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Abstract
In recent years, new solutions have been explored to reduce the weight of components for the automotive, railway, and 
aerospace industries. For this reason, Carbon Fiber Composites (CFCs) have increasingly replaced metals in products that 
need to be lightweight. However, due to their poor thermal conductivity, CFCs have limited use in applications requiring 
efficient heat dissipation. In such applications, conventionally manufactured metal alloys are typically utilized. To address 
these limitations, a novel approach using a combination of additively manufactured aluminum and CFCs is proposed to 
exploit the distinct advantages of both materials. These innovative hybrid structures aim to combine good structural and 
thermal management properties with reduced weight compared to conventionally produced metal products. In this study, 
additively manufactured aluminum alloy (AlSi10Mg) and short carbon fiber Polyamide 6 composite (sCF-PA6) are utilized 
to produce metal–polymer pairs using electron beam energy to bond the two materials. Direct irradiation of short CFCs 
with electron beam leads to polymer degradation. Thus, a novel method “Electron Beam Bonding” for joining CFCs with 
aluminum alloy in various joint configurations using electron beam technology is demonstrated. This innovative approach 
presents a promising solution for creating metal–polymer multi-materials for lightweight applications.

Keywords Electron beam bonding · Multi-material · Lightweight · Additive manufactured materials · Short carbon fiber 
composites · AlSi10Mg · Joining

1 Introduction

Electrical and electronic equipment must efficiently dissipate 
accumulated heat to protect sensitive components. Tradition-
ally, this is achieved using metal alloys [1]. Today, the light-
weight potential, low cost, and acceptable thermo-mechani-
cal properties of carbon fiber-reinforced polymer composites 
make them excellent candidates to replace metals [2, 3]. 
Currently, CFCs are primarily used for structural applica-
tions because of poor thermal conductivity. To address this, 
multi-material structures combining aluminum and CFCs 
are proposed for lightweight products with integrated ther-
mal management.

Achieving a strong bond between dissimilar materials is 
challenging due to differences in their physical and chemi-
cal properties, particularly the significant variations in their 
melting temperatures and thermal conductivities. In recent 
years, the joining of metals and polymer materials has been 
researched due to the intense demand for lightweight struc-
tures. The most used joining technologies for polymer–metal 
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hybrid structures in the literature are adhesive bonding, 
mechanical fastening, mechanical joining, solid-state weld-
ing, and combinations of these technologies, such as fric-
tion stir welding [4], mechanical clinching [5], self-piercing 
riveting [6], and ultrasonic plastic welding [7]. Although 
these processes offer advantages such as being cost-effec-
tive, environmentally friendly, and easily accessible, there 
are limitations regarding joint types, thickness, geometry, 
and surface quality. Defects, such as delamination, cracks, 
bubbles, and poor adhesion, can also occur on the composite 
parts [8]. Electron Beam Welding (EBW) addresses these 
shortcomings by enabling welding in a vacuum chamber 
to prevent oxidation and joining of materials with different 
melting temperatures [9]. EBW is versatile, accommodat-
ing various shapes and joint types, such as lap, butt, T-, and 
corner joints [10].

This study presents electron beam technology for join-
ing dissimilar materials through a process called Electron 
Beam Bonding. The process capabilities are demonstrated 
by bonding Additively Manufactured (AM) short carbon 
fiber (sCF) reinforced Polyamide 6 (PA6) specimens with 
AlSi10Mg aluminum alloy specimens.

2  Materials and methods

A PA6 composite PolyMide™ PA6-CF [Polymaker, China] 
in 1.75 mm filaments was used for bonding specimens manu-
factured via Material Extrusion with a NeoCore303 machine 
[D33D, France]. AlSi10Mg specimens were produced 
using a Print Sharp 150 Laser Powder Bed Fusion (LPBF) 
machine [Prima Additive S.r.l., Italy] with gas-atomised 
powder [m4p material solutions GmbH, Germany]. The 
joining process was done using an EBG15-150 K30 electron 
beam welding system [pro-beam GmbH, Germany] at a con-
stant acceleration voltage of 120 kV, with pressure ranging 
from 3 × 10−4 to 4 × 10−4 mbar. Specimens were manually 
clamped by hand until they could no longer move, and the 
clamping force was not measured. Sample temperature was 
measured with 0.2 mm K-type thermocouples connected a 

QuantumX MX1609KB module and data analysis was per-
formed using the Catman software [Hottinger Brüel&Kjær 
GmbH, Germany].

The samples of sCF-PA6 were analyzed after the electron 
beam application using a light microscope. The thermal con-
ductivity of sCF-PA6 and AlSi10Mg was measured with a 
Quickline-50 thermal interface analyser [Anter Co., USA]. 
Lap shear tests, following ASTM D5868-01–202, were con-
ducted at room temperature with a loading rate of 13 mm/
min to assess the bond strength and durability. Test coupons 
measured 175 mm × 25, 4 mm × 6 mm, with a 25 mm over-
lap, using a ZwickRoell Z150 testing machine [ZwickRoell 
GmbH & Co. KG, Germany] with a 150 kN load cell.

3  Results

3.1  Development of electron beam bonding

The first step involved assessing the electrical conductivity 
of CFCs for stable electron emission. sCF-PA6 composites 
due to their carbon fiber content are suitable for this method 
[9]. Pre-experiments were conducted to evaluate the thermal 
behavior of 1 mm-thick sCF-PA6 samples along a 40 mm 
weld line under various parameters (see Table 1). The spot 
size of the beam was realized using a standardized beam fig-
ure of concentric circles, which was deflected at a frequency 
of 1000 Hz to achieve the desired magnitude.

Despite using significantly lower energy per unit length 
compared to 30 J/mm–40 J/mm required to penetrate 1 mm-
thick aluminum, sCF-PA6 tends to evaporate during the pro-
cess (Fig. 1 E02 and E04). sCF-PA6’s thermal conductivity 
is very low (0.34 ± 0.04 W/m K) compared to AlSi10Mg 
(127 ± 10 W/m K), causing heat to concentrate at the beam 
impact point, leading to melting and evaporation. When the 
electron beam size is increased, energy is further distributed 
across the surface, leading to variations in the size of the 
resulting “V” shape (Fig. 1 E06), and evaporation was the 
worst when the energy was further increased (Fig. 1 E08).

Table 1  Process parameters of 
preliminary experiments

Experiment no Beam current
(mA)

Process speed
(mm/s)

Energy per unit length 
(EpUL) (J/mm)

Spot diameter
(mm)

E01 0.1 30 0.4 1
E02 0.1 15 0.8 1
E03 0.1 30 0.4 2
E04 0.1 15 0.8 2
E05 0.1 30 0.4 2.5
E06 0.1 15 0.8 2.5
E07 0.2 30 0.8 2.5
E08 0.2 15 1.6 2.5
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Short carbon fiber composites are unsuitable for direct 
electron beam processing due to low thermal conductivity 
and thermal stability (Fig. 1). To bond these composites 
with metals “Electron Beam Bonding” is proposed, which 
involves controlled heating of the metal part to the compos-
ite’s softening temperature through direct contact, causing 
localized melting and adhesion. A similar approach has been 
reported using laser beams [11–14]. Electron Beam Bonding 
is illustrated in Fig. 2.

Feasibility studies were conducted on both joint types 
using sCF-PA6 and AlSi10Mg plates, each 3 mm thick. In 
these studies, AlSi10Mg samples were heated to tempera-
tures of 280 °C or higher, using beam currents of either 
2 mA or 2.5 mA. It was observed that achieving a meas-
ured temperature of 280 °C or more in both setups (i.e., butt 
and overlap joints) resulted in successful bonding. This is 
significant, because the material extrusion temperature for 
sCF-PA6 ranges between 280 °C and 300 °C. Based on the 
placement of the thermocouples, it is anticipated that the 
temperature at the interface may exceed 280 °C, but it is 
likely to remain below the degradation temperature of PA6, 
which is ~ 390 °C [15]. If the temperature were to exceed this 
threshold, degradation could occur, leading to the formation 
of pores similar to those shown in Fig. 1. The cooling pro-
cess was much slower than laser processes [16], because it 
relies solely on conduction, with no convection is available 
due to the vacuum conditions (Fig. 3). Scanning areas meas-
ured 70 mm × 10 mm for butt joints and 35 mm × 25 mm for 

overlap joints, with energy applied to 1000 discrete points 
in these areas. To determine the energy input into the metal 
part, the energy per unit area (EpUA) was calculated by con-
verting the energy per unit length (EpUL) [9] using Eq. 1. 
A 1 mm joining distance (Fig. 2, right) was maintained to 
avoid direct beam interaction with the composite. Results 
indicate that this method is suitable for joining metal and 
composite parts (Fig. 3).

3.2  Bond strength of joints

Ten overlap specimens were produced using a 25 mm 
overlap length, 2 mA beam current, and a 26 mm × 26 mm 
scanning area. Lap shear tests were performed, and the 
results, including peak temperatures, EpUA, lap-shear 
force, and lap-shear strength, are summarized in Table 2. It 
is important to note that lap-shear strength was calculated 
by dividing the force by the overlapping area between the 
metal and the polymer. The results indicated a consistent 
lap-shear strength across all ten trials, yielding an average 
lap-shear strength of 5.4 ± 0.5 MPa, derived from an aver-
age maximum lap-shear force of 3.4 ± 0.3 kN.

(1)
Energy per unit area

[

J

mm2

]

=
Beam current [mA] x Acceleration voltage [kV] x Heating time [s]

Scanning area
[

mm2
] .

Fig. 1  Cross section of base material (sCF-PA6), experiments with EpUL of 0.8 J/mm (E02, E04, E06) and 1.6 J/mm (E08)

Fig. 2  Method for metal–composite overlap and butt joints using electron beam
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Experiments were conducted at joining temperatures 
ranging from 280 °C to 290 °C, and no significant differ-
ences were observed in lap-shear strength or failure mode. 
All sCF-PA6 specimens exhibited bulk-substrate failure near 
the edge of the aluminum specimen. Three specimens (E04, 
E07, and E08) had strength values below 5 MPa, as indicated 
by the dotted lines in Fig. 4. The discrepancies in strength 

could be attributed to varying clamping forces, as these three 
specimens appeared more squeezed than others. However, 
these clamping forces were not measured during the experi-
ments, and we plan to address this in future work.

After the lap-shear tests of the multi-material joints, two 
types of fracture modes were observed, as shown in Fig. 5. 

Fig. 3  Experimental setup and temperature measurement during the preparation of butt and overlap joints using electron beam at Fraunhofer 
IPK, and AlSi10Mg and sCF-PA6 bonded samples

Table 2  Peak temperature and 
lap-shear strength of 10 overlap 
joints

Experiment no Peak tempera-
ture
(°C)

Exposure time 
(s)

EpUA (J/mm2) Max. lap-shear 
force
(kN)

Lap shear 
strength
(MPa)

E01 278 16.2 5.8 3.5 5.5
E02 279 17.3 6.1 3.7 5.8
E03 279 17.6 6.2 3.4 5.3
E04 283 17.7 6.3 2.9 4.5
E05 284 16.2 5.8 3.7 5.9
E06 284 17.9 6.4 3.6 5.7
E07 284 17.4 6.2 3.1 4.9
E08 287 17.7 6.3 3.1 4.9
E09 289 17.8 6.3 3.4 5.4
E10 293 17.6 6.2 3.6 5.6
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The first type is fracture within the composite material, and 
the second involves delamination within the composite fol-
lowed by fracture. These failure modes indicate strong adhe-
sion between the composite and the aluminum, suggesting 
that the bond strength at the interface exceeds the tensile 
strength of the composite. As a result, failure occurs within 
the composite rather than at the joint interface.

4  Discussion

The results show that aluminum-thermoplastic structures 
can be prepared using electron beam, despite significant 
differences in thermal properties and mechanical strengths. 
AlSi10Mg has a thermal conductivity of 127 W/m·K and a 
melting range between 570 and 590 °C [17], while sCF-PA6 
has a thermal conductivity of 0.34 W/m·K and a melting 
range between 190 and 230 °C as estimated by differential 
scanning calorimetry, which is in the rage reported in the 
literature [18]. Additionally, the shear strength of AlSi10Mg 
(~ 491 MPa) [19] is roughly nine times greater than that of 
sCF-PA6 (~ 55 MPa), making strong bonding between these 
materials challenging.

A review of literature revealed that besides electron beam 
welding, other methods like Friction Stir Welding (FSW) are 
commonly used for joining metal and polymer parts. How-
ever, FSW often results in joints with inadequate mechanical 
properties and has limitations related to joint types, geom-
etry, and thickness [4, 20]. These limitations and lower 
lap-shear strength have led to exploring thermal joining 

processes including laser joining [12, 21–23]. Results from 
this subject are summarized in Table 3.

This study differs from recent laser joining research, 
because it uses untreated samples. As shown in Table 3, the 
current results are competitive with findings in the litera-
ture, even though they lack surface treatments such as laser 
texturing that enhance mechanical interlocking [16, 17]. In 
addition to mechanical interlocking, the EB bonding process 
involves a physicochemical component that strengthens the 
bond between sCF-PA6 and AlSi10Mg, similarly to laser 
methods. For instance, it has been demonstrated that the 
oxide layer on aluminum positively influences bond strength, 
as PA6 can form hydrogen bonds with this layer [25]. This 

Fig. 4  Graph for load–displacement for experiments E01-E10

Fig. 5  Image of fracture patterns of test coupons after the lap-shear 
test
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is another reason why the untreated surface may have con-
tributed to the observed bond strength results.

5  Conclusions

This study demonstrates that the "Electron Beam Bonding" 
has the potential to effectively bond AM-produced sCF-
reinforced thermoplastic composites with aluminum alloys, 
achieving a maximum lap-shear strength of 5.9 MPa and 
shear forces of around 3700 N, without surface treatment. 
Despite its high cost, electron beam technology is an effec-
tive tool for developing and testing joining processes for 
sensitive materials. It allows the precise determination of 
optimum joining temperatures, heating rates, and strate-
gies. This knowledge can lead to the adoption of simpler, 
more cost-effective methods, such as hot plates or induction, 
for industrial series production. Future work will focus on 
analyzing process parameters and refining the bonding pro-
cess through surface treatment and clamping techniques to 
enhance joint strength and reliability, as well as to explore 
potential industrial use-cases and real-world applications.
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