delays has not been addressed
yet and remains as an open topic for further investigation.

In this paper, the H∞ control problem is addressed for a class
of discrete-time T–S systems with infinite-distributed delays
and uncertain parameters, where the parameter uncertainties are
assumed to be a norm-bounded. The objective is to design a
fuzzy controller such that in the presence of time delays as well
as parameter uncertainties, the closed-loop fuzzy control sys-
tem is exponentially stable and also satisfies a prescribed H∞
disturbance attenuation index. By using the LMI technique, suf-
ficient conditions are first established that guarantee the desired
stability and H∞ performance, and the controller gain is then
characterized in terms of the solution to a set of LMIs. A simu-
lation example is finally presented to illustrate the effectiveness
of the proposed design procedures.

Notation: In this paper, R
n , Rn×m , and Z(Z+ , Z−) denote,

respectively, the n-dimensional Euclidean space, the set of all
n × m real matrices, and the set of integers (nonnegative in-
tegers, negative integers). | · | refers to the Euclidean norm
in R

n . Letting τ ∈ Z
+ , C([−τ, 0]; Rn ) denotes the family of

continuous functions µ from [−τ, 0] to R
n with the norm

‖µ‖ = sup−τ≤k≤0 |µ(k)|, and I denotes the identity matrix
of compatible dimension. The notation X ≥ Y (respectively,
X > Y ), where X and Y are symmetric matrices, means that
X − Y is positive semidefinite (respectively, positive definite).
For a matrix M,MT represents its transpose and ‖M‖ denotes
its spectral norm. The shorthand diag{M1 , M2 , . . . , Mn} de-
notes a block diagonal matrix with diagonal blocks being the
matrices M1 , M2 , . . . , Mn . In symmetric block matrices, the
symbol ∗ is used as an ellipsis for terms induced by symmetry.
Matrices, if they are not explicitly stated, are assumed to have
compatible dimensions.

II. PROBLEM FORMULATION

In this paper, we consider the following discrete-time fuzzy
systems with infinite-distributed delay and uncertain parame-
ters:
Plant Rule i:

IF θ1(k) is ηi1 and · · · and θp(k) is ηip ,

THEN

x(k + 1) = Ai(k)x(k) + Adi

∞∑
d=1

µdx(k − d)

+ B1iv(k) + D1iu(k) (1)

z(k) = Ci(k)x(k) + B2iv(k) + D2iu(k) (2)

x(k) = φ(k) ∀ k ∈ Z
−, i = 1, . . . , r.

where ηij is the fuzzy set, x(k) ∈ R
n is the state, z(k) ∈ R

q

is the controlled output vector, u(k) ∈ R
m is the control

input, v(k) ∈ l2 [0,∞) is the disturbance input, φ(k)(∀ k ∈
Z
−) is the initial state, Ai(k) = Ai + ∆Ai(k), Ci(k) = Ci +

∆Ci(k), and Ai,Adi, B1i , B2i , Ci,D1i , and D2i are all constant
matrices with appropriate dimensions.

The matrices ∆Ai(k) and ∆Ci(k) represent time-varying
norm-bounded parameter uncertainties that satisfy[

∆Ai(k)
∆Ci(k)

]
=

[
Eai

Eci

]
F (k)N

where Eai, Eci , and N are the constant matrices of appropriate
dimensions, and F (k) is an unknown matrix function satisfying

FT (k)F (k) ≤ I ∀ k. (3)

The constants µd ≥ 0(d = 1, 2, . . .) satisfy the following
convergence conditions:

µ̄ :=
∞∑

d=1

µd ≤
∞∑

d=1

dµd < +∞. (4)

Remark 1: The delay term
∑∞

d=1 µdx(k − d) in the fuzzy
system (1), (2) is the so-called infinitely distributed delay in
the discrete-time setting, which can be regarded as the dis-
cretization of the infinite integral form

∫ t

−∞ k(t − s)x(s)ds for
the continuous-time system. The importance of distributed de-
lays has been widely recognized and intensively studied (see,
e.g., [12], [13], and [26]). However, almost all existing ref-
erences concerning distributed delays are concerned with the
continuous-time systems, where the distributed delays are de-
scribed in the form of a finite or infinite integral. The descrip-
tion of the discrete-time-distributed delays has been proposed
in [14], and we aim to study the control problem for discrete-
time fuzzy systems with such kind of distributed delays in this
paper.

Remark 2: In this paper, similar to the convergence restric-
tion on the delay kernels of the infinite-distributed delays for
continuous-time systems, the constants µd(d = 1, 2, . . .) are as-
sumed to satisfy the convergence conditions (4), which can guar-
antee the convergence of the terms of infinite delays as well as
the Lyapunov–Krasovskii functional defined later.

The compact form of the T–S fuzzy system (1), (2) is repre-
sented as

x(k + 1) =
r∑

i=1

hi(θ(k))

[
Ai(k)x(k) + Adi

∞∑
d=1

µdx(k − d)

+ B1iv(k) + D1iu(k)

]
(5)

and

z(k) =
r∑

i=1

hi(θ(k))[Ci(k)x(k) + B2iv(k) + D2iu(k)] (6)

where

hi(θ(k)) =
ϑi(θ(k))∑r

j=1 ϑj (θ(k))
, ϑi(θ(k)) =

r∏
j=1

ηij (θj (k))

θ(k) = [θ1(k), θ2(k), . . . , θr (k)]
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with ηij (θj (k)) being the grade of membership of θj (k) in ηij .
Here, ϑi(θ(k)) has the following basic property:

ϑi(θ(k)) ≥ 0, i = 1, . . . , r,

r∑
i=1

ϑi(θ(k)) ≥ 0 ∀k

(7)
and therefore

hi(θ(k)) ≥ 0, i = 1, . . . , r,

r∑
i=1

hi(θ(k)) = 1 ∀k.

(8)
We consider the following fuzzy control law for the fuzzy

system (1), (2):
Controller Rule i:
IF θ1(k) is ηi1 and · · · and θp(k) is ηip ,
THEN

u(k) = −Kix(k), i = 1, . . . , r. (9)

The control law can also be given by

u(k) = −
r∑

i=1

hi(θ(k))Kix(k) (10)

and the closed-loop T–S fuzzy control system is governed by

x(k + 1) =
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
[
Aij (k)x(k)+Adi

∞∑
d=1

µdx(k − d)+B1iv(k)

]

(11)

z(k) =
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))× [Cij (k)x(k)+ B2iv(k)]

(12)

where Aij (k) := Ai(k) − D1iKj and Cij (k) := Ci(k) −
D2iKj .

Before formulating the problem to be investigated, we first
introduce the following stability concept for the fuzzy system
(11), (12).

Definition 1: For the system (11), (12) and every initial con-
ditions φ, the trivial solution is said to be exponentially stable if
there exist scalars α (α > 0) and β (0 < β < 1) such that

|x(k, φ)|2 ≤ αβk sup
s∈Z−

|φ(s)|2 . (13)

Definition 2: Given a scalar γ > 0, the fuzzy system (11),
(12) is said to be exponentially stable with disturbance attenu-
ation level γ if it is exponentially stable and under zero initial
conditions

‖z(k)‖2 < γ2‖v(k)‖2 (14)

holds for all nonzero v(k) ∈ l2 [0,∞).
The objective of this paper is to design a controller for the

discrete-time fuzzy system (11), (12) such that for all admis-
sible infinite-distributed delays and uncertain parameters, the
fuzzy system (11), (12) is exponentially stable with disturbance
attenuation level γ.

III. MAIN RESULTS

First, we give the following lemmas that will be used in the
proofs of our main results in this paper.

Lemma 1 [1] (Schur complement): Given constant matrices
Σ1 ,Σ2 ,Σ3 , where Σ1 = ΣT

1 and 0 < Σ2 = ΣT
2 . Then, Σ1 +

ΣT
3 Σ−1

2 Σ3 < 0 if and only if[
Σ1 ΣT

3
Σ3 −Σ2

]
< 0 or

[
−Σ2 Σ3
ΣT

3 Σ1

]
< 0.

Lemma 2: Let x ∈ R
n , y ∈ R

n and matrix Q > 0. Then, we
have xT Qy + yT Qx ≤ xT Qx + yT Qy.

Lemma 3 (S-procedure) [1]: Let Υ = ΥT ,M and N be real
matrices of appropriate dimensions with F satisfying FT F ≤ I .
Then

Υ + MFN + N T FT MT < 0

if and only if there exists a positive scalar δ > 0 such that

Υ + δMMT +
1
δ
N T N < 0

or equivalently 
 Υ δM N T

δMT −δI 0
N 0 −δI


 < 0.

Lemma 4 [14]: Let M ∈ R
n×n be a positive semidefinite

matrix, xi ∈ R
n , and constant ai > 0(i = 1, 2, . . .). If the series

concerned is convergent, then we have( ∞∑
i=1

aixi

)T

M

( ∞∑
i=1

aixi

)
≤

( ∞∑
i=1

ai

) ∞∑
i=1

aixiMxi.

(15)
Proof: Assuming m is a positive constant and from Lemma 2,

we can easily know that(
m∑

i=1

aixi

)T

M

(
m∑

i=1

aixi

)

=
m∑

i=1

m∑
j=1

aiajx
T
i Mxj ≤

m∑
i=1

m∑
j=1

1
2
aiaj (xT

i Mxi +xT
j Mxj )

=

(
m∑

i=1

ai

)
m∑

i=1

aixiMxi

then, the desired result follows directly by letting m → ∞. �
For convenience of presentation, we first discuss the nominal

system of (11) and (12) (i.e., without parameter uncertainties)
and will eventually extend our main results to the more general
case. We have the following result.

Theorem 1: Consider the nominal system of (11) and (12) with
given controller parameters and a prescribed H∞ performance
index γ > 0. If there exist matrices P > 0 and Q > 0 such that
the following LMIs, (16) and (17), as shown at the bottom of
the next page, hold for j = 2, . . . , r, then the nominal fuzzy
system of (11) and (12) is exponentially stable with disturbance
attenuation level γ.
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Proof: In order to show that system (11), (12) is exponentially
stable with disturbance attenuation level γ under conditions
(16) and (17), we define the following Lyapunov–Krasovskii
functional candidate:

V (k) = xT (k)Px(k) +
∞∑

d=1

µd

k−1∑
τ =k−d

xT (τ)Qx(τ). (18)

Calculating the difference of V (k), we have

∆V (k) = V (k + 1) − V (k)

= xT (k + 1)Px(k + 1) − xT (k)Px(k)

+
∞∑

d=1

µd

k∑
τ =k+1−d

xT (τ)Qx(τ)

−
∞∑

d=1

µd

k−1∑
τ =k−d

xT (τ)Qx(τ)

=
r∑

i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)

×
[
Aij x(k) + Adi

∞∑
d=1

µdx(k − d) + B1iv(k)

]T

P

×
[
Aslx(k) + Ads

∞∑
d=1

µdx(k − d) + B1sv(k)

]

− xT (k)Px(k) + µ̄xT (k)Qx(k)

−
∞∑

d=1

µdx
T (k − d)Qx(k − d) (19)

where Aij = Ai − D1iKj .
From Lemma 4, it can be easily seen that

−
∞∑

d=1

µdx
T (k − d)Qx(k − d)

≤ − 1
µ̄

( ∞∑
d=1

µdx(k − d)

)T

Q

( ∞∑
d=1

µdx(k − d)

)
(20)

where µ̄ is defined in (4).

Substituting (20) into (19), we can obtain

∆V (k) ≤
r∑

i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)

×
[
Aij x(k) + Adi

∞∑
d=1

µdx(k − d) + B1iv(k)

]T

P

×
[
Aslx(k) + Ads

∞∑
d=1

µdx(k − d) + B1sv(k)

]

− xT (k)Px(k) + µ̄xT (k)Qx(k)

− 1
µ̄

( ∞∑
d=1

µdx(k − d)

)T

Q

( ∞∑
d=1

µdx(k − d)

)
. (21)

For notational convenience, we denote the following matrix
variables:

ξ(k) =

[
xT (k)

∞∑
d=1

µdx
T (k − d) vT (k)

]T

ζ(k) =

[
xT (k)

∞∑
d=1

µdx
T (k − d)

]T

Āij = [Ai − D1iKj Adi B1i ] Ãij = [Ai − D1iKj Adi ]

(22)

C̄ij = [Ci − D2iKj 0 B2i ] Ξij = [ĀT
ij C̄T

ij ]
T

P̄ = diag{P, I} P̃ = diag
{

P−µ̄Q,
1
µ̄

Q, γ2I

}

P̂ = diag
{

P−µ̄Q,
1
µ̄

Q

}
. (23)

In the following, we first prove the exponential stability of
the resulting fuzzy system (11) with v(k) = 0. It follows from
Lemma 2 and (21) that

∆V (k) ≤
r∑

i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)ζT (k)

×
(
ÃT

ijP Ãsl − P̂
)

ζ(k)




−P + µ̄Q ∗ ∗ ∗ ∗
0 − 1

µ̄
Q ∗ ∗ ∗

0 0 −γ2I ∗ ∗
PAi − PD1iKi PAdi PB1i −P ∗

Ci − D2iKi 0 B2i 0 −I


 < 0, i = 1, . . . , r (16)




−4P + 4µ̄Q ∗ ∗ ∗ ∗
0 −4

1
µ̄

Q ∗ ∗ ∗
0 0 −4γ2I ∗ ∗

PAi − PD1iKj + PAj − PD1jKi PAdi + PAdj PB1i + PB1j −P ∗
Ci − D2iKj + Cj − D2jKi 0 B2i + B2j 0 −I


 < 0, i < j (17)
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=
r∑

i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)

× ζT (k)




(
Ãij+Ãji

2

)T

P

(
Ãsl+Ãls

2

)
−P̂


 ζ(k)

≤
r∑

i=1

r∑
j=1

hi(θ)hj (θ)ζT (k)

×




(
Ãij + Ãji

2

)T

P

(
Ãij + Ãji

2

)
− P̂


 ζ(k)

=
r∑

i=1

h2
i (θ)ζ

T (k)
(
ÃT

iiP Ãii − P̂
)

ζ(k)

+
1
2

r∑
i,j=1,i<j

hi(θ)hj (θ)ζT (k)

×
[
(Ãij + Ãji)T P (Ãij + Ãji) − 4P̂

]
ζ(k). (24)

From Schur complement lemma, we know that ∆V (k) < 0
if and only if (16) and (17) are true. From [24, Lemma 1], it can
be concluded that the discrete-time fuzzy system (11), (12) with
v(k) = 0 is exponentially stable.

For the proof of attainment of the H∞ performance, we
assume zero initial condition and consider the following
index:

JN =
N∑

k=0

[
zT (k)z(k) − γ2vT (k)v(k)

]

=
N∑

k=0

{zT (k)z(k) − γ2vT (k)v(k)

+ [V (k + 1) − V (k)]} − V (N + 1)

≤
N∑

k=0

[
zT (k)z(k) − γ2vT (k)v(k) + ∆V (k)

]
. (25)

Similarly, from (21), we have

JN ≤
N∑

k=0

r∑
i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)

×
[
Aij x(k) + Adi

∞∑
d=1

µdx(k − d) + B1iv(k)

]T

× P

[
Aslx(k) + Ads

∞∑
d=1

µdx(k − d) + B1sv(k)

]

+ [Cij x(k) + B2iv(k)]T [Cslx(k) + B2sv(k)]

− xT (k)Px(k) + µ̄xT (k)Qx(k)

− 1
µ̄

( ∞∑
d=1

µdx(k − d)

)T

Q

( ∞∑
d=1

µdx(k − d)

)

− γ2vT (k)v(k)

=
N∑

k=0

r∑
i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)ξT (k)

×
(
ΞT

ij P̄Ξsl − P̃
)

ξ(k) (26)

where Cij = Ci − D2iKj .
Again applying Lemma 2, we have

JN ≤
N∑

k=0

r∑
i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)ξT (k)

×
(
ΞT

ij P̄Ξsl − P̃
)

ξ(k)

≤
N∑

k=0

r∑
i=1

r∑
j=1

r∑
s=1

r∑
l=1

hi(θ)hj (θ)hs(θ)hl(θ)ξT (k)

×
[(

Ξij + Ξj i

2

)T

P̄

(
Ξsl + Ξls

2

)
− P̃

]
ξ(k)

≤
N∑

k=0

r∑
i=1

r∑
j=1

hi(θ)hj (θ)ξT

Υ1 :=




−X + µ̄Q ∗ ∗ ∗ ∗
0 − 1

µ̄ Q ∗ ∗ ∗
0 0 −γ2I ∗ ∗

AiX − D1iYi AdiX B1i −X ∗
CiX − D2iYi 0 B2i 0 −I


 < 0 i = 1, . . . , r (28)

Υ2 :=




−4X + 4µ̄Q ∗ ∗ ∗ ∗
0 −4 1

µ̄ Q ∗ ∗ ∗
0 0 −4γ2I ∗ ∗

AiX − D1iYj + AjX − D1j Yi AdiX + AdjX B1i + B1j −X ∗
CiX − D2iYj + CjX − D2j Yi 0 B2i + B2j 0 −I


 < 0 i < j (29)
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=
N∑

k=0

r∑
i=1

r∑
j=1

h2
i (θ)ξ

T
(
ΞT

ii P̄Ξii − P̃
)

ξ(k)

+
1
2

r∑
i,j=1,i<j

hi(θ)hj (θ)ξT

×
[
(Ξij + Ξj i)T P̄ (Ξij + Ξj i) − 4P̃

]
ξ(k). (27)

By Schur complement, we can conclude from (16) and (17)
that JN < 0, and therefore, the inequality (14) holds. The proof
of this theorem is thus completed. �

Remark 3: In Theorem 1, with given controller gain and dis-
turbance attenuation level γ, we obtain the exponential sta-
bility conditions of the nominal fuzzy system of (11) and
(12), which are represented via a set of LMIs in (16) and
(17) and can be easily checked by using the Matlab LMI
toolbox.

The following theorem shows that the desired con-
troller parameters can be determined by solving a set of
LMIs.

Theorem 2: Consider the nominal fuzzy system of (11) and
(12). For a prescribed constant γ > 0, if there exist positive-
definite matrices X > 0 and Q > 0, and matrix Yi such that the
following LMIs, (28) and (29), as shown at the bottom of previ-
ous page, hold for j = 2, . . . , r, then the nominal system of (11)
and (12) is exponentially stable with disturbance attenuation γ.
In this case, the parameters of the desired controller are given
as follows:

Ki = YiX
−1 . (30)

Proof: Let X = P−1 and Q = XQX . Pre- and postmultiply-
ing the LMIs in (28) and (29) by diag

{
P, P, I, P, I

}
, we have

(16) and (17), and therefore, we can know from Theorem 1, (30),
and Schur complement that system (11), (12) is exponentially
stable with the prescribed disturbance attenuation level γ and
the given controller parameters in (30). �

In the following theorem, we show that the robust H∞ con-
troller parameters can be determined based on the results of
Theorem 2 for the nominal fuzzy system. This theorem can
be easily proved along the lines of Theorem 2, and we, there-
fore, only keep necessary details in order to avoid unnecessary
duplication.

Theorem 3: Consider the uncertain fuzzy system (11), (12).
For a prescribed constant γ > 0, if there exist positive-definite
matrices X > 0 and Q > 0, and matrix Yi such that the follow-
ing LMIs, (31) and (32), as shown at the bottom of this page,
hold for j = 2, . . . , r, where Aij = AiX − D1iYj + AjX −
D1j Yi, Cij = CiX − D2iYj + CjX − D2j Yi , then the system
(11), (12) is exponentially stable with disturbance attenuation
γ. In this case, the parameters of the desired controller are given
as follows:

Ki = YiX
−1 . (33)

Proof: In (28) and (29), replace Ai,Aj , Ci , and Cj with Ai +
∆Ai(k), Aj + ∆Aj (k), Ci + ∆Ci(k), and Cj + ∆Cj (k), re-
spectively, and then rewrite (28) and (29) in terms of Lemma 3
in the form of the inequalities

Υ1 + M1FN + N T FT MT
1 < 0

Υ2 + M2FN + N T FT MT
2 < 0

where Υ1 and Υ2 have been defined in (28) and (29), respec-
tively, and

M1 = [0 0 0 ET
ai ET

ci ]
T ,

M2 = [0 0 0 (Eai + Eaj )T (Eci + Ecj )T ]T ,

N = [NX 0 0 0 0].

From Lemmas 1 and 3, we can easily obtain the results of
this theorem, and the details are thus omitted. �

IV. ILLUSTRATIVE EXAMPLE

In this section, a simulation example is presented to illustrate
the controller design method developed in this paper.




−X + µ̄Q ∗ ∗ ∗ ∗ ∗ ∗
0 − 1

µ̄
Q ∗ ∗ ∗ ∗ ∗

0 0 −γ2I ∗ ∗
AiX − D1iYi AdiX B1i −X ∗ ∗ ∗
CiX − D2iYi 0 B2i 0 −I ∗ ∗

0 0 0 δET
ai δET

ci −δI ∗
NX 0 0 0 0 0 −δI




< 0 i = 1, . . . , r (31)




−4X + 4µ̄Q ∗ ∗ ∗ ∗ ∗ ∗
0 −4

1
µ̄
Q ∗ ∗ ∗ ∗ ∗

0 0 −4γ2I ∗ ∗
Aij AdiX + AdjX B1i + B1j −X ∗ ∗ ∗
Cij 0 B2i + B2j 0 −I ∗ ∗
0 0 0 δ(ET

ai + ET
aj ) δ(ET

ci + ET
cj ) −δI ∗

NX 0 0 0 0 0 −δI




< 0 i < j (32)
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Consider a T–S fuzzy model (1), (2) with infinite-distributed
delays and uncertain parameters. The rules are given as follows:
Plant Rule 1: IF x1(k) is h1(x1(k)), THEN

x(k + 1) = A1(k)x(k) + Ad1

∞∑
d=1

µdx(k − d)

+ B11v(k) + D11u(k) (34)

z(k) = C1(k)x(k) + B21v(k) + D21u(k). (35)

Plant Rule 2: IF x1(k) is h2(x1(k)), THEN

x(k + 1) = A2(k)x(k) + Ad2

∞∑
d=1

µdx(k − d)

+ B12v(k) + D12u(k) (36)

z(k) = C2(k)x(k) + B22v(k) + D22u(k). (37)

The model parameters are given as follows:

A1 =


 1.0 0.31 0

0 0.33 0.21
0 0 −0.52


 Ad1 =


 0.2 0.1 0

0.1 −0.1 0
−0 0.2 −0.1




B11 =


 0.1

0
0


 B21 =


 0.15

0
0


 D11 =


 1 1

0 1
0 1




C1 =


−0.02 0 0

0 0 0
0 0 −0.1


 D21 =


 1 1

0 1
0 1




Ea1 =


 0.1

0.02
0


 Ec1 =


 0.08

0
0


 N = [0.12 0 0]

A2 =


 0.8 −0.38 0
−0.2 0 0.21
0.1 0 −0.55




Ad2 =


 0 −0.21 0

0.31 0.1 0
0 −0.22 0.1


 B12 =


 0

0.12
0




B22 =


 0

0
0.22


 D12 =


 1 0

0 1
0 1




C2 =


−0.12 0 0.1

0 −0.31 0.1
0 0.2 −0.1


 D22 =


 1 1

0 1
0 1




Ea2 =


 0.05

0
0


 Ec2 =


 0.18

0.2
0


 γ2 = 2

where the membership function is assumed to be

h1(x1(k)) =
1 − sin2(x1(k))

2
h2(x1(k)) =

1 + sin2(x1(k))
2

(38)

Fig. 1. State evolution x(k) of uncontrolled systems.

and choosing the constants µd = 2−3−d , we easily find that µ̄ =∑∞
d=1 µd = 2−3 <

∑∞
d=1 dµd = 2 < +∞, which satisfies the

convergence condition (4).
By using the LMI toolbox, we solve (28) and obtain δ =

3.7319 and

X =


 1.3928 0.0081 0.0555

0.0081 1.6648 −0.0328
0.0555 −0.0328 1.4598




Q =


 0.1671 0.0000 0.0001

0.0000 0.1676 −0.0001
0.0001 −0.0001 0.1672




Y1 =
[

0.9582 0.1610 0.1049
−0.1355 0.1118 −0.0760

]

Y2 =
[

0.4854 −0.3314 0.1390
−0.0497 0.0522 −0.0804

]
.

According to Theorem 3, the controller parameters can be
calculated as follows:

K1 =
[

0.6855 0.0943 0.0479
−0.0958 0.0667 −0.0469

]

K2 =
[

0.3465 −0.1992 0.0776
−0.0338 0.0305 −0.0531

]
.

Fig. 1 gives the state responses for the uncontrolled fuzzy
systems, which are apparently unstable. Fig. 2 gives the sim-
ulation results of the responses of the closed-loop fuzzy sys-
tems, which confirms that the closed-loop system is indeed
stable. Fig. 3 shows the controller output. The disturbance in-
put v(k) and controlled output z(k) are depicted in Fig. 4.
By simple computation, it is found that ‖z(k)‖2 = 0.2109
and ‖v(k)‖2 = 1.0500; therefore, ‖z(k)‖2/‖v(k)‖2 = 0.2009,
which is less than γ2 = 2.
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Fig. 2. State evolution x(k) of controlled systems.

Fig. 3. Controllers u(k).

Fig. 4. Controlled output z(k) and disturbance input v(k).

V. CONCLUSION

In this paper, we have investigated the robust H∞ control
problem for a class of uncertain time-delay T–S fuzzy systems,
where the delays are assumed as infinite-distributed delays and
the uncertain parameters are norm-bounded. By using the Lya-
punov stability theory and LMI technique, sufficient conditions
have been developed so that the closed-loop fuzzy control sys-
tem is guaranteed to be exponentially stable with H∞ perfor-
mance. It is also shown that the controller gains can be obtained
by solving a set of LMIs. It should be pointed out that it is not
difficult to extend the main results in this paper to more complex
cases, such as control and filtering problems for a fuzzy system
with infinite-distributed delays based on piecewise Lyapunov–
Krasovskii functions.
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