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Abstract—Semantic Communication (SC), which focuses on
transmitting meaning rather than raw data, has emerged as
the next-generation communication paradigm. However, the per-
formance of SC is heavily influenced by network design and
training methodologies. To address these challenges and enhance
SC performance at the edge, we first introduce a Generative
Artificial Intelligence (GAI)-assisted SC (GSC) model, which
improves SC capabilities by optimizing the network architecture.
Then, to achieve the efficient learning of GSC models deployed on
each user, a Personalized Semantic Federated Learning (PSFL)
framework is proposed. Specifically, in the local training phase,
a Personalized Local Distillation (PLD) approach is employed,
where each user selects a tailored GSC model as a mentor based
on local resources. This mentor subsequently distills knowledge
to a unified student model, ensuring compliance with the model
isomorphism requirements of FL. In the global aggregation
phase, an Adaptive Global Pruning (AGP) scheme is applied,
dynamically pruning or expanding the aggregated global model
based on real-time channel conditions. This mechanism effec-
tively balances accuracy and communication energy efficiency.
Finally, numerical results validate the feasibility and efficacy of
the proposed PSFL framework, demonstrating its potential to
enhance SC performance in edge environments significantly.

Index Terms—Semantic communication; federated learning;
generative artificial intelligence; network pruning.

I. INTRODUCTION

As an innovative communication paradigm in 6G, Semantic
Communication (SC) becomes one of the intelligent solutions
for the spectrum sacrifice caused by the various emerging
applications on users [1]. Different from traditional communi-
cation, SC aims to transmit only semantically related informa-
tion for the respective task/goal [2]. For example, in the fault
detection scenario, the users first extract semantic information
from the surveillance video by the deployed SC encoder (i.e.,
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semantic and channel encoders), then just transmit slightly
semantic information to the Edge Server (ES) deployed on the
Base Station (BS). Finally, the received semantic information
is decoded by the SC decoder (i.e., semantic and channel
decoders) deployed on the ES. Since the transferred data is
greatly reduced in SC, the consumption of spectrum resources
is also correspondingly greatly decreased.

The performance of SC is highly dependent on the con-
struction of high-quality SC models, hence many researchers
construct SC models based on Deep Learning (DL) models.
For instance, Xie et al. [3] proposed a DL-based SC system,
aiming to maximize system capacity and minimize seman-
tic errors in text transmission by restoring the meaning of
sentences. Wang et al. [4] optimized DL-based joint source-
channel coding by introducing adversarial loss, which better
preserved the global semantic information and local texture
details of images. Han et al. [5] proposed a novel end-to-
end DL-based speech-oriented SC system, utilizing a soft
alignment module and a redundancy removal module to extract
text-related semantic features while discarding semantically
redundant content. Most of the above works are based on
traditional discriminative Artificial Intelligence (AI) methods,
which typically involve small models trained for specific
application scenarios. This approach inherently limits their
adaptability across different environments. Moreover, discrim-
inative Al primarily focuses on learning local and short-term
features, leading to challenges such as getting trapped in local
minima and exhibiting limited generative capabilities [6], [7].

Generative Al (GAI), as a recent advancement in Al tech-
nology, not only possesses remarkable generative capabilities
but also exhibits more powerful data processing abilities
than discriminative AI [8]. The latest GAI models, such
as GPT-4 and LLaMA 3.1 [9], have been widely applied
across various domains. Therefore, it has become a recent
research topic that construct SC models based on GAI. Du
et al. [10] designed an Al-generated incentive mechanism
based on the diffusion model in full-duplex end-to-end SC
to promote semantic information sharing among users. Lin et
al. [11] proposed a blockchain-assisted SC framework for Al-
generated content services to address security issues arising
from malicious semantic data transmission in SC. Guo et al.
[12] introduced a semantic importance-aware communication
scheme using pre-trained language models to quantify the
semantic importance of data frames, thereby reducing semantic
loss in communication.

In addition to the network structure, the training method
is also a key factor affecting the performance of SC [13].
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However, the traditional centralized learning method requires
the users to transmit the local data to the central server for
centralized training, which may lead to a high consumption of
communication energy and a high risk of information leakage
[14]. Hence, this traditional approach is not suitable for users
to train the SC models at the edge.

Federated Learning (FL) [15] has the potential to alleviate
the above issues. FL enables several clients and a central
server to train the SC models collaboratively only by sharing
model parameters, rather than transmitting large raw training
data. Numerous studies have focused on communication-
efficient FL. For example, Nguyen et al. [16] presented a
high-compression FL scheme that effectively reduced data
load during FL processes without modifying the struc-
ture or hyperparameters. Similarly, Wang et al. [17] pro-
posed a communication-efficient adaptive federated optimiza-
tion method that substantially lowered communication costs
through error feedback and compression strategies. Further-
more, Honig er al. [18] developed a doubly-adaptive quanti-
zation FL algorithm that dynamically adjusted the quantization
level over time and among various clients, enhancing compres-
sion while maintaining model quality. Although these studies
present efficient FL algorithms to enhance model training, they
ignore the issues of model adaptation for heterogeneous users
and the high communication overheads in dynamic networks.

Based on the above review of related work, we summarize
three critical challenges that apply SC to users as follows:

1) Insufficient semantic extraction capabilities: Traditional
discriminative network architectures face significant lim-
itations in effective semantic extraction, particularly in
complex communication scenarios. For instance, while
Convolutional Neural Networks (CNNs) excel at captur-
ing local features due to their hierarchical structure, they
struggle to effectively capture global contextual informa-
tion [19]. This inherent limitation hampers their ability
to construct comprehensive semantic representations of
input data.

2) Model adaptation for heterogeneous devices in FL:
Users are usually heterogeneous, which means they have
different scales of local data and computation resources.
Generally, more complex models can achieve higher
accuracy when the data and computation resources are
enough [20]. Hence, the users, having more available
data and computation resources, may need sophisti-
cated models to achieve higher accuracy. However, the
limited-resource users can only use a compact model
for local training, and the well-resourced users have to
choose the same compact model as a compromise to
meet the model isomorphism requirement of FL.

3) High communication overheads in dynamic networks:
While conventional FL algorithms facilitate distributed
training using local data from multiple users, ensuring
data privacy and security, they often result in substan-
tial network traffic and communication overhead due
to frequent parameter exchanges [21]. Communication-
efficient FL. methods, such as those in [17] and [18],
alleviate communication energy consumption by com-
pressing transmitted parameters. However, these com-

pression techniques are performed on the client side,
leading to additional costs for clients. Moreover, these
methods do not account for the impact of fluctuating
network conditions, such as variations in Signal-to-Noise
Ratio (SNR) in wireless communications.

To solve the above issues, we first design a novel GAI-
assisted SC (GSC) model to apply in the communications
between users and BS, improving the utilization of limited
spectrum resources. Then, a Personalized Semantic Federated
Learning (PSFL) is proposed, where improved local training
and global aggregation methods are employed to train the
GSC models deployed on users while protecting privacy and
security. The main contributions are summarized as follows:

1) Accurate semantic transmission: Considering the short-
comings of the discriminative network, we employed
GAI networks in both the semantic encoder and de-
coder in the GSC model. Specifically, we employ the
Vision Transformer (ViT), a common GAI network,
for processing images. This can achieve more accurate
semantic feature extraction of transmitted images at
the transmitter and more precise image reconstruction
at the receiver through the multi-head self-attention
mechanism. Therefore, the proposed first challenge is
solved.

2) High-quality local training: We propose a Personalized
Local Distillation (PLD) strategy in the local training
phase of PSFL, improving the accuracy of the GSC
model. In PLD, each user can select a suitable GSC
model as a mentor according to their local resources
and a unified CNN-based SC (CSC) model as a student.
Then, the mentor model can be distilled to the student
model to meet the model isomorphism requirement of
the FL. As a result, PLD addresses the second challenge.

3) Energy-efficent global aggregation: We design an Adap-
tive Global Pruning (AGP) algorithm in the global
aggregation phase of PSFL, reducing the consumption
of communication energy. Specifically, the aggregated
global FL. model (i.e., the updated CSC model) is
pruned or expanded. The pruning ratio is determined by
considering the real-time SNR between users and the
BS. Therefore, the AGP solves the last challenge.

The rest of this paper can be organized as follows. The
system model is introduced in Section II. The proposed
PSFL is described in Section III. The complexity analysis
is introduced in Section IV. Numerical results are presented
in Section V. The work summary and future expectations are
described in Section VI.

II. SYSTEM MODEL

Fig. 1 illustrates the communication between users and the
BS through the SC system. We consider an uplink wireless net-
work with limited spectrum resources to deploy a distributed
SC system, comprising K users, denoted by the set /C, and a
single BS with an ES. In the training phase, as shown in Fig.
1(a), the BS is responsible for performing global aggregation
and updating the global SC model, while the users train their
local SC models based on local data and subsequently transmit
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Fig. 1: The illustration that users communicate with BS
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the model parameters to the BS. In the inference phase, as
shown in Fig. 1(b), the users only need to transmit semantic
information to the BS during data transmission, rather than the
large-sized raw data [22]. This semantic information is then
decoded at the ES. To facilitate the extraction of semantic
information, the SC encoder is deployed on each user, while
the SC decoder is deployed on the ES to decode the received
semantic information. Additionally, we consider the impair-
ments of the physical channels between the users and the BS.

A. GSC Model

We mainly consider the image SC that refers to capturing
the semantics of interest in input images, thereby reducing the
amount of data required for image transmission and conserving
bandwidth. Compared to traditional CNNs, ViT displays supe-
rior feature analysis capabilities in various visual tasks, such
as image classification, object detection, and feature extraction
[23]. Therefore, as shown in Fig. 2, the GSC model employs
ViT as the image semantic encoder and decoder. Subsequently,
Deep Neural Networks (DNN5s) construct the channel encoder
and decoder. Finally, a perception model simulates the physical
channel, ensuring it supports backpropagation. The transmis-
sion process of image SC based on the GSC model is as
follows:

1) Transmitter: First, the input image m € RHI*XWxC jg
inputted into a PatchEmbed layer, in which m is converted

into NV patches of size (P? x C'), where H denotes the height
of the image, W denotes the width, C' denotes the number
of channels, and P? represents the number of segments into
which the image is divided. Hence, N = przH .

Then, the sequence X, composed of these N patches
undergoes the Patch Embedding operation [24]. Specifically,
each patch in X, bypasses a linear transformation, reducing
the dimensionality of the sequence to D and resulting in a

linear embedding sequence:

Zo= [X)E; X E;.. ; XNE], (1)
where F is the linear transformation (i.e., a fully connected
layer) with input dimensions (P2 x C') and output dimensions
N. X}, represents the i-th patch in X),.

Next, the position vectors from the positional encoding,
which contain positional information, are linearly combined
with Z to obtain the input sequence of ViT as follows:

Z=[X,E+P;XE+Py..;XYE+Py], (2
where P; denotes the ¢-th position vector. Subsequently, the
semantic encoder extracts features from Z, resulting in the
semantic feature of the original image m. The image semantic
encoder is based on ViT, with its core being the multi-head at-
tention layer, which can learn the relationships between pixels
through the multi-head attention mechanism, enabling more
accurate feature extraction and realistic image reconstruction.
The multi-head attention layer is essentially composed of
multiple self-attention heads concatenated together. A self-
attention head is derived from a single self-attention layer,
which can be calculated by:

Vdy,

where Q is the query vector, K is the matching vector
corresponding to Q, and V is the information vector. Q, K,
and V are all obtained through linear transformations of the
input Z, ie., Q = ZWq, K = ZWg, and V = ZWy,
where Wq, Wi, and Wy, are the respective weight matrices.
dy, is the scaling factor. Assuming the number of heads is h,
the multi-head self-attention can be calculated by:

. QKT
head; = Attention(Q, K, V) = softmax | —— | V, (3)

Multihead Attention(Q, K, V) =

4
5 headh)wmhfu @

concat(heady, - - -

where W, represents the weights of the multi-head attention
layer.

Finally, to ensure data is transmitted on the physical chan-
nel, the semantic feature should be encoded and modulated
by the channel encoder to reduce channel impairments and
improve robustness. The transmitted signal can be represented
as:

X =C(5(2,9).a), 5)
where S () represents the semantic encoder with model pa-
rameters ¥ and C (-) is the channel encoder with model
parameters o
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2) Physical channel: When transmitted over the physical
channel, X suffers transmission impairments that include
attenuation and noise. The transmission process of the physical
channel can be expressed as:

Y=H -X+N, (6)

where Y represents the received signal; H represents the
channel gain between the transmitter and the receiver; IN
is Additive White Gaussian Noise (AWGN). For end-to-end
training of encoder and decoder, the physical channel must
allow back-propagation [3], hence we use a perception model
to simulate the physical channel.

3) Receiver: The channel decoder demodulates the received
signal to extract the semantic features, which are then decoded
by the semantic decoder. The recovered image, m, is obtained
as follows:

m=S"(C"Y(Y,B),d), (7)
where C~!(-) represents the channel decoder with model
parameters (3; S~! () is the semantic decoder with model
parameters &.

B. FL Model

The local dataset of the k-th user defines as D, =
{(my,1, k1), (My,2,Yk,2), -, (Mp, Ny, Yk, N, ) b, Where N is
the number of collected samples in Dy, my, ; is the i-th sample
and y; is the corresponding label. Note that Dj may be
non-Independent Identical Distributed (non-IID) data, which
depends on the realistic environment and usage pattern of the
k-th user.

For the k-th user, the local loss function in the ¢-th com-
munication round of FL can be calculated as:

Fi (Wit)

Zf (Wi t, Mg, Yni), ®)

where f(Wg ¢, my ;, yg,;) is the training loss function for the
i-th sample (my, ;, Yk ;) in Dy; Wi, is the weights of the local
FL model of the k-th user in the ¢-th communication round.
wy,¢ includes all the parameters of the GSC model, namely
Wit = (0, Ores Bryt,Oke), Where oy, Uit Brt, Okt
represent the parameters of the GSC model deployed on the
k-th user from the channel encoder to the semantic decoder
in the ¢-th communication round.

In this system, we consider the classification tasks-oriented
SC. Specifically, we use a pre-trained classifier (e.g., ResNet-
18 [25]) to perform image classification based on m and the

cross-entropy (CE) as the loss function of the GSC model,
hence Fj; (wy;) can be calculated by:

Fy (Wi,t) = Lce(y, ) Z@/z log (9:) , €))

where y = [y1,¥2,...,yn] represents the represents the
predicted probabilities based on the raw image m, when the
input data m belongs to the i-th class, y; = 1, otherwise
0; ¥ = [41, 92, ..., Uar] represents the predicted probabilities
based on the reconstructed image m, y; represents the prob-
ability predicted as the ¢-th class; M is the total number of
categories.

To ensure data privacy and security, the global FL model is
updated in ES by aggregating the local FL. models from users.
The update of the global FL. model can be given by [15]:

K
> Niwp

k=1
Wg,t - K )

> Ni
k=1

(10)

where wy ; is the weights of the global FL model in the ¢-th
communication round. Note that w, ; shares the same archi-
tecture to wy, ;. In addition, since the transmitted parameters in
FL may also leak sensitive data, as a solution, the differential
privacy and homomorphic encryption algorithms can be used
to encrypt the transmitted parameters and improve the data se-
curity and privacy [26]. Specifically, we can adopt an additive
homomorphic encryption scheme (e.g., Paillier encryption) to
encrypt local model updates wy, ; before transmission. This
allows the edge server (ES) to perform secure aggregation
directly on the encrypted parameters without decrypting them,
thus preventing information leakage during communication.
Furthermore, to prevent inference attacks from the aggregated
model, we apply (e, §)-differential privacy to the local updates
by adding calibrated Gaussian noise to the gradients before
encryption. This combination ensures that both the individual
contributions of users and the transmitted parameters are
protected, thereby enhancing the overall privacy guarantee of
the federated learning process.

FL aims to get the optimal global model w,; that can
minimize the local FL loss of all devices, so as to achieve
global optimization. Hence, the global loss function of FL can
be given by:

ZFk Wgt

Fy(wg,t)

Y
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where Fj, (wg ) represents that the local FL loss based on
wy. We take minimizing Fy (w,,) as the goal of training
the GSC model.

C. Communication Model

We consider that Orthogonal Frequency Division Multiple
Access (OFDMA) is adopted for the links between users and
the BS. When the k-th user uploads its local model weights
wy,¢ to BS, the uplink rate can be given by:

Ukt = Brlogy (14 Yr,), (12)

where By, ; and 1y represent the uploading bandwidth and
SNR of the k-th user in the ¢-th communication round,
respectively. The transmission delay between the k-th user
and the BS over uplink in the ¢-th communication round is

calculated as:
Z (W,t)
Tkt = )
Vk,t

13)

where Z(wy, ;) represents the number of bits that each user
k requires transmitting to the BS. The energy consumption of
the communication process can be given by:

By = PrTrt, (14)

where P ; is the transmitting power of the k-th user in the
t-th communication round. The communication energy of FL
is another critical optimization goal.

D. Problem Formulation

In consequence, our goal is to minimize the global loss
function of FL and the communication energy consumption
of the entire FL training process. The objective function can
be defined as follows:

T K
minF, (wWg ) +nZZE°°m

Wg, T
9 t=1 k=1

15)

st Tt < T,r:q, Vk e K (16)
Efy < r,fstt, Vk e K (17)
0< Py < P, VEk e K, (18)

where T represents the total number of communication rounds
in FL; w, 7 represents the global FL. model weights in the 7T'-
th communication round, F, (w, r) is the final global FL loss
based on w, 7; 1 is a coefficient that adjusts the sensitivity
of E°f so that Fy (wg 7) and EP° are relatively balanced;

o lis the delay requirement of the k th user for implementing
the FL algorithm; E*Y is the rest energy of the k-th user in
the ¢-th communication round; P represents the maximum
transmit power of the k-th user. Eq. (16) is the delay constraint
of executing the FL in each communication round. Eq. (17)
is the energy consumption constraint of performing FL in
each communication round. Eq. (18) is the maximum transmit
power constraint for users.

III. PERSONALIZED SEMANTIC FEDERATED LEARNING
FOR GSC MODEL

To address the challenges of training GSC models deployed
on users, we propose the PSFL, consisting of the PLD strategy
and AGP algorithm, to optimize FL in the phases of local
training and global aggregation, respectively.

A. PLD for Local Training

To address the issue of model adaptation for heterogeneous
users and ensure effective information exchange among dif-
ferent GSC models, we propose the PLD strategy during the
local training phase. Specifically, as shown in Fig. 3, each
user not only deploys a suitable GSC model based on their
local resources but also deploys a unified and small-scale
CSC model. The GSC model is used for SC services after
training. The CSC model, serving as a vehicle for transferring
knowledge of the GSC model, is uploaded to the BS for
parameter aggregation. It is then returned to the local user,
transmitting the newly aggregated knowledge back to the
GSC model. This process indirectly facilitates the information
exchange of heterogeneous GSC models across different users.
To achieve effective knowledge exchange between the GSC
and CSC models in this process, Knowledge Distillation (KD)
is utilized.

KD is a transfer learning method involving a sophisticated
mentor model and a compact student model, aiming to transfer
knowledge from the mentor to the student model [27]. In PLD,
the GSC model acts as the mentor while the CSC model is
the student. In PLD, the mutual learning process between the
mentor and student models is as follows:

1) Distill knowledge from hard labels: The mentor and
student models compute the loss between the output of the
models and hard labels [28]. Generally, the hard labels are
determined by the specific task. Since we consider the clas-
sification task, the hard labels are the categories of the input
data. The input data on the k-th user is denoted as my, and
the corresponding hard labels are y;. The communication loss
functions for classification tasks of mentor and student models
are expressed as follows:

‘Céask = ‘CCE(ykv y;c) + MSE(mka m%)? (19)

Lk = Lce(YE, ¥i) + MSE(my, ty,), (20)

where ¥ and J, represent the probabilities of my, as predicted
by the mentor and student models, respectively. Similarly, 1),
and my denote the reconstructed images generated by the
mentor and student models after wireless communications,
respectively. The function MSE(-) represents the mean-square
error, which is employed to ensure consistency between the
original and reconstructed images at the pixel level. In sum-
mary, the task losses provide direct task-specific supervision
for the mentor and student models.

2) Distill knowledge from soft labels: The mentor and
student models transfer knowledge from the soft labels (e.g.,
¥, and ) reciprocally [28]. Since incorrect predictions from
the mentor/student model may mislead the other one in the
KD, we propose an adaptive method to weigh the distillation
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Fig. 3: The illustration of the proposed PSFL.

loss according to the quality of predicted soft labels (i.e., Egs.
(19) and (20)). The adaptive distillation losses of mentor and
student models are formulated as follows:

KL(y}.,¥
j = KLTwI) @
task

KL(3k, §7)

/ b)
task

Lais = (22)

where KL(:) means the Kullback-Leibler divergence. In this
way, the distillation intensity is weak if the predictions of the
mentor and student models are not reliable (e.g., their task
losses are large). The distillation loss becomes dominant if
the mentor and student models are well-tuned, which means
small task losses. Thus, the adaptive distillation losses have
the potential to mitigate the risk of overfitting.

3) Distill knowledge from the semantic information: To
improve the performance of SC, the mentor and student
models learn to minimize the difference between the output
of the semantic encoder and the output of the channel de-
coder. Similarly, to avoid the misguiding of the mentor/student
models in the interactive process, we also weigh the semantic
loss according to task losses. Therefore, the adaptive semantic
losses for the mentor and student models are formulated as
follows:

_ MSE( ;C,Sk)—f—MSE( ;C,Ck)

L,
/
task + Liask

sem = £sem bl (23)

where S and Sy represent the semantic encodings of the
mentor and student models, respectively; Cj, and Cj, represent
the channel decodings of the mentor and student models,
respectively.

4) Update mentor and student models: According to the
above-proposed loss functions, the total loss functions for

updating the mentor and student models are formulated as
follows:

{olal = {ask + ‘C’tliis + ‘Cgem’ (24)
£tolal = Ltask + ‘Cdis + Esem~ (25)

The mentor and student models update their weights by min-
imizing the total losses with the Stochastic Gradient Descent
(SGD) optimizer [29]. We assume the training is performed on
the k-th user with the dataset Dy, the weights of the mentor
and student models are denoted as w), and wy, respectively.
G is used to denote the total epochs of the local training. The
entire workflow of PLD is summarized in Algorithm 1.

Algorithm 1 PLD
Input: G, Dy.
Output: w, wy.
1: for each epoch in G do

22 fori =1, 2,..., N do

3: Sample my, ; from Dy,

4: Compute task losses L{, and Ly according to Eqs.
(19) and (20).

5: Compute adaptive distillation losses L} and Lgis
according to Egs. (21) and (22).

6: Compute adaptive semantic losses L., and Lgem
according to Eq. (23).

7: Compute total losses L, and Ly according to
Egs. (24) and (25).
Update wj, by minimizing L.

: Update w), by minimizing L/,
10:  end for
11: end for

Overall, the Progressive Layer Dropping (PLD) strategy
offers significant benefits in heterogeneous edge environments.
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By dynamically adjusting the number of active layers during
local training based on the computational capabilities and
energy constraints of each device, PLD effectively reduces the
local computation overhead without relying on static pruning
or model compression. This adaptive mechanism ensures that
resource-constrained devices can still participate in federated
learning without compromising model performance, thereby
improving the overall system adaptability and efficiency.

B. AGP for Global Aggregation

In wireless environments, the traditional FL may bring
unaffordable communication energy consumption for users
due to the frequent parameter exchanges. From above Egs.
(12)-(14), the smaller Z(wy ;) and larger 1, , mean lower
communication energy. Namely, when 1y, ; increases, more
parameters can be transmitted; otherwise, fewer parameters,
thereby ensuring low consumption of communication energy
in dynamic SNR. Hence, the AGP algorithm is used to
adaptively prune the global FL model w,; (i.e., the CSC
model) after global aggregation. The proportion of pruning
is determined by assessing the real-time SNR between users
and the BS. As shown in Fig. 3, assuming that PSFL starts
from a certain round ¢, the workflow of the PSFL assisted by
AGP is described as follows:

1) Model pruning and weights broadcasting: We perform
pruning on the global FL. model w,; in the ES, in which
a proportion of the smallest positive weights and the largest
negative weights of w,; will be pruned. To avoid impairing
the knowledge carried by the global FL. model due to exces-
sive pruning of parameters, the pruning proportion adaptively
adjusts based on the real-time SNR between users and the
BS in each communication round. Consequently, the pruning
proportion in the ¢-th communication round can be represented
as:

wmax - % Z wk,t
G=— _’;/f’? : (26)

where ¥max and ¥, represent the maximum and minimum
SNR between the users and BS, respectively. Thereafter, BS
broadcasts the pruned global FL model W, ; to all users for
the (¢ + 1)-th round training.

2) Local training and weights uploading: Each user per-
forms local training with the PLD strategy and obtains the
latest mentor and student models. Since the FL model is
pruned, it can be denoted as Wy, ;11. Afterward, the local FL
model Wy, ;1 is uploaded to BS by the wireless channel.

3) Global aggregation and model updating: The local FL
models from all users are aggregated according to Eq. (10)
in ES. Afterward, according to the variation of the SNR
between the users and BS, we calculate the new pruning
proportion (1. When (;41 < (;, more weights of the global
FL model should be pruned; otherwise, add weights randomly
until ¢;41 = (. Finally, the pruned global FL model W ;1
is downloaded to each user to update their local FL. models:

Wht41 = Wg 41 27)

Assuming the total number of communication rounds is
T, the proposed PSFL assisted by AGP is summarized in
Algorithm 2.

Algorithm 2 PSFL assisted by AGP

Input: T, ¢y ;.
Output: W, 7.
1: for each communication round ¢ € T" do

2: BS do
3:  Aggregate local FL models from users according to Eq.
(10).

Calculate the pruning proportion (; by Eq. (26).

5:  Prune the global FL model w,; and obtain W ;.
Broadcast the pruned global FL. model W, to each
device to update the local FL. model according to Eq.
27).

7. Each user do
Train the mentor and local FL models by the PLD
strategy in Algorithm 1.

9:  Upload the latest local FL model Wy, ;1 to the BS.

10: end for

In summary, the AGP algorithm introduces a
communication-aware optimization that adjusts the size
of the global model according to the real-time SNR of
the transmission channel. By selectively pruning model
parameters before transmission, AGP significantly reduces
communication overhead and energy consumption while
maintaining model accuracy. This makes AGP particularly
well-suited for dynamic wireless environments where link
conditions fluctuate, enhancing the robustness and efficiency
of federated model aggregation and broadcast.

IV. COMPLEXITY ANALYSIS

The average data size of each user is denoted as D =
% > rex Nk We assume the complexity of communication
and computation is linearly proportional to the model size
[30]. Then, the complexity analysis of PSFL in terms of
communication and computation is performed.

Communication complexity analysis: In the traditional FL,
without PLD and AGP, the mentor model performs both local
training and global aggregation. Hence, the communication
complexity is O(T'|wy, ,|), where | - | represents the operator
of calculating the size of parameter weights. In PSFL, the
complexity of communication is O(T'|Wy, ¢|(;), which is much
smaller than traditional FL for Wy, ;| < [wy | < |w} | and
Ct < 1.

Computation complexity analysis: The computation com-
plexity that directly learning the large mentor model in FL is
O(TD|wy, ,|)- In PSFL, the computation complexity consists
of two parts, i.e., local mentor and FL. models training, which
are O(TD|wj ,|) and O(TD|Wy ), respectively. Hence,
the computation complexity of PSFL is O(TDlwy ,|) +
O(TD|Wp |). Since the model size of the pruned FL model
is much smaller than the mentor model, the extra computation
cost of learning the FL. model is much smaller than learning
the large mentor model, namely, the computation complexity
of PSFL is O(TD|wy_,|).
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In practice, compared with the standard FedAvg algorithm,
the extra computation cost of training the FL. model is much
smaller than training the large mentor model with the PLD
strategy. AGP can also stably reduce communication energy
consumption due to the adaptive pruning. Thus, the proposed
PSFL is much more communication-efficient than the standard
FedAvg algorithm, and meanwhile does not introduce much
computation cost.

V. NUMERICAL RESULTS
A. Simulation Settings

Firstly, we assess the proposed PSFL scheme using the
MNIST [31], Fashion-MNIST [32], CIFAR-10 [33], and
CIFAR-100 [34] datasets. In the MNIST and Fashion-MNIST
datasets, the training set contains 60,000 samples and the
testing set contains 10,000 samples, distributed across 10
categories. The CIFAR-10 dataset comprises 50,000 RGB
images as training samples and 10,000 RGB images as test
samples, distributed across 10 categories. The CIFAR-100
dataset comprises 50,000 RGB images as training samples
and 10,000 RGB images as test samples, distributed across 100
categories. Furthermore, we apply a Dirichlet distribution [35]
to generate the non-1ID data partition among users, where the
concentration parameter of the Dirichlet distribution is denoted
as r and set to 0.9 by default. Thus, each device can have
relatively balanced data samples of some classes.

Secondly, we assume the participation of 9 users as clients
in the training process. The maximum transmit power is
configured as Py max = 0.1 W. The maximum and minimum
SNR between the users and BS are set as 1,.x = 25 dB
and ¥Ynin = 0 dB, respectively. The AWGN channel is used
as the simulated physical channel for the GSC model. The
SNRs between the BS and clients fluctuate across different
communication rounds, ranging from 0 dB to 25 dB.

Thirdly, Masked Autoencoders (MAE) [36] is a well-known
large generative model, which utilizes ViT as the encoder-
decoder to learn accurate semantic representation of images
and perform high-quality construction of images. Therefore,
we adopt the MAE to construct the semantic encoder and
decoder in the GSC model, respectively. As shown in TABLE
I, three kinds of GSC models, denoted as GSC-M, GSC-L,
and GSC-H, are used as the mentor models. A ResNet-18
[25] is used as the semantic encoder, and three layers of a
deconvolutional network construct the semantic decoder. As
a result, each client is equipped with a unified student model
and a personalized mentor model based on the size of their
local datasets.

Finally, our simulations are performed with the PyTorch
framework on a server, which has an Intel Xeon CPU (2.4
GHz, 128 GB RAM) and an NVIDIA A800 GPU (80 GB
SGRAM).

B. Evaluation of the proposed GSC model

To emphasize the advantages of the GAI architecture in-
tuitively, we display some restructured images generated by
the GSC and CSC models. Additionally, Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM)

TABLE I: Data distribution and local model settings

Client COojC1|C2|C3|C4|C5|1C6|C7]|C8
Local
data vol.
Mentor
model
Parameters
(mentor)
Student
model
Parameters
(student)

1854 (3703 (4429|4783 | 5467 | 5634|5891 | 8958|9281

GSC-M GSC-L GSC-H

112 M

330 M 658 M

CSC

547 M

are the metrics to quantify the quality of the reconstructed
images. PSNR measures the quality of a reconstructed image,
typically expressed in decibels, with higher values indicating
better image quality. The definition of PSNR is as follows:
MAX?

MSE(m, ﬁl)) ’
where MAX; denotes the maximum possible pixel value of
the image, which is typically 255 for an 8-bit image. Similarly,
SSIM is a metric that gauges the perceived similarity between
two images, factoring in three key components - luminance,
contrast, and structure. The definition of SSIM is outlined as
follows:

PSNR(m, ) = 10 - logy ( (28)

(2emem + €1)(20mm + c2)
(Oha + 95 +€1) (03, + 03, +c2)
where ¢, and @y, are their means; ¢2, and @y2 are their
variances; ¢mm 1S their covariance; ¢; and ¢, are two constants
used to avoid division by zero.

Fig. 4 presents the evaluation results on the MNIST dataset,
where both Fig. 4(b) and Fig. 4(c) reconstruct the content
of Fig. 4(a). However, Fig. 4(b) provides superior image
details. The values shown above Fig. 4(b) and 4(c) indicate
the differences in PSNR and SSIM when compared to Fig.
4(a), with Fig. 4(b) attaining higher scores. Fig. 5 shows the
evaluation results on the Fashion-MNIST dataset, where both
Fig. 5(b) and Fig. 5(c) reconstruct the content of Fig. 5(a).
However, Fig. 5(b) is noticeably clearer than Fig. 5(c). The
PSNR and SSIM results further confirm the higher quality of
Fig. 5(b). Fig. 6 and 7 illustrate the evaluation results on the
CIFAR-10 and CIFAR-100 datasets. In both cases, Fig. 6(b)
and 7(b) accurately reconstruct the original images, while the
reconstructions in Fig. 6(c) and 7(c) appear blurry. The PSNR
and SSIM results also indicate that the images generated by
the GSC models are of higher quality than those produced by
the CSC models.

The superior performance of the GSC model is attributed
to the advantages of the GAI model architecture (i.e., MAE),
which extracts more precise semantic information compared to
CNN architectures. Furthermore, due to its robust generative
capability, the proposed GSC model achieves more accurate
image reconstruction in SC.

SSIM(m, 1h) = (29)

C. Evaluation of the proposed PSFL

This subsection evaluates the proposed PSFL scheme’s
performance in terms of loss and accuracy. Note that accuracy
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refers to the probability of correctly classifying an image
reconstructed by the GSC model using a pre-trained classifier
network, which can measure the scheme’s performance from
a semantic perspective. We employ ResNet-101 [37] as the
classifier and train it on four datasets, thus obtaining the cor-
responding pre-trained weights. The training result is shown
in Fig. 8, which shows that the ResNet-101 has achieved
good accuracy. This ensures that the pretrained ResNet-101
can accurately distinguish between generated and real images,
thereby effectively guiding the training of the GSC model.

PSNR =30 dB, SSIM =0.81

PSNR =32 dB, SSIM = 0.83

E— B ©
Fig. 4: Image transmission results on the MNIST dataset. (a)
Original images. (b) Reconstructed images based on the GSC
model. (c) Reconstructed images based on the CSC model.

B loss Accuracy

100

Accuracy (%)

0.54
7 - 80
e e X A : B L 60
e s Ll e " lm o ‘ 0.24 40
0.1 20
Fig. 5: Image transmission results on the Fashion-MNIST
dataset. (a) Original images. (b) Reconstructed images based 0. 01 0

on the GSC model. (c) Reconstructed images based on the MNIST  Fashion-MNIST CIFAR-10  CIFAR-100
Datasets
CSC model.
Fig. 8: Training results of the ResNet-101 on the four
datasets.
PSNR = 30 dB, SSIM = 0.89 PSNR = 27 dB, SSIM = 0.74 Fig. 9 and 10 present the training results of the mentor

I

and student models across four datasets. Note that the loss
and accuracy results shown in the figures represent the mean
loss and accuracy of the GSC model across all clients. We
can see that the mentor model consistently achieves lower
y loss and higher accuracy compared to the student model,
@ ] ® © highlighting its strong capability to guide the student model’s
learning process. Specifically, for the MNIST and Fashion-
MNIST datasets, as shown in Fig. 9(a)-(b) and Fig. 10(a)-
(b), the simplicity of these datasets enables the student model
to achieve performance levels close to those of the mentor
model. This indicates that the student model effectively learns
from the mentor during the training process. In contrast,
for the more complex CIFAR-10 and CIFAR-100 datasets,
as depicted in Fig. 9(c)-(d) and Fig. 10(c)-(d), the mentor
model demonstrates a significant performance advantage, with
faster loss convergence and consistently higher accuracy. This
underscores the mentor model’s ability to provide effective
guidance in handling more challenging tasks. Overall, these
results demonstrate that within the PSFL framework, both the
mentor and student models can continually learn and improve,
ensuring the effectiveness of information exchange during the
training process.

Secondly, we evaluate the model performance under differ-
ent r. Fig. 11 and Fig. 12 illustrate the training results under
different Dirichlet distributions on four datasets. The results
suggest that the performance of the model becomes worse with
the decrease in r, as a smaller r results in greater differences

LD N

Fig. 6: Image transmission results on the CIFAR-10 dataset.
(a) Original images. (b) Reconstructed images based on the
GSC model. (c) Reconstructed images based on the CSC
model.

Fig. 7: Image transmission results on the CIFAR-100 dataset.
(a) Original images. (b) Reconstructed images based on the
GSC model. (c) Reconstructed images based on the CSC
model.
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models on datasets (a) MNIST, (b) Fashion-MNIST, (c¢)
CIFAR-10, and (d) CIFAR-100. Fig. 12: Accuracy versus iteration under different
concentration parameters r of the Dirichlet distribution on

datasets (a) MNIST, (b) Fashion-MNIST, (¢) CIFAR-10, and
between different client data. Specifically, as shown in Fig. (d) CIFAR-100.

11(a)-(b) and Fig. 12(a)-(b), for the simpler MNIST and

Fashion-MNIST datasets, the differences are smaller under

varying r. For the more complex CIFAR-10 and CIFAR-100

datasets, as shown in Fig. 11(c)-(d) and Fig. 12(c)-(d), the Fig. 13(a)-(b) and Fig. 14(a)-(b) show that the PSFL without

increase in r has a more significant impact on the FL. model. = AGP, PSFL, and PSFL without PLD schemes have similar

This means that the proposed PSFL can not perform well with  performance. This may be due to the simplicity of the MNIST

non-IID data when the dataset is complex, which could lead and Fashion-MNIST datasets. In Fig. 13(c)-(d) and Fig. 14(c)-

to further improvements in the FL scheme in the future. (d), the PSFL without AGP achieves the lowest loss and the
Lastly, ablation experiments are performed to evaluate the highest accuracy, while the PSFL without PLD has the worst

functions of PLD and AGP in the PSFL scheme. The results result. We speculate that AGP reduces the parameters of the

are shown in Fig. 13 and Fig. 14. Note in the PSFL without model but impacts the performance, whereas PLD effectively

PLD, each user selects the GSC-M model as the mentor. improves model accuracy.
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Fig. 13: Loss versus iteration under different methods on
datasets (a) MNIST, (b) Fashion-MNIST, (c¢) CIFAR-10, and
(d) CIFAR-100.
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Fig. 14: Accuracy versus iteration under different methods
on datasets (a) MNIST, (b) Fashion-MNIST, (c) CIFAR-10,
and (d) CIFAR-100.

D. Evaluation of different contenders

This subsection compares the proposed PSFL to the other
FL schemes in terms of global loss, global accuracy, and
local accuracy. The following methods are introduced in this
experiment as contenders:

o FedAvg: A common FL approach, which is equivalent to
the PSFL without PLD and AGP algorithms [15].

e STC: A compressed FL framework that is designed to
meet the requirements of the FL environment [38].

e FTTQ: A parameter quantization-based communication-
efficient FL approach [39].

o FedPAQ: A communication-efficient FL. method with

periodic averaging and quantization [40].
o PSFL: The proposed FL approach in this paper.

Except for PSFL, the other schemes adopt the GSC-M as
the FL model. Additionally, for simplicity, we evaluate these
methods on the Fashion-MNIST and CIFAR-10 datasets and
set = 0.9. Fig. 15 and Fig. 16 show evaluation results.

The loss results in Fig. 15(a) and Fig. 16(a) suggest that
the proposed PSFL could converge to the best point on
the Fashion-MNIST and CIFAR-10 datasets, while FedPAQ
performs the worst. Additionally, the FedAvg and FTTQ
schemes perform better, while STC performs worse. Fig. 15(b)
and Fig. 16(b) suggest that the accuracy of the global FL
model obtained by our method is the best and is significantly
better than that of the other contenders. The FedAvg method
performs better than the FTTQ, STC, and FedPAQ methods,
with FedPAQ performing the worst. Fig. 15(c) and Fig. 16(c)
display that the proposed PSFL enables all local FL. models to
achieve the best final accuracy. The performance of FedAvg
and FTTQ is only slightly worse than ours, while STC per-
forms only slightly better than FedPAQ, with FedPAQ results
being the worst on both datasets.

We speculate that the excellent accuracy performance of the
PSFL is mainly attributed to the PLD strategy. PLD allows
clients to freely select the most compatible GSC models,
thus fully utilizing available resources and achieving high
accuracy. Hence, with the proposed PSFL, all clients could
achieve the best performance despite differences in their local
data resources. Moreover, without transmitting all parameter
weights, the AGP algorithm also ensures effective model
information exchange among clients, thereby maintaining the
accuracy of the GSC models.

E. Performance Evaluation of Communication Energy Con-
sumption

This subsection evaluates the performance of the proposed
PSFL and other schemes in terms of communication energy
consumption. Fig. 17 shows the communication energy con-
sumption of each communication round using different FL
schemes.

Fig. 17 shows that the boxplot of the proposed PSFL
is at the bottom, which means the communication energy
consumption of PSFL is the lowest. Meanwhile, the boxplot of
PSFL is the flattest, namely, the energy consumption change
of each round is the smallest under dynamic SNR. Similarly,
FedAvg has the highest energy consumption and the most
dramatic variation in energy consumption.

Hence, we demonstrate that the proposed PSFL can ensure
low communication energy consumption in dynamic SNR.
The low and stable communication energy consumption of
the PSFL can be attributed to AGP. The AGP algorithm
prunes the FL. model while considering the dynamic SNR, thus
reducing the communication energy consumption efficiently in
wireless communications. Furthermore, the pruning operator is
processed only on the server, which could incur no extra cost
to clients.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TCCN.2025.3586904, I[EEE Transactions on Cognitive Communications and Networking
SUBMITTED FOR REVIEW 12

95
5 1 —+— PSFL | % caghiibid LA = oo S ol 03.9(94.1(94.494.8|94.9|95.6(95.7 |95.7 95,8
I —*— FedAvg 8 W ArARRIAAR & » %
o — o
4 \ FTTQ 1 ~ { e ;<: 88.5(88.6(88.6(89.1(89.4(89.5(90.0(90.490.4
\\ STC R70 i 20, P | 88 8
| FedPAQ | = / = <
g 860 ; 2 E 76.0 793 ! 803
S 5 | —+— PSFL S s
g% f ‘ —+— FedAvg | g -75%
40 “ Frra | £ 63.7 656 65.6 67.5 703 721 73.1 T8 /1)
‘ SsTC - 70
30 ‘\ FedPAQ | :Ej 63.2 69.1 69.9 70.2 70.6 71.3 73.9 75.9 75.9 o
20 &
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7 8
Communication rounds Communication rounds Index of client
(a) (b) ()
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Fig. 16: Comparison results of different schemes on CIFAR-10 in terms of (a) global loss, (b) global accuracy, and (c) local
accuracy of each client.

GSC models while accommodating the training requirements
of heterogeneous users. This framework first introduces the
PLD strategy during the local training phase, in which each
user selects a suitable GSC model as a mentor and a unified
CSC model as a student. The two models engage in mutual
learning based on KD. After local training, the unified CSC
model is utilized as the local FL model and uploaded to the
BS for parameter aggregation, thereby obtaining the global
FL model. Secondly, PSFL applies the AGP algorithm in the
global aggregation phase, which prunes the aggregated global
FL model according to the real-time SNR. The AGP algo-
rithm reduces the transmitted model parameters and achieves

the trade-off between the communication energy and model

accuracy. Finally, numerical results demonstrate the feasibility
and efficiency of the proposed PSFL.

In the future, we will work on improving the performance of
the proposed PSFL on non-IID data by introducing the latest
Fig. 17: Communication energy consumption of each personalized FL algorithms. Additionally, since the parameters

communication round using different methods. of the CSC model may relate to user privacy, improving the
security of model parameters during parameter aggregation is
also a potential issue.
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