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ABSTRACT Software logs generated by sophisticated network emulators in the telecommunications
industry, such as VIAVI TM500, are extremely complex, often comprising tens of thousands of text lines
with minimal resemblance to natural language. Only specialised expert engineers can decipher such logs
and troubleshoot defects in test runs. While Al offers a promising solution for automating defect triage,
potentially leading to massive revenue savings for companies, state-of-the-art large language models (LLMs)
suffer from significant drawbacks in this specialised domain. These include a constrained context window,
limited applicability to text beyond natural language, and high inference costs. To address these limitations,
we propose a compact convolutional neural network (CNN) architecture that offers a context window
spanning up to 200,000 characters and achieves over 96% accuracy (F1>0.9) in classifying multifaceted
software logs into various layers in the telecommunications protocol stack. Specifically, the proposed model
is capable of identifying defects in test runs and triaging them to the relevant department, formerly a
manual engineering process that required expert knowledge. We evaluate several LLMs; LLaMA2-7B,
Mixtral_8 x 7B, Flan-T5, BERT and BigBird, and experimentally demonstrate their shortcomings in our
specialized application. Despite being lightweight, our CNN achieves strong performance compared to
LLM-based approaches in telecommunications log classification while minimizing the cost of production.
Our defect triaging Al model is deployable on edge devices without dedicated hardware and is applicable
across software logs in various industries.

INDEX TERMS Cellular networks, LLM, log analysis, machine learning, NLP.

I. INTRODUCTION

As the telecommunications industry rapidly evolves into the
5G and 6G era, the scope and complexity of network testing
have expanded at an unprecedented rate. Such testing solu-
tions entail emulating user equipment (UE) and their intricate
interactions with the network infrastructure. This enables
network operators and equipment manufacturers to evaluate
the quality and capacity of their wireless networks, ensure
compliance with industry-standard protocols, and effectively
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troubleshoot issues while optimizing network performance.
Meeting these needs involves employing advanced dedicated
hardware (such as VIAVI TM500).

Invariably, these sophisticated systems generate volumi-
nous and highly complex software logs that are indispensable
for troubleshooting and defect triaging. The telecom raw
logs analyzed in this context stand apart in their complexity
and nature from conventional software logs, exhibiting a
vast diversity of commands and parameters configured in
real-time under dynamic industrial conditions. Moreover,
their structure and semantics bear little correlation to natural
language. Therefore, only expert engineers with extensive
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experience in the field can navigate through these logs
to identify issues in a network emulation. However, this
manual analysis is inefficient, error-prone, less scalable, and
vulnerable to knowledge silos. This inefficiency in manual
analysis is further compounded by the high stakes involved;
delays in defect resolution can have significant financial and
reputational repercussions for both service providers and their
clients.

Recently, the application of machine learning (ML) and
natural language processing (NLP) techniques has demon-
strated remarkable success in the classification and extraction
of insights from text-based software logs [1], [2], [3], [4], [5],
[71, [8], [18]. Additionally, a multitude of research studies
have been dedicated to log analysis using ML techniques
for anomaly detection, proposing ML solutions ranging from
supervised classical models [6], [16] to convolutional neural
networks (CNNSs) [15], recurrent neural network (RNNs) and
long short-term memory (LSTM) based networks or hybrid
models [10], [19], large language models (LLMs) [12],
[14], other transformer-based models [13] and unsupervised
approaches [17]. Classical ML approaches commonly regard
text input as static, relying on a global input text embedding,
whereas CNNs, LSTMs, and LLMs handle text by processing
it as a sequence of word or token embeddings.

Nevertheless, studies that employ ML for indus-
trial telecommunications logs classification are few and
far between. Closest related work [1] explores term
frequency-inverse document frequency (TF-IDF) and bag of
words (BOW) methods for representing software log lines in
voice over internet protocol (VoIP) soft-switch systems and
classifying them using various classical ML algorithms such
as random forest (RF), support vector machine (SVM) and
boosting methods. The objective of this study is to distinguish
specific log entries into the error, debug, or info classes
rather than diagnosing underlying root causes indicated by
the logs. Furthermore, Ramachandran et al. [9] propose a
CNN-LSTM architecture to categorize individual lines in
industrial telecom-related log files as either errors or non-
errors. However, it does not consider the entirety of the
software logs for classification. In scenarios like ours, where
itis essential to aggregate all errors, warnings, and indications
within the logs to identify issues, such methods may not
capture the full context necessary for accurate problem
determination. In fact, none of the prior studies in the realm of
log classification has demonstrated the capability to classify
massive software logs containing tens of thousands of text
lines while taking into account their complete content.

It is worthwhile noting the drawbacks of state-of-the-
art (SOTA) LLMs in our specific application, despite their
remarkable success in text classification [21], text genera-
tion [22] and many other NLP tasks [23], [24], [37]. LLMs
are primarily pretrained and fine-tuned for natural language
understanding, including code. Their adaptability to novel
text structures, like our proprietary logs, remains constrained
due to limited prior exposure to such formats. Therefore,
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it is essential to pretrain off-the-shelf models on our own
extensive software log corpus before fine-tuning them for a
log classification downstream task to achieve optimal perfor-
mance. However, this requires enormous amount of data (e.g.,
20 times the number of parameters in the model to achieve
compute-optimal state according to recent research [38])
and computing power, hampering the adaptability of LLMs
to our use case. Moreover, LLMs typically operate with
a relatively narrow context window, ranging from 512 to
2048 tokens. This window is considerably smaller than the
volume of text contained in our software logs, resulting in
truncation and potential loss of critical information. Recent
findings indicate that even the long-context LLMs may
exhibit suboptimal performance, particularly when relevant
information is situated in the middle of the context window
rather than at the beginning or end [39]. Lastly, LLMs demand
significant memory and computational resources even for
inference, which may be undesirable in industrial settings due
to higher recurring costs in model serving and deployment.

In this work, we propose a compact residual CNN
architecture designed for the classification of software logs
produced by VIAVI TMS500. Its primary function is to
identify the specific protocol stack layer in which a defect
has occurred, thereby facilitating a more streamlined defect
triage process. Our model can process text sequences up
to 200,000 characters at a time and achieves over 96%
accuracy (F1_score > 0.9) in classifying complex software
logs. To construct an initial embedding matrix, we trained
a separate LSTM-based model with a sequence-to-sequence
(seq2seq) objective on our sufficiently-sized text corpus. This
process is analogous to software log language understanding
and inspired by recent work that underscores the importance
of industry-specific word embeddings in downstream log
classification tasks [20]. Finally, we benchmark the per-
formance of our CNN against latest open-source LLMs,
namely Mixtral_8 x 7B [40], LLaMA2_7B [41], Flan-T5
[42], BigBird [43] and BERT [21].

The main contributions and novelty of this article are as
follows.

1) We introduce a lightweight residual CNN architecture
that can classify massive software logs accurately for
defect detection in 5G/6G cellular network testing. The
proposed model can support input text sequences up
to 200,000 characters in telecommunications domain,
with broad implications for software log classification
across disciplines. Our model is only 3 Mega-bytes in
size and has less than 0.8 Million parameters, making
it edge-deployable and production-ready.

2) We experimentally demonstrate the drawbacks of off-
the-shelf LLMs in specialized applications. To tailor
these models for our specific domain, we perform
domain-specific pretraining and subsequent finetuning
on our data using techniques such as Low-Rank Adap-
tation (LoRA) [44] and quantization where applicable.
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3) We propose an adaptable overlapping sliding window
approach to extract pretrained-LLM embeddings of
lengthy software logs that often exceed the context
window of LLMs. Embeddings are extracted from
several LLMs, including the latest models such as
Mixtral_8 x 7B LLaMA2_7B that contain Billions of
parameters. Separate classifiers are applied on top of
these embeddings, showcasing acceptable classifica-
tion performance.

4) We develop a sequence-to-sequence model based on
LSTM units for understanding raw logs in telecom-
munications. Meaningful token embeddings extracted
from this model are utilized to initialize the Embedding
layer of the proposed CNN, helping to achieve optimal
performance.

The remainder of this article is organized as follows.
Section II presents an overview of the literature in the field
of log classification and log anomaly detection. Section III
elucidates the proposed ML architectures with theoretical
foundations and provides a comprehensive overview of our
data processing pipeline. In Section IV, we present the results
and analysis of our model and conduct a benchmarking
study with LL.Ms. Experimental details of model training and
evaluation are described in Section V. Finally, Section VI
concludes this article.

Il. RELATED WORK

Analysing software logs has been studied under both super-
vised and unsupervised learning categories in the literature.
Below, we discuss some notable work on log classification
and log anomaly detection highlighting key methodologies
and their outcomes, which partly inspired our choice
of CNN-based architecture for our industrially-motivated
telecommunications logs classification use case.

A. SUPERVISED METHODS

1) CLASSICAL ML

Chen et al. [25] presented a decision tree (DT) learning
approach to diagnosing failures in large internet sites. They
recorded the runtime properties of each request and trained
a DT algorithm on the request trace to identify the causes
of failures. Their method successfully identified 13 out
of 14 true causes of failure in the logs produced by a
large internet services system in a production environment,
proving its effectiveness in real-world applications. Liang
et al. [26] developed a methodology for predicting failures
in IBM BlueGene/L supercomputers using event logs. They
converted event logs into datasets suitable for classification
techniques and applied several classifiers, including a rule-
based classifier, support vector machines (SVMs), and
a customized nearest neighbor method. Their customized
nearest-neighbor approach outperformed others in coverage
and precision, suggesting its viability in alleviating the impact
of failures. One key benefit of some of the classical ML
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algorithms is their interpretability. For example, a DT may
be indicative of which events or log messages are more
likely to be related to a failure. Nevertheless, more advanced
algorithms have since been proposed, particularly with the
progress of deep learning.

a: RNN AND CNN
Recurrent neural networks, particularly those based on LSTM
units, have been extensively applied to log classification
due to their capability to handle sequential data and capture
long-term dependencies within log sequences. In one of
the pioneering studies, Du et al. [27] proposed DeepLog,
a deep neural network utilizing LSTM units that can
detect anomalies when the log patterns deviate from the
normal execution. DeepLog’s architecture includes three
main components: a log key anomaly detection model,
a parameter value anomaly detection model, and a workflow
model for diagnosing anomalies. The models are trained with
log entries from the normal system execution path. Each log
entry is parsed to a log key and parameter value vector, and
the models are tasked to predict the probability distribution of
the next log key or parameter value vector in their respective
sequences. Anomalies are detected at the inference stage by
comparing the actual next log key or parameter value with
the top predicted ones which model the normal behaviour.
If the predictions significantly deviate from the ground truth,
as found systematically using thresholds, then the entry is
flagged as an anomaly. Zhang et al. [28] proposed LogRobust,
an attention-based bidirectional-LSTM-based neural network
for detecting log anomalies in both synthetic public datasets
and a real industrial dataset. They model each log event
as a semantic vector and use the attention mechanism to
weigh different events, as well as a Bi-LSTM architecture
to produce anomaly likelihood. The proposed architecture
is benchmarked against classical ML models, including
SVM and logistic regression, and is demonstrated to achieve
consistently high performance. Several other deep learning
architectures with LSTM as the key component have been
proposed for log anomaly detection [10], [19], [29], [30].
On the other hand, CNN architectures can also be tailored
for log classification with a much lower computational
load compared to RNN architectures, especially for large
context windows. CNNs may work well, especially when
the existence of specific log events is important in detecting
critical incidents rather than the long-range dependency
between the events. A one-dimensional convolutional archi-
tecture has been proposed for detecting anomalies in big
data system logs such as Hadoop Distributed File System
(HDFS) logs [15]. Here, the proposed CNN achieved slightly
higher performance in relation to a general multi-layer
perceptron (MLP) model and an LSTM-based architecture.
Ren et al. [8] propose a more feature engineering-heavy
strategy followed by a two-dimensional CNN to classify
CMRI-Hadoop and bluegene/L logs with critical events into
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13 different categories. The proposed CNN showcases the
best performance among other models, including against
classical ML and LSTM-type models.

B. UNSUPERVISED METHODS

Unsupervised log anomaly detection methods can be quite
useful, especially when extracting the labels for logs is too
expensive or impractical. Unsupervised log analysis has been
studied using a wide variety of algorithms, from classical
models to state-of-the-art transformer-based approaches. Lin
et al. [31] presented LogCluster, an agglomerative hierarchi-
cal clustering approach to detect anomalies in Hadoop-based
application logs and large-scale online service platforms.
Principal component analysis (PCA) has also been applied
for log anomaly detection in the absence of a labelled dataset.
PCA projects high-dimensional data (¢ RM) into a lower
dimensional coordinate system composed of k principal
components (k < N) that capture the most variance in the
original high-dimensional data. Xu et al. [32] represented log
sequences as event count vectors and used PCA to obtain
a lower dimensional representation of logs. They identified
anomalies by thresholding the norm of the low-dimensional
vectors.

With the remarkable success of the self-attention mech-
anism and the transformer architecture in language under-
standing, an increasing number of LLMs have been adapted
for log analysis. Lee et al. [12] proposed an unsupervised
log anomaly detection method based on the BERT archi-
tecture [21]. They first pretrain BERT on normal log data
with a masked language modelling (MLM) objective. They
then adopt the assumption that the context of a normal
system log is notably different from that of an abnormal
system log. Under this assumption, a normal log should
exhibit a low error and high probability of prediction for
masked tokens, whereas an abnormal log may produce a
high error and a flatter probability distribution, which allows
the detection of anomalies. Almodovar et al. [33] presented
LogFiT, a finetuned version of the pretrained BERT model
for log anomaly detection. They used the masked sentence
prediction objective on the normal log data so the model
learns the distribution of normal logs. Subsequently, when
the model is presented with new log data, its top-k token
prediction accuracy can be used with a threshold to identify
the anomalous logs. Recently, Hou et al. [34] proposed
HLogformer, a hierarchical transformer architecture designed
for structured log data with nested, dictionary-like formats.
Instead of treating logs as flat sequences, HLogformer
builds hierarchical representations by segmenting logs
into structured components and progressively summarizing
them through a top-down and bottom-up summary-passing
mechanism. This approach reduces memory overhead and
improves the quality of log representation, particularly
when logs are hierarchically structured. Furthermore, several
other transformer-based models have been reported for log
anomaly detection, including LogBERT [35] and CCT [36].
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Although the literature is rich on general system logs
classification and anomaly detection, the space of industrial
telecommunications logs classification is largely unexplored.
In the following sections, we discuss our approach in
classifying logs generated by our network emulation device
hardware and associated software stack into various layers in
the telecommunications protocol stack.

Ill. METHODS

In this section, we discuss and formulate the proposed
models, in particular our seq2seq model for language
understanding and the residual CNN for classification.

A. SEQUENCE-TO-SEQUENCE EMBEDDING METHOD

The objective here is to train a ML model with a seq2seq
objective for acquiring learned token embeddings from an
industrial corpus. The process of transitioning from a textual
representation to a numerical one typically encompasses
multiple stages. Fig. 1 shows the steps we follow for
preparing the input raw logs into primarily encoded text so
that it can be used by our seq2seq model for training. Raw
logs are voluminous, often riddled with noise, inconsisten-
cies, and occasional ambiguity. Once a historical raw logs
database is collected, we send it through a pre-processing
unit (PPU). PPU captures logs related to several network
testing categories, namely, single-UE, single-cell, multi-UE,
multi-cell, New Radio (NR) 5G tests, Long-Term Evolution
(LTE) 4G tests, and L3 tests. Additionally, the PPU removes
redundant information unrelated to detecting defects, such as
very long words and lines, and numbers. Next, we identify
outlier logs based on their size using the Tukey’s method.
A box plot (see Appendix Fig. 9) is created, showing the
distribution of the number of characters in logs. Outliers are
then defined as observations that fall below Q1 — 1.5 %« IQR
or above O3 + 1.5 % IQR, where QI and Q3 are first and
third quartiles, respectively, and IQR is the interquartile range
(O3 — Q1). These outliers, along with files > 300 kilo-
bytes, have been removed to establish our final dataset. Such
filtering is necessary as our raw logs can occasionally go up to
hundreds of Megabytes in size. Fig. 2 depicts the histograms
of our dataset before and after preprocessing.

The resulting software logs are then concatenated to
create a training corpus (TC). Given the little correlation
between our logs and natural language, we opted to use
unique characters present in our corpus as tokens. This
approach yielded in a vocabulary consisting of 97 unique
characters, allowing us to encode any piece of text within
the TC and obtain a corresponding numerical representation.
The decision to use character-level tokenization over word
or subword tokenization is inspired by the unique nature
of telecom software logs, which differ significantly from
natural language text. These logs often contain a mix of
proprietary code, hexadecimal values, technical symbols,
vendor-specific abbreviations and non-standard patterns.
Consequently, word or subword tokenization would result in
unnecessarily large vocabularies, possible out-of-vocabulary
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FIGURE 2. Character length histograms of log files before (A) and after
(B) cleaning.

tokens, and would extensively expand the embedding layer.
To mitigate these issues and ensure broader coverage,
we adopt a character-level tokenization approach. Character-
level tokenization shows better resilience to noisy, non-
standard text, but it may expand the sequence length slightly.

In order to create training sequences, we choose a sequence
length (/5) equal to the median length of message blocks (in
characters) in our software command logs. A block refers to
the set of information contained within so-called Indications
(I:) that record a set of events that have come back from
the network, and Confirmations (C :) that record the state of
execution of system commands. These are the information
that is critical for the Al system to be able to learn and
capture defects, justifying the rationale behind the selected
I;. Next, we create tuples of input and target sequences (s;, s;)
with matching lengths (/s), where s; is formed by shifting a
window of /,, characters across s; within the continuous TC.
To maintain simplicity, we adopt the assumption that /,, = 1.

Having equal and fixed-length input and target sequences
allows us to design a simpler recurrent neural network
architecture (RNN) without an explicit decoder for seq2seq
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learning. The proposed architecture as illustrated in Fig. 1
has an embedding layer to represent every character in
the vocabulary with an embedding of 64 dimensions,
chosen heuristically. This is followed by an LSTM layer
with 1024 units that returns processed sequences, and an
output fully-connected dense layer with the number of units
equal to the vocabulary size. The dense layer is applied
across all returned sequences by the LSTM layer. As such,
our optimization objective is to minimize the negative
log-likelihood of the true next sequence.

N

o1
argming N Z —log P(sjlsj—1; 6) (1)
j=1

where N is the total number of input and target sequence
tuples in the dataset. P(sj|sj—1; €) is the conditional probabil-
ity of generating the true next sequence s; given the previous
sequence s;1 and the model parameters 6. With this notation,
the target sequence s, equals to s;, and the input sequence
s; equals to s;_1. Equation 1 can be further decomposed as
follows, considering individual characters.

N I
. 1 s . .
argmm@ﬁ E E —10gP(cf’|ci’ l,...,cZ 0 ()
j=1t=1

Si . .
where ¢, is the character at the t” index of sequence sj.

Probability logits over the vocabulary for every character in
the target sequence are calculated through a softmax function
applied at the output layer. Consequently, the model is
trained to minimize the multi-class categorical cross-entropy
loss. Once the model is trained, character embeddings are
extracted from the weights stored within the Embedding layer
of the model. It is worth noting that the trained seq2seq model,
primarily utilized for extracting character embeddings, has
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FIGURE 3. Proposed residual CNN architecture for software log classification.

the potential for software log text generation. However, this
aspect falls outside the scope of this paper.

B. RESIDUAL CNN FOR SOFTWARE LOG CLASSIFICATION
The proposed architecture for lengthy software log classifica-
tion is primarily based on one-dimensional convolutional lay-
ers (ConvlD). CNNs are generally lightweight and consume
less computational resources. This architectural choice stems
partly from practical considerations in industrial production,
as many target edge devices lack dedicated hardware like
GPUs. Nevertheless, as we demonstrate later in this article,
the proposed CNN, in fact, consistently outperforms other
benchmarked models. Formally, Conv1D operation applied
on a discrete 1D input sequence s at a time index ¢ with single
filter w is given by;

K=-D
2

=)0y = D wk)-st—k)

__&-D
k=—&D

3

where * indicates the convolution operation, y(¢) is the feature
map resulting from the filter applied at position ¢, and K is the
kernel size.

Concretely, our CNN consists of an embedding layer
initialized with character embeddings extracted from the
seq2seq model, followed by a block of Conv1D layers before
applying global max pooling operation on the processed
sequences, resulting in a fixed-size representation of the
input sequence. This is then processed through a set
of fully-connected layers followed by softmax activation
for multi-class classification. We further apply residual
connections to improve model performance. The end-to-end
(E2E) architecture is depicted in Fig. 3.

The model is trained to classify various software logs
into four distinct classes: Pass, LO_L1, L2, and L3. Pass
class represents software logs that do not indicate any issues.

134288

LO_L1 denotes defects at the physical layer, L2 pertains to
issues within the data link layer, and L3 encompasses prob-
lems related to the network or higher layers, in accordance
with the Open Systems Interconnection (OSI) model. These
labels for the software logs in our dataset are extracted from
historical data. Undoubtedly, most test runs are completed
without issues, resulting in a highly imbalanced class
distribution within our dataset, as can be seen in Fig. 4(A).
To reduce the impact of class imbalance, ML models studied
in this work are trained with appropriate class weights where
applicable. There are 3262 samples in total in our dataset
which is randomly divided into 70% training and 30% test
sets. The class distribution for the test set is shown in
Fig. 4(B).

IV. RESULTS AND DISCUSSION

In this section, we present the classification results of the
proposed CNN on the test set and benchmark it against
several other approaches, including LLMs. Note that the test
set is kept intact across all experiments.

A. CNN RESULTS
Fig. 5 illustrates the training progress of our CNN, namely the
categorical cross-entropy loss, accuracy, and F1-score curves.
Our defect triaging model achieves a notable 96% accuracy,
markedly improving both precision and efficiency in manual
engineering workflows. A more comprehensive summary of
results is shown in Table 1. Although our model can support
text sequences up to 200,000 characters, we used a sequence
length of 50,000 characters to obtain results shown in Table 1.
This is because nearly 95% of our cleaned software logs are
less than 50,000 characters in length. The trained model, with
its compact size of just 3 megabytes, is ideally suited for
deployment on edge devices with basic hardware resources.
On the other hand, LSTM networks are recognised for
their effectiveness in sequence classification tasks, owing to
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their ability to learn long-term dependencies with memory
cells and gating mechanism. It is interesting to include
LSTM components in our model and assess the impact on
performance. In fact, such architectures have been proposed
for sequence learning tasks in telecommunications including
channel estimation [47]. We added a bidirectional LSTM
layer right after the embedding layer of the proposed
CNN (denoted as BILSTM+CNN model) and evaluated the
performance on the test set under the same conditions. This
resulted in a slightly downgraded accuracy of 94.2%, despite
a nearly three-fold increase in model size (see Table 1).
This potentially suggests that in the context of our software
logs, it is not so much the long-range dependencies or the
semantic structure that are crucial for identifying defects but
rather the presence of specific combinations of log messages.
The confusion matrices of the CNN and CNN+BiLSTM
models are displayed in Fig. 7. Both models can accurately
detect even the least represented class (L3) that has less than
one-tenth of samples compared to the dominant class.

We subsequently explored how the input sequence length
impacts the performance of our CNN. Illustrated in Fig. 6,
we observed a steady improvement in performance as the
sequence length increases, up until a point where it begins to
marginally decline for extremely lengthy sequences (>80k
characters). This trend may occur because such expansive
context windows necessitate excessive padding in most
input text sequences with redundant tokens, thereby diluting
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the pertinent information. Furthermore, we noticed that
the proposed CNN model is generally robust in terms of
the number of ConvlD layers present in the architecture.
Employing just a single Conv1D layer while maintaining the
rest of the architecture (embedding & dense layers) intact
yielded an accuracy of 93.6%. Further increasing the number
of Conv1D layers, up to four, repeatedly led to a classification
accuracy of above 95% with consistent distribution of other
performance metrics.

B. LLMS FOR SOFTWARE LOG CLASSIFICATION

While LLMs have been generally successful in learning to
categorize software logs [12], [13], raw logs generated by
software and hardware stacks prevalent in the telecommuni-
cations industry pose unique challenges to LLMs, particularly
due to their vast size and little relevance to the natural
language. It may be possible to intuitively reason that the
small context windows of off-the-shelf LLMs cannot possibly
capture all necessary information from large logs, which may
lead to poor downstream performance. Similarly, conducting
further pretraining (also known as domain adaptation) on
a domain-specific corpus could be beneficial in enhancing
downstream task accuracy. To ensure a broad and representa-
tive evaluation for our specific application, we selected five
fundamentally different pretrained LLMs, namely, LLaMA2-
7B, Mixtral_8 x 7B, Flan-T5, BERT, and BigBird. This
covers encoder-only (BERT), decoder-only (LLaMA2-7B),
encoder-decoder (Flan-T5), mixture of experts (Mixtral_8 x
7B), and long-sequence transformers (BigBird).

LLaMA2-7B [41] is a transformer-based decoder model,
exhibiting strong text-generation performance. Mixtral_8 x
7B [40] is a transformer-based sparse mixture of experts
(MoE) language model. Each transformer block is composed
of 8 feedforward layers (i.e., experts), of which only 2 are
activated per forward pass, as selected by a router network.
This design allows the model to scale to a larger parameter
count while keeping computation per inference step relatively
low. Flan-T5 [42] is an encoder-decoder model fine-tuned
for instruction-following tasks across multiple benchmarks.
BERT [21] is a bidirectional encoder trained with masked
language modeling, well-suited for understanding contextual
semantics. BigBird [43] extends transformer capabilities to
longer sequences using sparse, sliding window attention
patterns, making it efficient for processing large input
logs. All LLM architectures considered in this study are
opensource and their weights are available publicly.

While every model undergoes evaluation in its original
pretrained state, both Flan-T5 and BERT are additionally
chosen for domain adaptation, owing to their distinctive
natures and more manageable sizes. Accordingly, BERT is
domain-adapted with a masked language modelling objective
(i.e. a percentage of tokens are masked randomly, and the
model is tasked to predict these tokens accurately). Flan-T5
is domain-adapted by training the model to predict a shifted
input sequence of tokens, emulating a sequence-to-sequence
learning objective. Next, we discuss the exact steps that we
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FIGURE 5. Training progress curves for the proposed residual CNN model. Note that the F1-score shown here is the micro average computed by obtaining
the overall true positives, false positives, and false negatives across all classes.

TABLE 1. Multi-class performance metrics of the residual CNN and BiLSTM+CNN models on the test set.

Model # Parameters Overall Overall Per-Class Metrics
’ Accuracy (%) | Fl-score (macro) Class Fl-score | Precision | Recall
Pass 0.999 1 0.998
LO_L1 0.912 0.915 0.91
CNN 0.79M 96.01 0.902 o 0313 0779 0863
L3 0.88 0.957 0.815
Pass 0.999 1 0.998
. LO_L1 0.861 0.848 0.873
BiLSTM+CNN 2.1M 94.2 0.856 o 0756 0737 0777
L3 0.808 0.889 0.741
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FIGURE 6. Performance of residual CNN with varying context size. Note
that the x-axis is in the log scale.

follow for pretraining LLMs on our own industrial software
log corpus.

Domain adaptation or further pretraining of LLMs may
significantly elevate the downstream task performance of
LLMs, especially in domains where the morphology of
text is considerably different from the natural language
on which most models are trained on. First, we identify
some specific pieces of text, such as hexadecimal strings,
standalone numbers, IP addresses, and new-line characters,
that are generally unrelated to identifying defects. These are
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then masked with special tokens such as <hex>, <num>,
<ipaddr> and <newline>. Furthermore, the end of a
software log sample in our concatenated training corpus is
indicated with an <endsample> token. Tokenization is a
critical step in preparing data for LLM training that involves
breaking down raw text into numerical representations. The
models investigated in this study use subword tokenization,
which balances the need to represent common words as
they appear and decompose less common ones into smaller,
understandable sub-units, resulting in efficient handling
of out-of-vocabulary words. Here, we use the pre-trained
WordPiece tokenizer for BERT and the SentencePiece
tokenizer for Flan-T5. The special tokens identified above are
added to both tokenizers before tokenizing the TC.

We then train BERT for domain adaptation with a
warm start from its pre-trained base model checkpoint. The
relatively small size of BERT allows for updating all model
weights during domain adaptation, conducted with a masked
language modeling (MLM) objective on the same software
log TC constructed in the workflow shown in Fig. 1, further
processed to add special tokens discussed above. Note that
one of the pre-training strategies of BERT, next sentence
prediction (NSP), is not used here as performing domain
adaptation using MLM is deemed sufficient [43]. In MLM,
a portion of tokens are randomly masked (~30% in our case),
and the model is tasked to predict these masked tokens based
on their context, enabling it to gain a deep understanding
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FIGURE 7. Confusion matrices of CNN (A) and CNN+BiLSTM (B) models for the test set.

of the syntax, semantics, and morphology of a given text
corpus.

Flan-T5 is trained starting from £ 1lan—-t 5-1arge check-
point using a sequence-to-sequence objective where the target
sequences are created by shifting the input sequences by
k (= 1) number of tokens. TC is then tokenized with
Flan-T5’s own pre-trained tokenizer, extended to include our
special tokens. Due to the large size of Flan-T5 architecture
(~780M parameters), we opted to use LoRA method for
domain adaptation. LoRA involves introducing trainable
low-rank matrices to modify existing weights in selected
layers of the model, such as attention and feed-forward
layers, without altering the original pretrained weights. This
allows for effective adaptation of the model for specific tasks
by reducing the computational burden while maintaining
model performance. Both BERT and Flan-T5 are trained
for 5 epochs, and the trained checkpoints along with their
associated tokenizers are recorded for extracting software log
embeddings.

LLM embedding of a given text input can be treated as a
learned numerical representation that encodes the contextual
meaning of that text. As discussed, the small context window
of LLMs necessitates an alternative strategy for them to
sift through the entirety of long documents. We propose an
overlapping sliding window approach, as depicted in Fig. 8,
to extract a single embedding from lengthy text segments.
Formally, consider a long text document of length L tokens
and a context window (i.e., sequence length) of /. (< L)
tokens. For an adaptable overlapping window of size w (< I.)
tokens, the number of overlapping text chunks that need to
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pass through the model to cover the entire document, M, can
be expressed as follows.

L—w
M =
l.—w

“

Under the proposed approach, the document global
embedding E; can be computed as follows.

1 M

I
1 c
§ M lc =1 im1 ki ( )

Here, TE} ; is the token embedding of the i token of the
k™ chunk. Token embeddings are extracted at the last hidden
layer of the model. TEy ; is of dimension drg equal to the
number of units in the last hidden state of the model.

Concretely, we divide each long log into smaller,
overlapping chunks. Each chunk is passed through the
LLM to generate token-level embeddings. For each chunk,
we average its token embeddings (ignoring padding) to get
a single chunk-level representation. Then, we average the
embeddings from all overlapping chunks to produce one final
embedding for the entire log. The overlap between chunks
ensures that contextual information at the boundaries is pre-
served, making the overall representation more coherent and
robust.

Essentially, the mean-pooling operation (element-wise
mean of node embeddings) is applied across token embed-
dings of a chunk to obtain the chunk embedding, and the
same operation is repeated across all chunks to obtain the
document embedding. The attention mask is considered
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FIGURE 8. Overlapping sliding window approach to extract embeddings of long documents using LLMs. TE; refers to the token embedding of ith token at
the final hidden layer of the LLM. Token embedding dimension typically ranges from 512 to 4096 for larger models.

when applying the pooling operation (i.e., pad tokens are
disregarded). Text chunks are selected with an overlap w
so that some information and context from the previous
windows are retained as the model slides through the
text. Likewise, embeddings of all logs in our dataset are
extracted independently using every LLM examined. Note
that due to memory constraints, the context window used
for embedding extraction in this work may be smaller than
the maximum context window supported by some LLMs.
In order to assess the quality of these embeddings, we applied
separate classifiers, namely, random forest, XGBoost, and
decision tree, with the same defect detection objective.
This facilitates benchmarking the proposed LLM-embedding
method against our residual CNN. In addition to classical
ML models, we utilize a similar residual 1D CNN to classify
LLM-embeddings and report the performance on the test
set. As a classical baseline, we implemented a TFIDF
(Term Frequency-Inverse Document Frequency) embedding
pipeline followed by a logistic regression classifier. TFIDF
transforms raw log text into a sparse numerical representation
based on the frequency of terms, adjusted by how rare those
terms are across the dataset. TFIDF embeddings capture the
relative importance of words within individual logs. Logistic
regression is extended to handle multiclass classification
using the multinomial formulation.

Table 2 summarizes the experimental results. LLaMA?2-
7B embeddings used with the XGBoost classifier provide the
best accuracy of 82.2% across all experiments. Although this
is reasonable, it represents a notable decline in performance
when contrasted with the results achieved by our standalone
residual CNN, indicating that even some of the most
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powerful general-purpose LLMs may perform sub-optimally
in challenging domain-specific tasks such as large and
complex software log classification. Nevertheless, this series
of experiments yields valuable insights. As expected, large
and more potent LLMs, specifically, LLaMA2-7B and
Mixtral_8 x 7B, produce higher quality embeddings, resulting
in higher downstream performance compared to other
models. The baseline approach (TFIDF+Logistic Regression)
achieves a moderate accuracy of 71.6%, notably below the
performance achieved by both the XGBoost classifier and the
proposed lightweight CNN.

Moreover, domain adaptation enhances the performance
to some extent, as the models may have gained some
understanding of the specific text format by being exposed
to a targeted corpus. This enhancement, however, is more
prominent for BERT compared to Flan-T5 likely due to
distinct domain adaptation strategies. Flan-T5 is pretrained
on our corpus by applying LoRA exclusively to the query
and value matrices in the transformer block, and therefore
the initial token embeddings or model weights that have
been optimized for natural language understanding do not
get updated. These tokens derived from a corpus of natural
language, and their embeddings, may not be very relevant
in our specific context. On the contrary, BERT is end-to-end
trained during domain adaptation, allowing us to learn token
embeddings and model parameters tailored to our corpus,
leading to a more substantial boost in performance. Moreover,
the downstream task performance is majorly reliant on the
quality of embeddings, as more advanced architectures such
as 1D-CNNs do not lead to higher performance relative to
some classical ML models.
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TABLE 2. Classification performance of ML models on the test set using software log embeddings extracted by LLMs. RF and DT refer to random forest

and decision tree classifiers, respectively. NA- not applicable.

LLM Embedding Approximate| Used Context | Embedding Overall Accuracy (%) Overall F1-score (macro)
Model # Parameters Window Dimension RF DT | XGBoost | CNN RF DT XGBoost | CNN
LLaMA2-7B 7B 2048 4096 80.8 71 82.2 77.1 | 0.683 0.59 0.705 0.632
Mixtral_8x7B 47B 512 4096 79.2 | 67.2 80.2 774 | 0.626 | 0.517 0.658 0.617
Flan-T5 770M 512 1024 75.7 | 63.9 79.5 NA 0.531 0.466 0.649 NA
Flan-T5 (Domain Adapted) 770M 512 1024 77 63.3 79.2 NA 0.555 | 0.4291 0.634 NA
BERT 110M 512 768 739 | 62.3 78.2 74.6 0.45 0.438 0.596 0.527
BERT (Domain Adapted) 110M 512 768 76.9 | 69.1 79.4 74.6 | 0.568 | 0.507 0.641 0.568
BigBird (E2E Finetuned) 110M 4096 NA 81 0.581
TFIDF+Logistic Regression NA NA 10000 71.6 0.358

Finally, we finetune the original pretrained BigBird base
model on our labelled dataset with the hope that its
relatively large context window of 4096 tokens can capture
as much information as possible from software command
logs. Instead of extracting embeddings, here, the model
is end-to-end finetuned with a classification head, and
all model parameters are updated during training. This
resulted in accuracy and Fl-score of 81% and 0.581 on
the test set, respectively, consistent with LLM-embedding
classification results presented in Table 2. An analysis of
similar-size models reveals that, when the model context
window is sufficiently large, finetuning LLMs end-to-
end on a downstream classification task leads to higher
performance compared to employing separate classifiers
on pretrained LLM embeddings. Nevertheless, none of the
LLM-based approaches achieves comparable performance
to the proposed CNN, indicating that domain-tailored ML
architectures may be better suited for industrial applications
that require processing miscellaneous formats of text. In addi-
tion to delivering superior performance, such lightweight ML
models minimize the cost of production and are practically
feasible for in-house or field deployment.

It should be noted that this study focuses on telecom-
munications software logs, which exhibit domain-specific
structures and non-natural language patterns. While the
proposed CNN is tailored to this setting, the underlying
approach including character-level modelling, long-context
handling and the lightweight CNN can be adapted to other
technical log formats with similar characteristics. It should
be noted that while residual CNNs outperform LLMs in
this specific telecommunications log classification task, their
primary limitation lies in their inability to capture long-range
dependencies or semantic context, which may be crucial in
more linguistically structured or semantically rich domains.
Likewise, LLMs may be more effective in domains where
log data more closely resembles natural language or where
pretrained linguistic knowledge is advantageous, particularly
when compute and inference resources are not a constraint.

V. EXPERIMENTAL DETAILS

All training and evaluation experiments in this study were
performed on KubeFlow, which enables the orchestration
of machine learning workflows on the Kubernetes cluster.
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Ubuntu 20.04 was used as the operating system. The
hardware infrastructure consisted of an Nvidia DGX server
carrying 8xA100 graphics processing units (GPUs), each
with 80GB memory. The system is equipped with 1 terabyte
of physical memory. MLFlow [45] integrated within the
KubeFlow environment was used for experiment tracking and
logging artifacts.

CNN architecture and hyperparameters were optimized
empirically. The optimized architecture contained four
Convolutional-1D layers with number of filters ranging
from 64 to 512 (see FIGURE 3). All convolutional layers
use a kernel size of 3 and are followed by Rectified
Linear Unit (ReLU) activation [46]. The model was trained
for up to 200 epochs with an early stopping patience of
30 epochs. Adam optimizer with a learning rate of 10~* was
used to optimize model parameters. L, regularization was
applied to selected layers to reduce overfitting and improve
generalization of the model. The batch size was adjusted
accordingly within a range of 16 to 512 to accommodate
large context sizes. For the largest context size tested (200k),
the model completed training in under one hour. A similar
hyperparameter setting was employed for the seq2seq LSTM
model that had 4.6 Million parameters. We used Keras
package with TensorFlow backend to implement and train the
models.

LLMs analyzed in this study were adapted from Hugging
Face [48] using the transformers package. BERT and Flan-T5
models were each trained for 5 epochs for domain adaptation.
LoRA adapters, with a rank of 16 and a scaling factor of
32 were used to train Flan-T5. BERT was trained in less
than one hour on our TC whereas the training of Flan-T5
took about seven hours. The batch size is set to 64 for
BERT and 12 for Flan-T5. Larger models (LLaMA2-7B and
Mixtral_8 x 7B) were 4-bit quantized using the bitsandbytes
package before extracting embeddings for computational
efficiency. LLaMA2-7B, Mixtral 8 x 7B, Flan-T5, and
BigBird use SentencePiece-based subword tokenizers (with
BPE or Unigram models), while BERT uses the WordPiece
tokenizer. Flash attention 2 [49] implementation in the
transformers package was used to further reduce memory
requirements. The overlapping window size was set to half
the sequence length for embedding extraction. torchrun was
used for distributed training of LLMs where applicable.
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FIGURE 9. Boxplot indicating outlier software logs.

BigBird base model was finetuned for up to 200 epochs
with a batch size of 8 and an early stopping patience
of 30 epochs. In general, the finetuning of BigBird took
about 4 hours. The hyperparameters of the ML models
used with LLM-embeddings were optimized using a 5-
fold cross-validation strategy with grid search. Classical ML
implementations were adopted from Scikit-Learn [50] with
default parameters. Classification performance metrics are
calculated as follows where TP, FP and FN indicate true
positives, false positives and false negatives, respectively.

. TP
Precision = —— (6)
TP + FP
TP
Recall = —— 7
TP + FN
Precision x Recall
F1_score = ®)

Precision + Recall

VI. CONCLUSION

In this research, we presented a robust CNN architecture
tailored for the classification of intricate large-scale software
logs in the telecom sector to meet the edge-deployability
requirement of defect detection systems. The proposed
model, adept at processing extensive text sequences up to
200,000 characters, markedly outperforms some LLM-based
approaches examined. This advancement is critical in mit-
igating the limitations of manual log analysis, such as
inefficiency and error-proneness, offering a streamlined,
automated approach for defect triage in 5G/6G network
testing. Our research demonstrates that custom, compact
models like our CNN architecture can not only offer a
practical and efficient alternative to resource-intensive LLMs
in specific industrial applications, but can even surpass their
performance. While our results do not establish that custom
CNN architectures can universally surpass LLMs in all log
classification tasks, this study underscores the importance
of considering architectural choices in light of real-world
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constraints and production overheads. In conclusion, this
study not only presents a carefully-executed empirical
approach to developing an edge-deployable ML model
for accurate defect detection from raw software logs in
the telecommunications industry but also provides valuable
insights into the application of artificial intelligence in
industrial settings, paving the way for future innovations in
software log classification.

APPENDIX
See Figure 9.
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