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Enhancing Collaborative Machine Learning in
Resource-Limited Networks through Knowledge

Distillation and Over-the-Air Computation
Yue Zhang, Guopeng Zhang, Kun Yang, Yao Wen, and Kezhi Wang

Abstract—Conventional collaborative machine learning (CML)
faces significant challenges in resource-constrained environments,
such as emergency scenarios with limited power, bandwidth,
and computing resources, leading to increased communication
delays and energy consumption. To address these issues, this
paper introduces Air-CoKD, a novel CML framework designed
to reduce resource consumption and training latency while
preserving model performance. Air-CoKD leverages knowledge
distillation (KD) to minimize data transmission by avoiding the
direct sharing of model parameters. It also integrates over-the-
air computation (AirComp) to aggregate local logits, optimizing
bandwidth utilization. To address the dimensional differences
in local logits caused by the unbalanced device data class,
Air-CoKD employs orthogonal frequency division multiplexing
(OFDM) to transmitting local logits for different target classes. To
handle aggregation errors introduced by AirComp, we conduct
a detailed analysis of error bounds. Specifically, we convert the
Kullback-Leibler (KL) divergence, used in KD loss function,
into a quadratic upper bound for precise error quantification
and effective optimization. Based on these insights, we propose
a strategy to manage bandwidth constraints, transmission power
limits, and device energy budgets within Air-CoKD. Extensive
simulations demonstrate that Air-CoKD surpasses state-of-the-
art methods, effectively balancing training efficiency and model
performance. The framework proves to be a robust solution for
CML in resource-constrained networks.

Index Terms—Collaborative machine learning, resource-
constrained networks, over-the-air computation, knowledge dis-
tillation, convergence analysis.

I. INTRODUCTION

COllaborative machine learning (CML) [1] involves multi-
ple devices working together to train AI models by shar-

ing data, model parameters, or gradients. Federated learning
(FL) [2] is a specialized instance of CML that focuses on
preserving data privacy by keeping data local to devices and
only exchanging model parameters or gradients. For example,
FedAvg [3] aggregates model parameters, while FedSGD
[4] relies on aggregating gradients. Despite the advancements
in CML, deploying these methods in resource-constrained
environments [5], [6], [7], such as during emergency rescue
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operations [8], presents significant challenges. Natural disas-
ters like earthquakes and floods disrupt power supplies and
communication networks [9], complicating the management of
frequent model parameter or gradient updates. This repeated
transmission strains limited bandwidth and exacerbates energy
shortages, leading to increased training delays and hindering
timely decision-making. The situation becomes even more
challenging in multi-modal learning scenarios, where diverse
data types (e.g., images, text, and sensor readings) and larger
training model further intensify communication and computa-
tion demands [10], [11].

To address these issues, we propose a novel CML method
that aims to reduce resource consumption and latency while
maintaining acceptable model performance. Our approach in-
cludes two key innovations: (1) We replace traditional param-
eter or gradient aggregation with knowledge aggregation, also
called knowledge distillation (KD), through a federated knowl-
edge distillation (FedKD) approach [12]. FedKD involves
transmitting only the probability distributions of target classes,
or local logits, which significantly lowers data transmission,
energy consumption, and training delays. (2) We use Over-the-
Air Computation (AirComp) [13] to compute the global logits
needed for FedKD. AirComp enables simultaneous transmis-
sion of local logits across all available channel resources,
optimizing bandwidth usage and improving computational
efficiency by directly aggregating local logits into global logits.

Our proposed CML framework, Air-CoKD, leverages
these innovations to optimize channel resource utilization,
reduce device energy consumption, and minimize training
delays while maintaining high model performance. However,
balancing these goals presents several challenges that need to
be addressed:

• Dimension inconsistencies in AirComp-based logit aggre-
gation: In distributed environments, non-independent and
identically distributed (non-IID) sampling often results
in devices holding data with distinct class distributions,
causing significant dimensional differences in locally gen-
erated logits. Since AirComp requires aligned dimensions
for efficient global logit aggregation, this data imbalance
introduces inconsistencies that hinder seamless aggrega-
tion [14].

• Uncertain impact of logits aggregation error: Unlike
FedAvg or FedSGD, which directly enhance model
performance by sharing model parameters or gradients,
Air-CoKD employs KD regularizers to indirectly in-
fluence local training. This indirect influence makes it
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challenging to precisely quantify how logits aggregation
errors impact overall model performance.

• Errors due to channel fading and noise: AirComp is
susceptible to errors introduced by channel attenuation
and stochastic noise during logits aggregation. While
FedAvg and FedSGD can mitigate these errors through
effective transmission power control and denoising strate-
gies, Air-CoKD faces heightened difficulty in reducing
aggregation errors due to the dimensional inconsistencies
in locally generated logits caused by unbalanced device
data class in non-IID settings.

In this paper, we propose a logits aggregation mechanism
using orthogonal frequency division multiplexing (OFDM) to
address the dimensional inconsistencies caused by unbalanced
device data class during FedKD combined with AirComp. This
method assigns orthogonal subcarriers to logits of different
target classes, allowing simultaneous transmission across mul-
tiple subcarriers from various devices. This approach achieves
one-shot aggregation per training round but introduces the
challenge of multi-user and multi-channel allocation. To re-
solve this, we analyze the convergence of the OFDM-based
Air-CoKD and quantify the impact of aggregation errors
on model performance. Given the complexity of the KL
divergence in local loss functions, we approximate it with a
quadratic upper bound to simplify analysis. We then formulate
an optimization problem to minimize the convergence upper
bound while considering constraints on bandwidth, transmis-
sion power, and device power budgets. This problem, being
a mixed integer nonlinear programming (MINLP) problem,
is tackled through alternating optimization, decoupling it into
manageable convex and mixed-integer subproblems. Finally,
extensive simulations on MNIST and CIFAR-10 datasets show
that Air-CoKD can effectively balances model training effi-
ciency and performance, making it well-suited for resource-
constrained environments. By combining KD and AirComp
techniques, our method can reduce communication overhead
by 90% at per round and significantly improve transmission
efficiency. The main contributions of this paper includes:

1) We introduce a novel CML framework, Air-CoKD,
which integrates AirComp with FedKD to balance train-
ing delay and model performance in resource-constrained
networks. By proposing an OFDM-based logits aggre-
gation mechanism, it achieves one-shot aggregation per
training round by assigning orthogonal subcarriers to
logits of different target classes, effectively mitigating
dimensional inconsistencies caused by unbalanced device
data class.

2) We provide a convergence analysis for models trained
with Air-CoKD, applicable to both convex and non-
convex scenarios. This analysis quantifies the impact of
logits aggregation errors on model performance, identify-
ing the mean square error (MSE) of aggregated logits as
a key factor in determining the convergence upper bound.

3) Based on the convergence analysis, an optimization prob-
lem is formulated and solved to minimize the MSE of
aggregated logits. An alternating optimization algorithm
is proposed to address this MINLP problem, deliver-

ing high-quality solutions with polynomial computational
complexity.

The rest of the paper is organized as follows: Section II
presents the preliminaries, Section III reviews related works,
Section IV presents the system model, Section V details the
convergence analysis, Section VI formulates the optimization
problem, Section VII proposes the alternating optimization
algorithm, Section VIII discusses the simulation results, and
Section IX concludes the paper.

II. RELATED WORKS

CML’s bandwidth and energy limitations in resource-
constrained networks can be addressed with KD and AirComp.
This section reviews FedKD and AirComp methods, focusing
on optimizing model performance, communication efficiency,
and resource allocation.

In FedKD, lightweight logits are transferred between de-
vices and the parameter server (PS) to enhance communication
efficiency. Chen et al. [15] optimized device scheduling and
communication resource allocation using network knowledge
instead of model parameters. Liu et al. [16] improved perfor-
mance by uploading both logits and model parameters to the
PS. Mishra et al. [17] grouped clients by bandwidth and used
KD to compress model information. Zhu et al. [18] proposed
a data-free FedKD method using a lightweight generator to
replace proxy datasets. Deng et al. [19] introduced a multi-
layer KD-based FL framework, clustering devices by data
distribution. Existing FedKD solutions focus on algorithm
design but often overlook transmit-receive strategies, making
them less suitable for resource-sensitive networks.

AirComp-based CML methods use analog uplink transmis-
sion for parameter aggregation, improving efficiency but facing
challenges in designing efficient transmit-receive strategies.
Cao et al. [20], [21] analyzed the relationship between aggre-
gation errors and model performance. Guo et al. [22] explored
model convergence under uplink and downlink channel errors
and designed joint optimization for device selection and power
control. Du et al. [23] proposed dynamic device scheduling
based on gradients, channel conditions, and energy constraints
to enhance model training efficiency. To further improve effi-
ciency, compression mechanisms such as gradient sparsity and
1-bit quantization have been explored in [24], [25]. Ahn et al.
[26] ensured consistent local gradient dimensions by sharing
a global sparsity pattern. Despite reducing overhead, selecting
compression parameters remains challenging, and excessive
compression can lead to information loss. Channel fading and
noise can also slow convergence, increasing training delays.

III. PRELIMINARIES

This section first reviews model parameter transfer and
logits-based knowledge transfer methods in CML. It then
introduces the OFDM-based AirComp approach, which ad-
dresses dimensional inconsistencies caused by unbalanced
device data class.
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A. Model Parameter Transfer Based CML

The most commonly used model parameter transfer based
CML is the vanilla FL method, such as FedAvg or FedSGD
[27]. We assume that a set K of K IoT devices and a PS in
a CML system. Denote the dataset collected by any device
k (∀k ∈ K) as Dk = {(xk,i, yk,i)}Dk

i=1, where Dk = |Dk|
represents the size of Dk, xk,i ∈ Rn denotes the i-th
(∀i ∈ {1, · · · , Dk}) sample with dimension n, and yk,i ∈ R
represents the corresponding label. Let D =

⋃
k∈KDk denote

the dataset aggregated across all K devices. The total size of
D is given by D = |D| =

∑K
k=1 Dk.

The PS first broadcasts the complete model parameter w ∈
Rq (where q is the size of the parameter vector) to the devices
for local training. Each device k uses its dataset Dk to train
the model w, and then uploads the trained model or gradient
back to the PS for aggregation. Denote the local loss function
of device k as

Fk (w) =
1

Dk

Dk∑
i=1

L (w, (xk,i, yk,i)) , ∀k ∈ K, (1)

where L (w, (xk,i, yk,i)) represents the empirical sample-wise
loss determined by a specific learning task. This process is
iteratively repeated to minimize the global loss F (w) given
below by optimizing the model parameter w.

min
w

F (w) =
∑
k∈K

Dk

D
Fk (w) . (2)

Remark 1. Parameter-sharing CML methods require devices
to upload complete or partial model parameters at each
round. For example, transferring data between a device and
the PS for 50 training rounds using the lightweight model
EfficientNetV2-S [28] involves 2GB of data. In post-disaster
scenarios with limited communication bandwidth, this data
transfer requirement significantly hampers training efficiency.
Additionally, the energy consumption associated with such
data transfers is unsustainable for battery-powered devices.

B. Knowledge Transfer Based CML

Unlike model parameter aggregation, knowledge aggrega-
tion updates the model by sharing experience from devices
rather than directly transferring model parameters. We employ
the FedKD mechanism, where the aggregated model output
across all devices serves as the teacher, and each device’s local
model is the student [29]. This approach significantly reduces
communication traffic in both the uplink and downlink. Upon
receiving the initial model w from the PS, each device k
localizes it as model wk ∈ Rq and trains wk using the local
dataset Dk. In addition to the basic loss Fk as indicated in

eq. (1), FedKD incorporates a KD regularizer based on KL
divergence to guide local training:

FKD =
1

Dk

Dk∑
i=1

KL
(
ϕ̃ (yk,i) ||ϕk (wk,xk,i)

)
, ∀k ∈ K, (4)

where ϕk (wk,xk,i) represents the local logits inferred by wk

from xk,i, and ϕ̃ (yk,i) represents the global logits correspond-
ing to the label yk,i. Let γk > 0 denote the regularization
parameter. The local loss function Qk(wk) for device k is
given by eq. (3).

Denote M = {1, 2, . . . ,M} as the set of classes across
all local datasets Dk,∀k ∈ K, with M representing the total
number of classes. The global logits ϕ̃ (·) have a dimension
of RM×M . Let ϕk,m (wk) ∈ RM denote the vector of local
logits for the m-th class label, with each element [ϕk,m (wk)]j
representing the probability for the j-th class label. These
logits satisfy1

[ϕk,m (wk)]j ≥ 0, ∀j ∈M,
∑

∀j∈M

[ϕk,m (wk)]j = 1. (5)

The PS then aggregates the local logits from all devices
by computing a label-wise average to obtain the global logits.
Under the assumption of an ideal data distribution, where each
device has all M -class data, the aggregation operation for the
m-th class is given by

ϕ̃m =
1

K

K∑
i=1

ϕk,m, ∀m ∈M. (6)

These global logits represent the collective knowledge
learned through the KD mechanism and are fed back to the
devices for the next training round, as shown in eq. (3).

Remark 2. While FedKD only requires devices to upload
local logits for aggregation after each training round, the
limited bandwidth of wireless channels poses a challenge for
accommodating such large-scale concurrent communication.

C. OFDM-based Over-the-Air Computation

By utilizing the analog signal superposition mechanism in
the Multiple Access Channel (MAC), AirComp efficiently
extracts functions like arithmetic averages, enabling large-
scale concurrent logit communication. However, device data
imbalance leads to dimensional inconsistencies in local logits,
hindering seamless aggregation. With reference to [30], [31],
[32], we propose a logits aggregation mechanism based on
OFDM and AirComp, where each subcarrier is assigned to

1The local model wk maintains the same architecture with the global model
w. Consequently, the output dimension of w is determined by the number of
global labels M , which means the size of the logits vector ϕk,m (wk) is M .

Qk (wk) = Fk (wk) +
γk
2
FKD (wk)

=
1

Dk

Dk∑
i=1

Lk (wk, (xk,i, yk,i)) +
γk
2Dk

Dk∑
i=1

KL
(
ϕ̃ (yk,i) ||ϕk (wk,xk,i)

)
, ∀k ∈ K.

(3)
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Fig. 1. The system model and workflow of our Air-CoKD framework.

the logits of a specific class. This design enables one-shot
aggregation per training round and mitigates dimensional mis-
matches caused by class imbalance. Furthermore, our approach
supports subcarrier-level optimization, offering fine-grained
control over logits aggregation performance and more efficient
spectrum utilization than existing methods.

Assuming a quasi-static Rayleigh fading channel, where
the channel coefficient remains constant within each training
round but can vary independently from one round to the next,
the complex channel coefficient of device k on subcarrier
m ∈ M in round t is represented as ht

k,m ∈ C. Thus, in
the communication round t, the received signal on subcarrier
m at the PS is represented by

yt
m =

∑
k∈K

ht
k,mxt

k,m + ztm, ∀m ∈M, (7)

where xt
k,m is the transmitted signal on on subcarrier m of any

device k and ztm ∼ CN
(
0, σ2

)
∈ RM represents the additive

Gaussian white noise (AWGN).

IV. SYSTEM MODEL

After a disaster, AI models can predict its progression,
aiding trapped individuals and rescue teams in avoiding danger
and executing effective strategies. To enhance the real-time
performance and accuracy of prediction, timely updates to
these AI models are essential. Assume K IoT devices remain
operational in the disaster zone, including portable terminals
carried by individuals and environmental monitoring devices
like cameras and sensors. With traditional communication and
computing infrastructure disabled, a rotary drone equipped
with communication and computing capabilities serves as the
PS, establishing direct wireless links with all devices in set K
and coordinating distributed training of AI models via CML.

This paper integrates AirComp with FedKD to enhance
bandwidth and energy efficiency and improve training perfor-
mance in resource-constrained networks. A major challenge
arises from inconsistent dimensions of local logits across
devices, hindering AirComp’s signal superposition. To resolve
this, a local logits alignment scheme based on OFDM is

introduced, forming the Air-CoKD framework, as illustrated
in Fig. 1. The following sections describe two critical steps:
devices training local models to generate logits and the PS
aggregating these logits. Subsequently, the complete workflow
of the framework is presented.

A. Local Model Upgrade and Logits Generation

The proposed Air-CoKD framework allows each device k
to update its local model wk using stochastic gradient descent
(SGD). After each t-th (t = 1, 2, · · · ) round of training, the
local model wt

k of device k is updated as follows

wt+1
k = wt

k − ηt∇Qk

(
wt

k,Btk
)
, ∀k ∈ K, (8)

where ηt denotes the learning rate at round t, Btk is the mini-
batch sampled randomly from the local dataset Dk with size
|Btk| = B, and ∇Qk (w

t
k,Btk) is the local stochastic gradient.

The gradient is computed as

∇Qk

(
wt

k,Btk
)
=

1

B

∑
ξ∈Bt

k

∇Qk

(
wt

k, ξ
)

=
1

B

∑
ξ∈Bt

k

∇Fk

(
wt

k, ξ
)
+

γk
2
∇FKD

(
wt

k, ξ
)
, ∀k ∈ K,

(9)

where ξ denotes any i-th pair (xk,i, yk,i) of the mini-batch Btk,
and ∇Fk (·) and ∇FKD (·) represent the stochastic gradients
of the basic loss Fk and the KD loss FKD, respectively.

During training, each device generates local logits with local
training data. For a subset of Btk,m ⊂ Dk with class label m
and size Bt

k,m, the local logits are averaged as

ϕk,m

(
wt

k

)
=

1

Bt
k,m

Bt
k,m∑
i=1

ϕk

(
wt

k,xk,i

)
, ∀k ∈ K, ∀m ∈M,

(10)
where ϕk (w

t
k,xk,i) represents the sample-wise logits.

In non-IID settings, devices may not have identical data
classes. Let Mk = {1, · · · ,Mk} ⊆ M denote the classes
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present in dataset Dk, with size Mk. The device generates a
local logits matrix

ϕt
k =

[
ϕk,1

(
wt

k

)
; · · · ;ϕk,Mk

(
wt

k

)]
∈ RMk×M , ∀k ∈ K,

(11)
which is then uploaded to the PS for aggregation. To ensure
comprehensive knowledge acquisition, the dataset Btk must
cover all classes in Mk.

B. OFDM-based Logits Aggregation

A key step in each training round is using AirComp to
aggregate local logits uploaded by devices to form the global
logits. Due to the unbalanced device data class Mk, the
dimensions of the local logits matrix ϕt

k ∈ RMk×M for each
device k varies, which complicates AirComp’s superposition
requirements and necessitates additional label-wise aggrega-
tion rounds.

To address this, an OFDM-based method is proposed to
align the dimension of local logits. The available bandwidth
is divided into M orthogonal subcarriers, with each subcarrier
corresponding to one of the M classes in the global dataset
D =

⋃
k∈KDk. The m-th subcarrier is exclusively assigned

for uploading logits associated with the m-th class, ensuring
dimension alignment across all devices. This setup introduces
a subcarrier allocation problem, defined by atk,m ∈ {0, 1},
where atk,m = 1 indicates that device k is allocated subcarrier
m for uploading logits in the t-th round of training, and
atk,m = 0 otherwise.

Remark 3. Unlike traditional subcarrier allocation problems
in OFDM systems, Air-CoKD permits each device k to utilize
multiple subcarriers to transmit logits of different classes of
data. Consequently, each subcarrier m carries logits of the
same data class sent in parallel by multiple devices. Thus, the
dimension of the subcarrier allocation matrix A = [ak,m] ∈
RK×M is K ×M .

Assuming perfect knowledge of the CSI between the PS
and devices, along with the subcarrier and power allocation
scheme from the PS, the transmitted signal from any device
k is designed as

xt
k,m = btk,mϕt−1

k,m, (12)

where btk,m = atk,m

√
pt
k,m(h

t
k,m)

H

|ht
k,m|

denotes the pre-processing

coefficient of device k at round t. Then, the signal received
by the PS on subcarrier m is given by

yt
m =

∑
k∈K

atk,m

√
ptk,m

∣∣ht
k,m

∣∣ϕt−1
k,m + ztm, ∀m ∈M, (13)

where ptk,m ≥ 0 denotes the transmission power scalar of de-
vice k on subcarrier m in round t. Considering the maximum
allowable power budget Pmax

k,m of device k on subcarrier m,
and the total power budget P tol

k of device k in round t, the
following constraints must be satisfied:∥∥∥atk,m√ptk,mϕt−1

k,m

∥∥∥2 ≤ Pmax
k , ∀k ∈ K, (14)

and
M∑

m=1

∥∥∥atk,m√ptk,mϕt−1
k,m

∥∥∥2 ≤ P tol
k , ∀k ∈ K. (15)

Let Stm denote the set of devices selected in round t to
transmit logits on subcarrier m. The size of Stm is |St

m| =∑K
k=1 a

t
k,m. Thus, the global logits vector of class m outputted

by AirComp is

ϕt
m =

yt
m√

θtm |St
m|

=

∑
k∈K atk,m

√
ptk,m

∣∣∣ht
k,m

∣∣∣√
θtm |St

m|
ϕt−1
k,m +

ztm√
θtm |St

m|
, ∀m ∈M,

(16)
where θtm is the denoising factor on subcarrier m in round t.

Considering a more general case that encompasses both
balanced and unbalanced device data distribution settings, the
error-free logits aggregation on subcarrier m is updated from
eq. (6) to the following form:

ϕ̃t
m =

1

|St
m|

K∑
i=1

atk,mϕt−1
k,m, ∀m ∈M. (17)

Thus, the aggregation error of the global logits output by
AirComp is

etm = ϕt
m − ϕ̃t

m, ∀m ∈M. (18)

C. The Complete Workflow of Air-CoKD

Fig. 1, along with the two key steps and related data formats,
illustrates the complete workflow of the proposed Air-CoKD
as follows:

1) System Scheduling: At the beginning of each communi-
cation round t, the PS transmits OFDM subcarrier and power
allocation strategies to the devices. Based on this, each device
modulates its local logits into analog signals and allocates the
transmitted signals across different subcarriers.

2) Model and Logits Broadcasting: At the initial stage (t =
0), the PS broadcasts the global model w to all devices to
initialize their local models as wk = w,∀k ∈ K. In subsequent
training rounds (t ≥ 1), the PS broadcasts only the aggregated
global logits matrix to all devices.

3) Local Model Update: Upon receiving the global logits,
each device k trains its local model by minimizing a combi-
nation of KD loss and basic loss as described in Section IV-A,
generating local logits for the next communication round.

4) Logits Modulation: Each device modulates its local
logits into analog signals according to the scheduling strategy,
applies a pre-processing coefficient to compensate for channel
phase, and adds a cyclic prefix (CP) to the OFDM symbols to
avoid inter-symbol interference (ISI).

5) Local Logits Upload: After local training and modulation,
each device transmits the modulated logits signals on the
assigned subcarriers. To ensure time synchronization, devices
estimate propagation delay by measuring the time difference
between pilot signal transmission and reception, then transmit
the OFDM symbols in advance.

6) OFDM-Based AirComp Aggregation: The logits analog
signals from all devices are superposed across subcarriers.
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Channel attenuation and additive noise introduce aggregation
errors in the global logits signal, as discussed in Section IV-B.

7) Global Logits Recovery: The PS applies denoising and
averaging operations to the received signal to reconstruct the
aggregated global logits.

V. CONVERGENCE ANALYSIS OF AIR-COKD

The designed Air-CoKD improves resource utilization
in CML. However, the aggregation errors in global logits
introduced by AirComp, as given in eq. (18), can potentially
degrade model performance. This section quantifies the impact
of these aggregation errors on model effectiveness, which is
crucial for error mitigation and enhancing model performance.

A. Upper Bound of Local Loss

The convergence of Air-CoKD is initially influenced by
the local loss function Qk (w

t
k), as shown in eq. (3). The

KD loss component FKD (·) uses KL divergence to measure
the discrepancy between global and local logits. However, the
absence of a closed-form derivative for KL divergence com-
plicates the analysis of the error term’s impact on distillation
loss. To address this, we use the inequality properties of KL
divergence to derive a quadratic upper bound for Qk (w

t
k),

following the approach in [33].
Let ϕt (yk,i) represent the global logits for the class label

yk,i at round t, computed by aggregating the local logits
from selected devices in round t − 1 via AirComp. Define
ϕk (w

t
k,xk,i) ∈ RM as the vector of local logits derived from

xk,i using wt
k. The upper bound on Qk (w

t
k) is given in the

following lemma.

Lemma 1. Let δ > 0 be a positive constant such that
minj∈M [ϕk (wk,xk,i)]j ≥ δ. The local loss Qk (w

t
k) for any

device k is bounded by

Qk

(
wt

k

)
≤ Q̃k

(
wt

k

)
= Fk

(
wt

k

)
+

γk
2δ

F̃KD

(
wt

k

)
, (19)

where

F̃KD

(
wt

k

)
=

1

Dk

Dk∑
i=1

∥∥ϕt (yk,i)− ϕk

(
wt

k,xk,i

)∥∥2 . (20)

Proof. For a detailed proof, please refer to Appendix A.

According to Lemma 1, when Qk (w
t
k) and Q̃k (w

t
k)

achieve their respective optima at w∗
k and w̃∗

k, it follows
that Qk(w

∗
k) ≤ Qk(w̃

∗
k) ≤ Q̃k(w̃

∗
k). This indicates that as

Qk (w
t
k) approaches its optimum, Q̃k (w

t
k) converges to its

optimal value. Given the presence of aggregation errors, the
optimal local loss Qk (w

t
k) can be approximated by minimiz-

ing the upper bound Q̃k (w
t
k). Thus, Q̃k (w

t
k) is used as the

local loss function for the subsequent convergence analysis.

B. Convergence Analysis

As outlined in eq. (3), the local model wk is trained using
the KD loss F̃KD (wk), while the convergence of the model
is governed by the base loss function Fk (wk). We adopt the
following assumptions for analysis, consistent with [21], [34].

Assumption 1. (Lipshchitz Continuity and Smoothness) For
any model parameter w,v ∈ Rq , the gradient of local base
loss function ∇Fk (w) is Lipschitz continuous with a constant
L > 0, i.e.,

∥∇Fk (w)−∇Fk (v)∥ ≤ L ∥w − v∥ , (21)

which extends to

Fk (w) ≤ Fk (v)+ ⟨∇Fk (w) ,w − v⟩+ L

2
∥w − v∥2 . (22)

Assumption 2. (Bounded Stochastic Gradient Variance) The
local stochastic gradients are unbiased, i.e.,

E [∇Fk (w,xk,i)] = ∇Fk (w) , (23)

and the variance of stochastic sample gradient ∇Fk (w,xk,i)
is bounded by a positive constant µk, i.e.,

E
[
∥∇Fk (w,xk,i)−∇Fk (w)∥2

]
≤ µ2

k. (24)

Assumption 3. (Gradient Bound) The squared norm of
stochastic sample gradient ∥∇ϕk (w,xk,i)∥2 is bounded by
a positive constant G, i.e.,

∥∇ϕk (w,xk,i)∥2 ≤ G2, (25)

where ∇ϕk (w,xk,i) is the gradient of the model output
(logits), often used to construct the neural tangent kernel
(NTK) [35].

We next investigate the impact of logits aggregation errors
on model performance under both convex and non-convex
scenarios.

1) Convex case: We assume the base loss function Fk (·)
exhibits strong convexity, as defined below.

Assumption 4. (Strong Convexity) For any model parameter
w,v ∈ Rq , the gradient of Fk (·), represented by ∇Fk (w),
is strong convexity with constant ρ > 0, meaning that

Fk (w) ≥ Fk (v)+⟨∇Fk (w) ,w − v⟩+ρ

2
∥w − v∥2 , ∀k ∈ K.

(27)

Under this assumption, Fk has a unique optimal value F ∗
k .

The following theorem provides the bound on the gap between
the expected loss E

[
Fk

(
wt+1

k

)]
and the optimal value F ∗

k .

Theorem 1. Given an initial local model w0
k and a learning

rate 0 < ηt ≤ 1
2L , after T rounds of training, the bound on

E
[
Fk

(
wt+1

k

)
− F ∗

k

]
is given by

E
[
Fk

(
wt+1

k

)
− F ∗

k

]
≤
(
1− ρηt

(
1

2
− Lηt

))
E
[
Fk

(
wt

k

)
− F ∗

k

]
+ 4ηt

(
Lηt +

1

2

)
γ2
kMkG

2

δ2

Mk∑
m=1

Ωt
m + Lη2t

µ2
k

B

+ 8ηt

(
Lηt +

1

2

)
γ2
kMkG

2

δ2

= At
kE
[
Fk

(
wt

k

)
− F ∗

k

]
+ Ct

k,

(28)

where
At

k = 1− ρηt

(
1

2
− Lηt

)
, (29)
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and

Ct
k = 4ηt

(
Lηt +

1

2

)
γ2
kMkG

2

δ2

Mk∑
m=1

Ωt
m + Lη2t

µ2
k

B

+ 8ηt

(
Lηt +

1

2

)
γ2
kMkG

2

δ2
.

(30)

with

Ωt
m =

∑
k∈K

atk,m

|St
m|

2


√

ptk,m|ht
k,m|√

θtm
− 1

2

+
σ2

θtm |St
m|

2 . (31)

Proof. For a detailed proof, please refer to Appendix B.

From eq. (28), for 0 < ηt ≤ 1
2L , At

k ≤ 1 and
limT→∞

∏T
t=1 A

t
k = 0. Consequently, the first term on the

right-hand side of eq. (28) approaches 0, and the gap is
primarily determined by Ct

k. Eq. (30) shows that Ct
k consists

of three terms: Term (a) represents the logits aggregation error
introduced by the wireless channel, where Ωt

m in eq. (31)
denotes the MSE on subcarrier m at round t. Term (b) reflects
the variance of the stochastic gradient associated with the base
loss Fk. Term (c) captures the knowledge gap between the
global and local logits at round t.

Generally, terms (b) and (c) depend on data distribution and
learning strategy, and are not directly affected by aggregation
errors. For instance, increasing the local mini-batch size can
help control term (b) and reduce the gap. Regarding term
(a), minimizing channel interference from AirComp can bring
Ωt

m close to zero, achieving perfect aggregation of local
logits. Meanwhile, the noise introduced by AirComp-based
aggregation influences the model convergence performance by
increasing the logits aggregation error Ωt

m. A higher noise
variance σ2 leads to a larger Ωt

m, which subsequently results
in a looser (i.e., larger) upper bound on the model convergence.
Thus, optimizing subcarrier allocation A = [ak,m] ∈ RK×M ,
transmission power control P = [pk,m] ∈ RK×M , and
denoising factor Θ = (θ1, · · · , θM ) can reduce the upper
bound of the gap and accelerate convergence.

2) Non-convex case: When Assumption 4 does not hold,
indicating that Fk (·) is non-convex, the expected squared
norm of the gradient functions as an indicator of model con-
vergence. The global loss function is considered to achieve a
ϵ-suboptimal solution if 1

T

∑T
t=1 E

[
∥∇F (wt)∥2

]
≤ ϵ, which

guarantees that the training model converges to a stationary
point [36]. The following theorem provides the conditions
necessary for this convergence.

Theorem 2. Given a learning rate 0 < ηt ≤ 1
2L , after T

rounds of training, the bound on the expected square norm of
the gradient E

[
∥∇F (wt

k)∥
2
]

is given by eq. (26).

Proof. For a detailed proof, please refer to Appendix C.

Theorem 2 shows that for a non-convex Fk(·), the upper
bound on E

[
∥∇F (wt

k)∥
2
]

can be reduced by minimizing the
aggregation error Ct

k. Consequently, reducing this aggregation
error also decreases the upper bound on the gap between the
expected loss E

[
Fk

(
wt+1

k

)]
and the optimal value F ∗

k .

VI. PROBLEM FORMULATION

The cumulative error of global logits caused by AirComp
over multiple rounds of logits aggregation significantly affects
the convergence of Air-CoKD. According to Theorem 1 and
Theorem 2, whether the basic loss function Fk (·) is convex
or non-convex, the convergence upper bound is primarily
determined by Ct

k, which is influenced by the MSE Ωt
m given

in eq. (31). We denote the aggregation error of device k in
round t as

Ψt
k =

∑
∀m∈Mk

atk,mΩt
m, ∀k ∈ K. (32)

To enhance the convergence of Air-CoKD, it is crucial to
minimize the aggregation error Ψt

k for each device k in any
training round t.

By omitting the index t, the optimization problem can be
formulated as follows:

P0 : min
A,P,Θ,

∑
∀k∈K

(
Ψk =

∑
∀m∈Mk

ak,mΩm

)
, (33a)

s.t. 0 ≤ pk,m ≤ Pmax
k,m , ∀k ∈ K, ∀m ∈M, (33b)

0 ≤
M∑

m=1

ak,mpk,m ≤ P tol
k , ∀k ∈ K, (33c)

ak,m ∈ {0, 1} , ∀k ∈ K, ∀m ∈M, (33d)
θm ≥ 0, ∀m ∈M, (33e)

where A = [ak,m] ∈ RK×M represents the subcarrier
allocation matrix, P = [pk,m] ∈ RK×M represents the
power allocation matrix, and Θ = (θ1, · · · , θM ) represents
the vector of denoising factors. Constraints (33b) and (33c)
come from eqs. (14) and (15), considering the relationship that
∥ϕt−1

k,m∥ ≤ 1 according to eq. (5). These constraints represent
the maximum allowable power and the total power budget for
each device k, respectively. Constraint (33d) is an indicator for
subcarrier allocation, as detailed in Remark 3, and constraint
(33e) defines the permissible range for the denoising factor
θm applied to subcarrier m.

To simplify the problem, we use the inequality
K∑

k=1

Mk∑
m=1

I {ak,m = 1}Ωm ≤ K
M∑

m=1

Ωm, (34)

transforming problem P0 into

P1 : min
A,P,Θ

M∑
m=1

Ωm,

s.t. (33b) ∼ (33e).

(35)

min
t∈T

E
[∥∥∇F (wt

k

)∥∥2] ≤ 1

T

T∑
t=1

E
[∥∥∇F (wt

k

)∥∥2] ≤ 4L

T
E
[
Fk

(
w0

k

)
− F ∗

k

]
+

4L

T

T∑
t=1

Ct
k (26)
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Since problem P1 involves both continuous variables P and Θ
and discrete variable A, it constitutes a mixed integer nonlinear
programming (MINLP) problem with highly coupled system
variables. In the following, we design a low-complexity algo-
rithm to obtain a high-quality solution to problem P1.

VII. PERFORMANCE OPTIMIZATION

In this section, we propose an alternative optimization-based
algorithm to solve problem P1. The core idea is to decouple
the parameters to be optimized and then solve the resulting
subproblems iteratively. By proving the convergence of this
approach, we can obtain an approximate optimal solution to
problem P1.

A. Subcarrier Allocation based on Divide and Conquer

Given the transmission power allocation P and the denoising
factor vector Θ, problem P1 is simplified to

P1.1 : min
A

M∑
m=1

Ωm,

s.t. (33b).

(36)

Let am = [a1,m, · · · , aK,m]
T ∈ RK ,∀m ∈ M denotes the

column vectors of the subcarrier allocation matrix A. Since
am is independent of each others, problem P1.1 can be trans-
formed into M independent subproblems, each corresponding
to a specific subcarrier m. The m-th subproblem is

min
am

Ωm =
K∑

k=1

ak,m

|Sm|2

(√
pk,m|hk,m|√

θm
− 1

)2

+
σ2

θm |Sm|2
,

(37a)
s.t. ak,m ∈ {0, 1} , ∀k ∈ K. (37b)

Problem (37) is an integer programming problem for which
no standard solution methods are available. To address this
within distributed training scenarios, we propose divide and
conquer strategy [37], which allows each device k to optimize
the subcarrier allocation independently. Specially, the algo-
rithm initializes subcarrier allocation factor ak,m of device
k on each subcarrier m to 0. Multiple values of Ωm can
then be computed. If the minimum Ωm is less than the
previously obtained value, the corresponding ak,m is retained.
After multiple iterations, the objective value of Ωm stablizes,
leading to the optimal subcarrier allocation A. The algorithm
is described as follows.

In lines 2-3 of Algorithm 1, Ω̄m represents the dynamic
lower bound of Ωm, computed with the current subcarrier
allocation am. In line 5, each non-zero element in am is
temporarily set to 0, and Ωm is recalculated, generating a set
Ξ of possible Ωm values. In lines 7-8, the minimum Ωm in
set Ξ is identified as Ωmin

m = min(Ξ), and the corresponding
device is marked as k∗. In lines 9-10, if Ωmin

m is less than Ω̄m,
then ak∗,m = 0, indicating that device k∗ should not transmit
on subcarrier m. This process is repeated until Ωm stabilizes,
yielding the optimal subcarrier allocation am.

Algorithm 1: Subcarrier allocation algorithm.

Input: θm, {pk,m}Kk=1, {hk,m}Kk=1
Output: am

1 Initialize: Subcarrier allocation vector am, auxiliary
variables Ωmin

m = 0 and Ω̄m = 0, and list Ξ = ∅;
while Ωmin

m < Ω̄m do
2 Obtain Ωm by substituting current am into eq.

(37a);
3 Ω̄m ← Ωm;
4 for k ∈ {1, 2, . . . ,K} and am[k] ̸= 0 do
5 am[k]← 0. Obtain Ωm by substituting current

am into eq. (37a), and append it to Ξ;
6 am[k]← 1;

7 Ωmin
m ← min(Ξ);

8 Find device k∗ that causes Ωmin
m ;

9 if Ωmin
m < Ω̄m then

10 Update am by setting am[k∗] = 0;

11 Clear list Ξ;

B. Denoising Factor Optimization

Given the subcarrier allocation A and power allocation P,
problem P1 can be simplified to

P1.2 : min
Θ

M∑
m=1

Ωm,

s.t. (33e).

(38)

Since the PS sets the denoising factor θm for each subcarrier
m independently, problem P1.2 can be decomposed into M
independent subproblems. Each m-th subproblem is given by

min
θm

Ωm =
K∑

k=1

ak,m

|Sm|2

(√
pk,m|hk,m|√

θm
− 1

)2

+
σ2

θm |Sm|2
,

(39a)
s.t. θm ≥ 0. (39b)

By letting βm = 1/
√
θm, problem (39) can be transformed

into the following form

min
βm≥0

K∑
k=1

ak,m
(√

pk,m|hk,m|βm − 1
)2

+ σ2β2
m. (40)

It can be seen that problem (40) is a convex quadratic
optimization problem with respect to βm. The unique optimal
solution for the denosing factor θm can then obtained as

θ∗m =

(
σ2 +

∑K
k=1

(
ak,m
√
pk,m|hk,m|

)2∑K
k=1 ak,m

√
pk,m|hk,m|

)2

, ∀m ∈M.

(41)

C. Transmission Power Optimization

Given the known subcarrier allocation A and the denoising
factor vector Θ, problem P1 can be simplified to the following
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power allocation optimization problem.

P1.3 : min
P

M∑
m=1

K∑
k=1

ak,m

|Sm|2

(√
pk,m|hk,m|√

θm
− 1

)2

s.t. (33b) ∼ (33c)

(42)

Given the independence of power allocation across devices,
problem P1.3 can be decomposed into K distinct subprob-
lems, each corresponding to a single device k:

min
pk,m

M∑
m=1

ak,m

|Sm|2

(√
pk,m|hk,m|√

θm
− 1

)2

, ∀k ∈ K (43a)

s.t. 0 ≤ pk,m ≤ Pmax
k , ∀m ∈M, (43b)

0 ≤
M∑

m=1

ak,mpk,m ≤ P tol
k . (43c)

This formulation represents a convex quadratic program-
ming problem with respect to √pk,m, subject to linear power
budget constraints given by (43b) and (43c). It can be effi-
ciently addressed using convex optimization techniques, such
as those implemented in CVX [38].

D. The Overall Algorithm

To solve problem P1, we address subproblems P1.1, P1.2,
and P1.3 sequentially. The overall procedure is summarized in
Algorithm 2, and the convergence of the algorithm is assured
by the following Lemma 2.

Algorithm 2: The proposed joint optimization algo-
rithm for solving problem P1.

Input : Channel matrix H = [hk,m] ∈ RK×M

Output: {A∗,Θ∗,P∗}
1 Initialization: Subcarrier allocation matrix A(0),

denoising factor Θ(0), transmission power P(0),
iteration rounds N and i = 0

2 repeat
3 Given

{
Θ(i),P(i)

}
, update A(i+1) by

Algorithm1;

4 Given
{

A(i+1),P(i)
}

, update Θ(i+1) by eq. (41);

5 Given
{

A(i+1),Θ
(i+1)
m

}
, update P(i+1) by solving

P1.3;
6 i← i+ 1;
7 until i ≥ N ;

Lemma 2. The objective value of P1 consistently decreases
throughout the iteration of Algorithm 2 and ultimately con-
verges to a stable point.

Proof. For a detailed proof, please refer to Appendix D.

Next, we analyze the computational complexity of Algo-
rithm 2. Given that the complexity of Algorithm 1 is O(K2),
solving problem P1.1 has a complexity of O(K2M). The
complexity of computing the denoising factor Θ is O(M).

Problem P1.3 is solved using CVX, which typically employs
the interior point method for convex quadratic programming
[39], resulting in a complexity of O(KM2.5). Therefore, the
overall computational complexity of Algorithm 2 is bounded
by O(K2M2.5). Since M (the number of data classes) and K
(the number of devices) are relatively small, Algorithm 2 can
be efficiently executed in real-time on temporarily deployed
edge servers with sufficient communication and computational
resources.

Finally, combining the framework of Air-CoKD introduced
in Sect. IV-C, Algorithm 2 is executed as follows within
the Air-CoKD workflow: At the start of each training round
t, the PS acquires the channel coefficient ht

k,m of device k
on subcarrier m via channel measurement and estimation. It
then determines the approximate optimal subcarrier allocation
A, power allocation P, and denoising factor Θ by executing
Algorithm 2. In practical deployments, however, channel esti-
mation errors may degrade the accuracy of logits aggregation.
Specifically, the estimation error introduces inaccuracy in the
pre-processing coefficient btk,m, which in turn leads to CSI-
induced distortion in the aggregated result Ωt

m [30], [40]. To
mitigate this, the joint subcarrier assignment and power control
strategy can be adapted to explicitly account for such CSI
uncertainty. Nonetheless, for theoretical tractability and in line
with common practice in related studies [21], [41], we adopt
the idealized assumption of perfect CSI in our algorithmic
analysis. After the resources allocation stage, devices use
local data to update their models and generate local logits,
which are modulated according to the power allocation P and
transmitted over their assigned subcarriers A. Upon receiving
the aggregated logits, the PS applies post-processing using the
denoising factor Θ, and broadcasts the processed logits back
to the devices for the next training round. This process repeats
until the maximum number of training rounds T is reached or
the available energy at devices is exhausted.

VIII. SIMULATION RESULTS

This section presents the simulation results for evaluating
the Air-CoKD framework. The simulation parameters follow
standard settings from the literature [20], [37], [42]. In the
simulation, a PS and K = 20 devices are randomly placed
within a circular area to model a resource-constrained network.
The available bandwidth for CML is 1 MHz and is divided
into M subcarriers, where M depends on the number of
global data classes. Each subcarrier’s bandwidth is denoted as
Bsub. The channel coefficients ht

k,m follow Rayleigh fading,
represented as ht

k,m ∼ CN (0, 1), with flat fading assumed
within each training round. The noise variance for AWGN is
set to σ2 = 0.5. We set the average power budget of any
device k to be P tol

k = 10 and the maximum power constraint
to be Pmax

k = 5. The learning rate is η = 0.05, and the
KD regularization coefficient is γk = 1,∀k ∈ K. Additional
simulation parameters include:

• Dataset: The MNIST, EMNIST, and CIFAR-10 datasets
are used. MNIST has 70,000 28×28 images of handwrit-
ten digits, with 60,000 for training and 10,000 for testing.
EMNIST refers to the EMNIST-letters subset, which
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Fig. 2. Performance comparison on MNIST dataset.
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Fig. 3. Performance comparison on EMNIST dataset.

contains 28×28 grayscale images of handwritten English
letters across 26 classes. CIFAR-10 includes 60,000 color
images of size 32×32 spanning 10 object categories, with
50,000 training and 10,000 testing samples.

• Data Distribution: Non-IID distributions are simulated.
The Dirichlet distribution, denoted as Dir(α), is used to
partition the training dataset, where α is the concentration
parameter. A smaller value of α results in higher data
heterogeneity, whereas a larger α approximates the IID
setting. We set α = 1.0 for the Dirichlet distribution and
distribute 50% of the training dataset to all devices.

• Training Model: The 7-layer CNN includes two 5 × 5
convolutional layers with 32 and 64 channels, followed
by max pooling, two fully connected layers with 512 and
10 units, and a softmax output layer.

A. Performance Evaluation of Air-CoKD

This section evaluates the effectiveness of Algorithm 2, the
joint optimization algorithm for communication and learning
parameters in the Air-CoKD framework. To evaluate the pro-
posed method, we implemented the following baseline algo-
rithms that optimize partial parameters or not: (1) IA-FedKD
[43]: A FedKD method with ideal aggregation, avoiding
channel fading and AWGN interference; (2) PC-CoKD [42]: A
variant of Air-CoKD focusing on device transmission power
control with random subcarrier assignment; (3) RA-CoKD:
Another simplified variant of Air-CoKD that adopts random
subcarrier and power allocation. We evaluated the model
performance on datasets with distinct data classes. Specifi-

cally, MNIST comprises 10 handwritten digits classes, while
EMNIST includes 26 English letter classes.

Figs. 2 and Figs. 3 show training loss and test accuracy for
MNIST and EMNIST datasets, respectively. With 300 global
communication rounds and local SGD for model updates,
IA-FedKD performs best due to avoiding channel attenuation
and AWGN, resulting in accurate global logits. It can be seen
that the Air-CoKD method nearly matches IA-FedKD in
performance, demonstrating high convergence and efficacy.
Conversely, SA-CoKD and PC-CoKD, optimizing only partial
parameters or not, show inferior performance. The Air-CoKD
framework, utilizing OFDM for logits aggregation, effectively
mitigates data class imbalance challenges by optimizing sub-
carrier allocation and communication strategies. This results in
reduced aggregation errors and improved model performance
compared to SA-CoKD and PC-CoKD, although it does not
reach the ideal performance of IA-FedKD.

Fig. 4 and Fig. 5 evaluates the proposed Air-CoKD under
the data distribution α = 10, which indicates a distribution
that approximates the IID setting. Compared to the results
in Figs. 4 and 5, it is clear that model performances under
data distribution α = 1.0 decreases as data heterogeneity
increases, especially on the EMNIST dataset. This can be
attributed to the larger number of data classes in EMNIST
dataset, where higher heterogeneity hinders device model from
acquiring sufficient knowledge from local dataset.

To evaluate model performance with varying numbers of
participating devices, the training samples of the MNIST
dataset are distributed across 40 devices, and performance
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Fig. 4. Performance comparison on MNIST dataset under α = 10.
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Fig. 5. Performance comparison on EMNIST dataset under α = 10.
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Fig. 6. Performance evaluation with varying numbers of devices.

is assessed as the number of participants increases. Initially,
as more devices contribute, the utilization of additional data
significantly enhances model performance. However, when the
number of active devices becomes sufficiently large, perfor-
mance stabilizes due to data redundancy, where additional
devices provide overlapping data that no longer improves
training effectiveness.

Then, we evaluate the convergence performance of
Air-CoKD under different channel conditions. We approx-
imate varying channel conditions by adjusting the channel-

to-noise ratio (CNR), denoted as γ =
E[|hk|2]

σ2 , ∀k ∈ K.
The convergence of model performance, including training
loss and test accuracy on the MNIST dataset, under different
values of CNR (γ) is illustrated in Fig. 7. With varying values
of γ, both training loss and test accuracy exhibit trends of
local convergence, with diminishing returns as convergence
progresses. Furthermore, as γ increases (i.e., as the CNR
improves), the model demonstrates enhanced performance in
terms of both training loss and test accuracy. More importantly,
despite variations in CNR, the proposed Air-CoKD method
exhibits strong robustness under different channel conditions,
indicating its adaptability in communication environments
with limited resources.

Fig. 8 compares the optimization objective, defined in eq.
(35) of problem P1, achieved by various algorithms under
different noise conditions. This objective, representing the
MSE of the aggregated logits (Ωm) across all subcarriers, is
derived from the model convergence analysis upper bound.
As shown, Air-CoKD consistently achieves the lowest MSE,
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Fig. 7. Performance evaluation under different channel condition.
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Fig. 8. Optimization objective vs. noise conditions for various algorithms.

effectively minimizing aggregation errors. The objective value
increases with the noise level, indicating a positive correlation.
As the number of participating devices increases, the objective
value gradually decreases and eventually stabilizes, enhancing
flexibility in parameter adjustments, particularly in subcarrier
allocation.

Overall, the simulation results confirm that the proposed
Air-CoKD framework excels in capturing the benefits of
knowledge aggregation, enhancing model accuracy and con-
vergence speed.

B. Advantages of Air-CoKD in Training Efficiency

This section validates the learning time and resource utiliza-
tion efficiency of the proposed Air-CoKD. To this end, we
conduct experiments on the CIFAR-10 dataset and compare
Air-CoKD with other AirComp-based model aggregation
algorithms, including: (1) Air-FedSGD, which uses Air-
Comp to transmit full model parameters; (2) Air-FedGS,
a gradient sparsity-based method with random sparsity ma-
trices, evaluated at 20% and 10% local parameter retention
as Air-Fed20%GS and Air-Fed10%GS; (3) Air-FedCS
[25], which combines gradient sparsity and one-bit quanti-
zation, transmitting 1,000 parameters. All methods optimize
device transmission power and receiver denoising factors,
while Air-CoKD additionally jointly optimizes subcarrier
allocation and power control.

Figs. 9 and 10 show the convergence performance in terms
of test accuracy on the MNIST and CIFAR-10 datasets,
respectively, under different noise levels. While Air-FedSGD

achieves the highest accuracy due to full gradient transmis-
sion, it is bandwidth-intensive. In contrast, Air-FedGS and
Air-FedCS reduce communication latency but suffer from
decreased accuracy and slower convergence, especially under
high gradient sparsity. Our proposed method, Air-CoKD,
effectively balances convergence speed and accuracy, demon-
strating strong potential in resource-constrained environments.
By comparing Figs. 9(a) and 9(b) (or Figs. 10(a) and 10(b)),
it is evident that increasing the noise variance σ2 leads to a
general decline in convergence speed, test accuracy, and stabil-
ity across all methods. Nevertheless, Air-CoKD consistently
maintains test accuracy within an acceptable range, exhibiting
stronger robustness to channel noise. In contrast, methods
relying directly on AirComp-based gradient aggregation are
more susceptible to gradient distortion under high noise, with
performance degradation approaching 10 percentage points.
This instability stems from gradient deviations introduced by
channel noise, which impair model convergence and result in
significant accuracy fluctuations. These findings highlight the
noise robustness of our proposed Air-CoKD framework.

To evaluate model performance under a different data distri-
bution, Fig. 11 presents a performance comparison of various
CML methods with the Dirichlet parameter α = 10. The
results demonstrate that Air-CoKD consistently delivers com-
petitive accuracy with significantly reduced communication
overhead, underscoring its suitability for resource-constrained
networks. Furthermore, these findings highlight the robustness
of Air-CoKD under varying degrees of data heterogeneity.

Analog modulation is employed during AirComp based
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Fig. 9. Convergence performance of test accuracy under different noise conditions on MNIST dataset.

0 200 400 600 800 1000
Communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

Air-CoKD
Air-FedSGD
Air-Fed10%GS
Air-Fed20%GS
Air-FedCS

(a) σ2 = 0.1

0 200 400 600 800 1000
Communication rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

Air-CoKD
Air-FedSGD
Air-Fed10%GS
Air-Fed20%GS
Air-FedCS

(b) σ2 = 0.5
Fig. 10. Convergence performance of test accuracy under different noise conditions on CIFAR-10 dataset.
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Fig. 11. Learning performance comparison versus different AirComp based
CML methods under α = 10.

TABLE I
TRAINING EFFICIENCY AND TEST ACCURACY OF DIFFERENT METHODS.

MNIST(%) CIFAR-10(%) Parameters Time (ms)

Air-FedSGD 93.21 45.65 582,026/583626 582.0/583.6
Air-Fed10%GS 79.23 32.50 58,203/58363 58.2/58.4
Air-Fed20%GS 87.80 36.48 116,406/116725 116.4/116.7
Air-FedCS 67.76 22.34 1,000 1.0
Air-CoKD 92.31 42.50 100 0.1

aggregation, where each parameter is amplitude-modulated
to an analog symbol, with each subcarrier dedicated to a
single parameter. The communication interval for AirComp
aggregation is calculated as ∆t = ceil

(
p
M

)
τ , where ceil(·) is

the ceiling function, M is the number of subcarriers, p is the
size of transmitted information, and τ = 1

Bsub
is the OFDM

symbol duration. For the MNIST and CIFAR-10 datasets,
M = 10 and Bsub = 0.1 MHz. The time cost of CP is ignored
for simplicity.

Table I highlights the uplink communication costs per
round, where Air-CoKD transmits only local logits (ϕm ∈
R10) for MNIST and CIFAR-10 datasets, achieving significant
savings in both time and data transmission. It significantly
reduces transmitted parameters compared to Air-FedSGD,
Air-FedGS, and Air-FedCS, lowering transmission de-
mands by several orders of magnitude.

Table II compares the average energy consumption of de-
vices on the MNIST and CIFAR-10 dataset over 100 com-
munication rounds. Air-CoKD outperforms RA-CoKD and
PC-CoKD, achieving the best performance with the lowest
energy consumption due to its optimized subcarrier allocation
and power control strategies. This efficiency minimizes aggre-
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TABLE II
AVERAGE ENERGY CONSUMPTION OF DEVICES.

MNIST dataset CIFAR-10 dataset

RA-CoKD 972 983
PC-CoKD 937 938
Air-CoKD 878 883

gation errors and reduces device-side power consumption.
Air-CoKD consistently balances communication efficiency

and model performance across datasets and data distributions,
making it particularly suitable for resource-constrained de-
vices. These results underscore its applicability in energy-
efficient and resource-limited networks.

IX. CONCLUSION

This paper investigates the Air-CoKD framework, which
integrates KD with AirComp to enhance AI model training
in resource-limited networks. An OFDM-based logits aggre-
gation strategy is designed to address unbalanced device data
classes, and closed-form expressions for convergence upper
bounds in convex and non-convex scenarios are derived to
illustrate the impact of logits aggregation errors on learn-
ing performance. A joint subcarrier allocation and power
control method is proposed to minimize the convergence
upper bound. Simulation results on MNIST, EMNIST, and
CIFAR-10 datasets demonstrate that Air-CoKD achieves low
communication delay while maintaining acceptable learning
performance, outperforming baseline methods. These results
highlight Air-CoKD as an effective solution for balancing
training efficiency and performance in resource-limited net-
works.

Several unexplored aspects remain and are planned for
future work: 1) Addressing model heterogeneity by exploring
inter-device aggregation mechanisms to accommodate diverse
neural network architectures caused by data heterogeneity;
2) Incorporating differential privacy (DP) mechanisms, such
as privacy-aware device power control, to enhance privacy
protection while maintaining performance.
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