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Abstract

Motivation: Molecular Dynamics (MD) simulations are essential for investigating protein dynamics and function.
Although significant advances have been made in integrating simulation techniques and machine learning, there are still
challenges in selecting the most suitable data representation for learning. Graph embedding is a powerful computational
method that automatically learns low-dimensional representations of nodes in a graph while preserving graph topology
and node properties, thereby bridging graph structures and machine learning methods. Graph embeddings hold great
potential for efficiently representing MD simulation data and studying protein dynamics.
Results: We present MDGraphEmb, a Python library built on MDAnalysis, specifically designed to convert protein
MD simulation trajectories into graph-based representations and corresponding graph embeddings. This transformation
enables the compression of high-dimensional, noisy trajectories from protein simulations into tabular formats suitable
for machine learning. MDGraphEmb provides a framework that supports a range of graph embedding techniques and
machine learning models, enabling the creation of workflows to analyse protein dynamics and identify important protein
conformations. Graph embedding effectively captures and compresses structural information from protein MD simulation
data, making it applicable to diverse downstream machine-learning classification tasks. We present an application for
encoding and detecting important protein conformations from molecular dynamics simulations to classify functional
states, using adenylate kinase (ADK) as the main case study. To assess the generalisability of the approach, two additional
systems, Plantaricin E (PlnE) and HIV-1 protease are included as supplementary validation examples. A performance
comparison of different graph embedding methods combined with machine learning models is also provided.
Availability: MDGraphEMB GitHub Repository: https://github.com/FerdoosHN/MDGraphEMB
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Introduction

Proteins are at the core of most biological processes. Their

ability to adopt different conformations is essential for

several biological processes, including enzymatic activity,

signalling, genetic information processing, transport and

trafficking, immune response, and cellular homeostasis

mechanisms. Investigating these processes often requires

identifying important protein conformations associated with

functional states and describing the mechanisms of transition

between these states.

In this regard, MD simulations have become a routine

tool for studying protein dynamics and exploring their

conformational space Henzler-Wildman and Kern [2007]. These

simulations provide information on events at the atomic and

molecular levels, capturing processes up to the millisecond

scale. Moreover, MD simulation techniques are frequently

used in combination with experimental methods to investigate

functional dynamics in proteins. Similar to other areas of

data-driven research, the availability of faster algorithms

and high-performance parallelisation has made it easier to

study more complex problems over extended timescales,

often approaching those observed in experimental techniques.

Recently, machine learning techniques have demonstrated

great potential for analyzing and extracting insights from

the extensive data generated by MD simulations Kaptan and

Vattulainen [2022], Glielmo et al. [2021], Hagg and Kirschner

[2023]. However, molecular simulation data, particularly

in the case of atomistic molecular dynamics, has a low

signal-to-noise ratio, making the detection and modelling
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of functionally relevant motions challenging. As a result,

dimensionality reduction and data compression are increasingly

used for extracting biologically meaningful patterns and

enabling efficient, quantitative interpretation through machine

learning. Historically, unsupervised machine learning methods

have been employed to extract meaningful information from

conformational landscapes, particularly through dimensionality

reduction Glielmo et al. [2021]. Approaches based on machine

and deep learning have been developed to handle dimensionality

reduction and compress information from MD simulation data,

facilitating effective learning Lemke and Peter [2019], Lemke

et al. [2019]. Recently, an autoencoder Jin et al. [2021] was

employed to map MD simulation snapshots to a conformational

landscape defined by principal component analysis, enabling

the prediction of new conformations not included in the training

data.

While dimensionality reduction methods can enhance

feature extraction, they require a thorough analysis of

the conformational space. Alternative approaches focus on

modifying the data representation of each conformation to

generate more informative representations of key degrees of

freedom and their relationships. In this context, the spatial

arrangement and interactions of protein residues have been

effectively represented using graph models Patel et al. [2024].

These models have been particularly successful in capturing

the multiscale nature of intrinsic dynamics and conformational

motions, accurately modelling both global and local changes,

as well as complex time-resolved events such as allosteric

communication.

Graph representations have been used successfully to encode

and analyse the conformational properties of protein structures

Patel et al. [2024]. For residue-based representations, a single

graph was typically constructed from average information on

residue-residue interactions or dynamical coupling, given an

ensemble of conformations. An alternative approach involves

encoding the ensemble as a collection of graphs. However, the

heterogeneity and dynamic nature of conformational ensembles,

combined with the complexity of high-dimensional data,

present significant challenges for traditional graph analysis.

Graph embedding techniques address these challenges

by converting graph data into low-dimensional vector

representations while preserving key structural information,

enabling more efficient and effective analysis. In addition,

graph embedding techniques offer significant computational

advantages over methods that operate directly on the original

networks. They facilitate faster processing and can be used

to build machine learning models for various predictive tasks,

such as node classification, community detection, clustering,

and visualisation Hamilton et al. [2017], Yue et al. [2019].

Additionally, working in a lower-dimensional space helps to

manage noise present in the original network more effectively.

Modelling using the graph embedding developed in recent years

Grover and Leskovec [2016], Hamilton et al. [2017], Zhang

et al. [2018], Cui et al. [2018], Yue et al. [2019]. In general,

graph embedding methods can be categorised into three main

types: spectral-based, random walk-based, and neural network-

based methods Nelson et al. [2019], Yue et al. [2019]. The

field of graph learning has expanded significantly, progressing

beyond traditional graph representation learning and neural

network-based embedding techniques. This growth has driven

the development and evaluation of various Graph Neural

Network (GNN) architectures, including Graph Convolutional

Network (GCN) Kipf and Welling [2017], Graph Sample

and Aggregate (GraphSAGE) Hamilton et al. [2017], and

Graph Attention Network (GAT) Veličković et al. [2020],

each designed to address specific challenges in graph-based

tasks. These models have been successfully applied to a

wide range of applications Zitnik and Leskovec [2017], You

et al. [2018], Jin et al. [2018]. Moreover, platforms such as

GraphGym and PyTorch Geometric (PyG)Fey and Lenssen

[2019], You et al. [2020] have emerged as powerful tools

for exploring and benchmarking various GNN architectures

and tasks. Deep Graph Library (DGL) Wang et al. [2020b]

complements these efforts with a graph-centric design that

supports efficient parallel computation through generalized

sparse tensor operations. A comprehensive survey on graph

embedding techniques and graph representation learning in

bioinformatics, detailing trends, methods, and applications,

can be found in Wu et al. [2023], Yi et al. [2022]. In recent years,

graph embedding and graph learning techniques have been

increasingly applied to predict protein function by leveraging

information from protein sequences, structures, and interaction

networks Boadu et al. [2024], Lin et al. [2024]. However, these

methods have yet to be thoroughly tested or analysed in the

context of protein dynamics and MD simulation data.

In this paper, we explore graph embedding as an effective

computational method for learning low-dimensional node

representations of ensembles of protein structure graphs from

molecular dynamics. To this end, we developed MDGraphEmb,

an object-oriented Python library built on top of the

MDAnalysis library Michaud-Agrawal et al. [2011], Gowers

et al. [2019]. MDGraphEmb facilitates the conversion of

MD simulation data from protein conformations into graph

representations and then into graph embeddings using different

embedding methods. The tool also supports a range of machine

learning and deep learning models to create predictors of

important protein conformations from MD simulation data.

We demonstrate that graph embedding effectively captures

structural information from MD simulation data, making it

suitable for different machine learning classification tasks. An

example application using the ADK protein system is presented

for encoding and detecting important protein conformations

from molecular dynamics simulations to classify functional

states. Within this context, we compare the performance of

various graph embedding methods in combination with machine

learning models to evaluate their effectiveness. Based on these

results, we recommend the most effective embedding and

classification strategies. To assess the generalisability of the

approach, two additional systems (PlnE and HIV-1 protease)

are included as supplementary validation examples.

Conformational states are often identified using unsupervised

learning methods such as clustering analysis. While effective

as an exploratory analysis tool, clustering relies on similarity-

based grouping and often struggles to distinguish continuous

transitions between conformational states, especially in

complex, high-dimensional datasets. Moreover, it typically

requires ad-hoc parameter selection, and the resulting

groupings are not directly transferable to new simulation data.

The supervised learning approach presented in this study

offers a way to overcome these limitations and complement

clustering. If representative state labels can be derived from

one simulation, the trained model can then be used to predict

conformational states in new, unseen datasets.

While graph learning frameworks such as PyG and

DGL offer extensive support for implementing graph neural

networks and embedding techniques, they are general-

purpose libraries not specifically optimised for the unique

challenges posed by MD simulation data. In contrast,
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MDGraphEmb is an open-source library specifically developed

to provide a domain-specific workflow for analysing protein

MD simulations through graph-based learning. It integrates

widely used methods (including Node2Vec, GCN, GAT, and

GraphSAGE) within a unified framework that operates directly

on MDAnalysis-compatible trajectory data. MDGraphEmb

streamlines the entire process, from trajectory preprocessing

and graph construction to representation learning and

downstream classification, enabling domain experts in

computational biology to apply graph learning without

requiring deep expertise in graph neural network programming.

It also offers pre-configured workflows, protein-specific graph

construction routines, and seamless pipelines for embedding

and classification, along with built-in tools for benchmarking

and comparative evaluation.

Methods

Python library architecture
MDGraphEmb is an object-oriented Python library for

analysing protein dynamics using graph embeddings. Library

functions are included to: a) convert protein conformations

from MD trajectories into graph representations; b) generate

graph embeddings using well-established embedding methods;

and c) train machine and deep learning models to predict

functional properties of protein conformations. The library was

built on top of MDAnalysis and incorporates functions from

NetworkX Hagberg et al. [2008], PyTorch Geometric Fey and

Lenssen [2019], TensorFlow Abadi et al. [2016], and scikit-learn

Pedregosa et al. [2011]. At its core, MDGraphEmb provides a

flexible set of classes for handling protein conformations using

three different representations: Protein, ProteinGraph, and

ProteinEmb.

The Protein class uses the MDAnalysis Universe to

represent Cartesian and topological information on protein

conformations extracted from MD trajectory files, following a

previous class designOues et al. [2023]. The ProteinGraph

class converts these protein conformations into graphs,

preserving the spatial relationships between atoms in protein

data. In more detail, for each frame, the self-distance array from

MDAnalysis is converted into a weighted adjacency matrix, and

a graph is generated using NetworkX. A cut-off is applied to

the adjacency matrix to filter contact connections. Through

this process, the MD trajectory is converted into a series of

graphs. The ProteinEmb class compresses each graph into an

embedding. It supports different graph embedding methods to

transform high-dimensional graph data into lower-dimensional

embeddings. This process not only reduces computational

complexity but also allows for the extraction of meaningful

features that are critical for machine learning tasks. To this

end, the library also includes a ProteinTarget class, which

can record per-frame (i.e., per-graph) target properties to

predict. A ML class is provided for convenience, which offers

direct access to various supervised learning algorithms. These

algorithms, alongside evaluation methods, visualisation tools,

and report generation capabilities, facilitate the development

of a workflow for training and prediction of conformational

properties, e.g., functional state labels, based on learned graph

embeddings. The class diagram of MDGraphEmb is presented

in Figure 1.

Graph embedding and machine learning prediction
The workflow of the MDGraphEmb toolkit is shown in Figure

2. Protein simulation data is read using MDAnalysis (Figure

2a), where the coordinates of the Cα atoms in the protein are

represented by an (X,Y, Z) matrix, and n denotes the number

of frames in the protein trajectory. For each frame, a pairwise

Cα distance matrix is calculated, filtered by a contact cut-off

(default: values < 10 Å)Gligorijević et al. [2021], and converted

into a weighted graph, where edge weights are calculated as

(1 − (distance/cut-off)).

The resulting graphs are then embedded using the PyTorch

Geometric package (Figure 2b). Users can select from different

embedding methods or configure their own hyperparameters.

Both random walk-based methods (e.g., node2vec) and

neural network-based methods (e.g., GraphSAGE, GAT, GCN)

are supported. The embedding generates a lower-dimensional

representation of the protein’s trajectory space (Figure 2c).

The embedding output is a series of matrices with dimensions

|V | × |d|, where |V | represents the number of nodes in the

graph (equivalent to the number of Cα) and |d| represents the

dimension of the embedded vectors for each frame. Since there

are n frames in the trajectory, we obtain n matrices of size

|V | × |d|. The matrix output from the embedding model is

reshaped for each frame into a single vector of size |V | × |d|,
effectively mapping the entire graph for one frame to a single

vector. The trajectory data is compressed into a tabular format

conveniently processed by most machine learning algorithms.

If an example of a per-frame property of interest is available,

a predictive model can be trained using supervised learning

methods. Parameter settings for the graph embedding methods

and configurations of the machine learning models are provided

in the Supplementary Materials (Methods: Architectures of the

Embedding Methods and Machine Learning Models 6).

This toolkit supports a variety of supervised machine

learning algorithms through scikit-learn and TensorFlow

(Figure 2d), including neural networks (NN), (CNN), and

boosting methods like LightGBM (LGBM) and XGBoost

(XGB), which are well suited to high-dimensional data.

Additionally, it accommodates traditional machine learning

techniques such as logistic regression, random forests, and

support vector machines. The toolkit provides a comprehensive

graph learning framework encompassing the entire process,

from embedded protein data to target processing, classification

reporting, visualisation, and performance comparison between

different embedding methods and machine learning models.

Case study: system description
Adenylate kinase (ADK) is an enzyme within the phosphotransf-

erase family, playing a central role in maintaining cellular

energy balance by catalysing the conversion of adenine

nucleotides. A critical step in the catalytic cycle is the

transition between an open and a closed state. This

conformational transition makes ADK an ideal model system

for studying protein conformational changes due to its well-

defined states. Details of the open-close conformational

transition have been extensively investigated through combinati-

ons of experimental and computational methods Henzler-

Wildman et al. [2007], Daily et al. [2010], Ping et al. [2013],

Formoso et al. [2015], Wang et al. [2020a]. ADK dynamics is

compatible with an induced-fit model and a complete transition

to a closed state is generally observed in the presence of the

substrate. A recent computational study demonstrated that a

double mutant (V135G, V142G) shows features of pre-existing
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Fig. 1. Class diagram of the MDGraphEmb toolkit. A detailed explanation can be found in the Method section.

Fig. 2. Workflow of the MDGraphEmb toolkit. (a) Protein simulation data is read by MDAnalysis, where (X,Y, Z) are Cα atom coordinates and

n is the number of frames in protein trajectory. The protein data is converted into graph using the Cα distance matrix, with the adjacency matrix

constructed using a default cut-off of 10 Å. Graphs for each frame are then generated using the NetworkX library. (b) The graphs are embedded using

PyTorch Geometric, with options for various embedding methods. (C) The embedding produces a series of matrices, each of size |V |× |d|, where |V | is the

number of nodes and |d| is the embedding dimension. Each frame in the trajectory results in one matrix, which is reshaped into a vector. The trajectory

is represented in a tabular data format where a per-frame target value can be added. (d) This data structure is ready for machine learning classification

tasks. In this paper, a classification of protein functional states is presented.

equilibrium and can sample the closed state in the absence of

the substrate Song et al. [2021]. Mutations at residues V135

and V142 are located on the lid domain of ADK, in a flexible

loop region directly involved in the conformational transition.

The structural architecture of ADK is illustrated in Figure 3.

In addition to the ADK case study, MDGraphEmb

was further evaluated on two structurally and dynamically

distinct systems—PlnE and HIV-1 protease, to assess the

generalisability of the approach. PlnE is an α-helical

antimicrobial peptide with high conformational flexibility,

while HIV-1 protease exhibits pronounced flap dynamics that

regulate access to its active site. These systems were selected

to test the method across diffent types of conformational
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dynamics. Full details are provided in the Supplementary

Materials (Case Study Systems: Preparation and Simulation).

System Preparation and Simulation
The wild-type structure of ADK was downloaded from the

Protein Data Bank Berman et al. [2003]. A double mutant

(V135G + V142G) was generated from this structure (PDB

ID: 4AKE) using PyRosetta Chaudhury et al. [2010]. Sampling

of conformational changes in ADK was done by MD simulation

using GROMACS 2022.4 with the AMBER ff99SB*-ILDN force

field. Details of system minimisation and equilibration are

reported in the Supplementary Materials (Case Study Systems:

Preparation and Simulation 6). For the wild-type and double

mutant structures, 5 replicas of 1 microsecond (µs) were

generated using a 2-femtosecond timestep. A dataset of 100,000

frames recorded every 10 picoseconds was created for this study

from the replica R02 of the double mutant, that is the one with

the most extensive transition towards the closed state, so the

one more informative for effective training.

Conformational State Prediction
The aim of this study is to demonstrate that graph embedding

effectively captures information on protein conformations from

MD simulation data and can be used to train machine learning

models to predict conformational states. To this end, we

designed a prediction scenario where a supervised learning

model is trained to classify conformational states. The scenario

was tested on the MD trajectory of the ADK transition from

the open to the closed state.

Initially, a state label was generated for each trajectory

frame using a non-trivial procedure that included expert

knowledge decisions: states associated with energy minima were

identified as high-density regions in the conformational space

describing ADK dynamics. First, critical collective motions

describing ADK dynamics were extracted using Principal

Component Analysis (PCA) calculated over a combined

trajectory of wild-type and double mutant simulations Amadei

et al. [1993]. The first principal component (PC1 - 39.5%

explained variance) clearly describes the lid closure, while

the second principal component (PC2 - 24.0%) captures the

twisting motion of the lid, known to lock the conformation

in the closed state (Figure 3a). Second, the dataset of

conformations was projected onto the (PC1, PC2) space, and a

density analysis was performed. Contour lines were generated,

and the maximal contour threshold that separates the two

basins of open and closed conformations was identified, that

in the case of (PC1, PC2) space corresponded to 0.02 units

of density over the total space area. Finally, boundaries for

each area in the (PC1, PC2) space with a density higher than

the threshold were defined. All data points (frames) within

each area were labelled accordingly: open (A), closed (B),

intermediate (I). All remaining data points in lower-density

regions were labelled non-state (N).

While this procedure does not follow a rigorous free energy

reconstruction, it offers a robust framework to test the potential

of machine learning in predicting state labels. These labels

are generated in a non-trivial and non-linear way, avoiding

a direct dependency on the coordinates of individual frames.

Additionally, the state boundaries do not define any easily

calculable hyperplane in the PCA space. Information on PCA

will not be used in the next steps of model training to

add robustness to the test. With a suitable target variable

established, a model can be trained to learn the relationship

between the input conformation, as represented by the graph

embedding, and the output target label representing the

conformational state of that conformation (see Figure 2c).

A set of supervised machine learning algorithms was used

to train and test a classification model using different subsets

of frames from the protein trajectory (5000, 10,000, 25,000,

50,000, and 100,000). Subsets were derived by striding at 200

ps, 100 ps, 40 ps, 20 ps, and 10 ps. All subsets contained

frames representative of the three main conformational states.

The models were trained on 70% of the data. Following

training, the models were evaluated on the remaining 30% of

the data to assess their predictive performance. This evaluation

was conducted using different combinations of embedding

techniques, machine learning models, and different dataset sizes

to identify the best predictive framework.

Statistical Analysis and Visualisation Tools
Initial data cleaning, preparation, statistical analysis, and final

plots were generated using the R statistical environment R

Core Team [2021]. Density analysis and state labelling were

performed using the MASS Venables and Ripley [2002] and

sp Pebesma and Bivand [2005] libraries. Images of protein

structures were generated using PyMol Schrödinger, LLC [2015]

and VMD Humphrey et al. [1996].

Results and Discussion

Different predictive models were trained and tested to classify

conformational states at the frame level for the ADK

system. Three key aspects of the data analysis workflow were

investigated: (a) the choice of embedding methods, (b) the

machine learning models, and (c) the dataset sizes (see Table 1).

For details refer to the Supplementary Materials (Results

section). This includes a comparison of class-specific and overall

accuracy across different embedding methods, as well as an

evaluation of various performance metrics by class for multiple

machine learning models using GraphSAGE embeddings across

different frame counts. The extended analysis covers not

only the ADK system, but also two additional protein

systems: PlnE and HIV-1 protease. Embeddings were generated

with GAT, GCN, GraphSage, and Node2Vec. Among these,

GraphSage demonstrated superior performance, generating

high-quality embeddings that consistently outperformed the

other methods. GraphSage was ultimately selected as the

optimal method due to its scalability and ability to handle

high-dimensional data efficiently. Machine learning models

trained on GraphSage embeddings achieved the highest overall

performance, highlighting its robustness in capturing the

underlying structure of the data.

The following presents a comparative performance analysis

of different machine learning models trained on embeddings

generated by the GraphSage method. The evaluated models

include Logistic Regression (LR), Random Forest (RF), XGB,

LGBM, NN, CNN, and Support Vector Machines (SVM).

Each model was assessed based on its overall performance in

classification, as well as correct predictions across the single

class labels: Class A (open state), Class B (closed state), Class

I (intermediate state), and Class N (non-state). The evaluation

was conducted across different dataset sizes (5000, 10,000,

25,000, 50,000, and 100,000 frames), providing insights into

model performance with increasing data size and frequency of

sampling from the original MD trajectory.
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Fig. 3. Machine learning target labels for the ADK conformational classification scenario, derived using PCA on MD trajectory data. PC1 (x-axis)

describes open–closed conformational transition in ADK, while PC2 (y-axis) describes the twisting motion of the LID domain. A density contour plot

estimates the distribution of conformational states in this PCA space. Based on density thresholds, four hypothetical states were defined: open (A),

closed (B), intermediate (I), and non-state (N). The structural architecture of ADK comprises three domains: the CORE domain (green; residues 1–29,

68–117, 161–214), the NMPbind domain (red; residues 30–67), and the LID domain (orange; residues 118–160). While the CORE domain acts as a

stable scaffold, the NMPbind and LID domains undergo conformational changes, closing over ligand binding sites during catalysis.

In terms of overall accuracy, NN achieved the highest

accuracy for a dataset of 50,000 frames, with a performance of

0.86, indicating their robustness across all classes. LR, LGBM,

and XGB also showed strong overall performance, especially at

smaller and intermediate dataset sizes, making them suitable

choices when prioritising computational efficiency.

The open state (Class A) presented considerable challenges

for most machine learning models to predict accurately,

while LR performed exceptionally well at larger dataset sizes,

achieving an accuracy of 0.78 for 50,000 frames and 0.81 for

100,000 frames. The closed state (Class B) was the easiest

class to predict, with consistently high accuracy across models

and trajectory sizes. Most models achieved top accuracies

above 0.95 across different trajectory sizes, showcasing the well-

defined and easily recognizable patterns within Class B. This

aligns with what is expected: the closed state of the protein has

a distinct, defined set of conformations mapping onto a well-

separated region of the phase space, while the open state can

appear in different geometrical arrangements, making it more

challenging to identify a common pattern.

Class I was the most challenging to predict for all

models compared to Classes A and B. Neural Networks

achieved the highest accuracy of 0.70 at the trajectory size

of 10,000, demonstrating their ability to capture the non-

linear characteristics of the intermediate state. The transitional

nature of Class I makes it difficult to define, as it represents

an intermediate phase between the open and closed states of

the protein. For larger trajectory sizes (50,000 and 100,000

frames), Logistic Regression showed improved performance

with accuracies of 0.92 and 0.95, respectively. This pattern

suggests that, while Class I may display complex transitional

properties at smaller dataset sizes, it benefits from linear

classification methods when more data is available, as LR can

detect overarching trends.

Similar to Class B, Class N was predicted with high accuracy

across most models. LGBM demonstrated the best performance

at smaller trajectory sizes, achieving an accuracy of 0.92

for 5,000 frames. For larger trajectory sizes (50,000 frames),

Neural Networks achieved an accuracy of 0.91, showcasing

their adaptability with increased data and capacity to capture

complex, distributed patterns. A projection of the correctness

of predictions on the (PC1, PC2) space for LR and NN is

reported in Figures 4 and 5, respectively, on the 100,000-frame

dataset with GraphSage embeddings, where ADK states are

colour-coded: blue dots for the open state (A), pink for the

intermediate state (I), orange for the close state (B), and grey

for the non-state (N), while incorrect predictions are shown as

red dots.

An overview of the performance across dataset sizes (see

Table 1) suggests that 50,000 frames is the optimal size, offering

the highest balanced accuracy across protein states. This

dataset size is consistent with the sampling of conformations

every 20 ps. This timescale aligns with loop rearrangements

and small domain motions underpinning larger conformational

changes. This dataset size represents a good compromise for

training on trajectories of up to the µs scale.
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Conclusion

In this study, we introduced MDGraphEmb, the first

open-source, domain-specific toolkit for encoding protein

conformational dynamics from protein MD simulations

into graph embeddings suitable for machine learning.

Unlike general-purpose frameworks such as PyG and DGL,

MDGraphEmb provides a complete and tailored workflow, from

MD trajectory preprocessing to graph construction, embedding

generation, and classification. It integrates multiple embedding

methods (Node2Vec, GCN, GAT, and GraphSAGE) and

various machine learning models.

We addressed the core challenge of compressing high-

dimensional structural dynamics into informative representatio-

ns by encoding and compressing information in graph

models to enhance the signal-to-noise ratio and transform

molecular dynamics data into a tabular format suitable

for effective machine learning predictions. By systematically

comparing graph embedding methods, we evaluated how

well each approach preserved signal relevant to protein state

classification. Among them, GraphSAGE offered the best

trade-off between expressiveness and scalability, particularly

for large datasets. We showed how supervised models can

be trained to predict frame-level properties on unseen data.

We demonstrated this by classifying the conformational states

of the ADK protein, which exhibits distinct functional

transitions, including intermediate and transient states between

experimentally characterised open and closed conformations.

To evaluate the generalisability of the approach, MDGraphEmb

was also tested on two structurally and dynamically diverse

systems: PlnE, an α-helical antimicrobial peptide with a high

degree of conformational flexibility, and HIV-1 protease, which

undergoes large-scale loop opening and closing motions that

regulate access to its active site. These contrasting systems

demonstrate that MDGraphEmb is suitable for proteins with a

spectrum of dynamics changes, different structural classes and

functional mechanisms.

While clustering remains a useful exploratory tool, it

struggles to capture continuous transitions and generalise

across simulations. The supervised learning approach presented

here addresses these limitations by learning from labelled

examples, enabling robust and scalable prediction of

conformational states in new datasets.

The MDGraphEmb library can be readily extended to

study and characterise long MD simulations. Additionally, it

may serve as a valuable tool for investigating the impact of

mutations on the intrinsic dynamics of proteins by comparing

different state samples. Overall, MDGraphEmb lowers the

barrier to applying graph learning in molecular simulations

and enables scalable, reproducible, and biologically meaningful

analysis of protein dynamics. It offers a practical foundation for

applications such as mutation impact analysis, long-timescale

trajectory annotation, and automated state classification in

high-throughput workflows.
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Table 1. Comparison of class-specific and overall accuracy across different frames and machine learning models for GraphSage.

Trajectory size ML Model Class A Class B Class I Class N Model Accuracy

5000

Logistic Regression 0.57 0.95 0.43 0.74 0.74

Random Forest 0.28 0.97 0.43 0.88 0.81

XGBoost 0.27 0.97 0.55 0.90 0.83

LightGBM 0.24 0.97 0.55 0.92 0.83

Neural Network 0.47 0.98 0.48 0.81 0.78

CNN 0.30 0.96 0.39 0.88 0.81

Support Vector 0.31 0.97 0.30 0.89 0.82

10000

Logistic Regression 0.62 0.95 0.63 0.73 0.75

Random Forest 0.39 0.98 0.54 0.88 0.82

XGBoost 0.28 0.98 0.58 0.91 0.82

LightGBM 0.28 0.98 0.53 0.90 0.82

Neural Network 0.47 0.97 0.70 0.85 0.81

CNN 0.41 0.97 0.47 0.85 0.80

Support Vector 0.34 0.98 0.41 0.91 0.83

25000

Logistic Regression 0.72 0.96 0.86 0.69 0.74

Random Forest 0.35 0.98 0.63 0.86 0.80

XGBoost 0.28 0.97 0.69 0.91 0.83

LightGBM 0.32 0.97 0.69 0.89 0.82

Neural Network 0.58 0.98 0.77 0.82 0.81

CNN 0.31 0.94 0.53 0.90 0.82

Support Vector 0.40 0.97 0.63 0.89 0.83

50000

Logistic Regression 0.78 0.98 0.92 0.67 0.73

Random Forest 0.45 0.98 0.72 0.86 0.82

XGBoost 0.34 0.98 0.78 0.90 0.84

LightGBM 0.38 0.98 0.79 0.89 0.83

Neural Network 0.52 0.97 0.72 0.91 0.86

CNN 0.45 0.96 0.73 0.87 0.82

Support Vector 0.50 0.98 0.76 0.89 0.84

100000

Logistic Regression 0.81 0.98 0.95 0.67 0.74

Random Forest 0.47 0.98 0.72 0.86 0.82

XGBoost 0.40 0.96 0.68 0.91 0.84

LightGBM 0.40 0.97 0.75 0.90 0.84

Neural Network 0.68 0.97 0.71 0.87 0.85

CNN 0.51 0.96 0.67 0.88 0.83

Support Vector 0.59 0.97 0.77 0.88 0.85
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