
SUBMITTED FOR REVIEW 1

LAMBO: Large AI Model Empowered Edge
Intelligence

Li Dong, Feibo Jiang, Senior Member, IEEE, Yubo Peng, Kezhi Wang, Senior Member, IEEE, Kun Yang, Fellow,
IEEE, Cunhua Pan, Senior Member, IEEE, Robert Schober, Fellow, IEEE

Abstract—Next-generation edge intelligence is anticipated to
benefit various applications via offloading techniques. However,
traditional offloading architectures face several issues, including
heterogeneous constraints, partial perception, uncertain general-
ization, and lack of tractability. In this paper, we propose a Large
AI Model-Based Offloading (LAMBO) framework with over one
billion parameters for solving these problems. We first use input
embedding (IE) to achieve normalized feature representation with
heterogeneous constraints and task prompts. Then, we introduce
a novel asymmetric encoder-decoder (AED) as the decision-
making model, which is an improved transformer architecture
consisting of a deep encoder and a shallow decoder for global
perception and decision. Next, actor-critic learning (ACL) is used
to pre-train the AED for different optimization tasks under
corresponding prompts, enhancing the AED’s generalization in
multi-task scenarios. Finally, we propose an active learning
from expert feedback (ALEF) method to fine-tune the decoder
of the AED for tracking changes in dynamic environments.
Our simulation results validate the advantages of the proposed
LAMBO framework.

Index Terms—Large AI model, Edge intelligence, Encoder-
decoder architecture, Reinforcement Learning, Active learning

I. INTRODUCTION

Multi-access edge computing (MEC) has been applied to
allow for efficient and low-latency offloading of computational
tasks from mobile devices via wireless networks [1]. Integrat-
ing artificial intelligence (AI), e.g., deep learning with edge
computing gives rise to the emerging concept known as edge
intelligence [2].

Recently, large AI models (LAMs) have been proposed
as a novel intelligence paradigm that enables AI models
with billions of parameters to achieve unprecedented gen-
eral intelligence. Pushing the adaptive learning and decision-
making capabilities of LAMs to the network edge enables
the provision of powerful personalized intelligent services
to users while safeguarding data privacy. It is believed that
the integration of LAMs and edge computing can form the
foundation for the next generation of edge intelligence from
the following aspects: LAM for edge and edge for LAM.

On the one hand, LAM for edge describes using LAMs to
provide more data and intelligent solutions for edge comput-
ing, including managing and scheduling edge resources and al-
locating and coordinating edge tasks. This approach improves
the efficiency, performance, reliability, and scalability of edge
intelligence systems. Traditional optimization solutions for
edge computing face challenges such as the dynamism and
uncertainty of the edge environment; the diversity and distri-
bution of edge systems; and the difficulty and complexity of

edge optimization problems. LAMs can be extensively pre-
trained in a broader range of datasets, exhibiting more robust
generalization capabilities for dynamic and diverse tasks.
Furthermore, with its billions of parameters, LAM surpasses
traditional deep learning approaches in logical analysis and
decision-making for complex optimization problems [3].

On the other hand, edge for LAM focuses on the training
and execution of LAMs on the edge. This approach enhances
data privacy and security, reduces latency and communica-
tion overhead in data transmission, and provides personalized
application scenarios and services. Traditional training and
execution of AI models on edge systems face challenges
such as the instability and heterogeneity of edge devices, as
well as the unfairness and non-uniform distribution of edge
data. LAMs can efficiently learn personalized data at the edge
through fine-tuning with few parameters, thereby reducing the
requirements for computing resources. Additionally, LAMs
can possess powerful data representation and fault tolerance
capabilities, reducing decision errors and biases caused by
low-quality and non-uniform edge data [4].

Against the above background, in this paper, we focus
on how LAMs can empower edge intelligence from the
perspective of offloading systems. We first introduce the tradi-
tional deep offloading architecture and its main challenges.
Subsequently, we describe key LAM technologies and the
advantages of applying them to edge intelligence systems.
Next, we propose a LAMBO framework with around 1 billion
parameters for achieving high-quality task offloading and
resource scheduling, targeting diverse tasks. Moreover, we
use “prompts” in LAMs to effectively manage and control
LAMBO, enabling it to accomplish precise tasks through
natural language instructions. Specifically, the prompt is delib-
erately assigned as two instructions (“Minimum latency” and
“Minimum energy”) for different tasks. The contributions of
this paper are summarized as follows:

• High-quality Representation: We introduce an input em-
bedding (IE) approach that aims to convert inputs of
various types (such as state information of the offloading
system with heterogeneous constraints and instructions
for diverse tasks) into cohesive feature embeddings while
ensuring their normalization.

• Excellent Performance: We develop an asymmetric
encoder-decoder (AED) architecture comprised of a
deep encoder and a shallow decoder for modelling the
decision-making process and producing excellent offload-
ing decisions from the global perspective.

• Superior Generalization: We utilize actor-critic learning

ar
X

iv
:2

30
8.

15
07

8v
2

 [
cs

.A
I]

 3
 A

ug
 2

02
4

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI https://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 2

(ACL) to pre-train AED. Specifically, we generate a large
number of unlabeled instances for various optimization
tasks, which are then inputted into AED for extensive
training to enhance generalization across multiple tasks.

• Efficient Tractability: We leverage active learning based
on expert feedback (ALEF) to fine-tune the decoder of the
AED while keeping the encoder frozen. This approach fa-
cilitates the efficient tracking of environmental variations.

The remainder of this paper is organized as follows. The
traditional deep offloading architecture and its challenges are
presented in Section II. The key technologies and advantages
of LAMs for MEC systems are described in Section III.
The detailed design of the proposed LAMBO framework is
provided in Section IV. Simulation results are presented in
Section V, followed by a discussion of open issues in Section
VI, and conclusions are drawn in Section VII.

II. TRADITIONAL DEEP OFFLOADING ARCHITECTURE
AND CHALLENGES

A. Traditional Deep Offloading Architecture

Traditional optimization algorithms for offloading decision-
making and resource allocation may need to cope with re-
solving highly complex mixed-integer-nonlinear-programming
(MINLP) problems via exhaustive search, branch-and-bound,
or convex optimization-based techniques, which may have
high complexity and low efficiency, that may not be suitable
for dynamic environments.

Deep offloading architectures have been proposed for intel-
ligent offloading decision-making processes. These architec-
tures apply deep learning methods (e.g., CNNs [5], RNNs [6]
and DNNs [7]) with reinforcement learning [8] or supervised
learning [7] to extract useful information and learn knowl-
edge from MEC systems, and solve the offloading problem
autonomously without human intervention. The traditional
offloading architecture for MEC systems comprises three mod-
ules, as shown in the uppermost part of Fig. 1, and described
as follows [5]–[9]:

1) Data Collection and Preprocessing: Data collection is
crucial for traditional offloading models that use deep learn-
ing in edge intelligence systems. Environmental data, such
as sensory, task, and network information, can be gathered
continuously as training data. A data preprocessing solution
is necessary to discard or refine abnormal, incomplete, or
duplicate data. Moreover, when the amount of training data
is insufficient, data augmentation methods can be applied to
generate more data for the offloading models.

2) Offloading Model Selection: CNNs and RNNs are com-
mon neural network architectures used in MEC systems for
various tasks. CNNs are often used for grid-like data struc-
tures, such as path programming and offloading decision-
making for mobile edge nodes. In contrast, RNNs are com-
monly designed to address time series prediction tasks such
as offloading decision-making in dynamic environments.

3) Model Training and Deployment: Depending on the spe-
cific task in edge intelligence systems, an appropriate learning
method can be chosen for the offloading model. Supervised
learning can be employed when sufficient labelled data is

available. However, when the data distribution, scale, quality,
and privacy of the task are variable or unknown, reinforcement
learning becomes the preferred training method. This approach
utilizes observations and feedback from the environment to
continually update the model, facilitating real-time learning
and decision-making.

B. Research Challenges

Although the traditional deep offloading architectures can
solve the task offloading problem in edge intelligence systems,
there are several challenges:

1) Heterogeneous Constraints: Edge systems are designed
to accommodate highly heterogeneous environments with di-
verse requirements and constraints. Moreover, different edge
nodes may possess varying computing and communication
resources, resulting in distinct requirements for offloading
decision-making and resource allocation. However, traditional
deep offloading architectures are end-to-end learning systems
and do not have dedicated components to handle these differ-
ent requirements and constraints.

2) Partial Perception: Offloading decisions often rely on
extensive sensor data, leading to high-dimensional features.
The quality of communication channels between sensors and
edge nodes can also influence user association with the edge
server, which results in ample feature space regarding offload-
ing decisions. CNNs and RNNs struggle with long-distance
dependencies between features, causing partial perception is-
sues that may lead to locally optimal offloading decisions.

3) Uncertain Generalization: Generalization implies deep
learning models have consistent inference performance across
different tasks. Specific offloading tasks may have critical op-
timization objectives (e.g., time-sensitive or energy-sensitive)
and require rapid responses, placing stringent requirements
on training time. This may challenge current deep offloading
architectures with only one optimization goal, highlighting the
need for superior generalization for different offloading tasks
without retraining.

4) Lack of Tractability: Edge intelligence systems may be
deployed in dynamic environments. It is difficult to ensure
that the training process is general enough to capture the
entire distribution of the input features as encountered in real-
world scenarios, especially when the feature space is dynamic.
Therefore, offloading models have to adaptively learn from
dynamic scenarios and track the time-varying data in edge
intelligence systems (e.g., network topologies and channel
gains). While reinforcement learning is frequently employed
for online decision-making in dynamic environments, it suffers
from low learning efficiency and catastrophic forgetting in
large-scale dynamic environments and multi-task dynamic
environments.

III. KEY TECHNOLOGIES AND ADVANTAGES OF LAMS
FOR EDGE INTELLIGENCE SYSTEMS

A. Key Technologies

In this subsection, we summarize several critical tech-
nologies of LAMs for their applications in edge intelligence
systems.

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 3

Fig. 1: Deep offloading architecture versus LAMBO architecture.

1) Prompt and Embedding: Prompts and embedding are
key techniques in LAMs used to perform preprocessing tasks
for external instructions and information. They play a crucial
role in integrating and processing these external inputs effec-
tively in the LAM as follows [10]:

• Token Embeddings: Token embeddings represent individ-
ual tokens, such as words or patches, in the input text.
Each token is represented by a learned embedding that
captures the lexical meaning of the word or patches. In
MEC systems, environmental information (e.g., channel
state information (CSI) for each user equipment (UE))
and task information (e.g., required data size and com-
puting resources for each task) can be encoded as token
embeddings for each UE.

• Prompts: Prompts are instructions or guides provided to
the LAMs to execute specific tasks or generate desired
outputs based on natural language. In MEC systems,
prompts can serve as instructions to distinguish between
different optimization tasks, such as minimizing energy
consumption or system latency. For instance, when in-
structed to minimize latency as input, the LAMs can
comprehend the semantic meaning of the instruction and
generate task offloading and resource scheduling results
that align with the goal of minimizing latency.

2) Transformer Model: The transformer is a novel deep
learning architecture proposed by Google [11]. Its key inno-
vation is the attention mechanism, which enables the model
to capture global dependencies between inputs in a sequence
more effectively than traditional methods. Here is the structure
of the transformer and its potential applications in MEC
systems:

• Encoder-Decoder Models: Encoder-decoder models con-
sist of separate encoder and decoder components in the
transformer. The encoder processes the input sequence
and generates contextualized representations for each
token. The decoder then takes these representations and

produces the output sequence. In MEC systems, the
environment and task information of all UEs contribute to
the input, and the encoder can effectively capture the sys-
tem information in input embeddings, while the decoder
generates accurate offloading decisions sequentially.

3) Two-stage Training: LAMs use supervised or unsuper-
vised learning to pre-train the transformer on vast amounts of
text data, and then they fine-tune the pre-trained transformer on
specific downstream tasks. The technical details and potential
applications of the two-stage Training are outlined below:

• Pre-training: Pre-training serves as the initial training
stage of LAMs, which normally employs supervised or
self-supervised learning techniques, enabling the model to
capture statistical patterns, relationships, and contextual
dependencies from extensive data [12]. However, in MEC
systems, collecting large amounts of supervised data
could be expensive. Therefore, alternative pre-training
methods that go beyond supervised and self-supervised
learning could be considered for MEC systems.

• Fine-tuning: Fine-tuning is the second training stage of
LAMs, focusing on adjusting the parameters of the pre-
trained LAM for a specific dataset or task [13]. This
approach aims to enhance the model’s generalization
abilities while controlling its behaviour according to
user preferences or task requirements. During the fine-
tuning, the LAM is refined using a smaller dataset that is
specifically relevant to the target task. In MEC systems,
we can use fine-tuning to guide models in tracking the
continuously changing communication environment.

B. Advantages of Applying LAMs in Edge Intelligence Systems

Based on the key technologies of LAMs presented in the
previous subsection, we can outline the following benefits of
applying LAMs in offloading systems:

1) High-quality Representation of Heterogeneous Con-
straints: Effective offloading and resource scheduling require

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 4

precise modelling of the MEC system. However, different
requirements and heterogeneous constraints of abundant edge
nodes make this modelling difficult. LAMs have an additional
embedding layer to handle the issue, allowing them to absorb
all criteria and constraints, and then build extremely complex
internal representations. This embedding layer is crucial for
accurately modelling complex MEC systems.

2) Excellent Performance for Offloading Decision-making
Process: LAMs are capable of autonomously conducting
feature extraction and adaptive learning from MEC systems.
Compared to small-scale models (e.g., CNNs and RNNs),
LAMs often demonstrate superior inference accuracy. Through
a multi-head self-attention mechanism in the transformer
model, LAMs can establish different scales of dependen-
cies between input information in an ample feature space.
Hence, they can uncover more nuanced insights, which in
turn contribute to excellent offloading decisions and resource
allocation.

3) Superior Generalization for Different Tasks: By lever-
aging extensive datasets from various sources, LAMs acquire
comprehensive knowledge across a broad spectrum of tasks,
which can enhance their learning and generalization abilities,
enabling effective modelling of diverse optimization objec-
tives. Utilizing prompts during pre-training, LAMs can learn
different optimization tasks and accurately perform specific
functions without the need for retraining. This versatility
makes LAMs highly adaptable and valuable for various op-
timization problems.

4) Efficient Tractability in Dynamic Environments: LAMs
can efficiently utilize parallel computing resources, including
distributed systems and specialized hardware accelerators such
as graphics processing units (GPUs) or tensor processing units.
It enables rapid fine-tuning for edge computing services. By
employing adaptive fine-tuning, the pre-trained knowledge in
LAMs can respond to dynamic environments, substantially
boosting the robustness of offloading decisions and resource
allocation in MEC systems.

IV. THE LAMBO FRAMEWORK

This section introduces the LAMBO framework, including
four components: IE, AED, ACL, and ALEF.

A. Algorithm Overview

As illustrated at the bottom of Fig. 1, we first use IE to
generate embeddings from the MEC system. Then, we propose
a novel AED model to address the offloading and resource
allocation. The AED model comprises a deep encoder and
a shallow decoder. The encoder is employed to extract self-
attention features for all UEs. These self-attention features,
along with MEC and prompt embeddings, are fed into the
decoder, which in turn generates optimal offloading decisions
and resource allocation for each UE sequentially, ensuring they
adhere to the constraints of the whole system.

Moreover, we train the AED model in two stages: pre-
training and fine-tuning. In the pre-training stage, we use
an ACL to train the AED model. Then, in the fine-tuning
stage, ALEF is used to keep track of environmental variations,

detect unusual instances using maximum entropy, and label
valuable instances based on expert feedback. Next, we provide
a detailed description of each component.

B. Input Embedding

We use IE to represent the input information to the edge
intelligence system as embeddings in Fig. 2.

• UE embedding denotes the environment (e.g., CSI) and
task (e.g., computing and communication resource re-
quirements) information of each UE.

• Prompt embedding denotes the instructions for different
tasks with optimization goals, such as minimizing energy
consumption or system latency.

• MEC embedding denotes the remaining resource con-
straints of edge servers, which are dynamically updated
with each UE’s resource allocation decision.

Firstly, we tokenize the textual prompt into a numerical
representation. Then, we normalize all the information (UE,
MEC, and prompt) and input them into IE, which is a learnable
hidden layer that structurally enables the mapping of diverse
input information into fixed-length vectors (embeddings) for
the attention model.

C. Asymmetric Encoder-Decoder

The AED model comprises a deep encoder with multiple
encoder layers, enabling effective learning from input embed-
dings. Furthermore, it incorporates a shallow decoder with a
single decoder layer, allowing for sequential generation of
offloading decisions and resource allocation for each UE.
The structures of the encoder and the decoder in AED are
illustrated in Fig. 2.

Fig. 2: Structures of IE and AED.

1) Deep Encoder: Each encoder layer typically has the
following sub-components:

• Self-Attention Sublayer: This sublayer allows the model
to focus on different parts of the input sequence of
embeddings simultaneously, capturing dependencies and
relationships between embeddings.

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 5

• Feed-Forward Sublayer: This sublayer applies a point-
wise feed-forward transformation to each embedding
independently, allowing non-linear transformations to be
applied to the input sequence.

• Residual and Normalization Sublayer: After each Self-
Attention Sublayer and Feed-Forward Sublayer, a residual
connection is applied and normalization is applied to
normalize the activations across the feature dimension.

2) Shallow Decoder: The decoder layer typically has the
following sub-components:

• Self-Attention Sublayer: This sublayer follows a similar
procedure to the one used in the encoder, and residual
connection and layer normalization are also applied to
all sublayers.

• Encoder-Decoder Attention Sublayer: This sublayer at-
tends to the encoder’s output features, allowing the de-
coder to focus on relevant features from the input.

• Linear Projection and Two-head Output: Following the
decoder’s final layer, output representations are projected
to the output size through a linear transformation. A two-
head output layer is then applied to solve the optimization
problem, e.g., MINLP efficiently, in which a softmax
function is introduced to generate the offloading deci-
sions, and a sigmoid function is implemented to create
the allocated resources.

The advantage of employing an asymmetric structure lies in
the ability to adjust only the parameters of the shallow decoder
during the fine-tuning phase, thereby facilitating rapid learning
of LAMBO.

D. Pre-training: Actor-Critic Learning

We employ ACL in the first training stage to pre-train AED,
which is detailed below and illustrated in Fig. 3:

1) Actor Network Design: In MEC systems, we designed
an actor-network to learn and improve decisions for LAMBO.
The actor-network utilizes the AED model, taking MEC em-
bedding, UE embedding, and prompt embedding as inputs, and
produces offloading choices and resource allocation as outputs.
The actor-network is trained using the policy gradient method
to boost its exploration.

2) Critic Network Design: We design an additional critic
network to evaluate the reward of the actor network’s policy,
which corresponds to the optimization objective for the current
prompt in MEC systems. The critic network adopts the same
output structure as the actor-network to enhance the stability
and accuracy of reward prediction.

3) Training Iteration and Policy Update: We set appro-
priate parameters, such as the learning rate, to facilitate the
training process. Then, an iterative training process begins
until the actor and critic networks converge.

E. Fine-tuning: Active Learning based on Expert Feedback

Since the network topology and CSI are time-varying, we
introduce ALEF in the second fine-tuning stage to proactively
track the variations of the environment with fewer labelled
instances collected from the environment. The fine-tuning
process is detailed below, and illustrated in Fig. 4:

Fig. 3: Workflow of ACL.

1) Online Offloading Decision-making Process: The pre-
trained AED model is deployed for the downstream task.
In this step, the encoder parameters are frozen, and the
lightweight decoder with a few parameters is utilized to
make offloading decisions efficiently for unlabeled instances
sampled from MEC systems operating in realistic scenarios.

2) Maximum Entropy Query: A query strategy based on the
offloading decision is introduced to identify the importance of
instances in dynamic environments and select the cases that
would yield the highest performance gain for the decoder. The
instance with the maximum entropy is chosen since it reflects
the most significant uncertainty of the offloading decision [14].

3) Expert Appointment and Decoder Update: “Expert” is
the specific algorithm for improving the selected instances. For
instance, Mixed-integer programming solvers (e.g., CPLEX),
heuristic algorithms (e.g., differential evolution (DE)), and
policy optimization algorithms (e.g., policy gradient (PG), soft
Actor-Critic). Finally, the lightweight decoder is updated by
the expert from the selected instances for tracking the varying
environments.

V. CASE STUDY

A. Problem Formulation

We consider a standard MEC system consisting of several
edge servers and UEs. Each UE has a single compute-intensive
task and adheres to a binary offloading policy. Unlike tradi-
tional deep offloading architectures, the proposed architecture
can make offloading decisions for different optimization tasks
simultaneously based on prompts without retraining the model.
To verify the validity of prompts, we define two different
optimization tasks for the considered MEC system, where the
prompts and their meanings are as follows:

• Minimum Latency: User association and resource alloca-
tion are optimized by minimizing the average latency for
each UE. Latency is composed of transmission latency
and execution latency for the remote task or local execu-
tion latency [15].

• Minimum Energy: User association and resource allo-
cation are optimized for the minimization of the total

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 6

Fig. 4: Workflow of ALEF.

energy consumption of all UEs. Energy consumption
comprises transmission energy for the remote task and
local execution energy [15].

The optimization problem must satisfy constraints: (1) the
maximum latency constraint for each task; (2) the maximum
resource availability in each edge server; (3) all tasks can be
executed either locally at the UE or on a single edge server.

B. Simulation Settings
To evaluate the performance of the proposed framework,

we consider a scenario involving 4 edge servers and 50 UEs
in an 50 m × 50 m square area. All edge servers and UEs
are randomly distributed in the area, and the UE’s maximal
velocity is 1.2 m/s. The CSI, which already encapsulates the
spatial relationship and channel fading relationship between
the UE and edge server is calculated from our previous work
[7]. The maximum latency for all UEs is set to 1.5 seconds.
The computing resources of each edge server are allocated
as follows: 1.5 × 1010, 1.5 × 1010, 3 × 1010, and 5 × 1010

cycles/s, respectively. For each UE, the average data size and
the corresponding required computing resources for tasks are
2×108 kB and 1×109 cycles/s, respectively. Both transmitting
power and local execution power are set to 1 W.

C. Simulation Contenders
To showcase the benefits of the proposed LAMBO frame-

work, we compare it with the following contenders:
• Local: All tasks are executed locally.
• Random: All tasks are executed on the UE or one MEC

randomly.
• DE: Offloading decisions are optimized by the DE algo-

rithm.
• DROO: Offloading decisions are optimized by the tra-

ditional deep offloading architecture with reinforcement
learning [8]. The agent in DROO comprises 60 fully
connected FC layers. The total number of parameters in
the agent is 326,662.

• ARE: Offloading decisions are optimized by the tradi-
tional deep offloading architecture with supervised learn-
ing [7]. The DNN in ARE comprises 60 FC layers. The
total number of parameters in the DNN model is 326,662.

• LAMBO M: A medium-scale AED model is utilized
to optimize offloading decisions. In LAMBO M, the
encoder comprises 60 encoder layers, and the decoder
incorporates 6 decoder layers. The total number of pa-
rameters in LAMBO M is 579,920,902.

• LAMBO L: A large-scale AED model is utilized to
optimize offloading decisions. In LAMBO L, the encoder
consists of 120 encoder layers, and the decoder incorpo-
rates 12 decoder layers. The total number of parameters
in LAMBO L is 1,159,515,142.

Fig. 5: Comparison of different schemes in task latency.

D. Evaluation Results

We evaluate the proposed LAMBO using two prompts. The
simulation results of all contenders for the minimum latency
prompt are presented in Fig. 5, with the y-axis representing
the average latency of each UE. We can see that LAMBO L
achieves the lowest latency, while DE performs third best,
closely behind LAMBO M.

Similar observations can be made in Fig. 6 for the minimum
energy prompt, where the y-axis represents the total energy
consumption for all UEs. It can be inferred from the results
that the AED exhibits a remarkable learning capacity, resulting
in higher accuracy of offloading decisions compared to other
schemes. Furthermore, the learning capability improves on
all prompts as the number of parameters increases, sug-
gesting that LAMBOs have greater potential to address a
variety of challenges in MEC systems compared to tradi-
tional offloading methods such as ARE and DROO. Next,
compared to LAMBO L, the performance of the LAMBO M
model consistently lags behind. This could be attributed to
LAMBO L having a higher number of parameters, thus pos-
sessing stronger learning and decision-making capabilities.

VI. OPEN ISSUES AND FUTURE DIRECTIONS

1) Limited Memory and Storage: Edge servers and devices
like base stations, cars, and IoT devices have much less RAM
and flash storage compared to cloud centers. This restricts
the maximum model size that can be deployed. LAMs easily
exceed 50 GB, which cannot fit on some edge servers and
devices. Further exploration of compression techniques such
as sparse attention, quantization, and distillation is warranted

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

SUBMITTED FOR REVIEW 7

Fig. 6: Comparison of different schemes in energy
consumption.

in future research, as they provide valuable means to reduce
the model size and minimize storage requirements.

2) Constrained Computing Power: Edge servers and de-
vices have relatively simple CPUs or microcontrollers com-
pared to the powerful GPUs used to train LAMs. The com-
putation needed for inference places a heavy load on edge
processors. This leads to slow response times and high bat-
tery/power drain. Optimized inference engines such as multi-
query attention and latent consistency tailored for edge devices
are an important research direction for the future.

3) Substantial Communication Overhead: Edge devices
face bandwidth limitations, hindering their ability to handle
high data throughput. This leads to transmission bottlenecks
and inefficiencies for LAMs. Unstable connectivity in edge
environments adds complexity, causing disruptions and data
inconsistencies. Research on novel communication paradigms,
such as semantic communication systems, holds the potential
to provide innovative solutions for reducing the communica-
tion overhead of LAMs at the edge in the future.

VII. CONCLUSION

In this paper, we have studied an LAM-based offloading
framework for MEC systems. We first summarized the main
challenges of the traditional deep offloading architecture, and
then we described the key technologies of LAMs and the
advantages of applying LAMs in MEC systems. Next, we
proposed the LAMBO framework for MEC systems, in which
IE was applied to represent the system information with
constraints and prompts, AED was presented to model the
offloading decision process, ACL was introduced to pre-train
the AED for different tasks, and ALEF was used to fine-tune
the decoder of AED for tracking the dynamic environments.

REFERENCES

[1] B. Cao et al., “Intelligent offloading in multi-access edge computing:
A state-of-the-art review and framework,” IEEE Communications Mag-
azine, vol. 57, no. 3, pp. 56–62, 2019.

[2] A. Y. Ding et al., “Roadmap for edge ai: A dagstuhl perspective,” pp.
28–33, 2022.

[3] K. Singhal et al., “Large language models encode clinical knowledge,”
Nature, pp. 1–9, 2023.

[4] Y. Tian et al., “Fedbert: When federated learning meets pre-training,”
ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 13, no. 4, pp. 1–26, 2022.

[5] B. Yang et al., “Offloading optimization in edge computing for deep-
learning-enabled target tracking by internet of uavs,” IEEE Internet of
Things Journal, vol. 8, no. 12, pp. 9878–9893, 2021.

[6] J. Wang et al., “Computation offloading in multi-access edge computing
using a deep sequential model based on reinforcement learning,” IEEE
Communications Magazine, vol. 57, no. 5, pp. 64–69, 2019.

[7] F. Jiang et al., “AI driven heterogeneous MEC system with UAV
assistance for dynamic environment: Challenges and solutions,” IEEE
Network, vol. 35, no. 1, pp. 400–408, 2021.

[8] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, 2020.

[9] Z. Zhou et al., “Edge intelligence: Paving the last mile of artificial
intelligence with edge computing,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1738–1762, 2019.

[10] U. Naseem et al., “Transformer based deep intelligent contextual em-
bedding for twitter sentiment analysis,” Future Generation Computer
Systems, vol. 113, pp. 58–69, 2020.

[11] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[12] B. Zoph et al., “Rethinking pre-training and self-training,” Advances in
neural information processing systems, vol. 33, pp. 3833–3845, 2020.

[13] S. Wang et al., “Fine-grained retrieval prompt tuning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 37, no. 2, 2023,
pp. 2644–2652.

[14] P. Ren et al., “A survey of deep active learning,” ACM Comput. Surv.,
vol. 54, no. 9, oct 2021.

[15] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

BIOGRAPHIES

Li Dong (Dlj2017@hunnu.edu.cn) is currently an Associate
Professor at Hunan University of Technology and Business,
China.

Feibo Jiang (jiangfb@hunnu.edu.cn) is currently an Asso-
ciate Professor at Hunan Normal University, China.

Yubo Peng (pengyubo@hunnu.edu.cn) is currently pursuing
the master’s degree at Hunan Normal University, China.

Kezhi Wang (Kezhi.Wang@brunel.ac.uk) is a Senior Lec-
turer with the Department of Computer Science, Brunel Uni-
versity London, U.K.

Kun Yang (kunyang@essex.ac.uk) is currently a Chair
Professor in the School of Computer Science & Electronic
Engineering, University of Essex, U.K.

Cunhua Pan (cpan@seu.edu.cn) is currently a full profes-
sor in Southeast University, China.

Robert Schober (robert.schober@fau.de) is an Alexander
von Humboldt Professor and the Institute for Digital Com-
munications (IDC) in Friedrich-Alexander University (FAU)
Erlangen-Nürnberg, Erlangen, Germany.

This article has been submitted for publication in a future issue of this journal, but has not been peer reviewed or fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/MCOM.001.2400076, IEEE Communications Magazine

Copyright © 2024 The Author(s). The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the submitter granted the following license to arXiv.org on submission of an
article: I grant arXiv.org a perpetual, non-exclusive license to distribute this article. I certify that I have the right to grant this license. I understand that submissions cannot be completely removed once
accepted. I understand that arXiv.org reserves the right to reclassify or reject any submission. [v2] Sat, 3 Aug 2024 13:43:01 UTC (1,544 KB)

	Introduction
	Traditional Deep Offloading Architecture and Challenges
	Traditional Deep Offloading Architecture
	Data Collection and Preprocessing
	Offloading Model Selection
	Model Training and Deployment

	Research Challenges
	Heterogeneous Constraints
	Partial Perception
	Uncertain Generalization
	Lack of Tractability

	Key Technologies and Advantages of LAMs for Edge Intelligence Systems
	Key Technologies
	Prompt and Embedding
	Transformer Model
	Two-stage Training

	Advantages of Applying LAMs in Edge Intelligence Systems
	High-quality Representation of Heterogeneous Constraints
	Excellent Performance for Offloading Decision-making Process
	Superior Generalization for Different Tasks
	Efficient Tractability in Dynamic Environments

	The LAMBO Framework
	Algorithm Overview
	Input Embedding
	Asymmetric Encoder-Decoder
	Deep Encoder
	Shallow Decoder

	Pre-training: Actor-Critic Learning
	Actor Network Design
	Critic Network Design
	Training Iteration and Policy Update

	Fine-tuning: Active Learning based on Expert Feedback
	Online Offloading Decision-making Process
	Maximum Entropy Query
	Expert Appointment and Decoder Update

	Case Study
	Problem Formulation
	Simulation Settings
	Simulation Contenders
	Evaluation Results

	Open Issues and Future Directions
	Limited Memory and Storage
	Constrained Computing Power
	Substantial Communication Overhead

	Conclusion
	References

