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Metallic materials are at the heart of modern industry and infrastructure, valued for
their outstanding strength, ductility, and other excellent mechanical properties [1,2]. The
deformation and failure in these materials are inherently multiscale and multifactorial
phenomena [2,3]. At the atom- or micro-scale, they originate from dislocation motion,
twinning, phase transformation, void nucleation, etc. [1,4]. Plastic deformation and failure
are strongly shaped by how different microstructural features interact with one another [4,5].
As we push for lighter structures [6-8], greater durability in harsh environments [9,10],
and longer service lives [11-13], understanding how metals deform and fail has become
more important—and more challenging—than ever. For this purpose, both advanced
characterization techniques and numerical modelling methods have been developed.

Material characterization techniques have advanced quickly in recent decades [14,15],
which offers insights into deformation mechanisms at a wide range of length and time
scales. At the micro-scale, in situ mechanical testing using electron microscopy allows
for the direct observation of dislocation activity [14], phase evolution [16], and crack
propagation during loading [15]. Techniques like Scanning electron microscopy (SEM),
electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) are
widely used to reveal local crystal orientations, microstructural features, and areas of strain,
offering a detailed understanding of how materials deform at the grain level [15]. At larger
scales, digital image correlation (DIC) techniques offer full-field strain mapping during
mechanical tests [17,18], revealing heterogeneity in strain distribution and early signs
of localized deformation. Meanwhile, X-ray diffraction, particularly using synchrotron
radiation, has enabled the measurement of internal stresses, lattice strains, and phase
distributions [19]. Emerging techniques, such as 3D tomography, atom probe tomography
(APT), and a focused ion beam (FIB), allow for the three-dimensional reconstruction of
microstructures [19-22].

Numerical modelling techniques have also progressed significantly. The finite element
method (FEM) remains a cornerstone of mechanical simulation. The conventional FEM
relies on phenomenological constitutive models, which does not consider microstructural
factors [23-25]. When crystal plasticity models are integrated into finite element simula-
tions, crystal plasticity finite element methods (CPFEMs) can account for the orientation
of crystals and the specific slip systems that operate during deformation [26-28]. The
microstructure in a CPFEM can originate from EBSD data, ensuring more accurate predic-
tions [29,30]. At a lower scale, discrete dislocation dynamics (DDD) simulations capture
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the collective behaviour of dislocations and their interactions [31], while molecular dy-
namics (MD) simulations provide atomistic insights into mechanisms such as dislocation
nucleation, phase transformation, and grain boundary migration [32,33]. Though computa-
tionally intensive, these numerical approaches are invaluable for exploring deformation
phenomena that are difficult to observe experimentally. This Special Issue has collected
works regarding the recent progress concerning on the above-mentioned topics.

Zhang et al. [34] used cavitation water jet peening (CWJP) to strengthen the surface of
the 7075 aluminum alloy. The process increased surface hardness from 109.2 Hv to 144.0
Hyv, with the strengthening effect extending up to 600 pum deep. In another study by Ding
et al. [35], laser shock peening was also used to improve the fatigue life of 1Cr18Ni9Ti. It
was found that the 3] category produced the best result due to the optimal grain refinement
and residual compressive stress. Abdi et al. [36] applied twin parallel channel angular
extrusion (TPCAE) to an AZ91 cast magnesium alloy to improve its hydrogen storage
properties. The TPCAE process was conducted at temperatures from 340 °C to 200 °C,
and the hydrogen absorption and desorption tests were measured at 250 °C, 300 °C, and
350 °C. Three TPCAE passes at 250 °C resulted in the best absorption capacity, i.e., 6.1 wt.%
within a time span of 2000s. To enhance the welding quality of aluminum and steel, Zhang
et al. [37] placed a copper and a nickel coating on the surface of the former and latter,
respectively. This interlayer copper—nickel binary coating suppressed the formation of
brittle intermetallic compounds, and the welding quality was increased by 56% compared
to the uncoated aluminum-steel welding.

Chen et al. [38] conducted dry sliding tribometric tests with different loads to evaluate
the mild-severe wear transition of the 2095 Al-Li alloy. The wear rate grew slowly when
the load was 2—4N, grew fast at a medium load (8-16N), and grew gradually at loads
from 32N to 40N. SEM mapping shows that the abrasion and oxidation were significant
during the transition from mild to severe wear, and the tribo-induced plastic deformation
of the substrate is the reason for this wear transition. Wang et al. [39] used multiple
misorientation parameters, derived from EBSD mapping, to evaluate the plastic damage,
including the grain reference orientation deviation (GROD), grain orientation spread (GOS),
grain orientation spread over the grain diameter (GOS/D), and the geometrically necessary
dislocation (GND). It was found that the GOS/D was a reasonable indicator for the plastic
damage in 316 steels. The underlying mechanism for plastic deformation and damage is
dislocation movement, and thus understanding the behaviours of dislocation movement
is critically important. Chang et al. [40] used an indentation stress relaxation process to
study the dislocation velocity and stress exponent in commercial pure aluminum, and this
exponent was found to be 2.5 &= 0.5 for ambient temperature.

Shen et al. [30] conducted CPFEM simulations to investigate the influence of ultrafine-
grained (UFG) austenite on the mechanical properties of medium-Mn steel by comparing the
stress and strain between the samples with and without austenite. The 3D EBSD-scanned
microstructure was modelled to ensure high fidelity, where the grain morphology, crystallo-
graphic orientation, and phase composition were preserved. The UFG austenite was found
to be a main contributor to the ductility and strength of medium-Mn steel. CPFEM simu-
lations were carried out to evaluate the sensitivity of the nanoindentation stress relaxation
methodology to the dislocation velocity-stress exponent [40]. Compared to the uniform-field
and mean-field methods, the full-field CPFEM requires a large amount of computation time,
since homogenization is not theoretically assumed. Liu et al. [41] utilized a Submodel method
to exceedingly enhance the mesh resolution in areas of interest, and the CPFEM simulations
successfully captured the weak texture components and local deformation. Qin et al. [33]
performed molecular dynamics simulations to systemically study the behaviours of crack
propagation in the Ni-based superalloy. It was found that high-stress triaxiality promoted
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brittle cracking, while low-stress triaxiality enhanced the plastic crack; the cracks grow slowly
when they are located in the v and v’ phase; the /vy’ phase interface hinders the crack
propagation when the crack is perpendicular to the y/y” interface.

As metal processing techniques continue to evolve, we are seeing the development
of more advanced materials with increasingly complex microstructures. These advances
call for equally sophisticated tools to understand how structure influences performance.
This Special Issue aims to present state-of-the-art developments in this vibrant field, and to
deepen our understanding of how metals deform and fail. As Guest Editors, we hope you
find this Special Issue helpful and inspiring. Finally, we are deeply grateful to the authors
for their publications, to the reviewers for their time and comments, and to the Editorial
team for their suggestions and support.
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